
Reverse Spatial and Textual k Nearest Neighbor Search

Jiaheng Lu Ying Lu
DEKE, MOE and School of Information

Renmin University of China
{jiahenglu, yinglu}@ruc.edu.cn

Gao Cong
School of Computer Engineering

Nanyang Technological University, Singapore
gaocong@ntu.edu.sg

ABSTRACT
Geographic objects associated with descriptive texts are be-
coming prevalent. This gives prominence to spatial keyword
queries that take into account both the locations and textual
descriptions of content. Specifically, the relevance of an ob-
ject to a query is measured by spatial-textual similarity that
is based on both spatial proximity and textual similarity.
In this paper, we define Reverse Spatial Textual k Nearest
Neighbor (RSTkNN) query, i.e., finding objects that take
the query object as one of their k most spatial-textual sim-
ilar objects. Existing works on reverse kNN queries focus
solely on spatial locations but ignore text relevance.

To answer RSTkNN queries efficiently, we propose a hy-
brid index tree called IUR-tree (Intersection-Union R-Tree)
that effectively combines location proximity with textual
similarity. Based on the IUR-tree, we design a branch-and-
bound search algorithm. To further accelerate the query
processing, we propose an enhanced variant of the IUR-tree
called clustered IUR-tree and two corresponding optimiza-
tion algorithms. Empirical studies show that the proposed
algorithms offer scalability and are capable of excellent per-
formance.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Reverse k nearest neighbor, Spatial-keyword query

1. INTRODUCTION
Reverse k Nearest Neighbor (RkNN) [10] query, which is

to find objects whose k nearest neighbors (kNN) include the
query point, has received considerable attention. Among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

many applications, it is used to discover the influence sets,
i.e., objects in a dataset highly influenced by the query ob-
ject [10]. In the literature [2, 3, 7, 10, 19, 20, 22, 25], spatial
distance is usually considered as the sole influence factor.
However, in real applications, distance alone is not suffi-
cient to characterize the influence between two objects. For
example, two objects, e.g., restaurant, are more likely to in-
fluence each other if their textual descriptions (e.g., seafood
buffet lunch including crab and shrimp) are similar.

In contrast, we take into account textual similarity in
RkNN, and study a new kind of RkNN problem that is
called Reverse Spatial and Textual k Nearest Neigh-
bor (RSTkNN) queries that consider both spatial distance
and textual similarity. An RSTkNN query is to find the
objects that have the query object as one of their k most
spatial-textual similar objects. This new type of query is dif-
ferent from RkNN (e.g., [10]), and spatial-keyword queries
(e.g., LkT [6]). (See Section 8 for a detailed comparison).

Figure 1 gives an example to illustrate the RSTkNN query
we proposed and the conventional RkNN query. Points
p1 · · · p9 in Fig.1(a) are existing branch stores in a region,
and q is a new store which will open. (N1· · ·N7 in Fig.1(a)
are MBRs to be explained in Section 4). Products of each
branch store are given in Fig.1(b), where the weight of each
item can be calculated by TF-IDF [18]. Then an RSTkNN
query with q as query object finds the existing stores that
will be influenced most by q considering both the locations
of the stores and the stuffs that the stores sell. Assume
k=2, the results of traditional RkNN query are {p4, p5, p9},
while the results of our RSTkNN query will be {p1, p4, p5,
p9}. Note p1 is one of answers since the textual description
of p1 is quite similar with that of q, though q is not a 2NN
of p1 in terms of spatial distance alone.

N1

N3
N5

N2

N6

N4

N7

y

x

p3

p4

p2

p5

p6

p7 p8

p9

q(12,6)

p1

(a) Distribution of
branch stores

x
ObjVct1 8 8 0 0 0
ObjVct2 1 1 8 8 4
ObjVct3 1 1 4 4 1
ObjVct4 7 7 1 1 0
ObjVct5 4 4 1 1 0
ObjVct6 1 1 7 7 0
ObjVct7 0 0 0 0 8
ObjVct8 1 1 0 0 7
ObjVct9 0 0 1 1 4

0
4
1
0
0
0
8
7
4

12
16
15
0
5

11
20
22
10

3
4
14
11
6
0
18
25
19

p1
p2
p3
p4
p5
p6
p7
p8
p9
q 12 6 ObjVctQ 8 8 0 0 0 0

vectorsy laptop
camera

diaper
pansportswear

stationery

(b) Locations and products of
branch stores in (a)

Figure 1: An example of RSTkNN queries

RSTkNN queries have many applications ranging from
map-based Web search to GIS decision support. For ex-
ample, a shopping mall can use an RSTkNN query to find

potential customers whose profiles are relevant to the prod-
ucts of the shopping mall and whose locations are close to
this shopping mall. As another example, a person who want
to buy/rent a house would describe her/his desired house
with both location and textual description that specifies the
amenities (s)he wants. RSTkNN query can help landlords
find the potential buyers/renters who may be interested in
their houses based on the location and description of the
houses.

Unfortunately, taking into account the textual relevance
in RSTkNN will pose great challenges to the existing tech-
niques for processing conventional RkNN (without consid-
ering textual relevance), and render them inapplicable to
process RSTkNN queries (see Section 3.1 for the detailed
analysis).

To process the RSTkNN queries efficiently, we propose a
hybrid indexing structures and an efficient approach that
take into account the fusion of location proximity and doc-
ument similarity. The contributions and the organization of
this paper are summarized as follows.

1. We propose and analyze the problem of Reverse Spatial
and Textual k Nearest Neighbor (RSTkNN) search. To the
best of our knowledge, this is the first work on RSTkNN
queries (Section 2, 3).

2. We propose an efficient algorithm to process RSTkNN
queries. The algorithm is based on an effective hybrid in-
dexing structure called Intersection-Union-R tree (IUR-tree)
that stores spatial and textual information for the database
objects (Section 4). By effectively computing spatial-textual
similarities between index nodes, we exploit a branch-and-
bound algorithm to prune the irrelevant subtrees (Section
5). We also theoretically analyze the performance of the
algorithm based on IUR-tree.

3. IUR-trees organize the data points by considering only
spatial distance, which may damp the pruning power due to
the diversity of textual contents in one node. we propose an
enhanced hybrid index, called Clustered IUR-tree (CIUR-
tree) incorporating textual clusters and two optimization
algorithms based on CIUR-tree (Section 6).

4. Results of empirical studies with implementations of
the proposed techniques demonstrate the scalability and ef-
ficiency of proposed indexes and algorithms (Section 7).

2. PROBLEM DEFINITION
In this work, the document of an object is treated as a bag

of weighted words using vector space model [14]. Formally,
a document is defined as {<di,wi>}, i = 1· · ·m, where wi
is the weight of word di. The weight could be computed by
the well-known TF-IDF scheme [18].

Let P be a universal spatial object set. Each spatial object
p∈P is defined as a pair (p.loc, p.vct), where p.loc represents
the spatial location information and p.vct is the associated
text represented in vector space model. We define RSTkNN
query as follows. Given a set of objects P and a query point q
(loc,vct), RSTkNN(q, k, P) finds all objects in the database
that have the query point q as one of the k most “similar”
neighbors among all points in P , where the similarity metric
combines the spatial distance and textual similarity. Follow-
ing the previous work [6, 12], we define a similarity metric,
called spatial-textual similarity1, in Eqn(1), where pa-

1Hereafter, “spatial-textual similarity” is also called “simi-
larity” for short.

rameter α ∈ [0, 1] is used to adjust the importance of spatial
proximity factor and the textual similarity factor. Note that
in our setting, we allow users to adjust the parameter α at
the query time.

SimST (p1, p2) = α ∗ SimS(p1.loc, p2.loc) +

(1− α) ∗ SimT (p1.vct, p2.vct) (1)

SimS(p1.loc, p2.loc) = 1− dist(p1.loc, p2.loc) − ϕs
ψs − ϕs

(2)

SimT (p1.vct, p2.vct) =
EJ(p1.vct, p2.vct) − ϕt

ψt − ϕt
(3)

As shown in Eqn(2), the spatial distance SimS(., .) of
objects p1, p2 ∈ P is the Euclidean distance denoted as
dist(p1.loc, p2.loc). In Eqn(2), ϕs and ψs denote the mini-
mum and maximum distance of pairs of distinct objects in P .
They are used to normalize the spatial distance to the range
[0, 1]. The textual similarity SimT (., .) of objects p1, p2 ∈ P
is shown in Eqn(3). Similarly, ϕt and ψt are the minimum
and maximum textual similarity of pairs of distinct objects
in the dataset, respectively. Specifically, EJ(p1.vct, p2.vct)
is the Extended Jaccard [21], which is widely used in textual
similarity computing, as shown in Eqn(4).

EJ(�v, �v′) =

∑n
j=1 wj × w

′
j∑n

j=1 w
2
j +

∑n
j=1 w

′
j
2 −

∑n
j=1 wj ×w′

j

, (4)

where �v =< w1, · · · , wn >, �v′ =< w′
1, · · · , w′

n >

Formally, given a query object q=(loc, vct), an object
p∈P is one of k most similar objects with q, denoted by p∈
STkNN(q, k, P) if and only if it satisfies the condition:

|{o ∈ P |SimST (o, q) ≥ SimST (p, q)}| < k

Given a query q, RSTkNN query retrieves objects whose
k most similar objects include q. It is formally defined as:

RSTkNN(q, k, P) = {p ∈ P |q ∈ ST kNN(p, k, P)} (5)

For example, in Fig.1, given a query q(12, 6) whose textual
vector is <(stationery,8),(sportwear,8)>, and k=2, α=0.6,
then RSTkNN(q, k, P)={p1, p4, p5, p9}. Note that p1 is an
answer due to the high textual similarity between p1 and q.

3. PROBLEM ANALYSIS AND BASELINE
METHODS

We first analyze the main technical challenges of process-
ing RSTkNN queries and then present the baseline solutions.

3.1 Problem Analysis
Recall that our similarity metric combines both text and

location information, and to the best of our knowledge, the
previous methods for RkNN queries cannot be employed to
handle the RSTkNN queries due to the new challenges.

Existing approaches for processing RkNN can be grouped
into four categories. First, typical solutions (e.g. [3, 13, 15,
22, 25]) are based on �p norm metric space. For example,
hyperplanes [15, 22, 25] and Voronoi cells [13] technologies
are employed to exploit the Euclidean geometry proper-
ties; and [3] makes use of the properties of �p norm metric
to develop a branch-and-bound algorithm to answer RkNN
queries. Despite their significant contributions, the �p norm
metric space is not suitable for computing the similarity

between textual descriptions as they are sparse and high-
dimensional vectors [21], and hence the techniques based
on the Euclidean geometry are not applicable to RSTkNN
queries. Second, the approach to prune the objects using the
hyper-Voronoi diagram and 60-degree-pruning method [20]
is infeasible to process RSTkNN due to the high dimensions
of text. Third, the existing methods based on pre-processing
[2,7,10] do not suffice the requirement of RSTkNN that the
importance of text relevance verse spatial proximity (con-
trolled by parameter α) may vary at query time. In addi-
tion, they cannot handle dynamic parameter k, which may
vary at querying time too. Fourth, the works [1,19] focus on
only approximate results while they are successful to handle
high dimensional and general metric spaces.

3.2 Baseline methods
No baseline algorithm exists for RSTkNN queries. Readers

might be tempted to answer RSTkNN queries by separately
computing the reverse spatial k nearest neighbors (RSkNN)
and the reverse textual k nearest neighbors(RTkNN), and
then finding a way to combine the two results. This idea has
two serious problems: 1) existing methods cannot be used to
compute RkNN queries in terms of text similarity, and more
importantly 2) there is no sensible way to combine the two
results to get the answers since the result of an RSTkNN
query may even not belong to the set of the union of the
results from its corresponding RSkNN query and RTkNN
query.

We develop a non-trivial baseline algorithm to correctly
find all answers. The idea is that: for each object p, we first
pre-compute the location proximity and textual similarity
respectively with all the other objects to obtain two sorted
lists. At query time, we find top-k objects that have the
highest overall grades of the function in Eqn(1) combining
the two lists using the threshold algorithm (TA) [9]. Thus
if the spatial-textual similarity of the k-th object is smaller
than the similarity between p and query q, then p is added
to the result. This method can handle dynamic parameters
k and α. However, it is expensive as it demands computing
the STkNN for all the objects in the dataset.

We also explore other baselines using existing techniques.
However, they are much slower than the above baseline in
our experiments, and are ignored. For example, we tried
a baseline method without pre-computation. The idea is
that, for each object p, find its top-k most similar objects
using the existing spatial-and-textual kNN query techniques
(e.g., [6]), and if the kth result is smaller than the similarity
between p and query q, then p is added to the result.

4. A HYBRID INDEX: IUR-TREE
To answer the RSTkNN queries efficiently, we propose an

effective hybrid index called IUR-tree (Intersection-Union
R-tree), which is a combination of textual vectors and R-
tree [11] We can also use other R-tree-based indexes to build
IUR-tree. In particular, each node of an IUR-tree contains
both spatial location and textual information. The former
is represented with a minimum bounding rectangle(MBR),
and the latter is represented with two textual vectors: an
intersection vector and a union vector. The two vectors are
used to compute the similarity approximations (Section 5.1.1
shows the formulas later).

Leaf nodes contain entries2 in the form of (ObjP tr, ObjLoc,
ObjV ct), where ObjPtr refers to an object in the database;
ObjLoc represents the coordinates of the object; and ObjVct
is the textual vector of the object.

A non-leaf node R of IUR-tree contains entries in the form
of (Ptr, mbr, IntUniV ct, cnt), where 1)Ptr is the pointer
to a child node of R; 2)mbr is the MBR of the child node of
R; 3)IntUniVct is the pointer to the intersection and union
textual vectors that intersect and union all textual vectors
in the entries of the child node, respectively. The weight of
each item in the intersection (resp. union) textual vector is
the minimum (resp. maximum) weight of the items in the
documents contained in the subtree rooted at Ptr. Note
that the two vectors are stored in a separate storage region;
and 4)cnt is the number of objects (in the leaf nodes) in the
subtree rooted at Ptr.

Figure 2 illustrates the IUR-tree for the objects in Fig-
ure 1. The intersection and union textual vectors are pre-
sented in Fig.3. For example, the weights of item camera
in the intersection and union vectors (IntUniV ct2) of an
entry in node N3 are 7 and 8, respectively, which are the
minimum and maximum weights of the item in the two text
vectors ObjV ct7 and ObjV ct8 (shown in Fig.1) in node N1.

ObjVct1

[3, 12]
[3, 12]

ObjVct2

[4,16]
[4,16]

ObjVct3

[14, 15]
[14, 15]

ObjVct9

[19, 10]
[19, 10]

[11,0]
[11,0]

[6, 5]
[6, 5]

[14,10]
[19,15]

[6, 0]
[11,5]

[0,11]
[4,16]

[14,10]
[25,22]

[0, 0]
[11,16]

ObjVct6

[0,11]
[0,11]

p1 p2 p6
p4 p5p3 p9

ObjVct4 ObjVct5

54

2 2 2 3

[18,20]
[18,20]

[25,22]
[25,22]

p7 p8

ObjVct7 ObjVct8

N1N N N

NN

N

[18,20]
[25,22]

IntUniVct5 IntUniVct6

IntUniVct1
IntUniVct3

IntUniVct4IntUniVct2

Figure 2: The IUR-tree of Figure 1

IntVct1 0 0 1 1 1
IntVct2 0 0 0 0 7
IntVct3 4 4 1 1 0
IntVct4 1 1 0 0 0
IntVct5 0 0 0 0 1

1
7
0
0
1

IntVct6 1 1 0 0 0 0

UniVct1 1 1 4 4 4
UniVct2 1 1 0 0 8
UniVct3 7 7 1 1 0
UniVct4 8 8 8 8 4
UniVct5 1 1 4 4 8

4
8
0
4
8

UniVct6 8 8 8 8 4 4

IntUniVct1
IntUniVct2
IntUniVct3
IntUniVct4
IntUniVct5
IntUniVct6

laptop
camera

diaper
pansportswear

stationery
laptop

camera
diaper

pansportswear
stationery

Figure 3: Text vectors for IUR-tree in Figure 2

Algorithm 1 is presented to construct the IUR-tree, which
is using an insert operation that is adapted from the corre-
sponding R-tree operation [11]. To update an IUR-tree in-
crementally, we use order preserving minimal perfect hash-
ing function (OPMPHF) [4] to store keywords contained
in the subtree of the index node N in the form of (di.p,
di.w) i ∈ [0, m], where m is the total number of words con-
tained in the document of N , di.p is an integer (position in
the words collection) hashed from word di using OPMPHF ,
and di.w is the weight of word di. In particular, in Algo-
rithm 1, Function Convert() in Line 1 is to convert a docu-
ment to a vector in the form of (di.p, di.w). Line 2�14 use
an R-tree based implementation of ChooseLeaf and node
split and append with text vectors. We modify the stan-
dard AdjustT ree method to maintain the text description
(Line 15 and 19): if a pair (di.p, di.w) is inserted to entry E,
then the intersection and union vectors of each E’s ancestor
should be updated recursively.
2For brevity, objects in the dataset and index nodes in the
hybrid tree are collectively referred as entries.

Algorithm 1 Insert (MBR, document)

1: TextV ct←Convert(document); //Covert document
into text vector in form of (di.p, di.w).

2: N ← ChooseLeaf(MBR);
3: add TextV ct and MBR to node N ;
4: if N needs to be split then
5: {O, P} ← N .split();
6: if N .isroot() then
7: initialize a new node M ;
8: M .append(O.MBR, O.TextV ct);
9: M .append(P.MBR, P.TextV ct);

10: StoreNode(M);
11: StoreNode(O);
12: StoreNode(P);
13: R.RootNode ← M ;
14: else
15: AdjustTree(N.ParentNode, O, P);
16: else
17: StoreNode(N);
18: if ¬N .isroot() then
19: AdjustTree(N.ParentNode, N , null);

5. RSTKNN QUERY ALGORITHM
We present a novel approach to compute the lower and

upper bounds of similarity between a node in the IUR-tree
and its kth most similar objects in Section 5.1. Based on
the bounds, we present a branch-and-bound algorithm to
answer RSTkNN queries in Section 5.2.

5.1 Computing Lower and Upper Bounds
For each entry E in an IUR-tree, we need compute the

lower and upper bounds of similarity between E and its kth
most similar objects, denoted by kNNL(E) and kNNU(E),
respectively.

5.1.1 Similarity Approximations
To efficiently compute kNNL(E) and kNNU(E) during IUR-

tree traversal, we make full use of each entry traveled by ap-
proximating the similarities among entries, and by defining
minimal and maximal similarity functions. Since the spa-
tial distance approximation is thoroughly studied in several
publications concerning spatial indexing (e.g., [3, 17]), here
we do not repeat their detailed definitions. Rather, we con-
centrate on the more specialized textual part. The proofs of
lemmas in this section can be found in Appendix A.

Let the intersection and union textual vectors of an entry
E in IUR-tree be <E.i1,· · · ,E.in> and <E.u1,· · · ,E.un>,
respectively, where n is the total number of words.

Definition 1 (MinST). The minimal spatial-textual sim-
ilarity between two entries E and E′ in IUR-tree, denoted
by MinST (E,E′), is defined as:

MinST (E,E′) = α(1 − MaxS(E,E′) − ϕs

ψs − ϕs
) +

(1 − α)
MinT (E,E′) − ϕt

ψt − ϕt
(6)

where MaxS(E,E′) is the maximal Euclidian distance between
two MBRs of E and E′, and

MinT (E,E′)=
∑n

j=1 E.wj×E′.wj∑n
j=1 E.w

2
j+

∑n
j=1 E

′.wj
2−∑n

j=1 E.wj×E′.wj
,{

E.wj = E.uj, E′.wj = E′.ij if E.ij*E.uj≥E′.ij*E′.uj
E.wj = E.ij, E

′.wj = E′.uj otherwise
(7)

Lemma 1. MinST (E,E′) satisfies the property that ∀o∈E,
∀ o′∈E′, SimST (o, o′) ≥ MinST (E,E′).

Lemma 1 suggests that there are at least |E′| objects o′

in E′ s.t. ∀o∈E, SimST (o, o′) ≥ MinST (E,E′). There-
fore, we can use MinST (E,E′) to estimate the lower bound
kNNL(E) that should be greater than MinST (E,E′).

We next propose another similarity definition which is
larger thanMinST (E,E′) and thus may be used as a tighter
bound estimation.

Definition 2 (T ightMinST). A tight minimal spatial-
textual similarity between two entries E and E′ in IUR-tree,
denoted as T ightMinST (E,E′), is defined as:

TightMinST (E, E′) = max

{

α(1− MinMaxS(E, E′)− ϕs

ψs − ϕs

) + (1− α)
MinT (E,E′)− ϕt

ψt − ϕt

,

α(1− MaxS(E,E′)− ϕs

ψs − ϕs

) + (1− α)
TightMinT (E, E′)− ϕt

ψt − ϕt

}
(8)

where, MinMaxS(E,E′) [3] is a tighter Euclidian distance
function than MaxS(E,E′) holding the property that there
is at least one object o′ in E′ such that the distances be-
tween o′ and all the objects in E are smaller or equal to
MinMaxS(E,E′). T ightMinT (E,E′) =

max
1≤r≤n

E.wr×E′.wr+
n∑

j=1,j �=r
E.wj×E′.wj

E.w2
r+E′.w2

r−E.wr×E′.wr+
n∑

j=1,j �=r
(E.w2

j +E′.w2
j−E.wj×E′.wj)

E′.wr =

{
E′.ur if E.ir ∗ E.ur > E′.ir ∗E′.ur
E′.ir otherwise

(9)

E.wr =

{
E.ir if

√
E.ir ∗ E.ur < E′.wr;

E.ur otherwise;
(10)

and E.wj and E′.wj are assigned as Eqn(7).

Lemma 2. T ightMinST (E,E′) has the property that ∃
o′∈ E′ s.t. ∀o∈E, SimST (o, o′)≥T ightMinST (o, o′).

As suggested from Lemma 2, there is at least one object
o′ in E′ s.t. ∀o∈E, SimST (o, o′) ≥ T ightMinST (E,E′).
Hence, unlike MinST which can contribute |E| objects,
T ightMinST can contribute only one object to be the kNNs
of E′, but T ightMinST is much tighter than MinST .

Definition 3 (MaxST). The maximal spatial-textual
similarity between two entries E and E′ in IUR-tree, denoted
as MaxST (E,E′), is defined as:

MaxST (E,E′) = α(1 − MinS(E,E′) − ϕs

ψs − ϕs
) +

(1 − α)
MaxT (E,E′) − ϕt

ψt − ϕt
(11)

where MinS(E,E′) is the minimal Euclidian distance between
two MBRs of E and E′; maximal textual similarity between E

and E′ MaxT (E,E′)=
∑n

j=1 E.wj×E′.wj∑n
j=1 E.w

2
j
+

∑n
j=1 E

′.wj
2−∑n

j=1 E.wj×E′.wj
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E.wj = E.ij, E

′.wj = E′.uj if E.ij > E′.uj
E.wj = E.uj, E′.wj = E′.ij if E.uj < E′.ij
E.wj = E′.wj = E.uj if E′.ij ≤ E.uj ≤ E′.uj
E.wj = E′.wj = E′.uj otherwise.

(12)

Lemma 3. MaxST (E,E′) has the property that ∀ o′ ∈E′,
∀o∈E, SimST (o, o′)≤MaxST (E,E′).

Corollary 1. There is at most one object o′ in E′ s.t.
∀o∈E, SimST (o, o′)=MaxST (E,E′).

5.1.2 Lower and Upper Bound Contribution Lists
We are ready to explore the similarity approximations de-

fined above to identify the lower and upper bounds kNNL(E),
kNNU (E) of the most similar k objects for each entry E.

Definition 4 (Lower bound contribution list).
Let T be a set of entries in the IUR-tree that do not have
ancestor-descendant relationship. Given an entry E∈T , a
lower bound contribution list of E, denoted as E.LCL, is a
sequence of t (1≤t≤k) triples <si, E

′
i, numi> sorted in de-

scending order of si, where E′
i 	=E, E′∈T , si isMinST (E,E′)

or T ightMinST (E,E′), and

numi =

{
|E′| − 1 if si=MinST (E,E′)
1 otherwise.

such that t is the minimal number fulfilling
∑t
i=1 numi ≥ k.

For si = MinST (E,E′), the rationale for subtracting one
from |E′| is due to the potential presence of one object in
E′ with more precise approximation by T ightMinST . Fol-
lowing the notations in Definition 4, we have the following
Lemma.

Lemma 4. If the t-th element (i.e., E.LCL.st) is larger
than or equal to the maximal similarity between E and q (de-
noted by MaxST (E, q)), no answer exists in subtree(E), the
subtree rooted at E, and thus we can safely prune subtree(E).

The proof of Lemma 4 is obvious: when the condition
holds, there are at least k distinct objects whose similarities
with any object o∈E are larger than or equal toMaxST (E, q).
Hence we can safely prune away subtree(E), avoiding the
traverse of subtree(E) during query processing. Thus we
let the lower bound kNNL(E) be E.LCL.st. That is we can
prune E if kNNL(E) ≥ MaxST (E, q).

Definition 5 (Upper bound contribution list).
Let T be a set of entries in the IUR-tree that do not have
ancestor-descendant relationships. An upper bound contri-
bution list of an entry E in IUR-tree, denoted as E.UCL, is a
sequence of t pairs <si, E

′
i>, i∈[1, · · · , t], sorted in descend-

ing order of si where E′
i 	=E, E′∈T , si = MaxST (E,E′),

and t is the maximal number fulfilling 1 +
t−1∑
i=1

|E′
i| ≤ k.

Following the notations in Definition 5, we have the fol-
lowing Lemma.

Lemma 5. If the t-th element (i.e., E.UCL.st) is smaller
than the minimal similarity between E and q (denoted by
MinST (E, q)), then q must be one of the top-k most similar
objects for all objects in E, and objects in E are included as
results.

The proof of Lemma 5 is obvious: there are at most k-1
distinct objects whose similarities with any object o∈E are
equal to or larger than MinST (E, q), and thus all objects
in E will be reported as part of the answer. Thus we let the
upper bound kNNU(E) be E.UCL.st. That is we can report
E to be a result entry if kNNU(E) < MinST (E, q).

Figure 4 illustrates the strategies of using kNNL(E) and
kNNU(E) to determine whether entry E is a result. The sim-
ilarity approximations in E.LCL (resp. E.UCL) are within
the shaded ring “L” (resp. “U”). Specially, the dashed line
in “L” (resp. “U”) is kNNL(E) (resp. kNNU(E)). Note that
the circle that is farther away from E indicates the similar-
ity between object on the circle and entry E is smaller. If

query objects
q2

q3

E
q1

L
u

kNNL(E)

kNNU(E)

Figure 4: Illustration of pruning and reporting re-
sults using kNNL(E) and kNNU(E)

q3 is the query object, we can prune E since the similarity
MaxST (E, q) between E and q3 is within the dashed ring
kNNL(E) (i.e., is equal to or larger than kNNL(E)). If q1 is
the query, we report E as a result entry since the similarity
MinST (E, q) between E and q1 is within the ring kNNU(E).
If query is q2, we cannot determine whether E belongs to
results based on kNNL(E) and kNNU(E).

5.2 Search algorithm
We proceed to develop an efficient algorithm to answer

RSTkNN queries (see Algorithm 2). At high-level, the algo-
rithm descends the IUR-tree in the branch and bound man-
ner, progressively computing the thresholds kNNL(E) and
kNNU(E) for each entry E by inheriting and updating the
lower and upper contribution list; based on the thresholds,
the algorithm then decides whether to prune an entry E, to
report all objects in E as results, or to consider objects of
E as candidates.

The algorithm uses the following data structures: a max-
priority queue U , which stores nodes E associated with the
priority MaxST (E, q), a candidate object list COL that
needs to be checked, a pruned entry list PEL that will not
be results, and a result object ROL.

The algorithm begins with initialization and then enqueues
the root of the IUR-tree into U (Line 1–2). When U is not
empty (Line 3), we dequeue the entry P from U with the
highest priority (Line 4). For each child entry E of P , E
first inherits the upper/lower bound lists of P (which is dis-
cussed in more details later)(Line 6), based on which, we de-
termine whether E is a result entry (“hit”) or can be pruned
(“drop”) by invoking procedure IsHitOrDrop (Line 7). If E
can be pruned (Line 29), E is added to PEL, and if E is
reported as a result entry (Line 33), E is added to ROL;
Otherwise, we use E to “mutual-effect” E′∈ COL∪ROL∪U
to update the upper/lower bound contribution lists to mu-
tually tighten their upper/lower bounds (Line 9 and 12). If
E′ is pruned or reported as a result entry then remove E′

from its original data structure U or COL (Line 13–14). If E
is determined as a hit or drop, then consider next child en-
try of P (Line 10). If E still cannot be determined whether
to be a result entry after effected by all the entries in COL,
ROL and U , then add E to the corresponding list or queue
(Line 15–17). Finally, when the priority queue U is empty,
we still need to process objects in the candidate list COL
to decide if they belong to answers by invoking Procedure
FinalVerification (Line 18).

Note that here we adopt a tricky idea called “lazy travel-
down” for each entry E′ in the pruned list PEL to save I/O
cost. That is, in Line 8, we do not access the subtree of
∀E′∈PEL to affect entry E that is processed currently until
we reach the final verification phase. In this way, as shown
in the experimental section, “lazy travel-down” accelerates
the query processing by avoiding the scan of many portions
of the IUR-tree.

Algorithm 2 RSTkNN (R: IUR-tree root, q: query)

Output: All objects o, s.t. o∈RSTkNN(q, k,R).
1: Initialize a priority queue U , and lists COL, ROL, PEL;
2: EnQueue(U , R);
3: while U is not empty do
4: P ← DeQueue(U);//Priority of U is MaxST (P, q)
5: for each child entry E of P do
6: Inherit(E.CLs, P.CLs);
7: if (IsHitOrDrop(E, q)=false) then
8: for each entry E′ in COL, ROL, U do

9: UpdateCL(E,E′);//update contribution lists of E.

10: if (IsHitOrDrop(E, q)=true) then break;
11: if E′ ∈ U∪COL then
12: UpdateCL(E′,E);//update contribution lists of

E′ using E.
13: if (IsHitOrDrop(E′, q)=true) then
14: Remove E′ from U or COL;

15: if (E is not a hit or drop) then
16: if E is an index node then
17: EnQueue(U , E);
18: else COL.append(E); //a database object

19: FinalVerification(COL, PEL, ROL);

Procedure FinalVerification(COL, PEL, q)
20: while (COL	=∅) do
21: Let E be an entry in PEL with the lowest level;
22: PEL=PEL-{E};
23: for each object o in COL do
24: UpdateCL(o,E);//update contribution lists of o.
25: if (IsHitOrDrop(o, q)=true) then
26: COL=COL-{o};
27: for each child entry E′ of E do
28: PEL=PEL∪{E′}; //access the children of E′

Procedure IsHitOrDrop(E: entry, q: query)
29: if kNNL(E)≥MaxST (E,q) then
30: PEL.append(E); //Lemma 4
31: return true;
32: else
33: if kNNU (E)<MinST (E, q) and E is the rightest child

entry then
34: ROL.append(subtree(E)); //Lemma 5
35: return true;
36: else return false;

Procedure UpdateCL(E: entry, E′: entry)
37: for each tuple <si,E

′
i,numi>∈E.LCL do

38: if E′
i=E or E′

i=Parent(E) then
39: remove <si,E

′
i,numi> from E.LCL; //Clean Con-

flicts
40: if kNNU (E) < MaxST (E,E′) then
41: E.UCL←TopkMax(E.UCL, MaxST (E,E′), 1);

42: if kNNL(E) < TightMinST (E,E′) then
43: E.LCL←TopkMax(E.LCL, TightMinST (E, E′), 1);

44: if kNNL(E) <MinST (E,E′) then
45: E.LCL←TopkMax(E.LCL, MinST (E,E′), |E′|-1);

SubProcedure TopkMax(L,f(E,E′),C)
46: Return the t-th triple in contribution list L, where t is

the minimal number fulfilling
∑t
i=1 L.numi ≥ k.

Procedure FinalVerification: it is to determine if the can-
didate objects in COL are “hits” or “drops”. The main idea
is to check the effect of the entries in PEL on each candidate
in COL. Specifically, we update the contribution lists for
candidate in COL until we can correctly determine if each
candidate object belongs to an answer or not. In particu-
lar, Line 20 selects the entry E in PEL which has the lowest

level in the IUR-tree. This is because the entries in the lower
level often have the tighter bounds than those in the higher
level and thus they are more likely to identify whether the
candidates are results. Line 23 uses the entry E to update
the contribution list of each candidate o in COL and Line 24
checks if o can be removed from the candidate list. Finally,
we add children of E into PEL since they may also affect
the candidates in COL (Line 26–27). This process continues
until COL becomes empty.

In particular, Line 6 in Algorithm 2 introduces an efficient
technology called Inherit, i.e., a child entry inherits (copies)
the contribution lists from its parent entry. Inherit makes
use of the parent nodes to avoid computing contribution
lists from the scratch, and thus reducing runtime (to be
shown in our experimental results). However, inherit will
lead to a problem called object conflict : the same object
in the contribution lists of a child entry may be counted
twice (one from the inheritance of parent entry and the other
one from itself after other entries’ affecting), resulting in
wrong upper or lower bounds of the child entry. In order to
avoid such a problem, Line 37–38 in Algorithm 2 guarantee
that there is no object in contribution lists which is double
counted, as illustrated in the following example.

Table 1: Trace of RSTkNN algorithm in Example 1
Steps Actions U COL ROL PEL

1
Dequeue N7;

N6,N3 ∅ ∅ ∅
Enqueue N3,N6

2
Dequeue N6;

N2,N3,N4 ∅ ∅ ∅
Enqueue N2,N4

3 Dequeue N2; N3, N4 p5 p4 ∅
4

Dequeue N3;
N5, N4 p5 p4 N1

Enqueue N5
5 Dequeue N5 N4 p5,p9 p4 N1,p3
6 Dequeue N4 ∅ p9 p4,p1,p5 N1,p3
7 Verify p9 ∅ ∅ p4,p1,p5,p9 N1,p3

Step 4:
ROL={p4} COL={p5} U={N5,N4} PEL={N1}

0.338

0.312

N3.LCL

N2

N4

p4
p50.411

0.621p4
N40.417

0.621

Inherit

Access the child
entries of N3

de
cr

ea
se

Inherit
Effect

with p5
Effect

with N4

N2
N40.312

0.338
N5.LCL

Effect
with p4 p4

N40.312
0.621

N2
N40.312

0.338
N1.LCL

Prune N1

1

1

1
1

1
1

1
1

1
1

1
1

conflict

Figure 5: Illustration to RSTkNN algorithm

Example 1: We use this example to illustrate RSTkNN
algorithm. Consider the dataset in Figure 1 and a query
object q(12, 6), q.vct = <(stationary,8), (sportswear,8)>,
and let k=2, α=0.6. The algorithm starts by enqueueing N7
into a priority queue U , and the trace of the algorithm is
shown in Table 1. The query answers have four objects: p1,
p4, p5 and p9, as shown in Step 7 of Table 1.

Here we focus on Step 4 of Table 1 to illustrate the mutual-
effect strategy and inherit technology (See Fig. 4). After N3
is dequeued from U in Step 4, we access its child entries N5
and N1.

1) N5 also inherits the contribution list from N3 (Line
6 in Algorithm 2). However, it can neither be pruned nor
be determined to be results (Line 7). Thus it will “mutual-
effect” with p4, p5, and N4 (Line 8–17). When we consider

the effect of p4 on the contribution list (N5.LCL) of N5 (Line
9), N2 (inherited from N3.LCL) in N5.LCL conflicts with
p4 since p4 is a child of N2 and N2 may contribute the
same object p4 for N5.LCL. To solve the conflict, we remove
N2 from N5.LCL (Line 38), and add p4 to N5.LCL with
a more accurate estimation (0.621) of similarity with N5
than N2. The triple <0.621, p4, 1> is added in N5.LCL.
Next in a similar way, we use p5 and N4 to effect with N5,
respectively. Finally N5 still cannot be determined to be a
hit or drop and it is enqueued to U (Line 16).

2) N1 inherits the contribution list from N3 (Line 6) and
is pruned immediately according to Lemma 4 (Line 29) with-
out having effect on any other entries, which illustrates the
benefit of inherit technology. This is because MaxST (N1, q)=
0.308 is smaller than N3.LCL.s2=0.312, thus MaxST (N1, q)
≤ T ightMinST (N1, N4) ≤ T ightMinST (N1, N2), i.e.,
there are at least two objects o′ in N4 and N2, s.t. ∀o∈N1,
SimST (o, o′) ≥ T ightMinST (N1,q), therefore we can prune
N1 according to Lemma 4. �

Theorem 1. Given an integer k, a query q and an index
tree R, Algorithm 2 correctly returns all RSTkNN points.

The proof of Theorem 1 is given in Appendix A.4.

Performance Analysis: We propose an analytical model
to estimate the cost of RSTkNN queries and theoretically
analyze the performance of the RSTkNN algorithm based
on IUR-tree, i.e.. We estimate the number of expected disk
accesses DA of IUR-tree index nodes by the RSTkNN algo-
rithm as follows.

Lemma 6. Suppose that N objects are uniformly distributed
in 2-dimension space [23], and M distinct words are ran-
domly distributed on the N objects such that the average
number of words per object is m (m≤M). The number of

expected disk accesses DA is O(k
√
k+
√
kN), where f is the

average capacity (fanout) of the IUR-tree, k is the parameter
specified by the RSTkNN query.

The details for the analysis model and the proof of Lemma
6 can be found in [16].

6. REFINEMENTS FOR HYBRID INDEX
Like the R-tree, the IUR-tree is built based on the heuris-

tics of minimizing the area of MBR of nodes. However,
the associated texts of the spatial objects in the same MBR
can be very different, because the near spatial objects often
belong to different specific categories, such as retail, accom-
modations, restaurants, and tourist attractions.

To compute tighter kNN bounds of the entries, we enhance
the IUR-tree with text cluster, yielding an index tree called
CIUR-tree given in Section 6.1. We present two optimization
methods to improve the search performance based on CIUR-
tree in Section 6.2 and Section 6.3, respectively.

6.1 Cluster IUR-tree: CIUR-tree
We propose to use text clustering to enhance IUR-tree. In

the pre-processing stage, we group all the database objects
into clusters C1, · · ·Cn according to their text similarities.
We extend each IUR-tree node by the cluster information to
generate a hybrid tree called Cluster IUR-tree(CIUR-tree).
The CIUR-tree is built based on the spatial proximity as
does the IUR-tee. However, each node of the CIUR-tree in-
cludes a new entry ClusterList in the form of (ID:N), where

ID is the cluster id and N is the number of objects of clus-
ter ID in the subtree of the node. The ClusterList on the
upper layer CParent is the superimposing of that on lower
layer CChild. That is, CParent.N =

∑M
j=1 CChildj .N ,

where M is the number of children of the node.
The intersection and union vectors at each node of the

IUR-tree is also extended with cluster information. For each
cluster Ci, CIntV cti and CUniV cti include the minimal and
maximal weights of each word in Ci, respectively. For exam-
ple, suppose all the objects in Fig.1 are clustered into three
clusters: C1={p1, p4, p5}, C2={p2, p3, p6} and C3={p7,
p8, p9}, the intersection and union text vectors of which are
shown in Fig 6(a). The CIUR-tree is shown in Fig 6(b).

CIntVct1 4 4 0 0 0
CIntVct2 1 1 4 4 0
CIntVct3 0 0 0 0 4

0
0
4

CUniVct1 8 8 1 1 0
CUniVct2 1 1 8 8 4
CUniVct3 1 1 1 1 8

0
4
8

C1
C2
C3

laptop
camera

diaper
pansportswear

stationery
laptop

camera
diaper

pansportswear
stationery

(a) Intersection and union text vectors of each cluster

ObjVct1

[3, 12]
[3, 12]

ObjVct2

[4,16]
[4,16]

ObjVct3

[14, 15]
[14, 15]

ObjVct9

[19, 10]
[19, 10]

[11,0]
[11,0]

[6, 5]
[6, 5]

[14,10]
[19,15]

[6, 0]
[11,5]

[0,11]
[4,16]

[14,10]
[25,22]

[0, 0]
[11,16]

ObjVct6

[0,11]
[0,11]

p1 p2 p6
p4 p5p3 p9

ObjVct4 ObjVct5

54

2 2 2 3

[18,20]
[18,20]

[25,22]
[25,22]

p7 p8

ObjVct7 ObjVct8

N1N5 N2 N4

N6N3

N7

[18,20]
[25,22]

IntUniVct5 IntUniVct6

IntUniVct1

IntUniVct3

IntUniVct4IntUniVct2

(C2:1, C3:3) (C1:3 , C2:2)

(C2:1 , C3:1)
(C3:2)

(C1:2)

(C1:1 , C2:2)

(b) CIUR-tree

Figure 6: The Cluster IUR-tree of Figure 1

6.2 Outlier Detection and Extraction
To give a tighter bound during CIUR-tree traversal, we

need to purify the textual description in the index nodes by
extracting outliers from the documents based on cluster IDs.
We take the outliers into special account and calculate their
bounds separately so that the bounds of the original entry
can be tighter. We identify the index node E containing
outlier clusters in the following two cases:

Case I : Most objects in subtree(E) can be pruned, but
there exit few objects in subtree(E) that cannot be pruned,
and are called “outliers”, thus making the whole E non-
prunable. More precisely, given a query q, we say one en-
try E belongs to Case I if 1) MinST (E, q) < kNNL(E),
2) MaxST (E, q) > kNNL(E), and 3) there exits a subset
of clusters in E, denoted by SI , such that

∑
Ci∈SI

Ci.N ≥
λ|E|, where parameter λ is a threshold close to 1, and ∀Ci ∈
SI s.t. α(1−MinS(E,q)−ϕs

ψs−ϕs
)+(1−α)MaxT (Ci, q) < kNNL(E).

The objects that are in E but not in SI are outliers.

Case II : Most objects in subtree(E) can be reported as
answers, but there exit few objects that are not answers
and thus the whole E cannot be reported as a result en-
try. More precisely, given a query q, an entry E belongs
to case II if 1) MinST (E, q)<kNNU (E), 2) MaxST (E, q)
>kNNU (E), and 3) there exits a subset of clusters in E,
denoted by SII , such that

∑
Ci∈SII

Ci.N ≥ μ|E|, where
parameter μ is a threshold close to 1, and ∀Ci ∈ SII s.t.

α(1− MaxS(E,q)−ϕs

ψs−ϕs
) + (1− α)MinT (Ci, q) > kNNU(E).

Having identified entries in Case I or Case II , we decom-
pose them and identify if their subtree entries can be pruned

or added as results. To implement the optimization of out-
lier detection and extraction for RSTkNN queries, the only
change is to replace Line 17 in Algorithm 2 with the fol-
lowing pseudocodes. First, we determine whether the index
node E is in Case I or II : if not, then enter E into priority
queue U ; if yes, then we check whether E’s subtree entries
e is a result according to the corresponding relationship be-
tween the set Ce of clusters in e and cluster set SI , SII .

Replace Line 17 in Algorithm 2

if (E is in Case I or II) then

for each entry e ∈ subtree(E)
if Ce⊂SI then prune e;//Ce is the set of clusters in e
else if Ce⊂SII then report e as a result entry;

else if (e is an index node) then EnQueue(U ,e);
else COL.append(e);

else EnQueue(U , E);

6.3 Text-entropy based optimization
We proceed to propose the second optimization based on

CIUR-tree to improve performance. In particular, we use
TextEntropy to depict the distribution of text clusters in
an entry of CIUR-tree. Intuitively, the more diverse the
clusters are, the larger the TextEntropy of the entry is.
The following formula calculates TextEntropy for the leaf
and inner nodes in CIUR-tree recursively.

H(E) =

⎧⎪⎨
⎪⎩
−

∑n
i=1

cnumi
|E| log cnumi

|E| if E is a leaf node;

∑M
j=1

|E.childj |
|E| H(E.childj) otherwise.

where cnumi is the number of objects of Cluster i in entry
E, and |E| is the number of objects in E. If E is a leaf
node, the TextEntropy describes the distribution of textual
cluster in E. If E is an intermediate node, TextEntropy of
E is a weighted combination of the TextEntropy of its child
entries E.childi.

We use TextEntropy as the priority (key) for the max-
priority queue U . If an entry is more diverse in its text
description, it has a higher priority to be visited first. By
doing so, we expect that decomposing entries/nodes with di-
verse textual description into sub-entries would reduce the
diversity of the entries, and thus would be more likely to
enable to quickly tighten the estimation of the lower/upper
bounds of similarity between each entry and its kth most
similar object through “mutually effect” among entries. In
addition, since TextEntropy can be computed offline dur-
ing the indexing construction, we do not need to access the
ClusterLists from disk during the query time. Therefore,
TextEntropy based method needs less I/O cost compared
to the outlier-detection based optimization

A salient feature of the two optimizations in Section 6.2
and Section 6.3 is that they are orthogonal and can be com-
bined, as implemented in our experiments.

7. EXPERIMENTAL STUDIES
We present an experimental study to evaluate the effi-

ciency and scalability of our methods to answer RSTkNN
queries.
Implemented algorithms. We implemented the pro-
posed algorithm based on IUR-tree, the two optimizations

Table 2: Datasets for the experiments
Statistics Shop CD GN

total # of objects 304,008 1,555,209 1,868,821
total unique words in dataset 3933 21,578 222,409
average # words per object 45 47 4

based on CIUR-tree: outlier-detection-extraction optimiza-
tion (ODE-CIUR) and text-entropy optimization (TE-CIUR),
and the combination of two optimizations (ODE-TE). In
addition, we also implemented the baseline method (Sec-
tion 3.2). The other baseline discussed in Section 3.2 per-
forms much worse and is ignored here.

Datasets and Queries. The algorithms were evaluated us-
ing three datasets: ShopBranches (Shop), GeographicNames
(GN), and CaliforniaDBpedia (CD). These datasets differ
from each other in terms of data-size, spatial-distribution,
word-cardinality and text-size. Our goal in choosing these
diverse sources is to understand the usefulness and efficiency
of our algorithms in different environments. The statistics
of each dataset are shown in Table 2. In particular, the
GeographicNames dataset (geonames.usgs.gov) is a real-life
dataset from the U.S. Board on geographic names with a
large number of words to describe the information about
each geographic location. The CaliforniaDBpedia dataset
combines a real spatial data at California (www.usgs.gov)
and a real document collection of abstracts about Califor-
nia in DBpedia (wiki.dbpedia.org/Downloads351). Finally, the
ShopBranches are extended from a small real data describ-
ing 955 shop branches and their products by generating new
spatial objects while maintaining the distribution of the real
location and textual information of the objects.

For each dataset, we generated 7 sets of query sets, in
which the number of words is 2, 4, 8, 16, 32, 64 and 128,
respectively. Each query set comprises 100 queries that are
randomly selected from the respective dataset. We report
the average running time of 100 queries for each query set.

Setup and metrics. We implemented all the algorithms
with VC++6.0, and an Intel(R) Core(TM)2 Quad CPU
Q8200 @2.33GHz with 4GB of RAM. We implemented al-
gorithms based on both disk-resident and memory-resident
for the proposed index structures, namely the IUR-tree and
the CIUR-tree. The page size is 4KB and the branch num-
ber of each index node is 102. Both parameters λ and μ
in ODE-CIUR are set at 0.9 by default. In CIUR-tree, we
clustered the textual vectors of objects into different number
of clusters using the DBSCAN [8] cluster algorithm.

We compared varied algorithms with different experimen-
tal settings as follows:

parameter k: 1 ∼ 9, default 3
parameter α: 0 ∼ 1, default 0.7
number of query words qw: 1∼128, default 16
number of clusters: 18∼14337, default 187

Space requirement. The space requirement for the struc-
tures used by the algorithms is shown in Table 3. Obviously,
the baseline method needs the largest disk space as it needs
to store the two lists of objects ranked by location proxim-
ity and textual similarity respectively for each object. The
disk requirement of the baseline on CD and GN is beyond
the capacity of our computer (800G). As for the disk stor-
age requirement of IUR-tree, compared with the original R-
tree [11], the number of non-leaf nodes are comparable with
that of the R-tree and the size of text vectors in the entries

qu
ery

 tim
e (

sec
)

(a) Query time

P
ag

e A
cc

es
se

s

(b) Page access
Figure 7: Varying dataset sizes for Shop (log-scale)

qu
er

y t
im

e (
se

c)

0.2K 3K 40K 550K 4M

(a) Query time

P
ag

e A
cc

es
se

s

17K 120K 570K 1M 4M

(b) Page access
Figure 8: Varying dataset sizes for Shop

qu
er

y
tim

e (
se

c)

(a) Lazy Travel Down

qu
er

y t
im

e (
se

c)

(b) Inherit

Figure 9: Study on the Proposed Algorithm

qu
er

y t
im

e (
se

c)

(a) Query time

Pa

ge
 A

cc
es

se
s

(b) Page access
Figure 10: Varying k for Shop

qu
er

y t
im

e (
se

c)

(a) Query time

P
ag

e A
cc

es
se

s

(b) Page access
Figure 11: Varying α for Shop

qu
er

y
tim

e
(s

ec
)

(a) Query time

Pa

ge
 A

cc
es

se
s

(b) Page access

Figure 12: Varying the number of query words

qu
er

y
tim

e (
se

c)

(a) λ

qu
er

y
tim

e
(s

ec
)

(b) μ
Figure 13: Effect of λ and μ for ODE-CIUR

18 62 18
7

71
4

19
40

52
74

14
33

7

Q
ue

ry
 T

im
e

(s
ec

)

Figure 14: Effect of tex-
tual cluster number

qu
er

y
tim

e (
se

c)

Figure 15: Memory
Resident for Shop

of leaf nodes of IUR-tree is comparable with the size of the
text components of the dataset. Thus the additional disk
requirement for IUR-tree is the text vectors in the entries
of non-leaf nodes. For each entry, the size of its intersection
vector in an index node is at most the maximal number of
words in an object, and the size of its union vector is at most
the number of distinct words in the dataset. The space of
CIUR-tree is a bit larger than IUR-tree since it needs extra
space to store the intersection and union vectors for each
cluster.

Table 3: Sizes of indexing structures for Shop
Data Two lists for Baseline IUR-tree CIUR-tree
Shop 224GB 40MB 47MB
CD - 218MB 237MB
GN - 264MB 306MB

Performance of different algorithms and scalability
In the first set of experiments, we evaluated the perfor-
mances and the scalability of various algorithms using the
ShopBranches dataset. As shown in Fig. 7 (note the log-
scale), our proposed algorithms significantly outperform the
baseline method for datasets of different sizes in terms of
query time and the number of node accesses by orders of
magnitude. This is primarily because the baseline method
computes the STkNN for all the objects in the dataset
(Note that the SkNN and TkNN of each object has been
pre-computed and stored in disk).

In Fig. 8, we replotted the same data as Fig. 7 using linear
scale to see the differences of various optimizations clearly.
We observed that the CIUR-tree-based algorithms outper-
form IUR-tree-based approaches, which indicates that the
two optimizations enhance the filtering power and reduce
the number of index nodes visited. Note that the ODE-TE
algorithm that combines two optimized approaches is the
fastest algorithm in our experiments and scales well with
the sizes of data sets.

To demonstrate the usefulness of the techniques used in
our RST kNN algorithm: “lazy travel-down” and “inherit”,
we made experiments and plotted Fig. 9(a) and 9(b). (1)
The “lazy travel-down” approach speeds up all four algo-
rithms by over 50%. This is because it can avoid visiting
some irrelevant entries. (2) Fig.9(b) shows the benefit of
inherit technology for all the algorithms. We can see that
inherit can significantly improve the performance since it
could avoid the computation of contribution lists from the
scratch.
Effect of parameters k, α and qw. In the second set of
experiments, we sought to analyze how system performance
is impacted by three parameters: the number of returned top
results k, the combination ratio of the similarity function α
and the number of words in queries qw. The results are
reported in Figures 10∼ 12.

(1) Figure 10 shows the runtime and number of page ac-
cesses w.r.t k; we fix α=0.7 and qw=16, and vary k from 1

to 9. The results show that the runtime and required I/O
of our algorithms increase slightly with the increase of k.

(2) To evaluate the impact of α, we vary α from 0 to
1, thus adjusting the importance between textual similarity
and spatial proximity. From Fig. 11, we can see that our
algorithm is not sensitive to α. When α=1 meaning that
text documents are totally ignored, the runtime is obviously
shorter, as expected.

(3) Figure 12 shows the results when we vary the number
of query words qw. We can see that algorithms run faster
with the increase of qw. In particular, while qw is varied
from 2 to 32, the more the query words, the faster the algo-
rithms run. A deep analysis indicates that more query words
may improve the pruning power by decreasing the average
textual similarity between query words and data points.

Effect of parameters λ and μ for ODE-CIUR. This
experiment is to study the effects of parameters λ and μ for
ODE-CIUR. As shown in Fig.13(a), with the increase of λ,
the runtime first decreases then increases since most entries
would be treated as Case I to be traveled down if λ is too
small and most entries cannot identified as Case I to lose the
benefits of the optimization of ODE-CIUR if λ is too large.
An appropriate setting of λ is about 0.9 in our experiment.
The effect of parameter μ shown in Fig.13(b). When μ is
about 0.9, the performance is the best in our experiment.

Effect of cluster number. As shown in Fig.14, the per-
formance of both ODE-CIUR and TE-CIUR is not sensitive
to the number of clusters, and they achieve the best per-
formance when the number of cluster is around 200-1000.
We can see that runtime decreases from 18 clusters to 187
clusters, but then increases from 1,940 clusters to 14,337
clusters. This behavior occurs because the time needed for
processing clusters counteracts the time saved by text clus-
ter enhancement.

Memory-resident implementation. This experiment is
to evaluate the performance of algorithms on memory-resident.
Since the baseline method cannot be fit in memory due to
the large size of two ranking lists, we evaluated the per-
formance of the other four algorithms in memory using the
dataset ShopBranches. As shown in Fig. 15, when varying
the parameter k, the performance of all the algorithms speed
up at least 50% since there is no I/O cost for the indexes
comparing Fig. 10 for disk resident.

qu
er

y
tim

e (
se

c)

(a) Varying k for CD

qu
er

y
tim

e (
se

c)

(b) Varying k for GN

Figure 16: Results of varying k for data CD and GN

Experiments on other datasets. All the above experi-
mental results are reported based on ShopBranches data set.
We also conducted extensive experiments on the other two
datasets GeographicNames and CaliforniaDBpedia. Due to
the space limitation, we only give their results for varying the
parameter k in RSTkNN in Fig.16(a) and Fig.16(b) respec-
tively. Both of the experimental results are consistent with
those on dataset ShopBranches. The baseline method does
not work on the two datasets since the disk space required
by preprocessing is beyond the limitation of disk capacity.

To summarize, our experimental results show that our
proposed hybrid indexes and search algorithms outperform
the baseline method. We also show that the two optimiza-
tions with text-entropy and outline-detection indeed improve
the performance of the RSTkNN queries.

8. RELATED WORK
Our RSTkNN queries combine reverse k nearest neighbor

(RkNN) queries and textual similarity searches. Existing
works [7, 10, 15, 22, 25] on RkNN queries mainly focus on
spatial proximity. As discussed in Section 3.1, the existing
approaches are not applicable to answer RSTkNN queries.
Recent work Reverse top-k queries [24] retrieves RkNN ob-
jects in a weighted feature space, which, however, does not
consider spatial proximity. Therefore existing technologies
on RkNN queries cannot be applied on RSTkNN queries.

Recently, queries on spatial objects associated with tex-
tual information have received significant attentions. Top-k
spatial keyword queries [12], Location-aware top-k text re-
trieval(LkT) query [6], m-closest keywords (mCK) query [26],
and prestige-based spatial-keyword query [5], combine key-
word queries with spatial queries. However, none of them
considers reverse kNN query. Additionally, the hybrid in-
dex structures in this paper is different from the hybrid in-
dex structures used in the existing work on spatial-keyword
query. One main difference is that we augment R-tree with
intersection and union text vectors to represent the text
component so that we can compute/estimate the textual
similarity between objects/entries, while the existing hy-
brid indexes usually augment R-tree nodes with inverted
file or signature file to compute the relevance between ob-
jects/entries and query. In particular, the IR2-tree [12] in-
tegrating the R-tree and signature, and the bR*-tree [26]
combining the R*-tree with bitmap are used for Boolean
keyword query, but not IR-style ranking queries. They are
quite different from the IUR-tree. The IR-tree [6] augments
a node with inverted lists, which are suitable for keyword
queries that just concern about the query keywords; while in
the IUR-tree a node is augmented with text vector, which is
suitable for similarity search. Moreover, IR-tree keeps only
union information of text while the IUR-tree contain union
and intersection information, which are required to compute
the similarity approximations between entries. Clustering is
also used to optimize query processing in the IR-tree [6],
where the clustering is used in a different manner. Hence,
the proposed algorithms in this paper are very different from
the algorithms for answering spatial-keyword query.

9. CONCLUSIONS AND FUTURE WORK
This paper addressed the new problem RST kNN query,

which is the extension of RkNN query with the fusion of
spatial information and textual description, making it much
richer and more complex for the construction and traverse of
the index. This paper presented the IUR-tree to represent
and index the hybrid information and proposed RST kNN
algorithms to quickly compute contribution lists, and ad-
just the thresholds to prune unrelated points and identify
true hits as early as possible. As for the future works, this
paper opens to a number of promising directions. First, it
is necessary to extend our algorithms to bichromatic ver-
sion, considering the semantical relevancy for documents of
two types of objects. Second, it would be interesting to

consider some variants of RST kNN queries, such as sky-
line RST kNN queries. Third, it is of interest to develop
algorithms if the spatial objects are moving objects, fuzzy
objects, or are constrained to a road network.

10. ACKNOWLEDGEMENTS
This paper benefitted tremendously from many insight-

ful comments from Tok Wang Ling, Wei Wu, and Xiaofang
Zhou as well as the anonymous reviewers. Jiaheng Lu was
sponsored partially by the NSF China (60903056) and Bei-
jing Municipal Natural Science Foundation (4112030).

11. REFERENCES
[1] E. Achtert, C. Böhm, P. Kröger, and P. Kunath.

Approximate reverse k-nearest neighbor search in general
metric spaces. In CIKM, pages 788–789, 2006.

[2] E. Achtert, C. Böhm, P. Kröger, and P. Kunath. Efficient
reverse k-nearest neighbor search in arbitrary metric
spaces. In SIGMOD, pages 515–526, 2006.

[3] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and
A. Züfle. Reverse k-nearest neighbor search in dynamic and
general metric databases. In EDBT, pages 886–897, 2009.

[4] E. A.Fox, Q. F. Chen, A. M.Daoud, and L. S.Heath.
Order-preserving minimal perfect hash functions and
information retrieval. In TOIS, pages 281–308, 1991.

[5] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[6] G. Cong, C. S.Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. In PVLDB, pages
337–348, 2009.

[7] C.Yang and K.I.Lin. An index structure for efficient reverse
nearest neighbor queries. In ICDE, pages 485–492, 2001.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, pages 226–231, 1996.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In J.Comput. Syst. Sci., pages
614–656, 2003.

[10] F.Korn and S.Muthukrishnan. Influenced sets based on
reverse nearest neighbor queries. In SIGMOD, pages
201–212, 2000.

[11] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[12] I.D.Felipe, V.Hristidis, and N.Rishe. Keyword search on
spatial databases. In ICDE, pages 656–665, 2008.

[13] I.Stanoi, M.Riedewald, D.Agrawal, and A.E.Abbadi.
Discovery of influence sets in frequently updated databases.
In VLDB, pages 99–108, 2001.

[14] K.Nigam, A.K.McCallum, S.Thrun, and T.M.Mitchel. Text
classification from labeled and unlabeled documents using
em. In Machine Learning, pages 103–134, 2000.

[15] H. P. Kriegel, P. Kröger, M. Renz, A. Züfle, and
A. Katzdobler. Incremental reverse nearest neighbor
ranking. In ICDE, pages 1560–1567, 2009.

[16] J. Lu, Y. Lu, and G. Cong. Technical report, renmin
university of china. 2011.

[17] N.Roussopoulos, S.Kelley, and F.Vincent. Nearest neighbor
queries. In SIGMOD, pages 71–79, 1995.

[18] Salton. Term-weighting approaches in automatic text
retrieval. In Information Processing and Management,
pages 513–523, 1988.

[19] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In CIKM,
pages 91–98, 2003.

[20] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest
neighbor queries for dynamic databases. In ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 44–53, 2000.

[21] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Addison-Wesley, 2005.

[22] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in
arbitrary dimensionality. In VLDB, pages 744–755, 2004.

[23] Y. Theodoridis and T. Sellis. A model for the prediction of
r-tree performance. In PODS, pages 161–171, 1996.

[24] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørv̊ag.
Reverse top-k queries. In ICDE, pages 365–376, 2010.

[25] W. Wu, F. Yang, C.-Y. Chan, and K.-L. Tan.
Finch:evaluating reverse k-nearest-neighbor queries on
location data. In PVLDB, pages 1056–1067, 2008.

[26] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases:
Towards searching by document. In ICDE, pages 688–699,
2009.

APPENDIX

A. PROOFS

A.1 Proof of Lemma 1
Proof. To prove the property ofMinST in Lemma 1, we

first give a definition called similarity preserving function.
Definition 6 (similarity preserving function).

Given two functions fsim: V ×V → R and fdim: R×R→
R, where V denotes the domain of n-element vectors and
R the real numbers. We call fsim a similarity preserv-
ing function w.r.t fdim, such that for any three vectors
−→p =<x1, · · · , xn>,

−→
p′=< x′

1, · · · , x′
n>,

−→
p′′=<x′′

1 , · · · , x′′
n>,

if ∀i ∈ [1, n], fdim(xi, x
′
i) ≥fdim(xi, x

′′
i), then we have

fsim(−→p ,
−→
p′)≥fsim(−→p ,

−→
p′′).

Claim 2. Euclidian distance function is a similarity pre-
serving function, w.r.t function fdim(x, x′) = |x− x′|.

Given the Euclidian function dist(
−→
X,
−→
X ′) =

√
n∑
i=1

(xi − x′
i)2,

obviously, we have that if each dimension i, |xi− x′
i| ≥|xi−

x′′
i|, then dist(

−→
X,
−→
X ′) ≥ dist(

−→
X,
−→
X ′′). Thus Claim 2 is true.

Claim 3. Extended Jaccard is a similarity preserving func-

tion, w.r.t function fdim(x, x′) = min{x,x′}
max{x,x′} , x, x′ > 0.

Given xi, x
′
i, x

′′
i , where i ∈ [1, n], such that fdim(xi, x

′
i) ≥

fdim(xi, x
′′
i) and x′

i ,xi, x
′′
i > 0, we can prove that

2xix
′
i

x2
i +x′i

2

≥ 2xix
′′
i

x2
i +x′′i

2 , then we can derive inequality (13) is true by

means of mathematical induction. Thus extend Jaccard is
a similarity preserving function, i.e., if ∀i ∈ [1, n], xi ≤√
x′
ix

′′
i , and x′

i ≤ x′′
i , then EJ(�p, �p′)≥EJ(�p, �p′′). Therefore

Claim 3 holds.∑n
i=1 xix

′
i∑n

i=1
x2

i +x′i
2

2

≥
∑n
i=1 xix

′′
i∑n

i=1
x2

i +x′′i
2

2

(13)

⇒

n∑
i=1

xix′i
n∑
i=1

x2
i +

n∑
i=1

x′i
2 −

n∑
i=1

xix′i

≥

n∑
i=1

xix′′i
n∑
i=1

x2
i +

n∑
i=1

x′′i
2 −

n∑
i=1

xix′′i

⇒ EJ(−→p ,−→p′) ≥ EJ(−→p ,−→p′′)

Based on Claim 3, we proceed to prove the property of
MinST , which is the fusion of MaxS and MinT .
MinT in Eqn(7): For each dimension j, as shown in

Fig.17(a), when
√
E.ij ·E.uj ≥

√
E′.ij ·E′.uj (Case 1), i.e.,

Case1 Case2

jj uEE ..i ⋅ jj uEE ..i ⋅

jj uEE '..i' ⋅ jj uEE '..i' ⋅jE.i juE.

jE .i' juE '.

jE .i juE.

jE .i' juE '.

(a) for each dimension j in
MinT (E,E′)

rr uEE ..i ⋅

rr uEE '..i' ⋅
rE.i ruE.

rE .i' ruE '.

(b) for the rth dimen-
sion in TightMinT(E,
E′)

Case1 Case2 Case3 Case4

jE.i juE.

jE .i' juE '.

jE.i juE.

jE .i' juE '. jE .i' juE '. jE .i' juE '.

jE.i juE. jE.i juE.

(c) for each dimension j in MaxT (E,E′)
Figure 17: Assignments of approximations

E′.ij
E.uj

≤ E.ij
E′.uj

, then for ∀E.w ∈ [E.ij , E.uj] and ∀E′.w ∈

[E′.ij , E′.uj], we have
E′.ij
E.uj

≤ min{E.wj ,E
′.wj}

max{E.wj,E
′.wj} . Thus accord-

ing to Claim 3, the assignments E.wj = E.uj , E
′.wj = E′.ij

can guarantee that MinST (E,E′) is the minimum similar-
ity between two entries E and E′, i.e., ∀ o∈subtree(E),
∀o′∈subtree(E′), MinT (E,E′) ≤SimT (o, o′). And for Case
2, the property of MinST can be similarly proved.

For MinST in Eqn(6), since ∀o∈E, ∀o′∈E′ are enclosed
in the MBRs of index nodes E and E′ respectively, the max-
imum Euclidian distance between E and E′ MaxS(E,E′)
is no less than the Euclidian distance between o and o′, i.e.,

MaxS(E,E′) ≥ dist(o, o′), thus α(1 − MaxS(E,E′)−ϕs

ψs−ϕs
) ≤

α(1 − dist(o,o′)−ϕs

ψs−ϕs
), where ϕs, ψs are constants and α∈[0,

1]. And as proved above that ∀o∈E, ∀o′∈E′, MinT (E,E′)
≤SimT (o, o′). Thus Eqn(6) can guarantee that ∀o∈E, ∀o′∈E′,
MinST (E,E′) ≤SimST (o, o′), i.e., Lemma 1 is true.

A.2 Proof of Lemma 2

Proof. Eqn(8) suggests that T ightMinST is composed
of MinMaxS, MinT , MaxS and T ightMinT , which have
the following properties respectively.
MinMaxS: According to the work [3], MinMaxS has

the property that there exists an object o ∈ E′, so that
∀o′ ∈ E, dist(o, o′) ≤ MinMaxS(E,E′).
MaxT in Eqn(12): As shown in Fig.17(c), for each dimen-

sion j, if E.ij>E
′.uj (Case 1), then ∀E.w ∈ [E.ij , E.uj] and

∀E′.w ∈ [E′.ij , E′.uj], we have
E′.uj

E.ij
≥ min{E.w,E′.w}

max{E.w,E′.w} , thus

based on Claim 3, the assignment E.wj=E.ij , E
′.wj=E′.uj

can guarantee that ∀ o∈ subtree(E), ∀o′ ∈ subtree(E′),
MaxT (E,E′) ≥SimT (o, o′). It is similar if E.uj < E′.ij
(Case 2). For other cases, i.e., the intervals [E.ij , E.uj] and
[E′.ij , E′.uj] overlap, so obviously, E.wj and E′.wj should be
assigned as the same value according to the preserving func-
tion. Further, both of E.wj and E′.wj should be assigned
the largest value in the intersection between [E.ij , E.uj] and
[E′.ij , E′.uj] shown in Case 3 and Case 4 since Extended Jac-
card function is an increasing function as the increase of the
values. Thus the assignment in Eqn(12) satisfies the prop-
erty of MaxT (E,E′).
T ightMinT in Eqn(10): As shown the assignment of one

dimension r in Fig.17(b), when
√
E′.ir · E′.ur<

√
E.ir · E.ur,

let E′.wr=E′.ur, then ∃E′.wr∈ [E′.ir, E′.ur],
min{E.wr ,E

′.wr}
max{E.wr,E′.wr} ≤

min{E.wr ,E
′.ur}

max{E.wr,E′.ur} . Then given E′.wr>
√
E.ir ·E.ur, let E.wr

= E.ir so that ∀ E.wr ∈ [E.ir, E.ur],
min{E.wr ,E

′.wr}
max{E.wr,E′.wr} ≥

min{E.ir ,E′.wr}
max{E.ir,E′.wr} , Additionally, the rest dimension weights E.wj

and E′.wj are assigned as Fig.17(a). Therefore, according to
Claim 3, there exists an object o′∈E′, the rth dimension of
which is E′.ur, so that ∀o∈E, SimT (o, o′)≥T ightMinT (E,E′).
Finally, to make the approximation accurate, we take the
maximum as the final approximation for T ightMinT .
T ightMinST (E,E′) in Eqn(8): Since ∃ o′ ∈E′, ∀ o ∈E,

dist(o, o′)≤MinMaxS(E,E′), moreover, since ∀o′′∈E, ∀o∈E,
EJ(o, o′′)≥MinT (E,E′), so for o′∈E′, it is also true that
EJ(o, o′)≥MinT (E,E′). Thus ∃o′∈E′, ∀o∈E, SimST (o, o′)=
α(1- dist(o,o

′)−ϕs

ψs−ϕs
)+(1−α)EJ(o,o′)−ϕt

ψt−ϕt
≥ α(1-MinMaxS(E,E′)−ϕs

ψs−ϕs
)

+(1-α)MinT (E,E′)−ϕt

ψt−ϕt
. Similarly, ∃o′ ∈ E′, ∀o∈E SimST (o, o′)

≥ α(1 − MaxS(E,E′)−ϕs

ψs−ϕs
) + (1 − α)TightMinT (E,E′)−ϕt

ψt−ϕt
. To

make the approximation accurate, the final approximation
of T ightMinST (E,E′) is the maximum one with the guar-
antee of satisfying the corresponding property.

A.3 Proof of Lemma 3
The proof is similar to that in Lemma 1 and omitted here
due to space limitation.

A.4 Proof of Theorem 1

Proof. (Sketch) We prove that (1) Algorithm RSTkNN
is correct, that is all returned objects are desired answers;
and that (2) the returned results are complete.
Correctness: The search strategy in RSTkNN algorithm
is to prune entries E in the tree using the lower bound of
spatial-textual kNN of E: kNNL(E) (Line 29) and to re-
port entries E using the upper bound kNNU(E) (Line 33).
kNNL(E) is calculated by means ofMinST and T ightMinST
in the lower-bound contribution list of E. According to the
properties of MinST and T ightMinST in Lemma 1 and
Lemma 2, entry E can be safely pruned if MaxST (E, q) ≤
kNNL(E) since it can guarantee that there are at least k ob-
jects whose similarities are larger than or equal to the maxi-
mum similarity between E and query object q. Analogously,
based on Lemma 3, entry E can be safely reported as a re-
sult entry ifMinST (E, q)>kNNU(E) with the condition that
there are at most k objects (among all the objects) whose
similarities are smaller than MinST (E, q). Furthermore, we
can prove the correctness of the technique of “inherit” (Line
6) and “lazy travel-down” (Line 8) based on the observation
that the similarity approximations of ancestor entries are
more conservative than that of descendant entries.
Completeness: All objects which can not be safely pruned
or reported as results, are appended to the candidate object
list COL (Line 17). In the FinalV erification procedure,
all the candidate objects can be determined whether they
are results through traveling down the pruned entries. It is
because that even in the worst case, we can access all the
objects in the subtree of the pruned entries to determine
each candidate object if it is an answer in IsHitOrDrop
(Line 24) while MinST and MaxST between two database
objects are equal. Thus our algorithm is complete, i.e., it
can return all the RSTkNN data points.

Hence, Theorem 1 is true.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

