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Abstract
This paper describes how MEADEP, a system level
dependability prediction tool, and CASRE, a software reliability
growth prediction tool can be used together to predict system
reliability (probability of failure in a given time interval),
availability (proportion of time service is available), and
performability (reward-weighted availability) for a.  The system
includes COTS hardware, COTS software, radar, and
communication gateways.  The performability metric also
accounts for capacity changes as processors in a cluster fail and
recover. The Littlewood Verrall and Geometric model is used to
predict reliability growth from software test data This prediction
is integrated into a system level Markov model that incorporates
hardware failures and recoveries, redundancy, coverage failures,
and capacity.  The results of the combined model can be used to
predict the contribution of additional testing upon availability
and a variety of other figures of merit that support management
decisions.

1 Introduction
This paper addresses a new approach for assessment of complex
distributed real time systems used in mission critical or safety
critical applications.  We demonstrate the combined use of
traditional system reliability assessment techniques with
software reliability growth models to enable the prediction of
whether such systems will meet their reliability and availability
requirements, and demonstrate how such an integrated model
can be used for system level tradeoffs (e.g., redundancy vs. test
time). Successive generations of both system and software
reliability prediction methods and tools have been developed
since the early 1970s.  However, these techniques assumed that
the software executed in a single module or node
[Schneidewind96] and are therefore not sufficient to address the
needs of current complex systems.   By “complex systems”, we
mean systems that incorporate both COTS and developmental
software, COTS hardware, and Internet Wide Area Networks
(WANs), all of which contribute to system downtime.

Software reliability growth models use measured time between
error reports or number of error reports in a time interval. In
most cases, they evaluate the reduction in failure frequency
during successive developmental test intervals to estimate the
software reliability at the conclusion of a time period. Examples

are the Schneidewind model, the generalized exponential model,
the Musa/Okumoto Logarithmic Poisson model, and the
Littlewood/Verrall model [ANSI92].   The primary limitation of
reliability growth models is their lack of ability to model system
architectures. Because information systems commonly
incorporate parallelism, redundancy, and networks, the
reliability of the system cannot be quantified solely by the
failure rate calculated at the software module level.  For
example, several studies have shown that 80 to 95 percent of
software failures in real-time systems are recoverable by
redundant processes [Lee93, Tang95].  In such cases, software
reliability growth models do not provide meaningful answers.

System reliability models use stochastic analysis and
combinatorial probabilistic techniques to predict reliability. The
underlying assumption in these measurement-based approaches
is that the fundamental failure mechanisms are triggered
stochastically, i.e., are non-deterministic (“Heisenbugs”).  The
most common modeling techniques are Markov chains and
reliability block diagrams. Such models have been used to
evaluate operational software based on failure data collected
from commercial computer operating systems for more than a
decade [Hsueh87, Tang92, Lee93].  Research on estimating
parameters for such models, including failure rates and
restoration times of both hardware and software components,
been a research topic in computer engineering for 15 years
[Iyer93].  System availability modeling has been used to
evaluate availability for air traffic control software systems
[Tang95, Tang99, Rosin99] and most recently also to the early
operational phase at multiple sites. The problem with system
reliability models is that they do not account for reliability
growth.  Thus, they can be used to assess system dependability,
but not to predict such dependability during the development and
testing phases.

In this paper, we demonstrate how software and system
reliability models can be integrated to provide a basis for
predicting system availability and to enable business or project
management decisions.  Examples of questions that such
modeling can answer include:

• Given a known cost of downtime and current test data, what
is the economically optimal point at which to stop testing?
What uptime benefit will be achieved by additional testing
beyond this point?



• Based on current testing results, what is the highest system
availability that is likely to be achieved?

• How much more testing will be necessary in order for the
system to achieve the required availability?

• Is testing or additional redundancy a better strategy for
achieving availability goals?

In this paper, we will describe the application of an integrated
system/software reliability growth model for an Internet web site
server subsystem.  We will then demonstrate how the impact of
test time against capacity and availability can be assessed.
Finally, we will demonstrate that substantive economic decisions
on test strategies and stopping criteria can be developed using
such a model.

The system reliability is assessed in the following examples
using MEADEP [SoHaR00], a graphically oriented hierarchical
reliability modeling tool.  The software reliability prediction tool
is SMERFS [Farr93], a well known and widely accepted
software application for evaluation of test data for failure rate
and defect discovery rate prediction.

2 Air Traffic Control System Example
To demonstrate the principle of the combined model, we will use
a simplified system configuration based on the Standard
Terminal Automation Replacement System (STARS) now being
developed by the Federal Aviation Administration for upgrades
at large airports or complexes of airports.  Figure 1 shows the
overall system.

Digitized radar data arrives over telephone
lines and is distributed to two
Communication Gateway subsystems to a
primary system, designated the Full
System :Level(FSL), and a backup
subsystem, designated as the Emergency
Service Level (ESL).  Both the FSL and
ESL use dual redundant switched 100
MBPS Ethernet backbones.  All
processors on the network use middleware
provided in the Network Services (NWS)

software for status reporting, registration, remote management,
and related functions necessaryu for high availability.  In the
FSL, the data are processed by a server with redundancy running
a Radar Data Processor (RDP) application that performs radar
data tracking and correlation.  The RDP data are then distributed
to the Terminal Controller Workstations (TCWs) or larger
Terminal Display Workstations (TDWs) where they are
translated into a situation display.  In the ESL, each workstation
performs its own tracking and correlation along with the
situation display; there is no central RDP server.  System
management is performed through other Monitor and Control
Workstations (MCWs) running the System Monitor and Control
(SMC) software.  Other functions that support the primary
mission include Data Recording and Playback (DRP) which is
performed on another set of servers on the FCS network and a
support subsystem performs provides site support such as
simulation for test and training, adaptation edits for maps and
minimum safe altitude warnings.  The “P” and “R”, and “FW”
designations on the diagram stand for printers, routers, and
firewalls respectively.

3 Dependability Model
The dependability model for this system involves both the
developed software and Commercial off the Shelf (COTS)
hardware and software.  Developed software undergoes testing
and failure removal; its reliability growth is predicted using one
of many reliability growth models, in the Computer Aided
Software Reliabilty Estimation (CASRE) software package
developed at JPL [Nikora94]. COTS components – whether
hardware or software – have constant failure rates.  We have

explained above why such
failures are primarily
random in nature and have
failure rates that can be
measured using well
established techniques that
have been incorporated into
the Measurement Based
Dependability (MEADEP )
.software developed by
SoHaR [Hecht97].

MEADEP creates models
hierarchically.  A total of 11
submodels were created as
shown in Figure 2.  The top
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level diagram accounts for both the ESL and FSL integrated to
provide the terminal situation display service.  Within the FSL,
there are submodels for each of the four major subsystems
(Communications Gateway, Radar Data Processing, Network,
and Controller Workstation).  The ESL model is simpler,
consisting only of software.  With the exception of the Ethernet,
which has no software, the other subsystems include both
hardware, COTS software,. and developed software as will be
described below.  Figure 1 shows a Markov model of the radar
data processing server in order to demonstrate the integration of
reliability growth and stochastic reliability models.  The system
is available if functional in either the FSL or ESL states.  It will
fail if a common cause failure (power, network, massive security

failure, etc.) brings down the entire system.

Due to length considerations, we will not consider all of the
submodels.  However, in order to demonstrate the integration of

reliability growth and system level modeling, we will show the
Radar Data Processor subsystem (RDP) the ESL workstations.

Figure 4 shows the Radar Data Processing submodel.  It is a
standard Markov dual redundant model in which state S0
represents all processors up, S1 represents one processor down
and the other successfully taking over, and Sf represents both
processors failed.  It is not certain that after a single processor
failure, the second processor will successfully recover, and
hence, the probably of successful detection and recovery is
represented by the variable cRDP.

Figure 5 shows the detailed model of the software and hardware
within the radar data processor.  There are two primary failure
mode categories:  hardware and software.  These categories are
so defined because the recovery time from hardware failures is

assumed to be twice as long (1 hour) as the recovery time from
software failures.

The software failure rate transition is of the greatest interest in
this model.  Itg includes terms for the operating system failure
rate and the failure rate of the radar data processing application
software. The failure rate for the application software is
expressed in terms of two intermediate constants, k4 and k5,
which are related to the Geometric distribution [Farr96], which
has the form

1)exp(
)exp(
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ββ
β
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Equation 1

The constants D and β are calculated from the CASRE tool
which is in turn based on algorithms developed for the SMERFS
[Farr83] software.  The geometric model was chosen on the
basis of a best fit for the developmental data used in this
example.

In Figure 5, there are three states in the model:  normal,

SW_failed (any of the major components of the RDP has
suffered a failure resulting in the loss of service), and HW_failed
(server hardware failure).  The numbers below the state name
represent rewards, i.e., the value of the state.  A reward of 1
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means that the system state is fully functional, a reward of 0
means that the state is completely failed.  MEADEP  allows
intermediate values of reward (i.e., between 0 and 1) in order to
represent partial loss of capability. The use of such partial
rewards will be discussed below.

The following points should be noted:

• There are 4 failure modes considered in the model:
hardware failure, application software failure, Internet
server software failure, and operating system failure

• The hardware failure is separated from software failures
because the hardware failure is restoration time requires
replacement (assumed to take 1 hour) vs. a software
restoration time by means of a restart (assumed to require 15

minutes), and

• The application software failure modes are assumed to be
crash, hang, and stop.  We have not considered the case of
an incorrect response with normal behavior because it is
assumed that this type of error should have been removed
during earlier development. However, it could be included
by the addition of a state, incorrect response could be
incorporated into the system model.  For this failure mode,
it would be more appropriate to use a model that predicts
number of faults found rather than reliability (see for
example, [Farr96]).

For the ESL workstation subsystem, the best fit model based on
the CASRE results was the Littlewood Verall Bayesian model
[Littlewood80, ANSI92].  The linear of the form failure rate is
[Farr96]
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in which the values of the α, βo, and β1 parameters were
determined by CASRE.

The ESL subsystem model differs from the FSL model because
there are a number of independent workstations, each
performing the entire processing for the air traffic control center
independently and in parallel (this type of processing is
acceptable for the reduced capabilities being provided in ESL).
Figure 7 shows the ESL workstation model (lowest level in the
ESL hierarchy, see Figure 1), which is similar to the RDP model

in that both hardware, COTS software, and application software
failures are considered, and all software failures are
groupedtogether in one transition whereas all hardware failures
are grouped together in the second.  The constants k1, k2, and k3
represent intermediate variables of the Littlewood Verrall failure
intensity relation (Equation 2) for the purposes of simplifying
the model.

Figure 8 shows how the model in Figure 7 is incorporated into a
higher level model that evaluates both the effects of redundancy
and capacity loss..

Tables 1 and 2 describe the transitions and the parameters used
in these models

Table 1.  RDP and ESL Workstation Model Parameters
Para-
meter

Explanation Value

β1 1.86
α 1.21
β0

Parameters in Littlewood Verall linear failure
intensity (see Equation 2)

2.54
k1 α-1
k2 β02

k3

Intermediate “Dummy” variable used to simplify
representation of Littlewood Verall equation in
MEADEP model 2*β1*(α-

1)
D .9774
β

Parameters in Geometric failure intensity (see
Equation 1) .0105

k4 Intermediate “Dummy” variable used to simplify
representation of Geometric equation MEADEP
model

Dexpβ

k5 βDexpβ
µHW Repair rate of the workstation hardware,

corresponding to a 1 hour MTTR
1

λHW Failure rate of the workstation hardware,
corresponding to a 1000 hour MTBF

0.0005

testtime Test time in hours 500
λNWS NWS middleware failure rate, corresponding to a

2000 hour MTBF
.0.0005

λOS Failure rate of the operating system software,
corresponding to a 2000 hour MTBF

0.0005
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Table 2.  Workstation and RDP Model Transtitions

Origin
State

Desti-
nation
State

Expression Comment

Normal SW
Failed

λOSk1
/(k2+k3*testtime)^.
5

λOS+k4/
(k5+testtime_RDP+
1)

Sum of three transition failure
rates (equivalent of putting three
blocks in series in a reliability
block diagram):  operating
system, web server, and
application software.  The
expressions
k4/(k5+testtime_RDP+1) and
k1/(k2+k3*testtime)^0.5 are
simplifications of the Geometric
and Littlewood Verall failure
intensities described in
Equations 1 and 2

SW
Failed

Normal µSW Software restart time

Normal HW
Failed

λHW Server hardware failure rate

HW
Failed

Normal µHW Server hardware replacement/
repair time

The model consists of 7 states representing from 0 to 6
workstations failed.  The rewards of each state (i.e., the numbers
below the state names) represent the loss of traffic management
capacity as each workstation fails (and the remaining controllers
are responsible for controlling the airspace).  Thus, S0, with all
workstations processors functioning, has a 100% reward.  The
loss of a single workstation, S1, results in a 5% loss of capacity
(approximately), and has the value of 0.95, the loss of two
servers results in a 10% loss, and so on. Beyond 6 failures, the
web site will be taken off-line because of excessive delays due to
controller traffic capacity degradation.

The transitions from left to right represent failures and are all of
the form

(Nws-n)*λws

in which Nws is the number of controller workstations, n is the
number of failed workstations, and λws is the failure rate of each
workstation (derived from evaluating the model in Figure 7).
The transitions from right to left are all µws which is the
restoration rate of the workstation. MEADEP defines an
aggregate µ from each lower level model and hence, this
restoration time represents a weighted average of the hardware
and software restoration times.  The frame at the bottom of the
picture is how MEADEP represents that the transitions λws and
µws are defined by the lower level model, PC_server, in Figure
7.

The most significant observation to be made about Figure 8 is
that software reliability growth predictions have now been
integrated with redundancy and with a measure of service
performance. Thus, it is now possible to begin to make tradeoffs
among:  test time, capacity, and hardware failure rates, software
failure rates, and restoration times..

4 Results
With the incorporation of the software reliability prediction
results generated by CASRE, it is now possible to determine the
system level reliability using MEADEP.  Table 3 shows the

baseline results.  A complete list of the 66 parameters used in the
model can be obtained from the [SoHaR00]

Table 3 .  Baseline Results
Model Failure Rate

(per hour)
Recover
Rate (per
hour)

Availability Unavailability

STARS 5.00E-05 3.940799 0.999987 1.27E-05

FSL 3.35E-05 1.940799 0.999983 1.72E-05

ESL 1.40E-11 2 1 7.00E-12

TCW 1.40E-09 1 1 1.40E-09

CGS 1.61E-05 2 0.999992 8.05E-06

RDPS 1.64E-05 2 0.999992 8.18E-06

Workstation 0.007105 1 0.992945 0.007054834

Gateway 0.0015 2 0.999251 0.000749438

RDP 0.001522 2 0.99924 0.000760399

ESL
Workstation

0.006674 2 0.996674 0.003325875

Ethermet 1.02E-06 1 0.999999 1.02E-06

Figure 9 shows the impact of test time on workstation reliability
using the Littlewood Verrall software reliability growth
predictions..  Workstation reliability is an important figure of
merit affecting usability of the system by controllers and air
traffic safety.  However, the software reliability growth models
predict (in accordance with experience), that testing will have
limited value beyond a certain point, and that the incremental
failure rate improvement decreases with greater testing time.
When the value of the additional increase in reliability improve
is less than the additional testing time (however these are
defined), then it is no longer cost effective to test.  Moreover,
alternative means of increasing reliability can also be traded off
against test.  For example, increasing hardware reliability or
increasing redundancy might also provide the same system level
result.

We now turn to the radar data processing subsystem. For this
server subsystem, the primary issue is availability, i.e., the
probability that the controllers will be able to receive RDP
services.  Figure 10 shows the results of the analysis for a single
RDP processor.  For the data sample used in the analysis, it is
clear that relatively little benefit will accrue from additional
testing.  The yearly downtime will drop by some 0.45 hours per
year (27 minutes) with the expenditure of approximately 900
additional hours of testing.  The impact becomes even more
marginal when the RDP subsystem (consisting of the primary
and redundant server) is considered.  In this case, the downtime
drops from 0.076 hours to 0.071 hours for the same level of
testing.

On the other hand, testing resources would benefit the FSL if
applied at the workstation.  As was the case with the ESL
workstation (which uses many of the same software components
including the operating system)
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5 Tradeoffs of Software Testing vs. Other
System Level Concerns

With the appropriate system model, it is possible to extend the
results shown in the previous sections to the system level.  For
example, should resources be expended on software testing or
reduction of the common mode failure rate.  Figure 12 shows the

impact of the common mode failure rate on the STARS system
unavailability.  With the baseline set of values (i.e., the system is
quite reliable), the unavailability varies linearly.  For the
baseline assumed value of 0.00005 (corresponding to an mean
time between common mode events of 20,000 hours), the
unavailability is approximately 0.0000127, corresponding to a
downtime of 11 minutes per year
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Figure 12.  Impact of Common Mode Failure Rate on
STARS

6 Discussion and Conclusions
This paper has demonstrated the value of integrating two mature
and complementary, but until now, separated modeling and
prediction approaches.  As a result of this integration, it is
possible to make better predictions on the economically
achievable reliability of software intensive systems that
incorporate redundancy and in which capacity and response time
have economic value.  As such the technique is also applicable
to many classes of high assurance systems in space, e-
commerce, military information (e.g., C3I and logistics), and
manufacturing, financial, and medical applications.

The model results should be interpreted with respect to the
following limitations:

1. Software test data .  As has  been noted in many articles and
papers on the subject, proper data gathering is essential for
the validity of such models.  The test data that are used
should be gathered in accordance with the anticipated
operational profile [Musa96] and should reflect a variety of
testing strategies to avoid test saturation.

2. Random failures:  The “heisenbug” assumption noted above
assumes that failures occur randomly and can be modeled as
a stochastic process. .  This is largely true even for software
failures. Deterministic software failures are easily
reproduced are generally fixed early.  Those which are
difficult to reproduce are by definition unpredictable and
therefore non-deterministic. Because most failures in
software, hardware, and communication system failures are
random and are the largest contributors to system downtime,
the modeling and decision making approach described here
is valid. However, the modeling approach does not address



deterministic phenomena such as fundamental design flaws
or security challenges that have been responsible for some
high visibility recent outages at large web sites.
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