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Abstract 

SRAM FPGAs are vulnerable to security breaches 

such as bitstream cloning, reverse-engineering, and 

tampering. Bitstream encryption and authentication 

are two most effective and practical solutions to 

improve the security of FPGAs. In this paper, we 

investigate a method to perform a secure dynamic 

partial reconfiguration of SRAM FPGAs using 

embedded processor cores. Two schemes based on 

hard-wired PowerPC processor core and the 

MicroBlaze soft processor core have been compared 

and contrasted in terms of speed and FPGA resource 

usage. A practical experiment, demonstrating 

feasibility, performance, and flexibility of both 

schemes has been conducted using Xilinx ML310 

board with Xilinx Virtex-II Pro FPGA. 

1. Introduction 

As the performance gap between FPGAs and 

ASICs decreases [1], platform FPGAs with various 

configurable elements and embedded blocks provide 

new solutions for high density and high-performance 

embedded system designs. These platforms not only 

enable system architects to design and develop 

complex custom systems using embedded processors 

and interoperable IP cores, but also provide 

technologies such as dynamic reconfiguration of part 

of an FPGA while other areas of the device remain 

operational. There are many advantages in partial 

dynamic reconfiguration especially for applications 

that require adaptive and flexible hardware such as 

mobile communication applications and real-time 

embedded systems. Deploying dynamic run-time 

reconfiguration in systems results in reduced chip 

area and power consumption.  

Considering the wide range of features, platform 

FPGAs address many new application areas. An 

increase in their popularity makes the need for design 

security mechanisms even more important especially 

in high-security areas where SRAM FPGAs might 

not otherwise be acceptable. The design security 

must protect the design against cloning and reverse 

engineering. A survey in [2] analyzes possible attacks 

against FPGAs. In the case of SRAM FPGAs this 

survey is directly concerned with protection of a 

bitstream especially during configuration and 

reconfiguration. Bitstream encryption as a solution 

increases the level of security and makes the 

configuration bitstream secure against attackers.  

The Xilinx [3] security solution, known as 

SecureChip technology, uses CAD tools for bitstream 

encryption and an embedded hard-wired internal 

circuit for decryption [4]. One of the drawbacks of 

this scheme is that the partial reconfiguration 

capability of FPGA is disabled and therefore a device 

configured with an encrypted bitstream cannot be 

partially reconfigured.  

In this paper, we propose a method that uses 

embedded microprocessor cores to achieve bitstream 

security, specifically for designs that benefit from 

partial reconfiguration. This method is capable of 

performing secure partial reconfiguration of the 

FPGA after the initial configuration. It provides the 

flexibility of using arbitrary algorithms for 

authentication and encryption of partial bitstreams. It 

can also facilitate secure remote partial 

reconfiguration for vendor updates and feature 

upgrades in the field. 

The rest of the paper is organized as follows. 

Section 2 presents the related previous work and 

background. In Section 3 an overview of Xilinx EDK 

tools and evaluation board is presented. Section 4 

explains the hardware architecture of the 

implemented self-reconfiguring systems for both hard 

and soft processor cores. Section 5 presents the 

methodology of the experiment. Section 6 presents 

the obtained results and the discussion of the results. 

In Section 7 conclusions and future work is provided. 

2. Related Work and Background 

2.1. Related Work 

The Xilinx SecureChip technology is simple and 

efficient. All Virtex-II family devices (Virtex-II, 

Virtex-II Pro, and Virtex-II Pro X FPGAs) use the 



Triple DES encryption scheme [4]. In Virtex-4 

devices, Triple DES has been replaced with AES to 

increase security and throughput. The scheme 

exploits software support of Xilinx ISE CAD tools 

for both encryption of the bitstream and key 

generation. Figure 1 shows the Xilinx security 

system. 

For decryption, it uses an on-chip decryptor along 

with the internal decryption keys stored in a 

dedicated memory.  Either an externally-connected 

battery or an auxiliary power supply (VCCAUX) is the 

source of power for volatile storage of the keys. The 

keys are erased if there is a tampering with the 

device. 

The problem with this scheme is the extra area 

and cost needed for the external battery, lack of 

flexibility, and the disablement of partial 

reconfiguration for encrypted bitstreams. 

A method proposed by Algotronix [6] removes 

the need for an external battery by finding another 

way of storing the secret key on the FPGA such as 

use of laser to engrave the key. This will make it 

necessary for the FPGA to contain both encryption 

and decryption circuits, and hence there is no need 

for the software to support encryption.  This solution 

uses even more FPGA silicon area than Xilinx 

scheme and also lacks flexibility since the encryption 

and decryption circuits are fixed with no possibility 

of upgrade or use of another algorithm. 

In [7], a new solution is proposed with no 

implementation available at the moment. The scheme 

selects and places the cores for encryption and 

decryption in the FPGA, and then removes them to 

free the chip area. A dedicated configuration 

controller manages both the encryption and 

decryption schemes by relying on partial and self-

reconfiguration. This configuration scheme also uses 

an embedded key instead of an externally-powered 

storage for the secret key.  

The method is flexible and adjusts the security 

level to application needs but is relatively complex 

considering the limitations of partial reconfiguration 

imposed by the FPGA manufacturers and the CAD 

tools. To our best knowledge, this method has never 

been implemented in practice. 

The work presented in this paper focuses on a 

more specific case in which only secure partial 

reconfiguration after initial configuration is 

considered. By using an embedded microprocessor as 

a configuration controller inside of the chip, secure 

partial reconfiguration can be achieved. The next 

section provides a background about the flows for 

partial reconfiguration along with the overview of the 

Virtex-II Pro platform FPGA and the tools for 

creating a self-reconfiguring design. 

2.2. Background 

The Virtex-II Pro device used in our designs is the 

first platform FPGA capable of implementing 

flexible, high performance, and low-cost system-on-

a-chip designs by combining a variety of features 

embedded in the FPGA fabric with specially 

developed hardware/software IP cores [8]. 

Particularly, it incorporates fully embedded IBM 

PowerPC405 processor core which is an 

implementation of the PowerPC embedded 

environment architecture [9]. The embedded PPC405 

core is a 32-bit Harvard architecture processor with 

functional units such as cache unit and memory 

management unit (MMU). It operates in a five-stage 

pipeline, and most instructions execute in a single 

cycle. It is capable of more than 300 MHz clock 

frequency and 420 Dhrystone MIPS, and is contained 

in a processor block. Processor block also contains 

on-chip memory controllers and integration circuitry 

compatible with IBM CoreConnect bus architecture 

[10] that enables the compliant IP cores to integrate 

with this block. The CoreConnect architecture 

provides three buses for interconnection of hard and 

soft IP cores. The key features of CoreConnect are 

the Processor Local Bus (PLB), On-chip Peripheral 

Bus (OPB) and Device Control Register (DCR) Bus. 

Virtex-II Pro is configured by delivering the 

bitstream through one of the configuration interfaces 

(JTAG, SelectMAP, or Slave/Master Serial). 

Configuration memory is arranged in a rectangular 

array of bits. One-bit wide vertical frames are the 

smallest addressable segments of the Virtex-II Pro 

configuration memory space [11]. Data is loaded on 

a column-basis and each column contains the number 

of frames dependent on the specific FPGA device. 

The Virtex-II Pro configuration control logic consists 

of a packet processor, a set of registers, and global 

signals that are controlled by the configuration 

registers. The packet processor controls the flow of 

data from the configuration interface to the 

appropriate register. The registers control all other 

aspects of configuration. 
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 Figure 1. Xilinx SecureChip Technology 



The Virtex-II Pro configuration architecture 

features an Internal Configuration Access Port 

(ICAP) that provides the user logic with access to 

FPGA configuration interface and therefore access to 

memory bits of configuration memory [11]. The 

interface is similar to SelectMAP interface but it 

cannot be used for full configuration. With no 

handshaking mechanism ICAP interface can be 

clocked up to the maximum frequency of 66MHz [4]. 

In Virtex-4 devices this interface can be used for 

readback and reconfiguration when the device is 

initially configured with an encrypted bitstream. 

In active partial reconfiguration, new data can be 

loaded through ICAP to dynamically reconfigure a 

particular area of FPGA while the rest of the FPGA 

is still operational. Xilinx introduces two design 

flows for active partial reconfiguration [12]: 

1) Module-Based: This flow is suitable for 

partially reconfiguring a large portion of the design 

and is based on the Xilinx Modular Design 

methodology [13]. A special bus macro is required 

for inter-module communications.  It is used to 

establish unchanging routing channels between 

modules. 

Bus macros use fixed routing resources and are 

currently implemented using 3-state buffers 

associated with dedicated segmentable horizontal 

routing resources. Xilinx will introduce a new 

implementation with the release of ISE 8.1 since 

Virtex-4 devices do not contain 3-state buffers 

(TBUF). Figure 2 shows a bus macro used for inter-

module communication and its implementation with 

3-state buffers. 

Reconfigurable modules in the design need to have 

specific properties in terms of their width, height, and 

placement. Available resources are also limited only 

to those encompassed by the width of the module and 

communications with other modules (both fixed and 

reconfigurable) should take place through bus 

macros. 

HDL coding and synthesis process follow some 

general guidelines in terms of the structure of top-

level design, instantiation of bus macros, shared 

signals, and synthesis attributes. 

The implementation flow takes place in three 

phases after the design entry. In initial budgeting 

phase, the design is floor planned and constrained 

based on the properties of each module. The result is 

a file with extension ‘.ucf’ that is used for active 

implementation phase. This phase places and routes 

each module separately in the context of the top-level 

logic and constraints. The final assembly phase uses 

all placed and routed modules generated from the 

previous phase to combine them into a complete 

FPGA design. To maintain the performance of each 

module, placement and routing for each module are 

preserved.  

At present, bitstreams generated for the full design 

require that the initial bitstream includes at least one 

variation of any partially reconfigurable module. This 

means that the initial bitstream should be a complete 

design since all global resources such as clocking 

logic need to be placed and properly constrained. 

Bitstream frames for clocks are separate from other 

frames. This imposes a limit in which a completely 

separate module cannot be added to an initial design 

with module-based partial reconfiguration flow. 

  2) Difference-Based: Using this flow the design 

can change either at the front-end or the back-end. 

For changes in HDL code or schematics at the front-

end, the design must be re-synthesized and re-

implemented, while for back-end changes the FPGA 

Editor tool can be used to modify sections of the 

design. Many different types of changes can be made 

using this tool, including routing information, LUT 

programming, changing BRAM contents and I/O 

standards. 

The bitstream generator BitGen, used with the 

proper options setting, can create a partial bitstream 

that contains only the difference between the 

modified design and the initial bitstream. In other 

words, BitGen produces a partial bitstream that only 

configures the frames that are different between the 

two designs. The produced partial bitstream is small 

and quick to load. A partial bitstream can be loaded 

only after the device power up and loading an initial 

bitstream. The design must take into account the 

transition time of the reconfigurable module(s) and 

other modules, and should not rely on the state of the 

signals connected to the reconfigurable module. 

3. Xilinx Embedded Development Kit and 

ML310 Evaluation Board 

Multiple embedded software tools, PowerPC and 

MicroBlaze infrastructure, and peripheral IP cores 

Static /

Reconfigurable

Module
Bus Macro

Reconfigurable

Module

(straddles the boundary between the two modules)

LI [3:0]

LO [3:0]

LT [3:0]

RI [3:0]

RO [3:0]

RT [3:0]

Static /

Reconfigurable

Module
Bus Macro

Reconfigurable

Module

(straddles the boundary between the two modules)

LI [3:0]

LO [3:0]

LT [3:0]

RI [3:0]

RO [3:0]

RT [3:0]  
 

Figure 2. Physical Implementation of 

a 4-bit Bus Macro by Xilinx 



included in Xilinx Embedded Development Kit 

(EDK) provide a framework for design of 

hardware/software components of the embedded 

processor systems on programmable logic [14]. 

Utilizing the appropriate tool for each stage of the 

design facilitates hardware/software partitioning, 

design reuse, and shorter time-to-market. 

Embedded system tools in EDK consist of Xilinx 

Platform Studio (XPS), GNU software development 

tools, hardware/software development tools, board 

support packages, and embedded operating systems. 

Figure 3 presents an overview of the tools flow.  

In a typical design of an embedded processor 

system, the first step is to create a hardware platform 

followed by the creation of software platform and 

optionally verification platform. XPS IDE with its 

underlying tools integrates all the processes from 

design entry to design debug and verification [15].  

Creating a basic hardware system involves 

assembling a system containing processor, buses, and 

peripherals, generating an HDL netlist, and 

implementing the design using ISE implementation 

tools to generate a bitstream. 

Creating the software platform involves building 

libraries, compiling C applications, initializing 

bitstreams with the application, downloading 

applications onto external memories, and debugging 

applications using debugger. XPS calls GNU 

compiler tools provided for both hard and soft 

processors for compiling and linking user application 

executables. The Bitstream Initializer (BitInit) tool 

can then initialize the bitstream with the executable 

in the instruction memory of processors on the 

FPGA. The bitstream can be downloaded using 

Xilinx Microprocessor Debugger (XMD), bootloader 

programs, or System ACE controller. XMD is the 

underlying engine to communicate to processor 

targets and provides an interface for both hardware 

system debug and software running on hardware. 

This tool with GNU debugger is used for software 

debugging. 

The ML310 Embedded Development Platform is 

a Virtex-II Pro based platform suitable for rapid 

prototyping and system verification. The main 

features of ML310 include: 256 MB DDR DIMM, 

System ACE Compact Flash controller, FPGA 

UART, General Purpose IO (LEDs/LCD), PCI bus 

interface, and high speed I/O through RocketIO 

Multi-Gigabit Transceivers (MGTs). MGT blocks 

available in the Virtex-II Pro create high-speed serial 

links between devices and the FPGA. The high-speed 

I/O signals on the FPGA are accessible through two 

personality module (PM) connectors on the ML310 

board. The majority of the ML310 features are 

accessed over the 33 MHz/32-bit PCI bus which is 

connected to fixed PCI devices such as Intel 10/100 

PCI Ethernet NIC, ALi PCI South Bridge. The ALi 

South Bridge augments the ML310 with many of the 

basic features found on legacy PCs. The main system 

clock of ML310 is a 100 MHz oscillator. The FPGA 

generates and drives clocks required by the DDR 

DIMM memory and PCI bus interfaces. Figure 4 

shows the block diagram of the ML310 board. 

4. Implemented Self-reconfiguring 

Systems 

Figure 5 and 6 show the hardware components of 

the constructed self-reconfiguring platforms utilizing 

both embedded PowerPC and MicroBlaze soft 

processor cores. No cache memory is selected for the 

microprocessors, and both systems run at 100MHz 

(including PLB and OPB buses).  

Both embedded PowerPC and MicroBlaze 

processor cores communicate with peripherals 

through one or more of the IBM CoreConnect buses, 

which enables compliant IP cores to integrate with 

embedded processor cores. PowerPC only has the 

PLB bus interface, and therefore OPB devices cannot 

directly connect to the processor. Therefore, 

processor and peripherals communicate over the 

OPB connected to the PLB through PLB-to-OPB 

bridge. The MicroBlaze system is configured with 

OPB bus and two Local Memory Buses (LMBs). The 

LMB is a fast and efficient local bus that connects 
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Figure 3. EDK Tools Flow 
 



MicroBlaze instruction and data ports to high-speed 

peripherals, primarily BRAMs. Both instruction-side 

and data-side LMBs are connected to the same dual-

port BRAM using different ports of the BRAM.  

Both implemented systems require the OPB bus to 

instantiate the HWICAP module [16] since the 

current implementation of this module only connects 

to OPB. This module is used for reconfiguration. It 

enables the microprocessors to read and write the 

FPGA configuration memory, as well as loading 

partial bitstreams from system memory through 

ICAP. The HWICAP core consists of OPB 

controller, ICAP controller, and a BRAM. It uses the 

BRAM on OPB bus as a configuration cache and has 

the capability to transfer the partial bitstream from 

local memory to ICAP. The partial bitstream is 

transferred frame by frame to this BRAM and then to 

ICAP. The HWICAP ICAP controller connects to the 

ICAP block located in the lower-right corner of the 

logic array. ICAP interface operates at the clock rate 

of OPB bus. 

The DDR memory available on the board was 

selected as the external memory for storage of the 

partial bitstream, and therefore OPB DDR SDRAM 

Controller was used for both systems. JTAG port was 

used for both transferring the partial bitstream to 

DDR memory and debugging. PowerPC system 

requires a JTAG controller that allows the PowerPC 

to connect to the JTAG chain of the FPGA 

instantiating a JTAGPPC primitive, and directly 

connecting it to both PowerPC CPUs in the chip. 

MicroBlaze system requires a Microprocessor Debug 

Module on the processor OPB bus for JTAG-based 

debugging. This module can also be used with 

PowerPC405 processors. UART and additional 

features are not the essential parts of the self-

reconfiguring systems but provide ease of use for 

user application. The systems were implemented in a 

XC2VP30 Virtex-II Pro FPGA device on the ML310 

Evaluation Board with minimal footprint. 

EDK automatically generated the memory map of 

the hardware platform as well as assigned default 

drivers to the processors and each of the peripherals. 

The program running on the processor cores was 

written in C to perform the following tasks: 

authentication, decryption, and configuration. 

Software cores were used for authentication and 

decryption. AES was used for encryption/decryption 

and HMAC-SHA1 was used as the authentication 

algorithm. Both cores were freely available 

implementations developed by Dr. B. Gladman [18]. 

These cores were ported to EDK environment so that 

they can be used as libraries available for the 

program. ICAP API [17] was used for transferring 

the data between the external configuration memory 

and HWICAP BRAM configuration cache. The 

ICAP API defines methods for accessing the 

configuration logic through ICAP port. 

5. Experiment Methodology 

The considered scenario for the experiment is as 

follows. The self-reconfiguring system reads an 

authenticated and encrypted partial bitstream stored 

in an external memory. It then verifies the 

authenticated partial bitstream with the stored MAC 

value. If the authentication is successful it decrypts 

the partial bitstream using the stored key and 

configures the device using ICAP. 

To perform the experiment using the implemented 

self-reconfiguring systems the first step was 

generating a partial bitstream. The difference-based 

method was selected for this purpose since the 

module-based flow requirements were problematic 
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Figure 5. PowerPC System 
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Figure 6. MicroBlaze System 



while using the ML310 board especially with regards 

to board pin assignments and requirements of the 

reconfigurable module mentioned previously.   

An additional application MicroBlaze system was 

implemented in the form of a microcontroller as the 

target of partial reconfiguration. The application 

design only included MicroBlaze processor, buses, 

8K of block RAM memory, and GPIO connected to 

the 8-bit LED display on the ML310 board. Using 

EDK this system was combined separately with each 

of the self-reconfiguring systems. Figure 7 shows a 

simplified version of the FPGA layout. 

The program running on this system was 

generating a pattern on LEDs. The partial bitstream 

changes the BRAM contents where the program 

running on the MicroBlaze system had been stored. 

That resulted in a different pattern to appear on 

LEDs. 

FPGA Editor tool was used to modify the BRAM 

contents. The modified design file must be used with 

the initial bitstream for creating a difference-based 

partial bitstream. The initial bitstream of the design 

contained the original BRAM contents. The partial 

bitstream was created with BitGen program using the 

-r switch. BitGen set with this switch produced a 

bitstream that contained only the differences between 

the modified design file and the initial bit file. The 

generated bitstream (14 KB) was much smaller than 

the initial bitstream (1.38 MB). 

After encrypting and signing the partial bitstream, 

the initial FPGA bitstream was downloaded into the 

JTAG port of the FPGA on ML310 Evaluation 

Board. Then Xilinx Microprocessor Debugger was 

used to download the partial bitstream from the host 

machine (connected to the board) to an address range 

not used by the program in DDR memory on the 

board. The program running on the self-reconfiguring 

system successfully authenticated the partial 

bitstream with the stored MAC value; decryption 

phase would not start if the generated MAC was 

different than the MAC stored in the program. The 

program then decrypted the encrypted partial 

bitstream using the stored key, and dynamically 

partially reconfigured the other active system on 

FPGA.  

The experiment was judged to be successful when 

the new pattern was displayed on the LEDs of the 

board. It was verifying that the new application had 

correctly replaced the initial program stored in the 

internal BRAMs of the MicroBlaze system. Section 6 

presents the timing results obtained for execution of 

each phase of the program along with the device 

resource utilization summary. 

We also implemented a reconfigurable design 

using the module-based flow. Similar to the layout 

shown in Figure 7, we partitioned the top-level 

design into three modules. The static module 

contained the configuration controller system and the 

reconfigurable module included the application 

system. The third module was a wrapper used for 

instantiation of ICAP and JTAG blocks.  

The configuration controller used many pins and 

resources of the FPGA scattered all around the chip. 

By placing the static module on the left side of the 

chip, we minimized the number of signals that passed 

through the reconfigurable module boundary using 

bus macros. A custom bus macro that spanned the 

full width of the reconfigurable module was used for 

signals connected to ICAP block to keep these 

signals active during reconfiguration. The generated 

partial bitstream for the reconfigurable boundary of 

36 slice columns had a size of 321 KB. We were 

unable to validate the functionality of this partial 

bitstream because of the problems we faced in 

implementing another full design with an alternate 

version of the reconfigurable module. The problems 

were encountered during the final assembly phase of 

the implementation in the form of an undocumented 

error generated by the tools. 

5.1. Security Analysis 

One of the main advantages of using the self-

reconfiguring systems is the increase of flexibility. 

The designer is able to partition the application 

according to the necessary security level and choose 

the suitable algorithms for the authentication and 

decryption. Moreover these algorithms can be 

upgraded to take advantage of the latest 

improvements of the security field without any 

change in the implemented partially reconfigurable 

design. The following considerations should be taken 

into account to improve the security of the scheme: 
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Figure 7. Simplified Layout of the 

Experiment Design 



 1) Partial Bitstream Storage: In our current 

design, authenticated and decrypted bitstream is 

stored in external memory before the partial 

reconfiguration. Storing the partial bitstream in 

internal memory would prevent the interception of 

the bitstream after authentication and decryption. The 

program running on the processor core should be 

modified in such a way that one segment of the 

partial bitstream (of the size of an internal block 

RAM) is authenticated, decrypted, and sent to ICAP 

at a time. 

2) Key Storage: In the current design, decryption 

and authentication keys are embedded in the program 

running on the embedded microprocessor. Storing 

the key in a battery-powered storage or providing the 

key interactively by a user are among the options that 

can be used to increase the security of the scheme. 

6. Results 

1) Timing Measurements: In Table 1 the timing 

result of each phase for both systems is provided. For 

each phase of the process (authentication, decryption, 

and configuration) 10 measurements were done by 

obtaining the number of clock cycles required for 

each processor to execute the functions. For 

PowerPC system no extra component was needed 

since a time-base register inside the processor is 

available that works with the system clock. For 

MicroBlaze system a watch-dog timer on OPB was 

used that contains a time-base register. For both 

systems, standard deviation from the mean value at 

each phase along with the percentage error is also 

shown in Table 1. 

Table 2 summarizes the comparison of the results 

for the average values and throughput. The average 

values of the obtained results show that PowerPC 

system performed faster in both authentication and 

decryption phases of the application. Consequently it 

has higher throughput in these two phases with the 

ratios shown in the table. Even though both systems 

were running at 100 MHz, the better performance of 

the PowerPC system could be due to the fact that its 

instruction set executes most of the instructions in a 

single cycle and is more efficient than MicroBlaze. 

On the other hand MicroBlaze system gives a better 

performance working with the HWICAP module and 

therefore it achieves a higher throughput for 

configuration. The reason might be the presence of 

the extra bus (PLB) and PLB-to-OPB bridge in the 

PowerPC system. Since HWICAP module is a slave 

on the OPB bus the processor should transfer the 

frames of the bitstream from the DDR to the 

HWICAP BRAM and therefore an extra bus may 

actually increase the time of this transfer. Thus, 

DMA data transfer is desirable to increase the 

performance of HWICAP in any system.  

Table 2 also provides the time based on the unit 

of operation for each phase. Authentication algorithm 

works on bytes with a total number of 14112 bytes in 

the partial bitstream. Decryption works on blocks of 

16 bytes in CTR mode. There were 882 blocks in the 

partial bitstream. Also, 32-bits words are sent to 

ICAP for reconfiguration with the total number of 

3528. 

2) Resource Utilization Summary: Systems were 

designed with only the required components. It 

should be noted that the Xilinx MicroBlaze soft 

processor uses ~950 logic cells (475 Slices) in the 

Virtex-II Pro device but PowerPC cores are part of 

the FPGA fabric with no resource usage even though 

hard core processors in the FPGA fabric reduce the 

available area for logic in general.  

In Table 3 a summary of the device utilization is 

provided. The resource utilization is only for the 

configuration controllers and not the additional 

application system under reconfiguration. The device 

utilization is close for both systems. The PowerPC 

system used lesser amount of resources even though 

it required the use of extra bus and bridge but it 

Table 1. Timing Results for Each 

Phase (Clock Cycles) 

 

Phase

#

1

2

3

4

5

6

7

8

9

10

Std. Dev.

Mean

% Error

Phase

#

1

2

3

4

5

6

7

8

9

10

Std. Dev.

Mean

% Error 0.03% 0.01% 0.56%

201 77 179

77,649,428 147,201,612 3,175,927

77,648,899 147,201,639

0.05% 0.02%

77,649,597 147,201,675

77,649,515 147,201,451

77,649,349 147,201,675

77,649,597 147,201,639

77,649,416 147,201,543

77,649,510 147,201,675

77,649,453 147,201,601

77,649,510 147,201,675

13,862,486

77,649,436 147,201,543

65

13,862,527

51

20,838,803

Authentication Decryption

MicroBlaze System

5,631,037

5,630,038

5,628,993

5,630,038

13,862,500

13,862,575

13,862,591

13,862,575

13,862,591

5,630,038

5,631,061

5,630,038

5,630,038

13,862,435

13,862,591

13,862,486

13,862,435

3,175,996

PowerPC System

3,175,996

3,175,996

3,175,952

3,176,008

3,175,964

3,175,420

3,175,996

3,175,943

3,175,996

20,838,879

20,838,769

5,628,993

5,631,037

1.34%

756

5,630,131

Configuration

20,838,769

20,838,776

20,838,876

20,838,776

20,838,769

20,838,876

20,838,769

20,838,769

DecryptionAuthentication Configuration

 

Table 2. Comparison of the Timing 

Results for Each Phase 

 

PowerPC

MicroBlaze

PowerPC

MicroBlaze

Ratio PPC / MB

982

5,502 166,895

251

444

139

776

102

18

Configuration

208 56

32

System

Ave. Time 

(ms)

Throughput 

(KB/s)

DecryptionAuthentication

MicroBlaze 900

Clock Cycles /            

16 Bytes Block

Clock Cycles /              

4 Bytes Word

PowerPC

1472

68

10

23,627 1,596

7.0

System

Clock Cycles /        

Byte

0.55.6

 



should be considered that the resource usage for the 

MicroBlaze system includes the soft processor as 

well.  

Table 3 also shows the contribution of different 

IP cores. The required IPs for both systems are listed 

on the top section of the table followed by the 

necessary IPs for PowerPC system and MicroBlaze 

system. Non-essential IPs are provided subsequently. 

7. Conclusions 

In this paper, we presented the implementation of 

a self-reconfiguring platform capable of performing 

secure partial reconfiguration of Xilinx FPGAs using 

ICAP and embedded processor cores. An application 

has been developed to demonstrate that FPGA can be 

reconfigured with an encrypted partial bitstream 

stored in an external memory using software cores 

for authentication and decryption. Improving the 

ICAP control logic from software to hardware 

planned by Xilinx will also enhance the performance 

of self-reconfiguring platforms since there will be 

less communication over the system bus and less 

processor involvement. An embedded OS can also 

facilitate the process. 

Furthermore, a partial bitstream has been 

generated using the difference-based flow targeting 

an active system placed in FPGA besides the self-

reconfigurable platform. Even though the difference-

based flow involved none of the difficulties and 

restrictions of module-based flow it is not suitable for 

large designs where large blocks of logic are under 

reconfiguration. To increase the ease of use for 

designers and decrease the development time a 

simple methodology along with more support and 

automation from tools are needed for implementation 

of a partially reconfigurable design using module-

based flow. 
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Table 3. Device Utilization Summary 

and Resource Usage of IP Cores 

 

Total % Total %

1,334 9 1,706 12

5 3 5 3

0 0 3 2

7 43 8 50

2 25 2 25

1 100 1 100

1 100 1 100

1 50 0 0

Device Resources

Used by PowerPC Used by MicroBlaze Available in the 

Device

Number of Resources

136

16

MULT18X18s

BUFGMUXs

13,696

136

SLICEs

RAMB16s

DCMs

JTAGPPCs 1

8

ICAPs 1

PPC405s 2

 

Min Max Min Max Min Max

46 436 81 668 5 145

120 128 213 224 152 155

25 34 16 30 33 55

332 563 353 637 314 444

523 1161 590 1559 504 799

223 1645 270 2540 59 484

595 836 535 823 547 812

Processor System Reset Module N/A N/A 37 57 52 82

0 0 0 0 0 77

818 2481 842 3420 658 1455

N/A N/A 0 353 0 0

N/A N/A 6 6 2 2

- - 6 359 2 2

N/A N/A 88 108 48 57

N/A N/A 63 63 111 111

67 188 45 292 79 204

67 188 196 463 238 372

PowerPC (Wrapper)

Total

Required for MicroBlaze System

OPB UART Lite

OPB Timebase WDT

2 x LMB BRAM Controller

Total

Microprocessor Debug Module

Total

Additional Features

2 x LMB (Local Memory Bus)    

Required for Both Systems

OPB (On-Chip Peripheral Bus)

OPB HWICAP

OPB BRAM Controller

OPB DDR SDRAM Controller

Total

Required for PowerPC System

PLB (Processor Local Bus)

PLB to OPB Bridge

System Component Slices LUTs

Resources Used

FFs

 


