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A Simple Vector Proof of Feuerbach’s Theorem

Michael J. G. Scheer

Abstract. The celebrated theorem of Feuerbach states that the ninegircle
of a nonequilateral triangle is tangent to both its incieote its three excircles. In
this note, we give a simple proof of Feuerbach’s Theoremgusiraightforward
vector computations. All required preliminaries are prowere for the sake of
completeness.

1. Notation and background

Let ABC be a nonequilateral triangle. We denote its side-lengths, byc,
its semiperimeter by = %(a + b+ c), and its area by\. Its classical centers
are the circumcente), the incenter/, the centroidG, and the orthocentef!
(Figure 1). The nine-point centéy is the midpoint ofO H and the center of the
nine-point circle, which passes through the side-midjgaitit B’, C’ and the feet
of the three altitudes. The Euler Line Theorem states ¢thdies on OH with
OG:GH =1:2.

A

c
Figure 1. The classical centers and the Euler divigidi : GH = 1 : 2.

We writel,, Iy, I. for the excenters opposité, B, C, respectively; these are points
where one internal angle bisector meets two external angéetors. Likel, the
points 1,, I, I. are equidistant from the lined B, BC, andC' A4, and thus are
centers of three circles each tangent to the three lineseTdre the excircles. The
classical radiiare the circumradiu® (= OA = OB = OC), the inradius-, and
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the exradiir,, 5, .. The following area formulas are well known (see, e.g., [1]
and [2]):
b
A= Z—Rf =rs=r4(s —a) = /s(s —a)(s — b)(s — ).
Feuerbach’s Theorem states the nine-point circle is tangent internally to the
incircle, and externally to each of the excirclgd. Two of the four points of

tangency are shown in Figure 2.

Figure 2. The excentdr, and A-excircle; Feuerbach’s theorem.

2. Vector formalism

We view the plane aR? with its standard vector space structure. Given triangle
ABC, the vectorsA — C andB — C are linearly independent. Thus for any point
X, we may writeX — C' = a(A — C) + (B — C) for uniquec, 5 € R. Defining
v=1-—a— g, wefind that

X =aA+ (B +~C, at+pfB+y=1.

This expression forX is unique. One says thaf has barycentric coordinates
(o, B,) with respect to trianglel BC (see, e.qg., [1]). The barycentric coordinates
are particularly simple wheX lies on a side of trianglel BC"

Lemmal. Let X lie on the sidelineBC' of triangle ABC'. Then, with respect to
triangle ABC, X has barycentric coordinateg), £¢ ﬂ).

Proof. SinceX lies on lineBC betweenB and(, there is a unique scalarsuch
thatX — B = t(C'— B). In fact, the length of the directed segméhX = ¢- BC' =
ta,l.e,t = %. RearrangingX = 04+ (1 —t)B+tC, in which the coefficients
sum tol. Finally, 1 — ¢ = =8X — XC O

a

The next theorem reduces the computation of a distaxigeto the simpler
distanceAY, BY, andCY’, whenX has known barycentric coordinates.
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Theorem 2. Let X have barycentric coordinatesy, 3, v) with respect to triangle
ABC. Then for any point’,
XY? = 0AY? 4+ BBY? + 4CY? — (Bya® + yab® + afc?).
Proof. Using the well known identityV'|?> = V - V, we compute first that
Xy? =y — x?

= |Y —aA - BB —~C)?

= |a(Y = A)+ B(Y = B) +~(Y = O)?

= a?AY? 4+ 3°BY? +42CY? + 208(Y — A) - (Y — B)

+207(Y —A)- Y -C)+26yY —B)- (Y - C).

On the other hand,
A =|B-AP=|(Y -A) (Y -B)?=AY? +BY? -2(Y — A) - (Y — B).
Thus,

206(Y —A)- (Y — B) = aB(AY? + BY? — ¢?).
Substituting this and its analogues into the precedingutation, the total coeffi-
cient of AY? becomesy® + a8 + ay = afa + § + 7) = a, for example. The
result is the displayed formula. O

3. Distancesfrom N tothevertices

Lemma 3. The centroid has barycentric coordinates;, 1, 3).
Proof. Let G’ be the point with barycentric coordinates 1, 1),
G =G'.ByLemmalA’' = 1B+ 1C. We calculate

2
3

which implies thatz’ is on segmentd A’. Similarly, G’ is on the other two medians
of triangle ABC. However the intersection of the mediansds and soG =
G O
Lemma4 (Euler Line Theorem)H — O = 3(G — O).
Proof. Let H' = O + 3(G — O) and we will proveH = H'. By Lemma 3,
H-0=3G-0)=A+B+C-30=(A-0)+(B-0)+(C-0).
And so,
(H'—A)-(B-C)={(H"-0)-(A-0)} - {(B-0)—(C-0)}
={B-0)+(C-0)}-{(B-0)-(C-0)}
=(B-0)-(B-0)—(C-0)-(C-0)
= |OB|? — |0C?
=0,

and we will prove

1. 2 1 1.1 1. 1. 1
A+ A =ZA “B+-C|=-A+-B+-C=G
A+ 3 A+ <2 +2C> gA+ 5B +50=0
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which impliesH' is on the altitude from4 to BC. Similarly, H' is on the other
two altitudes of triangleABC'. Since H is defined to be the intersection of the
altitudes, it follows that? = H'. O

Lemmab. (4—0)-(B—0)=R?— 1%
Proof. One has
> =|A-BJ?
=|[(A-0)—(B-0)
=0A>+0B*-2(A-0)-(B-0)
=2R?*-2(A—-0)-(B-0). O
We now findAN, BN, CN, which are needed in Theorem 2 for= N.
Theorem 6. 4AN? = R? — a? + b? + 2.
Proof. SinceN is the midpoint ofOH, we haveH — O = 2(N — O). Combining
this observation with Theorem 2, and using Lemma 5, we obtain
4AN? = |2(A—0) —2(N — O)|?
=(A-0)~(B-0)~(C-0)P
= AO? + BO? + CO?
—-2(A-0)-(B-0)—-2(A-0)-(C-0)+2(B-0)-(C-0)

1 1 1
2 2 2 2 2 2 2
= -2 — ) -2 — ) +2 — =
3R <R 2c> <R 2b> (R 2a>
= R2—a?+b%+ 2. O
4. Proof of Feuerbach’s Theorem

Theorem 7. The incentet has barycentric coordinategs:, &, £ ).

Proof. Let I’ be the point with barycentric coordinatés/2s, b/2s, c/2s), and we
will prove I = I’. Let F be the foot of the bisector of anglé on side BC.
Applying the law of sines to triangled BF' and AC'F', and usingsin(m — x) =
sin z, we find that

BF  sin BAF  sinCAF  FC

¢ sinBFA sinCFA b~
The equation$ - BF = c¢- FC andBF + FC = ajointly imply that BF = ;¢

m.
By Lemma 1,F = (1 —t)B + tC, wheret = & — <. Now,
b+c a b+c b c a
P4 — A= .B . Z A
2s +23 2s <b+c +b+c C>+2s
a b c
— — A4+ —.B4+—.
2s +28 +28 ¢

- T
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which implies thatl’ is on the angle bisector of angke. Similarly, I’ is on the
other two angle bisectors of triangheBC'. Sincel is the intersection of the angle
bisectors, this implieg = I'. O

Theorem 8 (Euler) OI? = R? — 2Rr.
Proof. We useX = I andY = O in Theorem 2 to obtain

or* = iJ%erﬁR?JriRQ—<(b62a2+ €y b 2)

2s 2s 2s 2s) (25)2 (23)20

_ g2 a?be + b?ac + c2ab
- (25)?
_ g2 ke
= 2s

abe A
- R2_ | = =

() (3)
— R?—2Rr.
The last step here uses the area formulailefin particularA = rs = abc/4R.

O
Theorem 9. IN = 1R —randI,N = iR +r,

Proof. To find the distancd N, we setX = I andY = N in Theorem 2, with
Theorems 6 and 7 supplying the distanced’, BN, CN, and the barycentric
coordinates ofl. For brevity in our computation, we usgclic sumsin which
the displayed term is transformed under the permutatiens, ¢), (b,¢,a), and
(c,a,b), and the results are summed (thus, symmetric functions lofc may be
factored through the summation sign, gnd, a = a + b+ ¢ = 2s). The following
computation results:

2 a\R*—ad+V+ b e\,
IN _Z<23> 4 %: 25 25 )¢

O

R? 1 3 2 9 abe

%5 <Zo:a> +83 (ZO:( a’ + ab® + ac )) CBE (%:a>
_ R* (—a+b+c)a—b+c)a+b—c)+2abc abe
r s T2
_ R? (25 —2a)(25 —2b)(2s —2c)  abc
T4 + 8s C4s
_ R* (A%*/s) 4RA
T a s Tas

1 2
= <§R> +r% — Rr

()
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The two penultimate steps again use the area formulgk. afheorem 8 tells us
thatOI? = 2R(3R — r), and so} R — r is nonnegative. Thus we concludey =
%R — r. A similar calculation applies to thd-excircle, with two modifications:
(i) 1, has barycentric coordinates

—a b c
2(s—a) 2(s—a)’ 2(s—a))’
and (ii) in lieu of A = rs, one uses\ = r,(s — a). The result is[,N = %R +
Ta- O

We are now in a position to prove Feuerbach’s Theorem.

Theorem 10 (Feuerbach, 1822)n a nonequilateral triangle, the nine-point circle
is internally tangent to the incircle and externally tangémthe three excircles.

Proof. Suppose first that the nine-point circle and the incirclerameconcentric.
Two nonconcentric circles are internally tangent if and/efithe distance between
their centers is equal to the positive difference of thediiraSince the nine-point
circle is the circumcircle of the medial triang! B'C”, its radius is} R. Thus
the positive difference between the radii of the nine-poirtle and the incircle is
%R — r which isIN by Theorem 9. This implies that the nine-point circle and the
incircle are internally tangent. Also, since the sum of thdiirof the A-excircle
and the nine-point circle i%, IV, by Theorem 9, the nine-point circle is externally
tangent to thed-excircle. Suppose now that the nine-point circle and tlogdie
are concentric, that is = N. Then0 = IN = $R —r = OI%/2R and sol = O.
This clearly implies triangled BC' is equilateral. O

For historical details, see [3] and [4].
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