
Secure Partial Reconfiguration of FPGAs

Amir Sheikh Zeineddini and Kris Gaj

George Mason University

4400 University Drive, Fairfax, VA 22030 USA

{asheikhz, kgaj}@gmu.edu

Abstract

SRAM FPGAs are vulnerable to security breaches

such as bitstream cloning, reverse-engineering, and

tampering. Bitstream encryption and authentication

are two most effective and practical solutions to

improve the security of FPGAs. In this paper, we

investigate a method to perform a secure dynamic

partial reconfiguration of SRAM FPGAs using

embedded processor cores. Two schemes based on

hard-wired PowerPC processor core and the

MicroBlaze soft processor core have been compared

and contrasted in terms of speed and FPGA resource

usage. A practical experiment, demonstrating

feasibility, performance, and flexibility of both

schemes has been conducted using Xilinx ML310

board with Xilinx Virtex-II Pro FPGA.

1. Introduction

As the performance gap between FPGAs and

ASICs decreases [1], platform FPGAs with various

configurable elements and embedded blocks provide

new solutions for high density and high-performance

embedded system designs. These platforms not only

enable system architects to design and develop

complex custom systems using embedded processors

and interoperable IP cores, but also provide

technologies such as dynamic reconfiguration of part

of an FPGA while other areas of the device remain

operational. There are many advantages in partial

dynamic reconfiguration especially for applications

that require adaptive and flexible hardware such as

mobile communication applications and real-time

embedded systems. Deploying dynamic run-time

reconfiguration in systems results in reduced chip

area and power consumption.

Considering the wide range of features, platform

FPGAs address many new application areas. An

increase in their popularity makes the need for design

security mechanisms even more important especially

in high-security areas where SRAM FPGAs might

not otherwise be acceptable. The design security

must protect the design against cloning and reverse

engineering. A survey in [2] analyzes possible attacks

against FPGAs. In the case of SRAM FPGAs this

survey is directly concerned with protection of a

bitstream especially during configuration and

reconfiguration. Bitstream encryption as a solution

increases the level of security and makes the

configuration bitstream secure against attackers.

The Xilinx [3] security solution, known as

SecureChip technology, uses CAD tools for bitstream

encryption and an embedded hard-wired internal

circuit for decryption [4]. One of the drawbacks of

this scheme is that the partial reconfiguration

capability of FPGA is disabled and therefore a device

configured with an encrypted bitstream cannot be

partially reconfigured.

In this paper, we propose a method that uses

embedded microprocessor cores to achieve bitstream

security, specifically for designs that benefit from

partial reconfiguration. This method is capable of

performing secure partial reconfiguration of the

FPGA after the initial configuration. It provides the

flexibility of using arbitrary algorithms for

authentication and encryption of partial bitstreams. It

can also facilitate secure remote partial

reconfiguration for vendor updates and feature

upgrades in the field.

The rest of the paper is organized as follows.

Section 2 presents the related previous work and

background. In Section 3 an overview of Xilinx EDK

tools and evaluation board is presented. Section 4

explains the hardware architecture of the

implemented self-reconfiguring systems for both hard

and soft processor cores. Section 5 presents the

methodology of the experiment. Section 6 presents

the obtained results and the discussion of the results.

In Section 7 conclusions and future work is provided.

2. Related Work and Background

2.1. Related Work

The Xilinx SecureChip technology is simple and

efficient. All Virtex-II family devices (Virtex-II,

Virtex-II Pro, and Virtex-II Pro X FPGAs) use the

Triple DES encryption scheme [4]. In Virtex-4

devices, Triple DES has been replaced with AES to

increase security and throughput. The scheme

exploits software support of Xilinx ISE CAD tools

for both encryption of the bitstream and key

generation. Figure 1 shows the Xilinx security

system.

For decryption, it uses an on-chip decryptor along

with the internal decryption keys stored in a

dedicated memory. Either an externally-connected

battery or an auxiliary power supply (VCCAUX) is the

source of power for volatile storage of the keys. The

keys are erased if there is a tampering with the

device.

The problem with this scheme is the extra area

and cost needed for the external battery, lack of

flexibility, and the disablement of partial

reconfiguration for encrypted bitstreams.

A method proposed by Algotronix [6] removes

the need for an external battery by finding another

way of storing the secret key on the FPGA such as

use of laser to engrave the key. This will make it

necessary for the FPGA to contain both encryption

and decryption circuits, and hence there is no need

for the software to support encryption. This solution

uses even more FPGA silicon area than Xilinx

scheme and also lacks flexibility since the encryption

and decryption circuits are fixed with no possibility

of upgrade or use of another algorithm.

In [7], a new solution is proposed with no

implementation available at the moment. The scheme

selects and places the cores for encryption and

decryption in the FPGA, and then removes them to

free the chip area. A dedicated configuration

controller manages both the encryption and

decryption schemes by relying on partial and self-

reconfiguration. This configuration scheme also uses

an embedded key instead of an externally-powered

storage for the secret key.

The method is flexible and adjusts the security

level to application needs but is relatively complex

considering the limitations of partial reconfiguration

imposed by the FPGA manufacturers and the CAD

tools. To our best knowledge, this method has never

been implemented in practice.

The work presented in this paper focuses on a

more specific case in which only secure partial

reconfiguration after initial configuration is

considered. By using an embedded microprocessor as

a configuration controller inside of the chip, secure

partial reconfiguration can be achieved. The next

section provides a background about the flows for

partial reconfiguration along with the overview of the

Virtex-II Pro platform FPGA and the tools for

creating a self-reconfiguring design.

2.2. Background

The Virtex-II Pro device used in our designs is the

first platform FPGA capable of implementing

flexible, high performance, and low-cost system-on-

a-chip designs by combining a variety of features

embedded in the FPGA fabric with specially

developed hardware/software IP cores [8].

Particularly, it incorporates fully embedded IBM

PowerPC405 processor core which is an

implementation of the PowerPC embedded

environment architecture [9]. The embedded PPC405

core is a 32-bit Harvard architecture processor with

functional units such as cache unit and memory

management unit (MMU). It operates in a five-stage

pipeline, and most instructions execute in a single

cycle. It is capable of more than 300 MHz clock

frequency and 420 Dhrystone MIPS, and is contained

in a processor block. Processor block also contains

on-chip memory controllers and integration circuitry

compatible with IBM CoreConnect bus architecture

[10] that enables the compliant IP cores to integrate

with this block. The CoreConnect architecture

provides three buses for interconnection of hard and

soft IP cores. The key features of CoreConnect are

the Processor Local Bus (PLB), On-chip Peripheral

Bus (OPB) and Device Control Register (DCR) Bus.

Virtex-II Pro is configured by delivering the

bitstream through one of the configuration interfaces

(JTAG, SelectMAP, or Slave/Master Serial).

Configuration memory is arranged in a rectangular

array of bits. One-bit wide vertical frames are the

smallest addressable segments of the Virtex-II Pro

configuration memory space [11]. Data is loaded on

a column-basis and each column contains the number

of frames dependent on the specific FPGA device.

The Virtex-II Pro configuration control logic consists

of a packet processor, a set of registers, and global

signals that are controlled by the configuration

registers. The packet processor controls the flow of

data from the configuration interface to the

appropriate register. The registers control all other

aspects of configuration.

Triple DES / AES
Encrypted
Bitstream

Configuration
Memory

Decryptor

Keys
External Lithium Battery

XILINX ISE

Keys

Bitstream
Generator

Encryption
Software

XILINX FPGA

Key Storage

Configuration Device

Triple DES / AES
Encrypted
Bitstream

Configuration
Memory

Decryptor

Keys
External Lithium Battery

XILINX ISE

Keys

Bitstream
Generator

Encryption
Software

XILINX FPGA

Key Storage

Configuration Device

 Figure 1. Xilinx SecureChip Technology

The Virtex-II Pro configuration architecture

features an Internal Configuration Access Port

(ICAP) that provides the user logic with access to

FPGA configuration interface and therefore access to

memory bits of configuration memory [11]. The

interface is similar to SelectMAP interface but it

cannot be used for full configuration. With no

handshaking mechanism ICAP interface can be

clocked up to the maximum frequency of 66MHz [4].

In Virtex-4 devices this interface can be used for

readback and reconfiguration when the device is

initially configured with an encrypted bitstream.

In active partial reconfiguration, new data can be

loaded through ICAP to dynamically reconfigure a

particular area of FPGA while the rest of the FPGA

is still operational. Xilinx introduces two design

flows for active partial reconfiguration [12]:

1) Module-Based: This flow is suitable for

partially reconfiguring a large portion of the design

and is based on the Xilinx Modular Design

methodology [13]. A special bus macro is required

for inter-module communications. It is used to

establish unchanging routing channels between

modules.

Bus macros use fixed routing resources and are

currently implemented using 3-state buffers

associated with dedicated segmentable horizontal

routing resources. Xilinx will introduce a new

implementation with the release of ISE 8.1 since

Virtex-4 devices do not contain 3-state buffers

(TBUF). Figure 2 shows a bus macro used for inter-

module communication and its implementation with

3-state buffers.

Reconfigurable modules in the design need to have

specific properties in terms of their width, height, and

placement. Available resources are also limited only

to those encompassed by the width of the module and

communications with other modules (both fixed and

reconfigurable) should take place through bus

macros.

HDL coding and synthesis process follow some

general guidelines in terms of the structure of top-

level design, instantiation of bus macros, shared

signals, and synthesis attributes.

The implementation flow takes place in three

phases after the design entry. In initial budgeting

phase, the design is floor planned and constrained

based on the properties of each module. The result is

a file with extension ‘.ucf’ that is used for active

implementation phase. This phase places and routes

each module separately in the context of the top-level

logic and constraints. The final assembly phase uses

all placed and routed modules generated from the

previous phase to combine them into a complete

FPGA design. To maintain the performance of each

module, placement and routing for each module are

preserved.

At present, bitstreams generated for the full design

require that the initial bitstream includes at least one

variation of any partially reconfigurable module. This

means that the initial bitstream should be a complete

design since all global resources such as clocking

logic need to be placed and properly constrained.

Bitstream frames for clocks are separate from other

frames. This imposes a limit in which a completely

separate module cannot be added to an initial design

with module-based partial reconfiguration flow.

 2) Difference-Based: Using this flow the design

can change either at the front-end or the back-end.

For changes in HDL code or schematics at the front-

end, the design must be re-synthesized and re-

implemented, while for back-end changes the FPGA

Editor tool can be used to modify sections of the

design. Many different types of changes can be made

using this tool, including routing information, LUT

programming, changing BRAM contents and I/O

standards.

The bitstream generator BitGen, used with the

proper options setting, can create a partial bitstream

that contains only the difference between the

modified design and the initial bitstream. In other

words, BitGen produces a partial bitstream that only

configures the frames that are different between the

two designs. The produced partial bitstream is small

and quick to load. A partial bitstream can be loaded

only after the device power up and loading an initial

bitstream. The design must take into account the

transition time of the reconfigurable module(s) and

other modules, and should not rely on the state of the

signals connected to the reconfigurable module.

3. Xilinx Embedded Development Kit and

ML310 Evaluation Board

Multiple embedded software tools, PowerPC and

MicroBlaze infrastructure, and peripheral IP cores

Static /

Reconfigurable

Module
Bus Macro

Reconfigurable

Module

(straddles the boundary between the two modules)

LI [3:0]

LO [3:0]

LT [3:0]

RI [3:0]

RO [3:0]

RT [3:0]

Static /

Reconfigurable

Module
Bus Macro

Reconfigurable

Module

(straddles the boundary between the two modules)

LI [3:0]

LO [3:0]

LT [3:0]

RI [3:0]

RO [3:0]

RT [3:0]

Figure 2. Physical Implementation of

a 4-bit Bus Macro by Xilinx

included in Xilinx Embedded Development Kit

(EDK) provide a framework for design of

hardware/software components of the embedded

processor systems on programmable logic [14].

Utilizing the appropriate tool for each stage of the

design facilitates hardware/software partitioning,

design reuse, and shorter time-to-market.

Embedded system tools in EDK consist of Xilinx

Platform Studio (XPS), GNU software development

tools, hardware/software development tools, board

support packages, and embedded operating systems.

Figure 3 presents an overview of the tools flow.

In a typical design of an embedded processor

system, the first step is to create a hardware platform

followed by the creation of software platform and

optionally verification platform. XPS IDE with its

underlying tools integrates all the processes from

design entry to design debug and verification [15].

Creating a basic hardware system involves

assembling a system containing processor, buses, and

peripherals, generating an HDL netlist, and

implementing the design using ISE implementation

tools to generate a bitstream.

Creating the software platform involves building

libraries, compiling C applications, initializing

bitstreams with the application, downloading

applications onto external memories, and debugging

applications using debugger. XPS calls GNU

compiler tools provided for both hard and soft

processors for compiling and linking user application

executables. The Bitstream Initializer (BitInit) tool

can then initialize the bitstream with the executable

in the instruction memory of processors on the

FPGA. The bitstream can be downloaded using

Xilinx Microprocessor Debugger (XMD), bootloader

programs, or System ACE controller. XMD is the

underlying engine to communicate to processor

targets and provides an interface for both hardware

system debug and software running on hardware.

This tool with GNU debugger is used for software

debugging.

The ML310 Embedded Development Platform is

a Virtex-II Pro based platform suitable for rapid

prototyping and system verification. The main

features of ML310 include: 256 MB DDR DIMM,

System ACE Compact Flash controller, FPGA

UART, General Purpose IO (LEDs/LCD), PCI bus

interface, and high speed I/O through RocketIO

Multi-Gigabit Transceivers (MGTs). MGT blocks

available in the Virtex-II Pro create high-speed serial

links between devices and the FPGA. The high-speed

I/O signals on the FPGA are accessible through two

personality module (PM) connectors on the ML310

board. The majority of the ML310 features are

accessed over the 33 MHz/32-bit PCI bus which is

connected to fixed PCI devices such as Intel 10/100

PCI Ethernet NIC, ALi PCI South Bridge. The ALi

South Bridge augments the ML310 with many of the

basic features found on legacy PCs. The main system

clock of ML310 is a 100 MHz oscillator. The FPGA

generates and drives clocks required by the DDR

DIMM memory and PCI bus interfaces. Figure 4

shows the block diagram of the ML310 board.

4. Implemented Self-reconfiguring

Systems

Figure 5 and 6 show the hardware components of

the constructed self-reconfiguring platforms utilizing

both embedded PowerPC and MicroBlaze soft

processor cores. No cache memory is selected for the

microprocessors, and both systems run at 100MHz

(including PLB and OPB buses).

Both embedded PowerPC and MicroBlaze

processor cores communicate with peripherals

through one or more of the IBM CoreConnect buses,

which enables compliant IP cores to integrate with

embedded processor cores. PowerPC only has the

PLB bus interface, and therefore OPB devices cannot

directly connect to the processor. Therefore,

processor and peripherals communicate over the

OPB connected to the PLB through PLB-to-OPB

bridge. The MicroBlaze system is configured with

OPB bus and two Local Memory Buses (LMBs). The

LMB is a fast and efficient local bus that connects

Virtex-II Pro

XC2VP30

FF896

System ACERS232

SMBus

SPI EEPROM

GPIO / LEDs

256 DDR SDRAM

High Speed

PM 1

High Speed

PM 2

Compact

Flash

IDE

(2)

USB

(2)

AMD

Flash

GPIO

Parallel

Port

SMBus

RS232

(2)

PS/2

K/M

ALi M1535D+

South Bridge

Intel 10/100

Ethernet NIC

RJ45

TI PCI

2250

5V PCI

Slots

(2)

3.3V PCI

Slots

(2)

Audio

3.3V PCI

Virtex-II Pro

XC2VP30

FF896

System ACERS232

SMBus

SPI EEPROM

GPIO / LEDs

256 DDR SDRAM

High Speed

PM 1

High Speed

PM 2

Compact

Flash

IDE

(2)

USB

(2)

AMD

Flash

GPIO

Parallel

Port

SMBus

RS232

(2)

PS/2

K/M

ALi M1535D+

South Bridge

Intel 10/100

Ethernet NIC

RJ45

TI PCI

2250

5V PCI

Slots

(2)

3.3V PCI

Slots

(2)

Audio

3.3V PCI

Figure 4. Block Diagram of Xilinx

ML310 Embedded Development

Board

IP Cores
Microprocessor
Peripheral

Description Files

System
Constraint

File

PlatGen

BitInit

Download to FPGA

Libraries

Microprocessor
Software

Specification File

Microprocessor
Hardware

Specification File

Executable

Linker

C / C++ Code

Compiler

Bitstream

VHDL / Verilog

Hardware Flow

ISE / Xflow

Software Flow

Synthesizer

Object FilesEDIF IP Netlists

LibGen

IP Cores
Microprocessor
Peripheral

Description Files

System
Constraint

File

PlatGen

BitInit

Download to FPGA

Libraries

Microprocessor
Software

Specification File

Microprocessor
Hardware

Specification File

Executable

Linker

C / C++ Code

Compiler

Bitstream

VHDL / Verilog

Hardware Flow

ISE / Xflow

Software Flow

Synthesizer

Object FilesEDIF IP Netlists

LibGen

Figure 3. EDK Tools Flow

MicroBlaze instruction and data ports to high-speed

peripherals, primarily BRAMs. Both instruction-side

and data-side LMBs are connected to the same dual-

port BRAM using different ports of the BRAM.

Both implemented systems require the OPB bus to

instantiate the HWICAP module [16] since the

current implementation of this module only connects

to OPB. This module is used for reconfiguration. It

enables the microprocessors to read and write the

FPGA configuration memory, as well as loading

partial bitstreams from system memory through

ICAP. The HWICAP core consists of OPB

controller, ICAP controller, and a BRAM. It uses the

BRAM on OPB bus as a configuration cache and has

the capability to transfer the partial bitstream from

local memory to ICAP. The partial bitstream is

transferred frame by frame to this BRAM and then to

ICAP. The HWICAP ICAP controller connects to the

ICAP block located in the lower-right corner of the

logic array. ICAP interface operates at the clock rate

of OPB bus.

The DDR memory available on the board was

selected as the external memory for storage of the

partial bitstream, and therefore OPB DDR SDRAM

Controller was used for both systems. JTAG port was

used for both transferring the partial bitstream to

DDR memory and debugging. PowerPC system

requires a JTAG controller that allows the PowerPC

to connect to the JTAG chain of the FPGA

instantiating a JTAGPPC primitive, and directly

connecting it to both PowerPC CPUs in the chip.

MicroBlaze system requires a Microprocessor Debug

Module on the processor OPB bus for JTAG-based

debugging. This module can also be used with

PowerPC405 processors. UART and additional

features are not the essential parts of the self-

reconfiguring systems but provide ease of use for

user application. The systems were implemented in a

XC2VP30 Virtex-II Pro FPGA device on the ML310

Evaluation Board with minimal footprint.

EDK automatically generated the memory map of

the hardware platform as well as assigned default

drivers to the processors and each of the peripherals.

The program running on the processor cores was

written in C to perform the following tasks:

authentication, decryption, and configuration.

Software cores were used for authentication and

decryption. AES was used for encryption/decryption

and HMAC-SHA1 was used as the authentication

algorithm. Both cores were freely available

implementations developed by Dr. B. Gladman [18].

These cores were ported to EDK environment so that

they can be used as libraries available for the

program. ICAP API [17] was used for transferring

the data between the external configuration memory

and HWICAP BRAM configuration cache. The

ICAP API defines methods for accessing the

configuration logic through ICAP port.

5. Experiment Methodology

The considered scenario for the experiment is as

follows. The self-reconfiguring system reads an

authenticated and encrypted partial bitstream stored

in an external memory. It then verifies the

authenticated partial bitstream with the stored MAC

value. If the authentication is successful it decrypts

the partial bitstream using the stored key and

configures the device using ICAP.

To perform the experiment using the implemented

self-reconfiguring systems the first step was

generating a partial bitstream. The difference-based

method was selected for this purpose since the

module-based flow requirements were problematic

Virtex-II Pro

PowerPC

405

P
L
B

P
L
B
-t
o
-O
P
B

B
ri
d
g
e

O
P
B

JTAG

Controller

ICAP

HWICAP

BRAM

ICAP Controller

OPB Controller

OPB DDR

Controller

UART

ML310

DDR
SDRAM

JTAG

Interface
XMD

User

Interface

Virtex-II Pro

PowerPC

405

P
L
B

P
L
B
-t
o
-O
P
B

B
ri
d
g
e

O
P
B

JTAG

Controller

ICAP

HWICAP

BRAM

ICAP Controller

OPB Controller

OPB DDR

Controller

UART

ML310

DDR
SDRAM

JTAG

Interface
XMD

User

Interface

PLB = Processor Local Bus, OPB = On-chip Peripheral Bus,

XMD = Xilinx Microprocessor Debugger, HWICAP =

Hardware Internal Configuration Access Port, DDR = Double

Data Rate.

Figure 5. PowerPC System

Virtex-II Pro

O
P
B

OPB DDR

Controller

UART

ILMB

MicroBlaze

DLMB

Debug

Module
D
u
a
l
P
o
rt

B
R
A
M

OPB Wd

Timer

ICAP

HWICAP

BRAM

ICAP Controller

OPB Controller

JTAG

Interface

ML310

DDR

SDRAM

XMD

User

Interface

Virtex-II Pro

O
P
B

OPB DDR

Controller

UART

ILMB

MicroBlaze

DLMB

Debug

Module
D
u
a
l
P
o
rt

B
R
A
M

OPB Wd

Timer

ICAP

HWICAP

BRAM

ICAP Controller

OPB Controller

JTAG

Interface

ML310

DDR

SDRAM

XMD

User

Interface

ILMB = Instruction-side Local Memory Bus, DLMB = Data-

side Local Memory Bus, OPB Wd Timer = OPB Watchdog

Timer, UART = Universal Asynchronous Receiver Transmitter.

Figure 6. MicroBlaze System

while using the ML310 board especially with regards

to board pin assignments and requirements of the

reconfigurable module mentioned previously.

An additional application MicroBlaze system was

implemented in the form of a microcontroller as the

target of partial reconfiguration. The application

design only included MicroBlaze processor, buses,

8K of block RAM memory, and GPIO connected to

the 8-bit LED display on the ML310 board. Using

EDK this system was combined separately with each

of the self-reconfiguring systems. Figure 7 shows a

simplified version of the FPGA layout.

The program running on this system was

generating a pattern on LEDs. The partial bitstream

changes the BRAM contents where the program

running on the MicroBlaze system had been stored.

That resulted in a different pattern to appear on

LEDs.

FPGA Editor tool was used to modify the BRAM

contents. The modified design file must be used with

the initial bitstream for creating a difference-based

partial bitstream. The initial bitstream of the design

contained the original BRAM contents. The partial

bitstream was created with BitGen program using the

-r switch. BitGen set with this switch produced a

bitstream that contained only the differences between

the modified design file and the initial bit file. The

generated bitstream (14 KB) was much smaller than

the initial bitstream (1.38 MB).

After encrypting and signing the partial bitstream,

the initial FPGA bitstream was downloaded into the

JTAG port of the FPGA on ML310 Evaluation

Board. Then Xilinx Microprocessor Debugger was

used to download the partial bitstream from the host

machine (connected to the board) to an address range

not used by the program in DDR memory on the

board. The program running on the self-reconfiguring

system successfully authenticated the partial

bitstream with the stored MAC value; decryption

phase would not start if the generated MAC was

different than the MAC stored in the program. The

program then decrypted the encrypted partial

bitstream using the stored key, and dynamically

partially reconfigured the other active system on

FPGA.

The experiment was judged to be successful when

the new pattern was displayed on the LEDs of the

board. It was verifying that the new application had

correctly replaced the initial program stored in the

internal BRAMs of the MicroBlaze system. Section 6

presents the timing results obtained for execution of

each phase of the program along with the device

resource utilization summary.

We also implemented a reconfigurable design

using the module-based flow. Similar to the layout

shown in Figure 7, we partitioned the top-level

design into three modules. The static module

contained the configuration controller system and the

reconfigurable module included the application

system. The third module was a wrapper used for

instantiation of ICAP and JTAG blocks.

The configuration controller used many pins and

resources of the FPGA scattered all around the chip.

By placing the static module on the left side of the

chip, we minimized the number of signals that passed

through the reconfigurable module boundary using

bus macros. A custom bus macro that spanned the

full width of the reconfigurable module was used for

signals connected to ICAP block to keep these

signals active during reconfiguration. The generated

partial bitstream for the reconfigurable boundary of

36 slice columns had a size of 321 KB. We were

unable to validate the functionality of this partial

bitstream because of the problems we faced in

implementing another full design with an alternate

version of the reconfigurable module. The problems

were encountered during the final assembly phase of

the implementation in the form of an undocumented

error generated by the tools.

5.1. Security Analysis

One of the main advantages of using the self-

reconfiguring systems is the increase of flexibility.

The designer is able to partition the application

according to the necessary security level and choose

the suitable algorithms for the authentication and

decryption. Moreover these algorithms can be

upgraded to take advantage of the latest

improvements of the security field without any

change in the implemented partially reconfigurable

design. The following considerations should be taken

into account to improve the security of the scheme:

Virtex-II Pro

User Interface

ICAP

JTAG

Interface

PowerPC

or

MicroBlaze

PowerPC / MicroBlaze

Self-reconfigurable platform area

(IPs not shown)

8K of BRAM

partially reconfigured

in MicroBlaze

system area

ML310 LEDsML310 DDR SDRAM

Static Area Reconfigurable Area

XMD

MicroBlaze

GPIO

OPB

DOPB

ILMB DLMB

Dual-ported

BRAM

Virtex-II Pro

User Interface

ICAP

JTAG

Interface

PowerPC

or

MicroBlaze

PowerPC / MicroBlaze

Self-reconfigurable platform area

(IPs not shown)

8K of BRAM

partially reconfigured

in MicroBlaze

system area

ML310 LEDsML310 DDR SDRAM

Static Area Reconfigurable Area

XMD

MicroBlaze

GPIO

OPB

DOPB

ILMB DLMB

Dual-ported

BRAM

Virtex-II Pro

User Interface

ICAP

JTAG

Interface

PowerPC

or

MicroBlaze

PowerPC / MicroBlaze

Self-reconfigurable platform area

(IPs not shown)

8K of BRAM

partially reconfigured

in MicroBlaze

system area

ML310 LEDsML310 DDR SDRAM

Static Area Reconfigurable Area

XMD

MicroBlaze

GPIO

OPB

DOPB

ILMB DLMB

Dual-ported

BRAM

MicroBlaze

GPIO

OPB

DOPB

ILMB DLMB

Dual-ported

BRAM

Figure 7. Simplified Layout of the

Experiment Design

 1) Partial Bitstream Storage: In our current

design, authenticated and decrypted bitstream is

stored in external memory before the partial

reconfiguration. Storing the partial bitstream in

internal memory would prevent the interception of

the bitstream after authentication and decryption. The

program running on the processor core should be

modified in such a way that one segment of the

partial bitstream (of the size of an internal block

RAM) is authenticated, decrypted, and sent to ICAP

at a time.

2) Key Storage: In the current design, decryption

and authentication keys are embedded in the program

running on the embedded microprocessor. Storing

the key in a battery-powered storage or providing the

key interactively by a user are among the options that

can be used to increase the security of the scheme.

6. Results

1) Timing Measurements: In Table 1 the timing

result of each phase for both systems is provided. For

each phase of the process (authentication, decryption,

and configuration) 10 measurements were done by

obtaining the number of clock cycles required for

each processor to execute the functions. For

PowerPC system no extra component was needed

since a time-base register inside the processor is

available that works with the system clock. For

MicroBlaze system a watch-dog timer on OPB was

used that contains a time-base register. For both

systems, standard deviation from the mean value at

each phase along with the percentage error is also

shown in Table 1.

Table 2 summarizes the comparison of the results

for the average values and throughput. The average

values of the obtained results show that PowerPC

system performed faster in both authentication and

decryption phases of the application. Consequently it

has higher throughput in these two phases with the

ratios shown in the table. Even though both systems

were running at 100 MHz, the better performance of

the PowerPC system could be due to the fact that its

instruction set executes most of the instructions in a

single cycle and is more efficient than MicroBlaze.

On the other hand MicroBlaze system gives a better

performance working with the HWICAP module and

therefore it achieves a higher throughput for

configuration. The reason might be the presence of

the extra bus (PLB) and PLB-to-OPB bridge in the

PowerPC system. Since HWICAP module is a slave

on the OPB bus the processor should transfer the

frames of the bitstream from the DDR to the

HWICAP BRAM and therefore an extra bus may

actually increase the time of this transfer. Thus,

DMA data transfer is desirable to increase the

performance of HWICAP in any system.

Table 2 also provides the time based on the unit

of operation for each phase. Authentication algorithm

works on bytes with a total number of 14112 bytes in

the partial bitstream. Decryption works on blocks of

16 bytes in CTR mode. There were 882 blocks in the

partial bitstream. Also, 32-bits words are sent to

ICAP for reconfiguration with the total number of

3528.

2) Resource Utilization Summary: Systems were

designed with only the required components. It

should be noted that the Xilinx MicroBlaze soft

processor uses ~950 logic cells (475 Slices) in the

Virtex-II Pro device but PowerPC cores are part of

the FPGA fabric with no resource usage even though

hard core processors in the FPGA fabric reduce the

available area for logic in general.

In Table 3 a summary of the device utilization is

provided. The resource utilization is only for the

configuration controllers and not the additional

application system under reconfiguration. The device

utilization is close for both systems. The PowerPC

system used lesser amount of resources even though

it required the use of extra bus and bridge but it

Table 1. Timing Results for Each

Phase (Clock Cycles)

Phase

#

1

2

3

4

5

6

7

8

9

10

Std. Dev.

Mean

% Error

Phase

#

1

2

3

4

5

6

7

8

9

10

Std. Dev.

Mean

% Error 0.03% 0.01% 0.56%

201 77 179

77,649,428 147,201,612 3,175,927

77,648,899 147,201,639

0.05% 0.02%

77,649,597 147,201,675

77,649,515 147,201,451

77,649,349 147,201,675

77,649,597 147,201,639

77,649,416 147,201,543

77,649,510 147,201,675

77,649,453 147,201,601

77,649,510 147,201,675

13,862,486

77,649,436 147,201,543

65

13,862,527

51

20,838,803

Authentication Decryption

MicroBlaze System

5,631,037

5,630,038

5,628,993

5,630,038

13,862,500

13,862,575

13,862,591

13,862,575

13,862,591

5,630,038

5,631,061

5,630,038

5,630,038

13,862,435

13,862,591

13,862,486

13,862,435

3,175,996

PowerPC System

3,175,996

3,175,996

3,175,952

3,176,008

3,175,964

3,175,420

3,175,996

3,175,943

3,175,996

20,838,879

20,838,769

5,628,993

5,631,037

1.34%

756

5,630,131

Configuration

20,838,769

20,838,776

20,838,876

20,838,776

20,838,769

20,838,876

20,838,769

20,838,769

DecryptionAuthentication Configuration

Table 2. Comparison of the Timing

Results for Each Phase

PowerPC

MicroBlaze

PowerPC

MicroBlaze

Ratio PPC / MB

982

5,502 166,895

251

444

139

776

102

18

Configuration

208 56

32

System

Ave. Time

(ms)

Throughput

(KB/s)

DecryptionAuthentication

MicroBlaze 900

Clock Cycles /

16 Bytes Block

Clock Cycles /

4 Bytes Word

PowerPC

1472

68

10

23,627 1,596

7.0

System

Clock Cycles /

Byte

0.55.6

should be considered that the resource usage for the

MicroBlaze system includes the soft processor as

well.

Table 3 also shows the contribution of different

IP cores. The required IPs for both systems are listed

on the top section of the table followed by the

necessary IPs for PowerPC system and MicroBlaze

system. Non-essential IPs are provided subsequently.

7. Conclusions

In this paper, we presented the implementation of

a self-reconfiguring platform capable of performing

secure partial reconfiguration of Xilinx FPGAs using

ICAP and embedded processor cores. An application

has been developed to demonstrate that FPGA can be

reconfigured with an encrypted partial bitstream

stored in an external memory using software cores

for authentication and decryption. Improving the

ICAP control logic from software to hardware

planned by Xilinx will also enhance the performance

of self-reconfiguring platforms since there will be

less communication over the system bus and less

processor involvement. An embedded OS can also

facilitate the process.

Furthermore, a partial bitstream has been

generated using the difference-based flow targeting

an active system placed in FPGA besides the self-

reconfigurable platform. Even though the difference-

based flow involved none of the difficulties and

restrictions of module-based flow it is not suitable for

large designs where large blocks of logic are under

reconfiguration. To increase the ease of use for

designers and decrease the development time a

simple methodology along with more support and

automation from tools are needed for implementation

of a partially reconfigurable design using module-

based flow.

8. References

[1] S. Wong, S. Vassiliadis, and S. Cotofana, “Future

directions of (programmable and reconfigurable)

embedded processors,” in Embedded Processor

Design Challenges, Workshop on Systems,

Architectures, Modeling, and Simulation—SAMOS

2002.

[2] T Wollinger, J. Guajardo, C. Paar, “Security on

FPGAs: State-of-the-Art Implementations and

Attacks,” in ACM Transactions on Embedded

Computing Systems, Vol. 3, No. 3, August 2004,

Pages 534–574.

[3] Xilinx, Inc. web site. http://www.xilinx.com/.

[4] R. Krueger, “Using High Security Features in Virtex-

II Series FPGAs”. Xilinx Application Note

XAPP766, version 1.0, Xilinx, Inc. July 2004.

[5] B. Blodget, P. James-Roxby, E. Keller, S. McMillian,

and P. Sundararajan. A Self-reconfiguring Platform.

In Proceedings of the International Conference on

Field Programmable Logic, Lisbon, Portugal, Sept.

2003.

[6] T. Kean. Secure Configuration of Field

Programmable Gate Arrays. In proceeding of 11th

International Conference on Field-Programmable

Logic and Applications, FPL’2001. Belfast, United

Kingdom.

[7] L. Bossuet, G. Gogniat, and W. Burleson.

Dynamically Configurable Security for SRAM FPGA

Bitstreams. In proceeding of 11th Reconfigurable

Architectures Workshop, RAW 2004. Santa Fé, USA.

[8] “Virtex-II Platform FPGA Handbook”, version 2.0,

Xilinx, Inc., 2004

[9] “PowerPC Processor Reference Guide”, version 2.0,

Xilinx, Inc., 2003

[10] IBM web site

http://www.chips.ibm.com/products/coreconnect.

2003

[11] “Virtex-II Platform FPGA User Guide”, version 4.0,

Xilinx, Inc., 2005

[12] “Two flows for partial reconfiguration: Module based

or Difference Based”. Xilinx Application Note

XAPP290, version 1.2, Xilinx, Inc., 2004

[13] “Development System Reference Guide”, Xilinx, Inc.,

2005

[14] “Embedded System Tools Reference Manual”,

version 3.0, Xilinx, Inc., 2004

[15] “Platform Studio User Guide”, version 3.0, Xilinx,

Inc., 2004

[16] “Processor IP Reference Guide”, Xilinx, Inc., 2004

[17] “EDK OS and Libraries Reference Manual”, version

3.0, Xilinx, Inc., 2004

[18] Dr. B. Gladman, Cryptographic Implementations,

web site

http://fp.gladman.plus.com/cryptography_technology/

index.htm

Table 3. Device Utilization Summary

and Resource Usage of IP Cores

Total % Total %

1,334 9 1,706 12

5 3 5 3

0 0 3 2

7 43 8 50

2 25 2 25

1 100 1 100

1 100 1 100

1 50 0 0

Device Resources

Used by PowerPC Used by MicroBlaze Available in the

Device

Number of Resources

136

16

MULT18X18s

BUFGMUXs

13,696

136

SLICEs

RAMB16s

DCMs

JTAGPPCs 1

8

ICAPs 1

PPC405s 2

Min Max Min Max Min Max

46 436 81 668 5 145

120 128 213 224 152 155

25 34 16 30 33 55

332 563 353 637 314 444

523 1161 590 1559 504 799

223 1645 270 2540 59 484

595 836 535 823 547 812

Processor System Reset Module N/A N/A 37 57 52 82

0 0 0 0 0 77

818 2481 842 3420 658 1455

N/A N/A 0 353 0 0

N/A N/A 6 6 2 2

- - 6 359 2 2

N/A N/A 88 108 48 57

N/A N/A 63 63 111 111

67 188 45 292 79 204

67 188 196 463 238 372

PowerPC (Wrapper)

Total

Required for MicroBlaze System

OPB UART Lite

OPB Timebase WDT

2 x LMB BRAM Controller

Total

Microprocessor Debug Module

Total

Additional Features

2 x LMB (Local Memory Bus)

Required for Both Systems

OPB (On-Chip Peripheral Bus)

OPB HWICAP

OPB BRAM Controller

OPB DDR SDRAM Controller

Total

Required for PowerPC System

PLB (Processor Local Bus)

PLB to OPB Bridge

System Component Slices LUTs

Resources Used

FFs

