
An Object Algebra for Object-
Oriented Database Systems

Reda Alhajj and M. Erol Arkun
Bilkent University, Faculty of Engineering, Ankara, Turkey

Abstract
Although messages can be used to manipulate objects, a

query language is still considered a required component of
object-oriented database management systems. An object alge-
bra is proposed, as a formal foundation for a query language,
that can handle both the state and the behavior of objects.
Creation of new objects and introduction of new relationships
among objects~classes are also facilitated by the object algebra.
The object algebra subsumes the five basic relational algebraic
operations while providing several additional powerful ones.
Each operand, as well as the result of a query, is a pair of sets:
a set of objects and a set of message expressions formed as a
sequence of messages accepted by the former set. The result of a
query possesses the properties of an operand, thus providing the
closure property for operations. Every class has a defined set of
objects and derived set of message expressions, thus a class
possesses the characteristics of an operand. The result of a query
also possesses the characteristics of a class. The superclass/
subclass relationships of a query result with the operands is
established to provide persistency to the result as a class, and as
a consequence algebraic equivalents of schema evolution func-
tions are developed. Object algebra is as powerful as relational
and nested relational algebra. In fact, due to message expres-
sions that serve to handle both stored and derived values, object
algebra provides greater computational power.

Keywords: Database system, object-oriented database, query
language, object algebra, expressive power, schema evolution.

ACM Categories: D.3.3, F.4.3,1.1.3

I n t r o d u c t i o n

Requirements of new applications influence advances in
database systems. Although the relational data model was
suitable for handling conventional business applications, the
first normal form restriction led to extensions to satisfy the
needs of new application areas. Early extensions relaxed the
first normal form by allowing set-valued attributes. A still more
advanced extension is based on complex objects where sets and
tuples are arbitrarily nested. To satisfy object sharing within
complex objects, the notion of object identity was introduced.

A more advanced step is the combination of object-
oriented concepts with database technology leading to
object-oriented databases. However, there is as yet no
agreement on standardization within the realm of object
orientation. Neither have the boundaries for the query
model been set up nor an object-oriented query language
well defined. This is one of the common complaints about
object-oriented databases.

Explicitly speaking, object-oriented systems evolved to
satisfy the needs of application areas where information about
the domain is incomplete, becomes available incrementally, or
is subject to change and requires flexibility in the database
schema. Schema flexibility, then, should be one of the funda-
mental characteristics considered when judging the power of
an object-oriented database system. Thus, W. Kim classifies
schema changes among a number of architectural concepts
developed for relational database systems that should be con-
sidered within the realm of object-oriented data models (1990).
Also, extensibility is characteristic of object-oriented database
systems (Atkinson, et al., 1989).

For example, on sending the message courses() to a student
and the message grade() to the obtained result, the grades of the
particular student are returned. Although this is handled through
the implicit join present in object-oriented models, it corre-
sponds to an explicit join in the relational model. The two
messages, courses() and grade(), together form what we call a
message expression. In general, a message expression for a
class is defined as a valid sequence of messages ml...m n, with
n _> 1, accepted by the objects in that class.

While message expressions (see example above) prove
object-oriented systems superior to the relational model, an
object-oriented query language is still needed for more com-
plex situations and to support associative access. The modeling
power of an object-oriented database model will be unduly
restricted unless new relationships can be introduced into the
model through explicit joins. Allowing an explicit join raises
the closure property problem. It is, therefore, necessary to have
an object algebra that handles the introduction of new relation-
ships while maintaining the closure property. The relational
model satisfies the closure property with respect to the rela-
tional algebra operations; the result of any operation is a
relation. Concerning object-oriented models, for the closure
property to be satisfied, it should be possible to use the result
of a query operation as an operand.

August 1993 - - DATABASE 13

Administrator
Note
An object algebra for object-oriented database systems Reda Alhajj, M. Erol Arkun August 1993 SIGMIS Database , Volume 24 Issue 3 Publisher: ACM

T h e N e e d for an

O b j e c t A l g e b r a

Two trends are being followed in providing query support for
object-oriented data models. In the first case (Alashqur, et al.,
1989; Banerjee, et al., 1988; Carey, et al., 1988; Maier & Stein,
1987; Straube & Ozsu, 1990) only retrieval operations are
supported; in the other case (Cluet & Delobel, 1992; Dayal,
1989; Kim, 1989; Manola & Dayal, 1986; Shaw & Zdonik, 1990;
Zdonik, 1988) it is also possible to create new objects. The
proponents of retrieval operations argue that there is no need to
create new objects by introducing new relationships into the
model, as the required relationships are already defined at the
modeling level. Proponents of object creation argue that it is not
possible to have all the required relationships defined at the
modeling level. The need for new relationships may arise while
trying to satisfy changing application requirements. Hence, the
power of the model should not be restricted by limiting the
introduction of new relationships.

A major drawback of most query languages is that when new
objects are allowed in the result, the closure property is not
properly maintained. Nested relations are allowed as operands
because the output of an operation is a nested relation. For
instance, in 02 values are introduced to maintain the closure
property. The object algebra described in (Shaw & Zdonik, 1990;
Zdonik, 1988) has its domain as sets of objects of the tuple type
in which nesting of tuples is possible, and hence it is nothing
more than the nested relational representation. We argue that
nested relations do not form a proper logical representation of
object associations.

Although in the query model of ORION the result of a query
operation is a class, the improper placement of resulting classes
in the lattice leads to duplication of class contents. Hence,
ORION violates the reusability feature of object-oriented sys-
tems. Ftmher, we argue that it is an overload to have a class as the
output of a temporary query. In this article we describe the output
of a query by the minimum requirements of an operand (given
next), and from such characteristics we can derive the character-
istics ofaclass when it is desired to make it persistent. In contrast,
OSAM* operands in a query are the database itself, and all
subdatabases are created from the original database by query
operations (the result of a query is a subdatabase).

In this article, we describe an object algebra for object-
oriented databases. We introduce the basic features of the data
model on which the object algebra is based; we define a set of
objects for each class and show how a set of message expressions
for a class can be derived. Having a set of objects and a set of
message expressions for a class is then shown to be an operand.
The query algebra is described, demonstrating its power and
showing how queries can handle schema changes.

An operand has a pair of sets: a set of objects and a set of
message expressions defined by the elements of the fkst set.
Message expressions preserve encapsulation and information
hiding, in addition to providing full computational power via

handling both derived and stored values. The output of any
operation has these two sets def'med and derived from the sets of
its operand(s). In this way none of the object-oriented features
are violated in maintaining the closure property.

Our object algebra is a superrset of the relational algebra, but
the semantics of the operations are different due to the object-
oriented features. In addition to the relational operators, we
define the nest and one level project operators. The nest operator
introduces a desired relationship into the model. It is an explicit
join that makes up for a missing implicit join. It is equivalent to
the cross-product operation under certain conditions. The other
operator-- one level project-- outputs the result of the evalua-
tion of a set of message expressions against objects of the
operand. The aim of this operator is to reduce the depth of nesting.
The project operation, analog to the projection operation of the
relational algebra, does not evaluate any message expressions but
only allows access to specified parts of the objects in its operand.
The algebraic operators described in this article enable the
manipulation of existing objects, introduction of new relation-
ships and creation of new objects. Operands, as well as the result
of any query, possess the properties of a class and by maintaining
the closure property, the output of a query can be placed in the
lattice as a class thereby facilitating class-related schema changes.
Thus, the operators of the algebra enable the specification of a
wide variety of schema changes, eliminating the need for a
separate, stand-alone language for this purpose.

In our approach the closure property is maintained without
violating object-oriented concepts. An object-oriented model
should be more powerful than the relational model at both the
modeling and the manipulation phases. It is more powerful at the
modeling phase due to the features of inheritance, encapsulation,
identity and complex objects. It is more powerful at the manipu-
lation phase due to the handling of both stored and derived values,
which result in full computational power without any need to
have an embedded query language and impedance mismatch.

Bas ic F e a t u r e s o f the

D a t a M o d e l

The data model has classes that collect objects and methods.
Classes are arranged in a lattice with the general class OBJECT
at the root (i.e., a direct or indirect superclass of all other classes).
Every object in a class, say c, should have values for all the
instance variables (denoted Iv~ , (c)) defined within the context
of class c. A class uses (inherits) instance variables and methods
defined in classes higher in the lattice. Methods are executed to
manipulate objects in their respective class. The following are
example class definitions:

person<O,name:string,date-of-birth:date>
student< { person } ,year:integer,courses:course>
staff< { person } ,salary:integer>
research-assistant <{ student, staff} >
course<O,code: string ,credit: integer>

14 DATABASE u August 1993

where any pair iv:d represents an instance variable defined such
that iv is the instance variable name and d is the underlying
domain. For example, year has an integer domain.

The first argument in a class definition is a set of classes from
which inheritance is achieved. We say that person is a superclass
of student and staff, while each of student and staff is a subclass
of person. Any instance in student or staff is actually an instance
in person but the reverse is not true. This is because, in general,
a subclass may include additional instance variables and behav-
ior definition.

To maintain the object-oriented features, it is important for
the object algebra to equally handle the objects and the methods
defined in a class. An object has an identity and a value. Identity
distinguishes one object in the database from other existing
objects and provides for object sharing. A value may be either a
single value or a set of values drawn from a domain. A domain is
either atomic or non-atomic; an atomic domain may be any of the
conventional domains including integers, characters, etc. A non-
atomic domain includes the set of objects of a class represented
by their identities. The following are objects where o~ represents
identity:

ol<"John", 20-1-1972 >
o4<"Brown", 28-6-1950,40K>
o2<"Mary", 13-5-1974 >
o~<"Lee", 1-10-1970,15K,5,{o~,o7}>
o3<"Tom", 5-11-1965,5,{o6,02}>
%<"CS530",3>
%<"CS565",4>
Related to an object we use value(o) and identity(o) to denote

the value and the identity of object o, respectively. The identity
function will be dropped and o will be used to represent identity(o)
when it is clear from the context. Based on the notions of identity
and value we define equality of objects.

Def in i t ion 1 - - Equa l i ty o f O b j e c t s
Two objects ot and o 2 are:
• identical (o~=02) iff identity(ot)=identity(02)
• shallow-equal (o1"--02) iff value(ot)=value(o2)
• deep-equal (o~ ~ 0 2) fff by recursively replacing every object oi
in value(or) or value(o:) by value(o~), equal values are obtained.

(o1=02) ~ (o1-~02) ~ (o1_--02)
identical ~ shallow-equal ~ deep-equal

We use Tt~t~(c~) to denote the set of total instances of class
ci, which includes objects in c~ and objects in all its direct and
indirect subclasses:

Ti~,~(person)= { ol,02,%,o4,o5 }
T~o~,(staff)= { 04,02)
T ~ (s t u d e n 0 = {02,o 5 }
Tt~t~,(research-assistan0 = { 05 }
Tt,~,~,(course)= { o~,o7 }
A class c has a set of messages, denoted messages(c), used to

manipulate objects in T~,~,~,(c). For example, messages
(person)={ name0, date-of-birth(), age() }.

Some of the messages in messages(c) correspond to instance
variables of class c to handle their values.

A message m~ in messages(c) invokes an underlying method
t~ defined for the class c. The method t~ may be either locally

August 1993 - - DATABASE

defined in the class or inherited from one of its superclasses
(directly or indirectly). The method t implements a specific
function fi:d I x d 2 x...x d n --> d r, where d t is the domain of the
function fi, d2, d3 d n are the domains from which the (n-l)
arguments 1 of the function fi are drawn, and d r is the range of the
function f~. In other words, d I is the domain which has the receiver
of the message m~, d 2, d 3 dn are the domains from which the
arguments of the message m~ are drawn and d is the domain of the
result of the application of the message m i. More explicitly, given
an object 0 1 from d 1 (which is Tt~t~s(c)) and some objects 0 2, 0 3,
.... o n from the domains d 2, d 3 d , respectively, 0 1 mi(02,02 On)
returns an object or from the domain dc 2

It is possible to apply to the resulting object o r any of the
messages; say mj which invokes a method tj from the class of the
object o c Thus, o r mj returns a value from the range of the
function fj implemented by the method t.j The same value could
also be obtained by applying the sequence of messages m~ mj 3 to
the object 0 1. To illusllate this consider o 5 which is an object in
the student class:

0 5 courses0 returns { 0 6,07 } and { 0 6,% } code() returns {"CS 530",
"CS565" }

05 courses() code() returns {"CS530", "CS565"}.
The sequence of messages m~ mj is called a message expres-

sion; it is an element of what we call the set of message
expressions of the class c, denoted by IVl(c) (given next in
Definition 2). Accordingly, M(c) is defined to include all the
sequences of messages which could be applied to any object in
T ~ (c) to return a certain encapsulated value. Any such
sequence of messages should be prefixed by a message in
messages(c). It is important to indicate that messages(c) c M(c)
because any single message in M,(c) is actually a message in
messages(c). The range of a message expression is chosen to be
that of the last constituting message in the sequence. Having
T ~ (c) as the range of a message expression x leads to have
every message expression x n~ to be in Mo(c) for mj in messages(c j).

Definition 2mMessage Expressions
The set of message expressions of the class c, M(c) is defined

to include:
Every message mi ~ messages(c), i.e., messages(c) c 1Vl(c).

In addition, Mo(c) is extended to include any sequence of
messages m~ mr... mp derived in the same way as the sequence mt
m.o

J
According to Definition 2,

M (student)= { name(), date-of-birth0, year(), courses(), courses()
codeO,coursesO credit() }

= messages(student) u courses() messages(course)

1Methods corresponding to instance variables have no argu-
ments, i.e., they implement functions of the general form,
f:d
2Applying the message m i to a subset of T ~ , (c) returns the set
of related objects in the class of object or. The resulting set
consists of the results of applying the message m i to every object
in the receiving subset.
3For brevity, we will not explicitly show the arguments of
messages m i and mj, unless when necessary.

15

Function f~, is executed as the result of invocation of the
method t via the message m~. The returned value may be either
stored or derived. A stored value is an instance variable, while a
derived value is drawn from the range of the executed function.
It is derived in terms of some existing stored values. For example,
date-of-birth is a stored value in objects of the person class. Age
is derived in terms of the stored value date-of-birth. Thus, one can
differentiate between message expressions that have derived
values (like age()) and those that have stored values (like date-of-
birth0). Hence, computational completeness is achieved without
any need for an embedded query language having an impedance
mismatch.

The Object Algebra
In this section we describe an object algebra that is more

powerful than its relational and nested counterparts. It is neces-
sary to emphasize the minimum requirements for operands in a
query and the query result. These requirements are identified as
the set of objects and the set of message expressions of a class.
Although, an operand does have other characteristics, those
characteristics are not considered at the query evaluation level.
The only properties of interest are those of the already mentioned
pair of sets. This is because values of objects are manipulated
solely via the message expressions, regardless of the underlying
structure. Since a class has a defined set of objects and a derived
set of message expressions, a class can be an operand. The result
of any query operation is also a pair of sets and can be made
persistent in the lattice because it is possible to derive the state
structure and behavior definition of the result of a query from
those of the operand(s); hence, it is a class (Alhajj, 1992).

Starting from a pair---a set of objects and a corresponding set
of message expressions--it is possible tO derive class character-
istics. To recall, a class has a set of objects, a set of instance
variables, a set of methods (each method invoked via a corre-
sponding message) and a set of superclasses. A set of objects is
given in the pair. So, finding a set of messages is equivalent to
finding a set of methods, and since an instance variable has a
corresponding method (and hence, a message) the set of instance
variables is constructed by collecting those instance variables
having a message in the calculated set of messages. The set of
messages of a class is determined to include every message that
appears as the first message in a sequence of messages that
constitute an element of the set of message expressions of that
class. Finally, the set of superclasses is determined according to
the applied operation (as indicated next).

We differentiate between temporary and persistent evalua-
tions of a query by using = for temporary and := for persistent
evaluations, respectively. An assignment-free query is always
evaluated on a temporary basis. While a temporary-based evalu-
ation of a query ends by finding the pair of sets in the result, a
persistent-based evaluation continues with the finding of class
characteristics of the result pair. We manipulate objects depend-
ing on their being identical, shallow-equal or deep-equal, accord-
ing to Definition 1. The classes introduced in the previous section

will be used in all the examples presented in this section. In the
rest of this section we will assume A and B to be either pairs (i.e.,
<Ti~,~,(A),Mo(A)> and <T~, (B) , /v I (B)>) , or query expres-
sions. A query expression is a sequence of one or more query
operators applied on some operand to produce a pair of sets.

Selection
The selection operation presents a restriction on objects of the

operand. In our object algebra, the selection has a single operand
and produces an output consisting of a pair, where the included
objects are those satisfying a given predicate expression (defined
next). The set of message expressions of the resulting pair is the
same as that of the operand. The result of the application of the
selection operation on the pair <T~,~,(person), M¢(person)>
which corresponds to the person class, to return persons who are
older than "Tom", is the pair:<{o,}, M¢(person)>. Notice that
while M¢(person) has been preserved in the result, the set of
objects in the result is {04} ~ T ~ (p e r s o n) . The selection
oeration has the following general form:

Select(A,p)=<{o I o • T ~ , (A) ^ p(o)}, M¢(A)> 4
where p is a predicate expression. In a predicate expression, one
variable is bound to objects of the operand and other variables are
constants or bound to other queries.

Example: Find persons who are older than "Tom"
Sl=Select(person% p, 3p~ • T~o~s(person ^ pt name() = "Tom"
^ p~ date-of-birth0 > p date-of-birth0)

Since age() (E messages(person), the same query could also
be coded as:
S~=Select(person%p, 3pt • T~,~(person) ^ p~ name() = "Tom"
^ pt age0 < p age0)

As seen from this example, a predicate expression is con-
structed using object variables that are bound to objects of an
operand (by being prefixed by % as they are defined), message
expressions, connectors and existential quantifiers.

Definition 3 - - A Predicate Express ion
The following are predicate expressions:

m

o p • f

T and F are predicate expressions representing true and false.
Given two values, Yl and Y2, having the same underlying
domain such that at least Yt or Y2 is of the form (0 x), where
0 is an object variable bound to objects of an operand in a
query and x is a message expression applicable to objects
substituting for o.
yt op y2 is a predicate expression where,

1=, 4, _<. _>, <, > } if both y~ and Y2 are single values
from an atomic domain

{ • , ~ } if yl is a single value and Y2 is a set of values
{c_, ~ , =, ¢}ifboth y~ and Y2 are sets of values, Y2 may be

T t ~ , (e) where e is a query expression
{=,=~} if both Yt and Y2 are single values from a non-

atomic domain, i.e., T~_~(c) for some class c.

4We use p(o) to denote the evaluation of predicate expression p
by the object 0 substituting an object variable in p.

16 DATABASE - - August 1993

- - V 1 3z~ y~ ̂ z op Y2 is a predicate expression where, y~ is
a set of values and

{ =, ~, >,< } if Y2 is a single value from an atomic domain }
op e ~ { e , ~ } if Y2 is a set of values, Y2 may be Tt~,~(e)

I where e is a query expression}
{ = , ~ } if Y2 is a single value from a non-atomic domain

z _ ~ ^ z op Y2 is a predicate expression where y~ is a set of
values and

{ c, a~, =, ~} if Y2 is a set of values, Y2 may be T t ~ (e) I"
E ~ where e is a query expression } o p

L { ~ ~ } if Y2 is a single value

• if p and q are predicate expressions, then (p), ~ p, p ^ q and
p v q are predicate expressions.

So predicates within an object-oriented context are more
powerful than in the relational model where only atomic values
are compared. Furthermore, extending predicate expressions to
allow quantifiers to propose the creation of objects increases
query power. For example, 3 x, x c T ~ , (c) for some class c,
binds x to a subset of T ~ , (c); the subset objects to which x
is bound could be built by this query. Such object creation gives
the algebra the power to do recursive queries by enabling the
formation of a powerset (Abiteboul & Beeri, 1988).

Project and One Level Project
For security purposes, it is sometimes desirable to hide some

part of the objects in T ~ t ~ (c) for some class c. This is possible
by eliminating from the set of message expressions of a pair
those message expressions related to the part to be hidden. For
instance, to hide the salary of staff members, the corresponding
message expression (i.e., salary()) is eliminated from message
expressions of the staff class. This is possible because, although
the set of objects in a pair is in general heterogeneous, the only
values accessed in each object are those specified by the set of
message expressions of the pair. So, by dropping some message
expressions by the project operation some values are hidden
from the accessible objects.

The project operation is defined as follows:
Project(A,M1) = < T t ~ , (A) , M~>

where M~ _c IV[(A) (i.e., messages of M~ could be any message
expression satisfying Definition 2). Only message expressions
in M1 can be applied to objects in the pak resulting from a
project operation. The inverse of the project operation is to add
new elements to the set of message expressions of a pair
(defined at the end of this section).

Example: Hide the salaries of staff members:
Project the pair <T~o~,(staff), M (staff)> on Ms(staff)- { sal-

ary() } as follows:
Project(staff,Mo(staff)- { salary() })

to get the pair <T~,(staff),IV~(person)>. Notice that in the
result, T~t~o~,(slaff) is preserved while a subset of message
expressions of the operand (i.e., Mo(person)) is returned in the
result).

Example: Assume that the student class is not present in the
lattice and the research-assistant class is defined as:

research-assistant < { staff} ,year:integer,courses:course>
To derive the student class we write:

student:=Project(research-assistant, {name(), age(), year(),
courses()})

The derived student class will be a direct superclass of the
research-assistant class. While not presented in this article, we can
derive algorithms to maximize reusability through inheritance so
that the derived student class will be recognized as a subclass of the
person class and naturaUy placed in the lattice (see Alhajj, 1992).

The possibility of non-atomic domains for instance variables
leads to the nesting of objects to arbitrary depth by having the
value of an instance variable in an object also be an object. Thus,
to facilitate the unnesting of values (decrease the depth of
nesting) we define the one level project operation. The one level
project operation aids in collecting values (found at arbilrary
depths of nesting) within objects of the operand to form new
objects. A given subset of the message expressions of the operand
is evaluated against objects of the operand forming new objects
and a set of message expressions is derived to facilitate accessing
the values encapsulated within the derived objects. The one level
project has the following form:
OLproject(A,M~)=<{o 130~ E T ~ (A) A value(o)=(o I M1)},

{x 1 3xle M 1, xl=(x: m)^ len(x~)=len(x2)+l^
3x 3 e Ms(A) ^ x3=(x2x) ^ x=(m x4)}>

Example: Find the names and course codes of students attending
at least one course:
OLproject(Select(student%s, s courses0~) , {name0, courses0
code()})

Notice the use of the message expression, courses() code(),
which is a concatenation of two messages, one from each of
student and course classes. The input pair in this query is:

< T ~ (s t u d e n t) , Mo(student)>
and the output pair is

<{<"Tom",{"CS530","CS565"}>,
<"Lee",{"CS530","CS565" } > }, { name0,code0}>

Example: Find names and ages of persons older than 25.
OLproject(Select(person%p, p age() > 25), { name0,age0 })

The output pair is
< { <"Tom",28>,<"Brown",43> }, {name0,age0}>
Note the difference between the project and the one level project

operations. While the former aims at merely hiding some specified
values inside objects, the latter evaluates the provided set of
message expressions and produces new objects out of the resulting
values. However, the one level project and the project operations
are equivalent under the condition that, given ~ c_ messages(A)
and M c_ M(A) such that elements of M return only stored values:

Project(A,M)=OLproject(A,M~)
where M 1= { ml,m 2 m n } and M= { x~,x 2 x } with xi=(m i xr~) for
1 _< i _< n and arbitrary xr~.

When required to be made persistent in the lattice, the result
of the project operation is a superclass of the operand, while the

August 1993 - - DATABASE 17

result of the one level project operation is, in general, a direct
subclass of the root, the object class.

Cross-product and Nest
Generally speaking, it is not possible to have all the required

relationships defined at the modeling stage. The flexibility of
adding new relationships as they are needed can be facilitated by
extending the values of the objects in a pair to include a new value
that references objects in another pair. To achieve this, the nest
operation is defined. The set of message expressions in the result is
extended to include message expressions to access the new value
added to the objects in the result. In other words, the nest operation
takes two operands and it adds a value to each of the objects in the
first operand, the added value having in its domain the objects in the
second operand. The nest operation is defined as follows:
Nest(A,B)=<{o 13 o I E T ~ (A) 302 ~ T ~ t ~ (B) ^

vallue(o)=value(o~).identity(o2) }, IrE(A) u (m IVI(B))>
where the domain of m is objects in T~= , (B) . The result of
Nest(A,B), when required to be persistent, is a subclass of A (the
first operand).

Example: Assume that both the student and the staff classes have
an instance variable 'field' specifying the field of interest. To
assign every student the set of staff members that he or she can
consult, we write:

Nest(student%s~, Select(Difference(staff , research-
assistan0%s 2, s I field() = s 2 field()))
where s~ and s 2 are object variables bound to objects of the student
class and the result of the difference operation, respectively (the
difference operation is defined nex0.

It is obvious that the nest operation forces the extension of the
objects in the first operand to include references to objects of the
second operand. Consequently, it is not associative. Thus we
define a cross-product operation, which is associative, for query
optimization purposes. (This is discussed more fully in Alhajj,
1992.) The cross-product operation considers the ranges of
message expressions and returns stored values inside both oper-
ands while producing the result. Given two pairs A and B, A x B
is defined according to four different cases as follows:

First case: All values present in objects of A and B have non-
atomic underlying domains:
Cproduct (A,B)=<{o 1301 E Tt~o~(A)302 E T~o~,(B)^
value(o)=value(ol).value(o 2)}, Ms(A) u Ms(B)>

Second case: Only objects in T t ~ (A) include at least one
atomic-valued underlying domain:
Cproduct (A,B)=<{o I 301 e T~t~,(A)302 E T ~ , (B) ^
value(o)=identity(ol).value(o 2)}, (m I Mo(A)) u M(B)>

Third case: Only objects in T ~ , (B) include at least one
atomic-valued underlying domain:
Cproduct(A,B)=<{o I 301 E Tms~,(A)Eo 2 E T~ , ,~ (B)^
value(o)=value(ol).identity(o 2)}, Ms(A) u (m 2 M (B))>

Fourth case: Objects in both of T~o~(A) and T ~ , (B) in-
clude at least one atomic-valued underlying domain:
Cproduct(A,B)=<{o 1301 E T~t~,~(A) 302 E T i ~ (B) ^
value(o)=identity(ol).identity(o 2) }, (m I M (A))u (m 2 Ms(B))>

By considering these four cases, the cross-product operation
becomes associative; an important property as far as query
optimization is concerned.

When required to be persistent in the lattice, the result of the
cross-product operation is a subclass of the operand that has all
underlying domains being non-atomic; otherwise it is a direct
subclass of the root object class.

Notice the similarity between the nest operation and the
second and third cases of the Cproduct operation definition.
When combined with a selection operation, both the cross-
product and the nest operations result in a join operation. While
the join due to a nest is an outer join, the join due to a cross-
product is an inner join.

The Cproduct operation is equivalent to a combination of the
Nest, Project and OLproject operations as follows:

1. If all the storedvalues in Tt~t~,(A) and T~m~(B) have non-
atomic underlying domains:

Cproduct(A,B)=OLproject(Nest(A,B),messages(A) u (m
messages(B)))
where T ~ , (B) is the domain of the result of the message m in
the result of Nest(A,B)

2. If only the stored values in T~mo~8(B) have non-atomic
underlying domains:

Cproduct(A,B)=Nest(B,A)

3. If only the stored values in Tt~t~(A) have non-atomic
underlying domains:

Cproduct(A,B)=Nest(A,B)

4. If at least one of the stored values in each of T~t~,~(A) and
Tt~t~,(B) has an atomic underlying domain:

Cproduct(A,B)=Nest(Project(Nest(A,B),m),A)
where T ~ (B) is the domain of the result of the message m in
the result of Nest(A,B)

Under condition 4, we have:
Nest(A,B)=OLproject(Cproduct(A,B),(m I messages(A)u {m2})
where m I and m 2 are two messages in the result of the Cproduct
operation with their domains being Tt~t~,~(A) and T~m,,,(B),
respectively.

So using OLproject, nest and Cproduct operations, objects
may be constructed out of existing ones. Also, since the result of
any operation, including nest and Cproduct, is defined to have a
pair of sets, the result has the characteristics of a class, derived
from the pair. Therefore, we have the possibility of introducing
new classes and hence supporting views via object algebra
operations.

18 DATABASE - - August 1993

To drop a present relationship, we project on all message
expressions of the operand except those related with the pair of
the relationship to be dropped as follows:

Onnest(A,B)=Project(A,M (A) - (m 1VI(B)))
where m E messages(A) and m invokes the method which
implements the function with range T ~ , (B) .

Set Operations
As mentioned before, the object algebra described in this

paper handles and produces pairs of sets, a set of objects and a set
of message expressions to handle objects in the former set. Since
we deal with sets, two basic set operations--union and differ-
ence--are supported by the object algebra; intersection is de-
freed in terms of these.

The union operation returns a pair where the set of objects is,
in general, heterogeneous and the set of message expressions is
calculated as the intersection of the sets of message expressions
of the operands. The heterogeneous set of objects is the union of
the sets of objects of the operands. Formally:

Union (A,B)=<T~,~(A) u T ~ , ~ (B) , 1V~(A) n M(B)>
When required to be persistent in the lattice, the resulting pair

has the characteristics of a class which is a superclass of both
operands.

Example: Assume that the person class is not present in the
lattice with student and staff classes defined as follows:
student<O,name:string,date-of birth:date,year:integer,courses:
course>
staff<O ,name:string ,date-of-birth:date, salary:integer>

The person class is derived as: person:=Union(student, staff)
The result from this query is the person class.
Under the condition that M (A)-IV~(B) ~ , the difference

operation has the following form:
Difference(A,B)=<{o Io e T ~ (A) ^ o ~ T~,~.~(B)], 1VI(A)-
~) >

However, if M (A)-M (B)=~, then M (A)-Ivi(B) is replaced
by M(A) in the definition to get:
Difference(A,B)=<{o I o~ T . ~ (A) ^ o ~t TuB(B)} , IVI(A)>

Example: Find students who are not research assistants:
Difference(student, research-assistan0

Since M,(studen0-M (research-assistant)=O, in the output pair
1V~(studen0 is returned. When required to be persistent in the
lattice, the result of a difference operation is a superclass of the
first operand.

In terms of the difference operation we define the intersection
operation as follows:
Intersection(A,B)=Difference(A,Difference(A,B))

Finally, the inverse of the Project operation I project--is
defined in terms of other operations. To add a subset M of M(B)
to M(A), first nest A and B, then do a one level projection to have
all M°(B) and M(A) together forming one set; then project on
!V~(A) u M to get the target set of message expressions in the
resulting pair. Thus,
Iproject(A,B:M)=Project(OLproject(Nest(A,B), messages(A) u
(m messages(B))), M(A) u M)

where M ~ IVy(B) is the set of message expressions to be added
to M,(A), and m is a message in the result of Nest(A,B) with its
domain being T t ~ , (B) . Notice that the OLproject operation
results in a pair that contains Mo(A) u M B). So, we use the
project operation to get the required message expressions in the
result.

The above formulation of the inverse project operation is
valid for the case of adding some existing methods to a class.
Should M consist of new methods, like M= { m l: fl,m2:f ~ m : f} ,
where mi:f i specifies that message m i invokes the method that
implements the function fi, the definition is modified to:

A[M]=<T~t~(A), IVI(A) u {ml,m 2 m } >

Superiority of the Object

Algebra over the

Relational Algebra

It is important to emphasize that, since we have the five basic
operators of relational algebra, the object algebra has at least the
power of the relational algebra. In fact, object algebra is more
powerful because the relational algebra handles only atomic
domains and only stored values can be retrieved (which is
nothing more than a restriction that leads to an embedded query
language and hence impedance mismatch) in contrast to the
object algebra, which handles stored as well as derived values
and hence is computationally complete. Furthermore, the pro-
posed model allows the use of set-based predicates, and predi-
cates admit quantifiers in contrast to atomic predicates in rela-
tional algebra. Also, it supports encapsulation, object identity
and inheritance. Generally speaking, the expressiveness of the
constructors of an object-oriented data model effect the expres-
siveness of the corresponding query language; an object-oriented
data model allows the definition of data through abstraction,
supports derived data in addition to multivalued properties, and
allows complex objects, identity and inheritance. As a result, the
same real-world situation can be expressed more simply using an
object-oriented schema than a relational schema. All queries that
are coded using the relational algebra could be expressed using
an object-oriented query language; however, the reverse is not
true. Hence, an object-oriented query language is more expres-
sive than the relational algebra for capturing the distinguishing
properties of an object-oriented data model.

Concerning the nested relational algebra: although it handles
non-atomic domains, it imposes the restriction of manipulating
only stored values, which is equivalent to having only message
expressions that return stored values, and excluding those that
return derived values. Hence it does not overcome the impedance
mismatch problem. Also, it does not support inheritance, neither
identity nor encapsulation. In other words, the nested relational
model aims to represent complex objects by nesting relations, but
still they are value-based and record-oriented models.

August 1993 - - DATABASE 19

Next we give the object algebra equivalents to the nest and
unnest operations of the nested relational algebra. We assume
that A has a set of attributes N~ and consider every element of N~
as a message that returns the corresponding stored value in a
receiving object (a tuple in a nested relation). Furthermore, we
assume T~mt=~j(A) is the same as the set of tuples in an equiva-
lent nested relation and/VI(A) has an equivalent calculation
starting with attributes of A and combining with nested attributes.
Now given N c N~:

Nest:
(A,N)= Select(Nest(Project(A, IVI(A)-{x I xe Mo(A)^ 3me N

^ x=(m xj)}),
Project(A, {x I x e M.(A)^ 3me N^ x=(m xj)}))%s,
3s~ e T~,~, (A) ^ s m,0 N=sl N ^
s fMo(A)-N)=s, (M (A)-N))

where m,O is a message added to the result of the nest operation
to facilitate the access of objects in the second operand.

Unnest:
(A,N)= OLproject(A messages(A)-{m2}u (m 2 messages(B)))
where messages(B) corresponds to the set of attributes N and
m2 e messages(A). The result of the execution of m2 is in the
domain T i ~ (B) .

So, the one level project operation corresponds to a sequence
of unnest followed by a projection in the nested relational model
(Jaeschke & Schek, 1982; Abiteboul & Been, 1988; Colby, 1989).
The one level project operation functions like the project and
image operations described in Manola & Dayal (1986) and
Zdonik (1988), the apply operation of Osborn (1988) and the map
operation described in Straube & Ozsu (1990), but maintains the
closure property without additional constructs.

The object algebra is in fact more powerful than the relational
algebra since it can manipulate stored as well as derived values
in addition to supporting the object-oriented features.

Handling Schema
Evolution Functions Using

the Object Algebra

A taxonomy of some schema evolution functions is found in
(Alhajj, 1992; Banerjee, et al., 1987). In this section, we show
how the basic schema evolution functions can be handled using
the operators of the already presented object algebra.

1. Add an instance variable with domain c~ to class c:
c:=Nest(c, cl)
Notice that the result of the Nest operation is considered to be

a subclass of the first operand c. However, the assignment is used
to have this result replacing the class c itself. In this way, the
instance variable iv~ with domain(iv~)=T~t~(c ~) is added to
Ii~n~j(c) (the instance variables of the class c).

20

2. Drop from I ~,~,(c) the instance variable whose domain is
specified as the class c~ (the corresponding value in each
object is handled via the message m0):
c:=Project(c, messages(c)-{ m0 })

where m0 e messages(c) and m0 handles the value of the
instance variable iv e I =~o,(c) with domain (iv)=T~, (c~)

It is an implementation issue to decide on whether the value
of the deleted instance variable is to be physically dropped from
the corresponding objects or not. In our model the only means
that could be used to access the values constituting an object are
the corresponding messages. Thus, after dropping the message
that could access a certain value, it will be impossible to access
that value inside any of the objects, although the value may still
be present.

3. Add to the methods of class c~ one or more methods from class
c 2 with { ml,m2,...,m ~ } being their corresponding messages:
c l:=Iproject(c 1, %: { ml,m z m~ }

However, for the case where m~, m 2 m~ are new methods, the
following formulation is valid:

c~:=Iproject(c~, {m~:fl,m2:f 2 mi:fi})

Example: Add to the staff class the method net-salary(i) which
deducts taxes at the rate of i from the salary.

staff:=Iproject(staff({net-salary(i)(o,i)=o salary() * (I-i) })
The message net-salary(i) with 0 _< i _< 1, could be used to

invoke the new method added to the staff class to implement the
function f(o,i) where o is an object variable bound to objects of
the staffclass, i.e., o e T ~ , (s t a f f) and indicates the receiver of
the message. This method is automatically implemented.

4. Drop one or more methods from class cl, their corresponding
messages being {m~,m 2 m i}:
c~ :=Project(q, messages(q)- { m~,m 2 m i })
In this way, all message expressions prefixed by a message

drawn from the set {m~,m 2 mi} are dropped from Mo(c~). It is
important to indicate that the instance variable deletion is recog-
nized to be a special case of method dropping.

5. Add a class c to the lattice with the domains of its instance
variables

iv1, iv 2 i v being T~o~,(c~),T~o~,(c 2) T~t~s(c.),
respectively

A new class may either have the OBJECT class as a direct
superclass or have other existing class(es) in its superclass list. Further-
more, a new class may have zero, one or more subclasses. Thus,

c:= Nest(OBJECT, Nest(c I Nest(c,.1, %)...))
The OBJECT class is used to have the new class c as a direct

subclass of the root. If the class c is desired to be a direct subclass
of an existing class, say c , object is replaced by the class c in the
above formulation. All 'the example classes given could be
defined through the use of this schema evolution function.

6. Drop an existing class c from the lattice:
Let T i ~ . (c 1) T~,~ , (c) be the domains of the instance

variables defined in class c without being inherited, with their
corresponding messages being ml(), m20 m 0.When all the

DATABASE - - August 1993

definition and contents of the class c are dropped, then class c is
deleted and its immediate supers replace it in the inheritance
mechanism. Thus,

c:=Project(c, {})
7. Add a class c, to the superclass list of the class c;

ct has instance variables ivy, iv 2 iv n with domains
Ti~t~(c2),Ti~t~.~(C3) Ti~o~,(c), respectively
c:=Nest(c, Nest(c2 Nest(ctn.1, c) ...))
cl:=Project(c, {ml(), m20 m()})

where { ma0, m20 ran0 } are the messages corresponding to the
instance variables of the class c a. This is true when c a is a new
class. However, when c a is an existing class, the following is
done:

c:=OLproject(Nest(c, c 1), messages(c) to { m0 messages(c a) }))
where m0 is the message added to Nest(c, ca) and m0 corre-
sponds to the instance variable iv a with domain (iva)=T~,~oo,(ca).

c l:=Project(c, messages(c1))

8. Remove class c a from the superclass list of class c:
c:=Project(c, Me(c)-M (ca))

S u m m a r y and Conc lus ions

An object algebra for object-oriented database systems has
been described. A query is coded using the operators of the object
algebra applied on some operands. An operand should have a pair
ofsets,a set of objects and a set of message expressions. Elements
of the second set are used in the invocation of behavior as well as
behavior constructors because a message expression leads to the
execution of all the methods underlying the constituting mes-
sages and in the same order as ff all together form a single method.
Concerning the result of a query, it is a pair of sets, the same as
those of the operands. So, the output of one query can be the input
to another without any problems, and hence the closure property
is maintained in a natural way. In producing the output pair of a
query, the two constituting sets are derived in terms of those of
the operand(s) and hence the operators act on behavior as well as
on the state of objects. While doing this, heterogeneous sets are
considered and this adds much to the power of the object algebra.

Message expressions deal with both stored and derived
values and hence provide greater computational power to the
user. This property is valid for the object algebra as a whole,
where computed as well as stored values are manipulated. There-
fore, not only is the object-oriented data model more powerful
than the relational data model, the object algebra is also more
powerful than the relational algebra. In supporting object con-
struction, behavior construction via message expressions, and in
dealing with the behavior as well the state of objects. Behavior
manipulation is necessary in maintaining the encapsulation fea-
ture of object-oriented data models.

A query is handled on either a temporary or a persistent basis.
Concerning the second case, for the output pair we derive the
characteristics of a class and the inheritance relationship with
other existing classes to place it in the lattice in a logical way,

benefiting from reusability. As a consequence, we show how
some schema changes can be handled using the object algebra.

Currently, we are examining the completeness of the described
object algebra. Also, equivalences between different combinations
of the operators and the use of equivalences in query optimization
are under investigation.

R e f e r e n c e s

Abiteboul, S. and Beer, C. "On the Power of Languages for the
Manipulation of Complex Objects," INRIA, Tec h. R ep. No.
846, May.

Alashqur, A. Su, S.Y. and Lain, H. (1989). "OQL: A Query
Language for Manipulating Object-Oriented Databases,"
Proceedings of thel5th International Conference on Very
Large Databases, Amsterdam, Holland, pp. 433-442.

Alhajj, R. (1992). "A Query Model and an Object Algebra for
Object-Oriented Databases," Ph.D. Dissertation, Bilkent
University, Turkey.

Alhajj, R. and Arkun, M.E. (1992). '% Schema Modification
Methodology for an Object-Oriented Database System,'"
Proceedings of the XVIII Latin America Conference on
Computers, PANEL'92.

Atkinson, M. et al., (1989). "The Object-Oriented Database
System Manifesto," Proceeding of the International Con-
ference on Deductive Object-Oriented Databases, Kyoto,
Japan.

Banerjee, J. et al., (1987) "Data Model Issues for Object-Off-
ented Applications," ACM Transactions on Office Infor-
mation Systems, Vol. 5, No. 1, pp. 3-26.

Banerjee, J. Kim, W. and Kim, K.C. (1988). "Queries in Object-
Oriented Databases," Proceedings of the 4th IEEE Interna-
tional Conference on Data Engineering, Los Angeles, CA.,
pp. 31-38.

Carey, M.L, DeWitt, D.J. and Vandenberg, S.L. (1988). "A Data
Model and a Query Language for EXODUS," Proceedings
of ACM-SIGMOD International Conference on Manage-
ment of Data, Chicago,IL., pp. 413.423.

Cluet, S. and Delobel, C. (1992). "A General Framework for the
Optimization of Object-Oriented Queries," Proceedings of
ACM-SIGMODInternational Conference on Management
of Data.

Colby, L. (1989). "A Recursive Algebra and Query Optimiza-
tion for Nested Relations," Proceedings of ACM-SIGMOD
International Conferenceon Management of Data, pp. 273-
283.

Dayal, U. (1989). "Queries and Views in an Object-Oriented
Data Model," Proceedings of the Secondlnternational Work-
shop on Database Programming Languages, pp. 80-102.

Jaeschke, G. and Schek, H.J. (1982). "Remarks on the Algebra
of Non-First Normal Form Relations," Proceedings of the
Symposium on Principles of Database Systems, pp. 127-138.

Kim, W. (1989). "A Model of Queries for Object-Oriented
Databases," Proceedings of the 15th International Confer-

August 1993 - - DATABASE 21

ence on Very Large Databases, Amsterdam, Holland, pp.
423-432.

Kim, W. (1990). "Object-Oriented Databases: Definition and
Research Directions," IEEE Transactions on Knowledge
and Data Engineering, Vol. 2, No. 3, pp. 327-341.

Maier, D. and Stein, J. (1987). "Development and Implementa-
tion of an Object-Oriented DBMS," Research Directions in
Object-Oriented Programming, Shriver B. and Wegner, P.,
Eds., Cambridge: MIT Press.

Manola, F. and Dayal, U. (1986) "PDM: An Object-Oriented
Data Model" Proceedings of the International Workshop on
Object-Oriented Databases, Pacific Grove, pp. 18-25,.

Osborn, S.L. (1988). "Identity Equality and Query Optimiza-
tion," Proceedings of the Second International Workshop
on Object-Oriented Database Systems, Ebernburg, pp. 346-
351.

Shaw, G. and Zdonik, S. (1990). "A Query Algebra for Object-
Oriented Databases," Proceedings of the 6th IEEE Interna-
tional Conference on Data Engineering, Los Angeles, pp.
154-162.

Straube, D.D. and Ozsu, M.T. (1990). "Queries and Query
Processing in Object-Oriented Database Systems," ACM
Transactions on Information Systems, Vol. 8, No. 4, pp. 387-
430.

Zdonik, S.B. (1988.) "Data Abstraction and Query Optimiza-
tion," Proceedings of the Second Workshop on Object-
Oriented Database Systems, Ebemburg, pp. 368-373.

22 DATABASE - - August 1993

