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A Simple Vector Proof of Feuerbach’s Theorem

Michael J. G. Scheer

Abstract. The celebrated theorem of Feuerbach states that the nine-point circle
of a nonequilateral triangle is tangent to both its incircleand its three excircles. In
this note, we give a simple proof of Feuerbach’s Theorem using straightforward
vector computations. All required preliminaries are proven here for the sake of
completeness.

1. Notation and background

Let ABC be a nonequilateral triangle. We denote its side-lengths bya, b, c,
its semiperimeter bys = 1

2
(a + b + c), and its area by∆. Its classical centers

are the circumcenterO, the incenterI, the centroidG, and the orthocenterH
(Figure 1). The nine-point centerN is the midpoint ofOH and the center of the
nine-point circle, which passes through the side-midpoints A′, B′, C ′ and the feet
of the three altitudes. The Euler Line Theorem states thatG lies on OH with
OG : GH = 1 : 2.
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Figure 1. The classical centers and the Euler divisionOG : GH = 1 : 2.

We writeIa, Ib, Ic for the excenters oppositeA,B,C, respectively; these are points
where one internal angle bisector meets two external angle bisectors. LikeI, the
points Ia, Ib, Ic are equidistant from the linesAB, BC, andCA, and thus are
centers of three circles each tangent to the three lines. These are the excircles. The
classical radiiare the circumradiusR (= OA = OB = OC), the inradiusr, and
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the exradiira, rb, rc. The following area formulas are well known (see, e.g., [1]
and [2]):

∆ =
abc

4R
= rs = ra(s − a) =

√

s(s − a)(s − b)(s − c).

Feuerbach’s Theorem states thatthe nine-point circle is tangent internally to the
incircle, and externally to each of the excircles[3]. Two of the four points of
tangency are shown in Figure 2.
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Figure 2. The excenterIa andA-excircle; Feuerbach’s theorem.

2. Vector formalism

We view the plane asR2 with its standard vector space structure. Given triangle
ABC, the vectorsA − C andB − C are linearly independent. Thus for any point
X, we may writeX −C = α(A−C) + β(B −C) for uniqueα, β ∈ R. Defining
γ = 1 − α − β, we find that

X = αA + βB + γC, α + β + γ = 1.

This expression forX is unique. One says thatX has barycentric coordinates
(α, β, γ) with respect to triangleABC (see, e.g., [1]). The barycentric coordinates
are particularly simple whenX lies on a side of triangleABC:

Lemma 1. Let X lie on the sidelineBC of triangleABC. Then, with respect to
triangle ABC, X has barycentric coordinates

(

0, XC

a
, BX

a

)

.

Proof. SinceX lies on lineBC betweenB andC, there is a unique scalart such
thatX−B = t(C−B). In fact, the length of the directed segmentBX = t·BC =
ta, i.e., t = BX

a
. Rearranging,X = 0A+ (1− t)B + tC, in which the coefficients

sum to1. Finally, 1 − t = a−BX

a
= XC

a
. �

The next theorem reduces the computation of a distanceXY to the simpler
distancesAY , BY , andCY , whenX has known barycentric coordinates.



A simple vector proof of Feuerbach’s theorem 207

Theorem 2. LetX have barycentric coordinates(α, β, γ) with respect to triangle
ABC. Then for any pointY ,

XY 2 = αAY 2 + βBY 2 + γCY 2 − (βγa2 + γαb2 + αβc2).

Proof. Using the well known identity|V |2 = V · V , we compute first that

XY 2 = |Y − X|2

= |Y − αA − βB − γC|2

= |α(Y − A) + β(Y − B) + γ(Y − C)|2

= α2AY 2 + β2BY 2 + γ2CY 2 + 2αβ(Y − A) · (Y − B)

+ 2αγ(Y − A) · (Y − C) + 2βγ(Y − B) · (Y − C).

On the other hand,

c2 = |B − A|2 = |(Y − A)− (Y −B)|2 = AY 2 + BY 2 − 2(Y −A) · (Y −B).

Thus,
2αβ(Y − A) · (Y − B) = αβ(AY 2 + BY 2 − c2).

Substituting this and its analogues into the preceding calculation, the total coeffi-
cient ofAY 2 becomesα2 + αβ + αγ = α(α + β + γ) = α, for example. The
result is the displayed formula. �

3. Distances from N to the vertices

Lemma 3. The centroidG has barycentric coordinates(1

3
, 1

3
, 1

3
).

Proof. LetG′ be the point with barycentric coordinates(1

3
, 1

3
, 1

3
), and we will prove

G = G′. By Lemma 1,A′ = 1

2
B + 1

2
C. We calculate

1

3
A +

2

3
A′ =

1

3
A +

2

3

(

1

2
B +

1

2
C

)

=
1

3
A +

1

3
B +

1

3
C = G′,

which implies thatG′ is on segmentAA′. Similarly,G′ is on the other two medians
of triangle ABC. However the intersection of the medians isG, and soG =
G′. �

Lemma 4 (Euler Line Theorem). H − O = 3(G − O).

Proof. Let H ′ = O + 3(G − O) and we will proveH = H ′. By Lemma 3,

H ′ − O = 3(G − O) = A + B + C − 3O = (A − O) + (B − O) + (C − O).

And so,

(H ′ − A) · (B − C) = {(H ′ − O) − (A − O)} · {(B − O) − (C − O)}

= {(B − O) + (C − O)} · {(B − O) − (C − O)}

= (B − O) · (B − O) − (C − O) · (C − O)

= |OB|2 − |OC|2

= 0,
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which impliesH ′ is on the altitude fromA to BC. Similarly, H ′ is on the other
two altitudes of triangleABC. SinceH is defined to be the intersection of the
altitudes, it follows thatH = H ′. �

Lemma 5. (A − O) · (B − O) = R2 − 1

2
c2.

Proof. One has

c2 = |A − B|2

= |(A − O) − (B − O)|2

= OA2 + OB2 − 2 (A − O) · (B − O)

= 2R2 − 2 (A − O) · (B − O). �

We now findAN , BN , CN , which are needed in Theorem 2 forY = N .

Theorem 6. 4AN2 = R2 − a2 + b2 + c2.

Proof. SinceN is the midpoint ofOH, we haveH −O = 2(N −O). Combining
this observation with Theorem 2, and using Lemma 5, we obtain

4AN 2 = |2(A − O) − 2(N − O)|2

= |(A − O) − (B − O) − (C − O)|2

= AO2 + BO2 + CO2

− 2(A − O) · (B − O) − 2(A − O) · (C − O) + 2(B − O) · (C − O)

= 3R2 − 2

(

R2 −
1

2
c2

)

− 2

(

R2 −
1

2
b2

)

+ 2

(

R2 −
1

2
a2

)

= R2 − a2 + b2 + c2. �

4. Proof of Feuerbach’s Theorem

Theorem 7. The incenterI has barycentric coordinates
(

a

2s
, b

2s
, c

2s

)

.

Proof. Let I ′ be the point with barycentric coordinates(a/2s, b/2s, c/2s), and we
will prove I = I ′. Let F be the foot of the bisector of angleA on sideBC.
Applying the law of sines to trianglesABF andACF , and usingsin(π − x) =
sinx, we find that

BF

c
=

sin BAF

sin BFA
=

sin CAF

sin CFA
=

FC

b
.

The equationsb ·BF = c · FC andBF + FC = a jointly imply thatBF = ac

b+c
.

By Lemma 1,F = (1 − t)B + tC, wheret = BF

a
= c

b+c
. Now,

b + c

2s
· F +

a

2s
· A =

b + c

2s

(

b

b + c
· B +

c

b + c
· C

)

+
a

2s
· A

=
a

2s
· A +

b

2s
· B +

c

2s
· C

= I ′,
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which implies thatI ′ is on the angle bisector of angleA. Similarly, I ′ is on the
other two angle bisectors of triangleABC. SinceI is the intersection of the angle
bisectors, this impliesI = I ′. �

Theorem 8 (Euler). OI2 = R2 − 2Rr.

Proof. We useX = I andY = O in Theorem 2 to obtain

OI2 =
a

2s
R2 +

b

2s
R2 +

c

2s
R2 −

(

bc

(2s)2
a2 +

ca

(2s)2
b2 +

ab

(2s)2
c2

)

= R2 −
a2bc + b2ac + c2ab

(2s)2

= R2 −
abc

2s

= R2 −

(

abc

2∆

)(

∆

s

)

= R2 − 2Rr.

The last step here uses the area formulas of§1—in particular∆ = rs = abc/4R.
�

Theorem 9. IN = 1

2
R − r andIaN = 1

2
R + ra

Proof. To find the distanceIN , we setX = I andY = N in Theorem 2, with
Theorems 6 and 7 supplying the distancesAN , BN , CN , and the barycentric
coordinates ofI. For brevity in our computation, we usecyclic sums, in which
the displayed term is transformed under the permutations(a, b, c), (b, c, a), and
(c, a, b), and the results are summed (thus, symmetric functions ofa, b, c may be
factored through the summation sign, and

∑

�
a = a+ b+ c = 2s). The following

computation results:

IN2 =
∑

���

(

a

2s

)

R2 − a2 + b2 + c2

4
−
∑

���

(

b

2s
·

c

2s

)

a2

=
R2

8s

(

∑

���

a

)

+
1

8s

(

∑

���

(−a3 + ab2 + ac2)

)

−
abc

(2s)2

(

∑

���

a

)

=
R2

4
+

(−a + b + c)(a − b + c)(a + b − c) + 2abc

8s
−

abc

2s

=
R2

4
+

(2s − 2a)(2s − 2b)(2s − 2c)

8s
−

abc

4s

=
R2

4
+

(∆2/s)

s
−

4R∆

4s

=

(

1

2
R

)2

+ r2 − Rr

=

(

1

2
R − r

)2

.
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The two penultimate steps again use the area formulas of§1. Theorem 8 tells us
thatOI2 = 2R(1

2
R − r), and so1

2
R − r is nonnegative. Thus we concludeIN =

1

2
R − r. A similar calculation applies to theA-excircle, with two modifications:

(i) Ia has barycentric coordinates
(

−a

2(s − a)
,

b

2(s − a)
,

c

2(s − a)

)

,

and (ii) in lieu of∆ = rs, one uses∆ = ra(s − a). The result isIaN = 1

2
R +

ra. �

We are now in a position to prove Feuerbach’s Theorem.

Theorem 10 (Feuerbach, 1822). In a nonequilateral triangle, the nine-point circle
is internally tangent to the incircle and externally tangent to the three excircles.

Proof. Suppose first that the nine-point circle and the incircle arenonconcentric.
Two nonconcentric circles are internally tangent if and only if the distance between
their centers is equal to the positive difference of their radii. Since the nine-point
circle is the circumcircle of the medial triangleA′B′C ′, its radius is1

2
R. Thus

the positive difference between the radii of the nine-pointcircle and the incircle is
1

2
R − r which isIN by Theorem 9. This implies that the nine-point circle and the

incircle are internally tangent. Also, since the sum of the radii of theA-excircle
and the nine-point circle isIaN , by Theorem 9, the nine-point circle is externally
tangent to theA-excircle. Suppose now that the nine-point circle and the incircle
are concentric, that isI = N . Then0 = IN = 1

2
R − r = OI2/2R and soI = O.

This clearly implies triangleABC is equilateral. �

For historical details, see [3] and [4].
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