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Abstract 

Protein contact maps are  representations of 
the proteins three dimensional folding 
topology. A fuzzy generalization of contact 
maps (FGCM) provides to the researcher 
flexibility not present in standard (i.e. crisp) 
contact maps but it also changes the 
information content of the data. To aid in 
the rationale –rather than ad-hoc- selection 
of generalized contact maps parameters we 
introduce some universal measures of 
information. We discuss this in the paper 
and show its impact on FGCM. 

Keywords: Protein contact maps, fuzzy 
membership functions, entropy, symmetry, 
complexity. 

1     Introduction 

“When we look at a cell through a microscope or 
analyse its electrical or biochemical activity, we are, 
in essence, observing proteins”. Protein’s biological  
functions depend essentially on their three 
dimensional (3D) shape: this determines the 
molecules they are to bind with; this constrains the 
movements allowed for a protein to act as a 
mechanical machine [1], etc. 

 Whereas it is possible to predict a protein 
secondary structure starting with the amino acid 
sequence, in general,  it is presently  not possible to 
reliably predict ab-initio the  3D structure (i.e. its 
native state). However, some proteins are amenable 
to crystallographic analysis; X-ray diffraction (with 

a wavelength of 0.1 nm.) patterns are measured and 
by suitable interpretation of the raw data it is 
possible to determine the position of all the non-
hydrogen atoms in the native state of the molecule 
reliably. Nuclear Magnetic Resonance (NMR), a 
complementary technique, is used  to determine 3D 
structures for small proteins (specially if they resist  
crystallization or it is necessary to monitor changes 
in the conformation). As both X-ray crystallography 
and NMR are empirical techniques they introduce 
experimental errors in the measurements which 
sometimes are amplified by the pattern interpretation 
technique used to decode the atomic coordinates. 

 Bioinformatics techniques must therefore 
cope with empirical errors in the 3D determination 
and with efficient comparison between different 
(protein) 3D data. In a previous work [2], a fuzzy 
generalisation for the representation of the 3D 
protein structure was proposed to cope with some of 
these errors. The introduction of fuzzy membership 
functions also gives the researcher flexibility to 
define “contacts” in the 3D protein for different 
biological features (for example, selecting α-helices 
or β-sheets by distance properties). 

 Departing from the subjective tuning of 
these “fuzzy” degrees of freedom, in this paper we 
address a preliminary discussion of the information 
changes induced in the protein data through 
“universal” measures (such as entropy or symmetry, 
as introduced in [3])  in order to select, or constrain, 
the use of membership functions. 

EUSFLAT - LFA 2005

1106



2     Protein contact map and the fuzzy 
generalisation  

We consider the basic 3D protein structure to be 
given by a distance matrix. For a particular protein 
composed of a sequence of N amino acids, the 
distance matrix is a symmetric matrix of dimension 
N x N. Rows and columns represent this amino acid 
sequence, and each matrix entry stands for the 
Euclidean distance in the 3D space between the 
amino acids referred by the row and column. This 
explains the matrix symmetry as well as a zero 
diagonal. An example of this matrix, which 
corresponds to  alpha-beta 1AA9  protein with 172 
amino acid sequence  in the PDB data set (see [2] for 
further reference), can be observed in Fig. 1, where  
distance is mapped to image intensity. 

 
Fig. 1: Protein distance matrix example 

The standard (crisp) contact map is a matrix 
with 0-1 entries computed out of the distance matrix 
by applying the function in Fig.2: 

 

Fig.2: Crisp function for the contact map 

The fuzzy generalisation, as discussed in this 
paper (see [2] for the complete generalisation), can 
be stated as the change of the crisp function in Fig. 2 
by the membership function of Fig. 3: 

 
Fig.3: Membership function for the fuzzy 

contact map 

Note that this membership function depends 
of two parameters (R,γ) instead of only the crisp 
threshold R. 

The contact map is an essential tool in 
formulating the protein overlap problem to compare 
3D structures[10] thus the generalised version may 
help to increase the symmetry of this formulation as 
discussed later. Symmetry can help to simplify the 
complexity of the protein overlap problem or design 
algorithms for this purpose, but this issue is out of 
the scope of this preliminary discussion (see for 
example [11]). 

3     Information and structure measures for 
graphs 

3.1     Entropy measure 

Information Theory (IT) has been applied to measure 
information (whose actual meaning depends on the 
particular use of these concepts) conveyed by  
biological sequences such as proteins [4]. Entropy is 
the most important measure from IT: Given a 
discrete random variable (r.v.) by its probability 
distribution {p1,…,pn}, its entropy is defined as 

∑=
=

n

k k
k p

pe
1

)1log(
  

        (1) 

However, to directly apply this measure to the 
distance matrix in Fig.1 by considering each of its 
entries as r.v. realisations does not provide any clue 
about the 3D protein structure. Fig. 4 shows an 
image with similar entropy generated by a gaussian 
r.v. with the same mean and variance of 
Fig.1:
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Fig. 4: Random distance matrix 

In order to introduce structure in the entropy 
formalism, the usual approach is to apply Markov 
models. However, this approach is rather complex, 
specially if the only objective is to measure large 
structures as those in proteins. We alternatively use a 
measure of symmetry, firstly introduced in [3], as a 
computational efficient measure for structure. The 
rationale behind this proposal  is the increasingly 
important role that symmetry concepts are playing in 
understanding structure [5] and complex dynamics 
[6]. 

3.2     Symmetry measure 

As for the symmetry in a distance matrix or 
relationship graph, it is known that if a graph is 
highly symmetric its eigenvalues are highly 
degenerated [7]. This is not proved to be a if and 
only if relation so that we define a similarity 
measure heuristic which accounts for inverse of the 
pair-wise difference of the eigenvalues of a graph. 
This is formalized as follows: 

 Let λ  be the vector of eigenvalues (ordered 
from the largest to the shortest, and normalised) of 
the distance matrix, the contact map or the fuzzy 
contact map, G (n x n dimension). Note that all these 
matrices have real eigenvalues since they coincide 
with their transposes. Let δλ  be the vector of the 
differences between each element of λ with its 
successor, and  kδλ  its k component. The measure 
of symmetry is defined as: 

( )∑
−
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−=
1
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n

k
kG δλµ                                       (2) 

 Since this definition is heuristic and its 
validity does not rest upon any theoretical 
development, we provide its values for Figs. 1 and 4 
which are 131.36 and 7.67, respectively. Additional 
evidence of its usefulness has been provided in [3]. 
Although the entropy for these two images is 
essentially similar, their symmetry measures are two 
orders of magnitude different. Further check can be 
brought from the contact map as calculated from 
data in Fig. 1 by applying the crisp function (Fig.2) 
with R=10 (Angstroms) and shown in Fig. 5. The 
following table illustrate the discriminative power of 
these measures on these figures. 

 

Table 1.: Measures comparison 

Fig. Ent. 
Measure 

(bits) 

Sym. 
measure 

Kolm. 
Compl. 

(Kbits) 

1 2.64 131.36 77 

4 3.89 7.67 277 

5 0.52 141.84 43 

 

Table 1 relates the entropy and symmetry measures 
to images attaching a subjective meaning to them as 
raw information and structure degree respectively. 
Note that Fig. 5 essentially preserves the same 
structure as Fig. 1, however the quantisation of the 
matrix entries reduces the whole information 
content. 

3.3 Kolmogorov Complexity measure 

Complementarity of (first order) entropy and this 
symmetry measure, as discussed above, is 
reminiscent of Kolmogorov complexity (see [8] for a 
formal definition). The Kolmogorov complexity of 
an object gives the length of the shortest program 
that can generate it and is a quantity closely related 
to  the degree of compression which can be achieved 
for a sequence encoding the original object. To 
achieve such a compression an explanatory 
algorithm is needed for the encoding sequence. The 
size of such an algorithm (which is essentially 
invariant to any specific encoding) comprises the 
Kolmogorov complexity of, in our application 
domain, the 3D structure encoded by (generalised) 
contact maps. 

EUSFLAT - LFA 2005

1108



 

 
Fig.5 Crisp contact map for 1AA9 

An easy approximation to the Kolmogorov 
complexity can be borrowed from available 
compression algorithms [9]. In our case, the images 
are winzipped JPEG (essentially suppressing JPEG 
headers), so to comply with [9]. The fourth column 
in Table 1 shows the consistency of the entropy and 
symmetry measures: as the entropy decreases and/or 
the symmetry increases,  data can be more  
compressed. 

4     Selecting membership function 
parameters: some experiments 

The use of fuzzy membership functions in the definition 
of protein (generalised) contact maps not only allows a 
researcher to interpret protein data in different ways but 
also changes the information content in the data. The use 
of the entropy and symmetry measures introduced in 
previous sections allow us to control these issues in 
order to select membership functions or their parameters 
with a view of maximum information gain. In what 
follows, we discuss how the parameters (R,γ) of the 
membership function in Fig. 3 affect these measures as 
applied to the distance function in Fig. 1. We do not 
intend to provide an optimisation framework in order to 
set these parameters since different criteria may be 
equally feasible, but simply to provide an  experimental 
illustration. 

In a previous work, [2], we had set (R,γ)=(10, 
1.2) for the same data and membership function. Figs. 6 
and 7 gives the entropy and symmetry measures for an 

exploring range of parameters γ and R  around 
(R,γ)=(10, 1.2), respectively.  

Fig. 6: Entropy and symmetry for R=10. 

Fig. 7: Entropy and symmetry for γ=1.2. 

Despite local irregularities, there are 
consistent extrema in these plots with very different 
behaviours for the two parameters. In order to 
appraise these results, Figs. 8, 9 and 10 give the 
fuzzy contact maps for (10,20), (10,50) and (18,1.2), 
respectively. Fig. 11 provides the reference fuzzy 
contact map, (10,  1.2).  

 The inspection of these figures illustrates the 
effect of modifying entropy and symmetry through 
the fuzzy contact maps. For instance, the difference 
between Figs 8. and 9 is explained by gaining in 
symmetry at a cost in entropy; so Fig. 9 has less 
information than Fig. 8 but the interpretation of the 
3D shape of the protein has more regularities. Of 
course, the final selection of parameters must be 
driven by the researcher’s objectives.  
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Fig. 8: Fuzzy contact map (R,γ) = (10,20) 

 
Fig. 9: Fuzzy contact map (R,γ) = (10,50) 

 
Fig. 10: Fuzzy contact map (R,γ) = (18,1.2) 

 
Fig. 11: Fuzzy contact map (R,γ) = (10,1.2) 

 

5  Conclusions 

A protein’s 3D structure is a central building block 
in the life sciences thus it becomes necessary to have 
flexible and efficient tools for its handling and 
processing. Fuzzy membership functions provides 
interesting degrees of freedom which also changes 
the informational content of the data. 

 We have introduced  different measures of 
information which address entropy and structure in 
the data, and discuss their consistency. Images of the 
real protein data help to interpret the significance of 
such a measures in selecting membership 
parameters.  
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