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ABSTRACT
Monte-Carlo Tree Search (MCTS) grows a partial game tree
and uses a large number of random simulations to approx-
imate the values of the nodes. It has proven effective in
games with such as Go and Hex where the large search
space and difficulty of evaluating positions cause difficulties
for standard methods. The best MCTS players use carefully
hand-crafted rules to bias the random simulations. Obtain-
ing good hand-crafting rules is a very difficult process, as
even rules promoting better simulation play can result in a
weaker MCTS system [12]. Our Hivemind system uses evo-
lution strategies to automatically learn effective rules for bi-
asing the random simulations. We have built a MCTS player
using Hivemind for the game Hex. The Hivemind learned
rules result in a 90% win rate against a baseline MCTS sys-
tem, and significant improvement against the computer Hex
world champion, MoHex.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence

Keywords
Monte Carlo Tree Search, Computer Hex, Evolution Strate-
gies, Evolutionary Learning, Adversarial Search, Monte Carlo

1. INTRODUCTION
Abstract strategy games provide an attractive testbed for ar-
tificial intelligence and machine learning applications. The
game framework provides immediate feedback on algorithm
performance. Starting with mathematical game theory re-
search, the most common technique for game AI has been
brute force search of the tree of legal moves. This tech-
nique, highly tuned and optimized, is what led to Chinook’s
ascendance to World Champion in 1994 and Deep Blue’s
eventual victory in 1997 over then World Champion Gary
Kasparov. These victories cemented brute force tree search
as standard techniques in abstract strategy games, to the
point where computers constructing endgame tables have
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been strong enough to find sequences lasting for hundreds of
moves. Kasparov himself suggested a version of Chess that
allowed the player to consult a computer for move advice.
Chinook went so far as to solve checkers, proving that perfect
play will end in a draw. Several games, such as Checkers,
Chess, and Othello, have good enough evaluation functions
and few enough legal moves so that that brute force tree
search techniques can beat the best human players.

In contrast, cutting and connecting games (like Go, Hex,
and Havannah) have much larger search trees and long-
range interactions make it difficult to create accurate evalu-
ation functions. In these domains, Monte-Carlo Tree Search
(MCTS) has proven effective, with the computer world cham-
pion Go and Hex players both using MCTS. MCTS picks its
next move by growing a partial game tree while using a large
number of randomized simulations to evaluate the possible
moves. Each simulation first uses a child-selection policy
to navigate through the partial game tree. After reaching
a leaf of the partial game tree, a randomized continuation
policy is used to play out the rest of the game so a winner
can be determined. Finally, an update policy is used to up-
date the partial game tree with the result of the simulation.
Although all three policies have an effect on the algorithm’s
playing strength, here we focus on continuation policies for
the game Hex. Section 3 contains a fuller description of
MCTS.

Go programs have the benefit of a rich history of play. Thou-
sands of Go expert games are available for analysis. Some
approaches to improving the simulation policy have focused
on using expert games in training weights to direct the play-
out [5]. More generally, common patterns are used in a
hand-crafted policy to select “urgent” moves to play in a
local area around the last played move. Hex does have one
simple pattern in the form of a bridge [1], but few easy paths
to crafting a better continuation policies.

The Hivemind approach automatically learns better contin-
uation policies from self-play. The usual process of improve-
ment requires hand-tuned weights that bias the continuation
policy. Any change must be tested to detect the change
in strength it gives, and different weight parameters can
have synergistic effects. Detecting small changes in over-
all algorithm strength require thousands of testing games
on a full-sized board, and the improvement made by a small
change in weight can go unnoticed. Automatic weight tun-
ing can improve this process, but still requires thousands of



learning games. Recent work in this area has focused on
learning weights for a small number of patterns using ex-
pert knowledge and reinforcement learning [17]. Hivemind
is an alternative approach using evolutionary learning. Be-
cause it relies on self-play, Hivemind avoids the need for
extensive expert knowledge or a strong outside player. By
using an evolutionary approach, Hivemind can handle the
subtle interactions between weights that can have a strong
effect on overall playing strength. Although our experiments
have focused on Hex, the Hivemind framework is suitable for
generic Monte-Carlo Tree Search, and has been implemented
for both Go and Hex.

Our experiments answer several questions, including:

• How beneficial are the learned policies ?

• How stable is the evolutionary learning process?

• Do the learned policies work on different board sizes?

The continuation biases learned by Hivemind dramatically
improve the playing strength of simple MCTS players. Our
experiments show that the Hivemind biases have a 90% win
rate over an unbiased continuation policy, and about 85%
win rates over two other continuation policies that favor lo-
cal moves. Hivemind also wins 6.5% of its games against the
world champion MoHex. Although 6.5% indicates that there
is still a lot of room for improvement, we note that the other
simple policies were unable to win any games against Mo-
Hex. Furthermore, Hivemind is improving only the contin-
uation policy, improvements in the child-selection and tree
updating policies could have greatly synergistic benefits.

The evolution strategies approach used by Hivemind is sur-
prisingly stable. In 10 different evolutionary runs, the win
rates over the unbiased continuation policy remained be-
tween 87% and 93.5%. Furthermore, the learned strategies
generalize well to different board sizes. Despite using 7× 7
boards for faster training, the learned biases performed as
well (and usually better!) against the simple policies on
11× 11 and 13× 13 boards.

The remainder of the paper begins with some background
on the game of Hex in Section 2 and an overview of MCTS
in Section 3. The Hivemind system is presented in Section 4
and Section 5 describes our experimental setup and results.

2. BACKGROUND: THE GAME OF HEX
Hex is a two player, full-information, abstract strategy game
played on an NxN grid of hexagons. The players are Black

and White and alternate placing markers of their color on
empty hexagons. The object of the game is to form an un-
broken chain from one side of the board to the other. Fig-
ure 1 shows an example game in progress on a 13x13 board,
note that the numbers indicate the order in which the mark-
ers were played and have no effect on the game. Figure 2
shows the final position, Black having just played the win-
ning move (71), completing an unbroken chain connecting
both his sides.

Hex is a cutting and connecting game whose high compu-
tational complexity and simple scoring mechanism makes it
attractive for AI research. Once placed, a piece never leaves
the board. The only criterion for a legal move is that the
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Figure 1: 13x13 Hex Game, White to play.

hexagon be unoccupied (empty). Gale ’79 proved the game
cannot end in a draw, simplifying minimax methods. Nash,
one of the inventors of the game, used a strategy stealing
argument to prove the existence of a winning strategy for
the first player, but the proof is by reduction and offers no
insight into the winning strategy. Solutions for all opening
moves on a 7x7 and 8x8 board have been found [15]. Of the
81 possible 9x9 openings, only 13 remain unsolved (taking
symmetry into account). 13x13 is the default board size in
computer Hex competitions.

There are three Hex programs that have historically com-
peted for world champion status in the Computer Olympiad.
Gabor Melis’ Six is the previous world champion (up to
2007). Six uses traditional alpha-beta search with an eval-
uation function based on an electrical circuit model (pro-
posed by Anshelevich 2002) [1]. Wolve, from the University
Alberta, also uses the Anshelevich algorithm, but more ag-
gressively prunes provably inferior moves. MoHex, also from
Alberta, is based on the newer Monte-Carlo Tree Search
technique, leveraging the open source Fuego library. Mo-
Hex is the current world-champion, having finished ahead of
Wolve in 2008, 2009 and 2010.

Despite its simpler rules, Hex has a similar branching factor
as Go and long-range interactions make it difficult to eval-
uate Hex positions. Although we emphasize Hex here, the
techniques we propose generalize to any cutting and con-
necting game (such as Go or Havannah).

3. MONTE CARLO TREE SEARCH
The basic Monte-Carlo technique for computer Go was pro-
posed by Brügmann [4]. His program Mango effectively used
a “flat” search tree (1-ply) and simply ran simulations from
each candidate move to estimate its value. Later MCTS
techniques use Monte-Carlo simulations to grow a partial
search tree. The UCT algorithm was developed alongside
MCTS to direct the growth of the search tree [11]. At any
point, the search can be stopped and the current state of
the tree used to select a move to play.

All nodes in the tree correspond to a fixed board position,
i.e. the occupancy state of the board and which player is
next to move. Nodes also have statistics associated with
their position: the number of winning simulations performed
that used the node, and the total number of simulations that
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Figure 2: Finished 13x13 Hex Game, Black’s play
71 (at b6) gives him an unbroken path from top to
bottom.
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Figure 3: Partial MC Search Tree

included the node. For each simulation the algorithm will
start at the root node, recursively traverse the (partial) tree
until it reaches a leaf node. The simulation continues from
the position represented by this leaf node until a winner is
determined. The result of the simulation is used to update
the statistics at nodes in the tree (see Listing 1). If the leaf
node has been visited enough times (50 in our case1), then
it is expanded and nodes for all possible moves from that
position are added to the search tree.

The effectiveness of MCTS depends on three policies:

• The child-selection policy recursively traverses the tree,
selecting promising moves for further exploration.

• The continuation policy randomly or semi-randomly
“plays out” the game from a leaf position in the tree
until a final position.

• The update policy modifies the win/loss statistics of
nodes based on the simulation results, and determines
when to grow the search tree.

1Lower numbers promote accurate exploration at the cost of
larger trees and increased computation. Our choice of 50 is
somewhat arbitrary, values from 1 to 100 are used in UCT
programs on the CGOS Computer Go Server[18].

Listing 1: MCTS Algorithm Pseudocode

function search ( root ) :
for i in range ( s imu la t i on s ) :

s imulate f rom ( root )

function s imulate f rom ( node ) r e tu rn s outcome
i f node i s l e a f

outcome = cont inue f rom ( node )
else :

c h i l d = s e l e c t c h i l d ( node )
outcome = s imulate f rom ( c h i l d )

node . v i s i t s++
i f outcome i s node . p laye r win

node . wins++
i f ( node . v i s i t s == 50) expand ( node )
re turn outcome

Gelly and others have shown that using heuristics in both
the child-selection and continuation policies can prove ex-
tremely beneficial [12, 10] for Go. However, this requires
expert knowledge (heuristics) that is hard to obtain or not
available for some games (particularly new games).

Figure 3 shows a partial Monte-Carlo search tree for the
given position. In the example, the child-selection policy
visited the node for Black E4, then White A1. The contin-
uation policy ran, completing the game from the positiion
with E4 occupied by Black and A1 occupied by White. This
resulted in a loss for Black. The update policy updates
all nodes along the visited path, incrementing the wins for
White moves and incrementing the losses for Black moves.

3.1 Child Selection Policy
The select_child function defines the child selection policy.
It must return the child of the given node to step into next.
In general, child selection must trade off between exploita-
tion and exploration. It is important to “exploit” those child
nodes with high win-rates, both to discover possible weak-
nesses and to obtain highly accurate win-rate estimates. Si-
multaneously, a child with a low number of visits must also
be explored since a low win-rate could be due to a few un-
lucky simulations. This exploration/exploitation tradeoff is
related to a variance reduction problem. We want very low
variance on the estimates for the good moves in order to
maximize the chances of making the best move. On the
other hand, if the variance of a seemingly poor move is very
high, then there is a significant chance that that move could
actually be very good.

One way to balance this exploration/exploitation trade-off
is the Upper-Confidence for Trees algorithm (UCT). UCT
incorporates the win-rate of a child with a term that in-
creases in value as the ratio of the child’s visits to its par-
ents decreases. Eventually, no matter how bad the estimated
value of a position is, it will be re-visited and the estimate
updated. UCT has several variations, but the “pure” ver-
sion has been proven to eventually yield the correct mini-
max value of a position, given an infinite number of simula-
tions [11].



The UCT priority of a child node is:

child.winrate + C ∗
√

log (parent.visits)

child.visits
.

The exploration coefficient, C, can be varied to increase or
decrease the level of exploration versus exploitation. Note
that a very low value will yield a function that relies almost
exclusively on the estimated win-rate of a position, while a
high value will visit nodes more equally, placing less empha-
sis on the estimated value.

3.2 Continuation Policy
The continue_from function plays out the rest of the game
from the current position. The simplest policy, which we call
the default policy, plays uniformly at random from the legal
moves until the game ends (in Hex, when one player has a
winning path). The continuation policy has a large effect
on the strength of the MCTS player. In fact, one of the top
Go engines, MoGo, uses a near-zero exploration coefficient
in its child selection policy, putting most of the control of
the search in the hands of the continuation policy [9]. Ini-
tial research in MCTS Go players focused on using a strong
continuation policy, with expert-derived heuristics to select
the next move [5]. The top computer Go programs all have
complex hand-crafted policies with rules to examine the cur-
rent position and select a “good” move to play, possibly with
a stochastic choice between several candidates. Only when
none of the rules match do they fall back to a uniform ran-
dom move. It was quickly found that building a stronger
continuation policy does not guarantee better performance
when used in the full tree search [12]. In other words, when
the continuation policies are used as players, the relative
strengths of the continuation policies are poor predictors of
how well the MCTS algorithms relying on these continua-
tion policies will perform. This surprising result may be due
to stronger continuation policies under-exploring the search
space. In any case, this means that hand crafting an effec-
tive continuation policy requires benchmarking and frequent
tests of the entire MCTS system as small changes to the sim-
ulation policy can have unpredictable effects on overall per-
formance. This illustrates the need for automated systems
for tuning the continuation policy.

Another constraint on the continuation policy is its speed.
MCTS algorithms require large numbers of random simula-
tions to compute accurate statistics and select good moves,
therefore the continuation policy must be not be overly com-
plex and implemented efficiently.

3.3 Update Policy
Once a simulation is finished, the result is used to update
the search tree. Basic MCTS systems updated the win and
visit statistics only along the traversed path. It was quickly
discovered that more aggressive update strategies are of-
ten profitable. One simple example is the All-Moves-As-
First (AMAF) heuristic [4] that exploits the fact that moves
played in a simulation could have been played in any order.
Thus, a move deep in the simulation could be fictitiously
treated as the “first” move from an intermediate position.
In addition to updating the statistics of the nodes in the
path, all children of nodes on the path corresponding to

moves made later in the simulation also have their AMAF
win and visit counts updated.

Several methods can be used to blend the AMAF results
with the “pure” results, such as a weighted average. Other
blending functions include Cutoff and Rapid Action Value
Estimation (RAVE) [6]. Helmbold and Parker-Wood (2009)
have a summary of the various update policies and blending
methods, along with experimental results showing marked
improvement over the baseline of pure UCT [14]. One note-
worthy conjecture is that there is no “silver bullet” update
policy. If the simulation policy is random and unbiased,
the AMAF updates might be similarly unbiased. However,
a simulation policy that preferentially plays certain moves
might have an unpredictable effect on which nodes receive
AMAF updates. This can then propagate to which nodes are
selected during the UCT selection, and have chaotic effects
on the search as a whole.

Our Hivemind experiments use only the basic update policy,
updating win and visit counts for only those nodes on the
traversed path.

The tree update policy also determines how the partial search
tree is grown. Generally, systems will add the possible chil-
dren of a leaf to the tree after the leaf has been visited a
sufficient number of times. This number is a parameter in
Hivemind, and our experiments have set it to the (untuned)
value of 50.

4. THE HIVEMIND SYSTEM
Hivemind is a system that learns to play abstract strategy
games on a regular board. The system consists of three mod-
ules: the evolutionary learning process, a Monte-Carlo based
UCT search tree implementation, and a “Game Tracker in-
terface”used by the tree search to maintain game state infor-
mation. The design was influenced by Fuego, although Hive-
mind is written in a different language (Google’s Go [13]).
In particular, the tracker interface is very similar to Fuego’s
subclassing system for implementing multiple games [8]. Hive-
mind’s tracker interface is currently implemented for the
games of Hex, Go, and Tic-Tac-Toe. The major contribution
of Hivemind is the integration of evolutionary learning to au-
tomatically learn appropriate continuation policies. Prelim-
inary work tried learning with particle swarm optimization,
but we found that evolution strategies gave superior results.

Using evolution strategies to learn continuation policies re-
quires that the continuation policies are encoded as vectors.
We first describe this encoding. Section 4.2 describes the
Game Tracker module, and Section 4.3 describes the use of
Evolutionary Strategies.

4.1 Continuation Policies and Local Patterns
Hivemind uses local patterns around the previous move to
bias the random continuations. Responding to an oppo-
nent’s threat is often necessary in cutting and connecting
games and local patterns around the last move can be ef-
ficiently evaluated, allowing for efficient simulation. Strong
MCTS Go programs like MoGo [12] use hand-crafted local
patterns to direct their continuation policies.

Each empty location around this last move is a candidate
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Figure 5: The encoding from pattern A to a 32-
bit integer. Using the weight from figure 4, the real
value 6 would be stored at position 102 in the weight
map.

local response, and a pattern database gives each of these
candidates a weight indicating its relative importance. Dur-
ing a continuation play-out, a candidate local response is
selected with probability proportional to its weight. Fig-
ures 4 and 5 show graphically how a local patterns can be
mapped to an integer. The orange marker denotes the last
move played. In Hex there are less than 2∗46 = 213 possible
local patterns, and assigning a weight to each of these pat-
terns creates a continuation strategy. Thus the continuation
strategies we consider correspond to an array of 213 weights,
one for each local pattern.

In the example shown in figure 4, the sum of the three
weights is 11. Thus, vertex A will be selected with probabil-
ity P (A) = 6

11
≈ 0.54. B will be selected with P (B) ≈ 0.27

and C with P (C) ≈ 0.18. Note that P (A)+P (B)+P (C) = 1
so one of A, B, or C will be selected.

A local pattern can assign a candidate move a weight of 0.
If so, it will never be selected using the local response policy.
If all patterns adjacent to the last move have weight 0, or if
all adjacent vertices are already occupied, the continuation

policy makes a move at random from all legal possibilities.

Although conceptually an array with 213 entries, Hivemind
implements continuation strategies as 32-bit hashmaps. The
additional overhead is modest and the larger hashmaps have
space for additional properties (such as distance to a side).
Note that in Figure 5 the encoding includes a color bit in the
31st position. This denotes the color to play (either Black

(1) or White (0)). This bit is important because Black and
White have different goals – they are trying to connect along
different diagonals. By using a reflection and flipping colors,
one position can be translated into a symmetric position for
the opposite color. We experimented with this approach,
but it proved more troublesome than beneficial.

Note that many kinds of local hand-coded patterns (like
those used by MoGo [12] for Go) can be expressed using the
Hivemind encoding system.

4.2 Hivemind Game Tracker module
The Game Tracker module allows real games to be played
via Monte-Carlo Tree Search. Its design was influenced by
Fuego [8], and the Game Tracker interface is very simi-
lar to Fuego’s subclassing system for implementing multiple
games. Note that playing a single real game involves playing
millions of simulated games when moves in the real game are
chosen using Monte-Carlo Tree Search. Part of the Game
Tracker’s responsibility is to maintain the current simula-
tion. The Game Tracker also stores the continuation policies
of the two players as well as both the real-game board state
and the board state in the current simulation. Note that
the player making the move in the “real game” uses their
continuation policy for both players in the simulated games.

The MCTS module is a simple generic implementation of
Monte-Carlo Tree Search, using the UCT algorithm for child
selection (see Section 3). The MCTS module uses the Game
Tracker to keep track of the simulated game state as it runs
simulated games and expands the search tree. The MCTS
module is only about 600 lines of source code. Using some
extra information from the Game Tracker, the MCTS mod-
ule can be configurable to use RAVE and AMAF heuristics
to update multiple nodes using the results of a single simu-
lation.

The Game Tracker uses the policy weights for the players
to implement the appropriate continuation policy and com-
plete simulated games. It also implements the three baseline
continuation policies described in Section 4.1. Completing
simulated games quickly is critical, as more simulations-per-
second generally results in better move selection. This em-
phasis on speed is why the tracker uses a monolithic Playout
function to implement continuation policies. Many games
have optimizations that can be performed in this Playout

function that the search tree is unaware of. For example,
the Hex tracker initializes a randomized list of empty posi-
tions so default policy move selection is a O(1) operation.
This exploits the fact that in Hex, any empty location is a
legal play. This is not the case for Go, so the Go engine uses
other optimizations for fast random move selection.

The Game Tracker module uses an interface that is easily
extendible to other games. In addition to the Playout func-



tion, the Game Tracker provides the following functionality.

1. A single function, Play(color, vertex), is used by
the search tree to make a move in the simulated game.

2. The Legal(color, vertex) function is used to query
the legality of a given move in the simulated game.
The MCTS module uses this when the tree is gown as
each time a leaf node is expanded, one child is added
for each legal move from the leaf node’s state.

3. The Winner() function is used to determine the cur-
rent winner of the game. A special Empty player is
returned if the game has not finished.

4. The WasPlayed(color, vertex) function provides in-
formation required for the AMAF heuristic.

A few extra functions also provide for debugging by pretty-
printing the tracker’s internal state.

The Game Tracker interface provides a simple definition of
what is needed for a game to use the MCTS+UCT frame-
work. In particular, Hivemind is well suited for 2 player
placement games with perfect information. Since node ex-
pansion uses the Legal(color, vertex) function to find all
legal children, Hivemind is not constrained to games with
regular boards.

4.3 Evolution Strategies
Hivemind implements evolution strategies to learn good con-
tinuation policies. Evolution strategies (ES) is a collection
of algorithms that operate on real-valued vectors. More in-
formation on evolution strategies and evolutionary learning
in general can be found in Eberhard and Shi’s excellent text-
book Computational Intelligence: Concepts to Implementa-
tions [7]. The Evolution Strategies article on Scholarpe-
dia.org also provides a good introduction to the topic [3].

Our implementation of ES works as follows.

1. An initial population (we use 30 individuals) is ran-
domly generated. Each individual is represented by
its vector of 213 local pattern weights (each pattern
weight is randomly chosen from [0..100]) and a strat-
egy parameter σ that controls how fast it evolves. Dur-
ing assessment, the individual will also be assigned a
real-valued “fitness” attribute.

2. The algorithm iterates the following with each itera-
tion forming one “generation”:

(a) From the 30 parents, generate 35 children.

i. Each child is created by randomly selecting 2
parents and then averaging the parents’ local
patten weight vectors and strategy parame-
ters.

ii. The child’s strategy parameter σ is mutated

to σeN (0,τ2) (see below).

iii. Each local pattern weight of the child is mu-
tated by adding a random variable drawn from
the Normal Distribution N (0, σ2).

(b) The best 5 performing parents are propagated
through without mutation. This is commonly
done to preserve well-performing solutions.

(c) Evaluate the fitness of the new pool of 40 individ-

uals, and keep only the top 30 as parents for the
next generation.

The numbers of: individuals starting generations, children
generated, and good parents kept without mutation were
picked arbitrarily, and do not have deep significance.

Mutation of σ
Note that σ is multiplied by a positive factor at each time
step, and can never reach zero. The “learning rate” τ can
be scaled up or down to increase or decrease the variance
of σ, a high values will give more mutation, low values less.
We use an initial τ = 1√

213
(recall that there are 213 pattern

weights) and decrease τ to zero as the number of generations
approaches a set maximum (100 in our case). This forces the
algorithm to converge, though not necessarily to an optimal
solution. This choice of τ is driven by experimental litera-
ture suggesting it works in many cases [3].

Fitness Evaluation
Every generation, each individual plays n = 5 complete
games against opponents chosen randomly from the current
population. Opponents are drawn with replacement, so a
given individual could play the same opponent more than
once each generation. At the beginning of each game, one of
the two players is randomly chosen to play Black, the other
to play White. A swap-safe move was used to play the first
move to greatly reduce the first-mover advantage. The win-
ner of each game receives 1 point added to their fitness, the
loser has 1 point deducted from their fitness. This means
that individuals will be evaluated on about 10 games, but
the exact number depends on how often they are chosen as
opponents.

5. RESULTS AND CONCLUSIONS
We experimented with Hivemind and evolution strategies to
answer the following four questions:

1. Do learned continuation policies have an advantage
over the three baseline MCTS polices?

2. Are the results of evolution strategies learning stable
and predictable?

3. How effective are the learned policies against world-
class competitors?

4. Do the learned continuation policies generalize well to
other board sizes?

To train the learned policy we used the evolution process as
described in Section 4.3 was run for 100 generations. Each
evaluation game was played on a 7x7 board and used 1000
simulations per move in the fitness evaluation games. The
individual from the 100th generation having the highest fit-
ness was selected as the learned continuation policy. This
learned continuation policy, as well as the three basic con-
tinuation policies described in Section 4.1, were coupled with
a slightly modified UCT child selection policy that included
the variance term suggested by Gelly 2006 [11] and a pure
update policy, where only those nodes directly in the path
traversed by UCT are updated with the result of a simu-
lation. Matches were run using the Gomill software [16].
Gomill required no modification to work with Hex playing
programs.



opponent
player default uniform uniform (tenuki)

uniform 70.50%
uniform (tenuki) 61.00% 50.00%

learned 90.00% 84.00% 86.00%

Figure 6: All-play-all tournament of the 4 Hivemind
variants. Each element is the percent win-rate of the
row variant versus the column variant.

Benefits of learned policy
In principle any player could be used to evaluate the ef-
fectiveness of learning. We used a round-robin tournament
between the learned policy and the three following continu-
ation policies that were easily implementable in Hivemind.

Default - The next move is chosen uniformly at random
from the set of all legal moves. This policy corresponds
to setting all of the weights to 0 in our encoding .

Uniform local - The next move is chosen uniformly at ran-
dom from the empty locations adjacent to the last
move. If no legal move exists on these 6 points, then
the move is chosen uniformly from the set of all le-
gal moves (i.e. using the default policy). This policy
corresponds to setting all the weights to 1.

Uniform local with “tenuki” - The tenuki (Japanese for
“play away”) variant is a mixture of the Default and
Uniform local policies. With probability 5/6 the move
is chosen with the Uniform Local policy and with prob-
ability 1/6 it is chosen with the Default policy.

Each match consisted of 200 games on a 7x7 board where
the first player alternated was forced to start with a swap-
safe2 move. Each player was allowed 10,000 simulations per
move and the results are shown in Figure 6.

The learned policy is the decisive winner, winning almost
90% of its games. This shows the clear benefits of automat-
ically learned weights over the default continuation policies.
We originally thought that the addition of a tenuki prob-
ability would add beneficial diversity to the continuation
searches, but it has little or no improvement over the uni-
form local policy. As expected, uniform local play signifi-
cantly improves upon the default (random selection over all
legal moves) continuation policy.

Stability of Evolution
A natural concern is that the evolution strategies could have
large variations in their end results and our first learned
policy was just a “lucky” happenstance. To protect against
this, we re-ran the learning process described above another
9 times, creating a total of 10 different learned continuation
policies. We then played 200 game matches between each of
the resulting policies and the default policy using the above
protocol. The following table gives the resulting win-rates
for the learned policies.

2A swap-safe first move is a neutral or mediocre move by
the first player in an attempt to eliminate the first-player
advantage. This is similar to the Komi rule in Go. We used
C4 in our 7x7 games and C8 in the 11x11 games.

Winning % for Learned Policy vs. Default
1 2 3 4 5 6 7 8 9 10
91 90.5 90.5 87.5 90.5 93.5 93 91.5 87 92.5

The 10 learned policies were tightly clustered with a mean
of 90.75% and a standard deviation of only 2.14%. This
surprising result indicates that the evolutionary process is
far more stable than we expected.

Comparison against MoHex
A potential problem with self-learning is that the system
might only be learning how to exploit the weaknesses of
its competitors, and not making a general improvement in
playing strength. We use “general playing strength” in an
intuitive sense – we want to avoid focusing on particular
“tricks” that are only effective against the algorithms in
the current population. Although improvement against the
three baseline opponents gives some evidence against this
over-specialization, we perform further comparison against
a strong outside control. For this, we used the MoHex pro-
gram from the University of Alberta, compiled and run with
its default settings [2]. The optimization and domain exper-
tise in MoHex make it a very strong competitor – MoHex
has won the computer Hex world championships in 2008,
2009 and 2010.

In the 7x7 matches against MoHex, MoHex played with the
default time limit of 10 seconds per move while the Hivemind
programs again used 10,000 simulations per move. MoHex
uses some of its time to perform game theoretic search and
pruning before the Monte-Carlo phase. The pre-search can
also discover “must-play” moves that will be immediately
played in lieu of the MCTS. Although the time controls
are not directly comparable, we did track CPU seconds per
game. MoHex used about 35 CPU seconds per game while
the Hivemind programs were a bit faster. Since we were un-
able to force MoHex to play a particular first move, all games
had the Hivemind variant moving first with the swap-safe
move. The Hivemind win percentages (400 game matches)
and average CPU seconds used against MoHex are given
below.

Learned policy Uniform local Default policy
win % 42% 26% 11.75%
cpu secs 20.34 15.79 13.3

As expected, the learned policy does significantly better
against MoHex than the other policies, with the Learned
policy winning above 40% of its games (the results for the
other 9 learned policies are similar, with win rates from 39%
to 47%). The good performance against MoHex is a little
surprising, and could be due to the relatively small board
size and/or a swap-safe move that favors the first player (af-
ter any first move, one of the players will have a forced win).
Despite this, the superiority of the learned policy over the
baseline ones is dramatically evident.

Generalization across board sizes
The time required to learn greatly depends on the boardsize
used. For training, a boardsize of 7x7 was chosen as a trade-
off between computation time and the game’s deepness and
subtlety. We now examine how well the policy learned on
7x7 boards generalizes to larger boards. We played 200 game



matches on 11x11 and 13x13 boards between the learned pol-
icy and the default and uniform local policies. Because of
the increased boardsize, each player used 100,000 simulated
playouts per move.

default uniform local
11x11 13x13 11x11 13x13

learned win % 92.5 % 94 % 88.5% 85%

The policy learned on a 7x7 board provides results that can
generalize to larger boardsizes. In fact, the policy’s win rate
increases on the larger boards (but not significantly). This
generalization is especially useful because of the exponential
increase in computational time required to play games for
evolutionary learning when learning on larger board sizes.

On larger boards the learned policy’s superiority over the
baselines is also evident against MoHex. The following ta-
ble gives the results of 200 game matches on 11x11 boards
between Hivemind policies (moving first in a swap-safe lo-
cation, 100,000 simulations per move) and MoHex.

Hivemind Hivemind
Hivemind Opponent Win-rate Relative CPU
Default MoHex 0.5% 510%
Local MoHex 0.0% 545%

Learned MoHex 11% 620%

The learned policy provided 22 of the 23 wins against Mo-
Hex. Whereas the Hivemind programs were faster on the
7x7 boards, MoHex’s optimizations allow it to use only 1/5
to 1/6 the CPU time on the larger board. Note that the
pattern lookup required by the learned weights slightly in-
creases the time per simulation.

Conclusions
With infinite time, an unbiased playout policy can find the
true minimax value of a position in the game of Hex. In
practice, both resources and time are finite. Bias in the
playout policy is extremely useful for improving the overall
quality and performance of a Monte-Carlo Tree Search and
evolutionary learning can provide a substantial performance
boost over naive patterns. We showed how self-play and
evolution can automatically learn good weights, without re-
quiring expert knowledge or manual tuning. The learning
process can be done offline, and the final result requires little
overhead.

It is worth emphasizing that the learned continuation poli-
cies are coupled with relatively naive update and child-selection
polices. There is still a large gap between the automatically
learned Hivemind policy and current champion programs,
but it remains to be seen how much of this gap can be closed
with improved child-selection and update policies.

Source code for the Hivemind Computer Hex/Go player is
available at http://github.com/etherealmachine/hivemind.
The included README file has instructions on running the
evolutionary learning process and using the results.
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