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Abstract

One of the most important steps in the design of a multi-classifier system (MCS), also known as ensemble, is the choice of the com-
ponents (classifiers). This step is very important to the overall performance of a MCS since the combination of a set of identical classifiers
will not outperform the individual members. The ideal situation would be a set of classifiers with uncorrelated errors – they would be
combined in such a way as to minimize the effect of these failures. This paper presents an extensive evaluation of how the choice of
the components (classifiers) can affect the performance of several combination methods (selection-based and fusion-based methods).
An analysis of the diversity of the MCSs when varying their components is also performed. As a result of this analysis, it is aimed to
help designers in the choice of the individual classifiers and combination methods of an ensemble.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that substantial improvements can be
obtained in difficult pattern recognition problems by com-
bining or integrating the outputs of multiple classifiers.
Classifier combinations (Multi-classifier systems or ensem-
bles) exploit the idea that different classifiers, also referred
as to experts or recognition modules – can offer comple-
mentary information about patterns to be classified,
improving the effectiveness of the overall recognition pro-
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cess (see, for example, Giacinto and Roli, 2001; Kuncheva,
2004; Sharkey, 1999).

In the literature, the use of multi-classifier system (MCS)
has been widely used for several pattern recognition tasks.
In the last decade, for instance, a large number of papers
(Canuto et al., 2001; Czyz et al., 2004; Lemieux and Pari-
zeau, 2003; Sharkey, 1999; Zhou and Zhang, 2002) have
proposed the combination of multiple classifiers for design-
ing high performance classification systems, in areas which
include alphanumeric character recognition (Canuto et al.,
2001), face recognition (Czyz et al., 2004; Lemieux and
Parizeau, 2003; Zhou and Zhang, 2002), among others.

Diversity has been recognized as a very important fea-
ture in classifier combination and has been addressed by
several authors, as in (Kuncheva and Whitaker, 2003;
Shipp and Kuncheva, 2002; Tsymbal et al., 2005; Windeatt
et al., 2005). The main reason for this is that if there are
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many different classifiers, it is sensible to expect an increase
in the overall performance when combining them. Then, it
is intuitively accepted that classifiers to be combined should
be diverse, since there is clearly no advantage to be gained
from an ensemble that is composed of a set of identical
classifiers.

The main aim of this paper is to investigate the impor-
tance of the choice of the components of an ensemble
(ensemble members) in the diversity and accuracy of differ-
ent structures (hybrid and non-hybrid) of ensembles. Also,
several combination methods will be investigated in order
to define which combination methods are more affected
by the choice of the ensemble members.

This paper is divided into five sections and organized as
follows. Some research works related to the subject of this
paper are presented in Section 2. Multi-classifier systems
are described in Section 3, focusing on the combination
methods as well as some diversity measures that can be
used in these systems. Section 4 shows the experimental
work using hybrid and non-hybrid multi-classifier systems,
applied to four different databases. It shows accuracy and
diversity of these systems, illustrating the effect of varying
the ensemble members in the combination methods.
Finally, in Section 5, it is presented the final remarks of this
work.

2. Related works

There is a wide variety of researches analysing diversity
in ensembles, such as in (Banfield et al., 2005; Duin and
Tax, 2000; Kuncheva and Whitaker, 2003; Ruta and Gab-
rys, 2005; Shipp and Kuncheva, 2002; Tsymbal et al., 2005;
Windeatt et al., 2005), among others. In (Kuncheva, 2004;
Kuncheva and Whitaker, 2003; Shipp and Kuncheva,
2002), for instance, the authors have compared the correla-
tion between several diversity measures and linear and non-
linear fusion-based methods. In contrast, in (Duin and
Tax, 2000), for instance, a comparison of several structures
of ensemble using twelve different classification methods
and 10 linear and non-liner fusion-based combination
was performed, but without using any analysis of diversity
measure. In the mentioned paper, analysis using different
types of classification components and different features
for each classification were performed. In addition to that,
in (Windeatt et al., 2005), diversity measures have been
used in order to analyze the correlation of training pat-
terns, selecting the structure of an ensemble based on infor-
mation about the training set. Diversity measures have also
been used in conjunction with training strategies, such as
boosting and bagging (Kuncheva et al., 2002; Shipp and
Kuncheva, 2002). Also, diversity measures have been used
to select classifiers to compose an ensemble, such as in
(Banfield et al., 2005; Giacinto and Roli, 2001; Ruta and
Gabrys, 2005) or to perform feature selection (Tsymbal
et al., 2005). Finally, in previous works of the authors,
such as in (Canuto et al., 2005; Canuto et al., 2005), they
evaluate the performance of ensembles using different
ensemble members, but only fusion-based methods and
only one ensemble size (five members) were used.

Several works have been published about analysis and
comparison of strategies for constructing and combining
classifier ensembles, which deal with the issues addressed
in this paper. However, most of the works related to diver-
sity and ensemble performance use linear and non-linear
non-trainable fusion-based combiners, in which usually
both are non-trainable methods. Also, most of them do
not analyze the choice of the ensemble members as an
important aspect to affect diversity and accuracy of the
ensembles. Unlike most of the aforementioned researches,
a comparison is performed in this paper, analysing different
fusion-based and selection-based methods. In addition to
that, the fusion-based methods are linear, non-linear and
computational intelligent ones.

At the end of this analysis, it is aimed to have a general
picture of which combination methods are more sensitive
to the choice of the ensemble members. According to
Kuncheva (2004), it is believed that the type of classifier
diversity that can be more useful to improve ensemble per-
formance depends also on the particular combination rule
used. Based on this, in this paper, an analysis of how the
choice of the ensemble members can affect accuracy and
diversity of ensembles is performed and how this can affect
the accuracy of different combination rules. In this sense, it
is aimed to show, that when using one combination
method, a more careful choice of the ensemble members
has to be done, while for other methods, this choice is
not a strong problem.

3. Multi-classifier systems

The need to have a computational system that works
with pattern recognition on an efficient way has motivated
the interest in the study of multi-classifiers systems (MCS)
(Czyz et al., 2004; Kuncheva, 2004; Sharkey, 1999), also
known as ensembles. The main idea of using ensembles is
that the combination of classifiers can lead to an improve-
ment in the performance of a pattern recognition system in
terms of better generalisation and/or in terms of increased
efficiency and clearer design. In the design of ensembles,
three basic steps can be defined, which are: the choice of
the organisation of its components, the choice of ensemble
members and the choice of the combination methods that
will be used.

• A multi-classifier system can be defined according to the
organisation of its components as modular and ensem-
ble. In the modular approach, each classifier becomes
responsible for a part of the whole system and they
are usually linked in a serial way. In the ensemble
approach, all classifiers are able to answer to the same
task in a parallel or redundant way, in which a combi-
nation module is responsible for providing the overall
system output (Kuncheva, 2004). In this paper, the
ensemble approach will be taken into account.
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• In the choice of the ensemble members, the members
(classifiers) of an ensemble are chosen and implemented.
The correct choice of the set of classifiers is fundamental
to the overall performance of an ensemble. The main
aim of combining classifiers is to improve their general-
isation ability and recognition performance.

• Once a set of classifiers has been created and the strategy
for organizing them has been defined, the next step is
to choose an effective way of combining their outputs
in ensembles. According to their functioning, two
strategies of combination methods are discussed in
the literature on classifier combination, which are:
selection-based and fusion-based methods.

In the MCS context, there is also some work reported in
applying learning schemes in an ensemble. Usually, these
schemes work on the training sets which are to be presented
to the classifiers. The main aim is either to improve the gen-
eralisation of the ensemble or to minimize the correlated
error of the classifiers within the system (increase the diver-
sity of the classifiers). The main learning methods used in
ensembles are Bagging (Breiman, 1996, 1999) and Boosting
(Freund, 1995, 2002).

3.1. Combination methods

3.1.1. Fusion-based methods

Several fusion-based methods have been proposed in the
literature and these can be classified according to their
characteristics as Linear, Non-linear, Statistical and Com-
putational Intelligent combiners.

• Linear combination methods: Currently, the simplest
ways to combine multiple neural networks are the sum
and average of the neural networks’ outputs (Kuncheva,
2004). Such methods are known as linear combining
techniques.

• Non-linear methods: This class includes rank-based com-
biners, such as Borda Count (Sharkey, 1999), as well as
majority voting strategies (Kuncheva, 2004).

• Statistical-based methods: In this class, statistical meth-
ods, such as the Dempster–Shafer technique (Mitchell,
1997) as well as Bayesian combination methods (Mitchell,
1997) are used to combine the output of the classifiers.

• Computational intelligent methods: Within the group of
methods based on combination via computational intel-
ligence techniques, it can be found fuzzy integral (Can-
uto et al., 2001), neural networks (Canuto et al., 2001)
and genetic algorithms (Kuncheva, 2004).

In this paper, seven different fusion-based methods will
be used, which are: majority vote, naı̈ve Bayesian, Sum,
Average, Median, MLP and Fuzzy MLP.

3.1.2. Selection-based methods
In selection-based methods, only one classifier is needed

to correctly classify the input pattern. The choice of a clas-
sifier to label the input pattern is made during the opera-
tion phase. This choice is typically based on the certainty
of the current decision. Preference is given to more certain
classifiers.

There are also the hybrid methods, in which selection
and fusion techniques are used in order to provide the most
suitable output to classify the input pattern. Although
these methods are considered as hybrid methods, they use
the selection procedure as first option and they will be con-
sidered as selection-based methods in this paper. Of the
methods explained below, the first one is a selection-based
method and the last two methods are hybrid ones.

3.1.2.1. Dynamic classifier selection based on local accuracy
class (Dcs-LA). Woods et al. (1997) use local analysis of
competence to nominate a classifier to label an input.
According to Woods, the main steps to calculate the local
class accuracy (LCA) for a test pattern (x) can be defined
as follows:

1. Take the class labels provided by all classifiers.
2. For each classifier (Di, i = 1, . . . ,L) find k (k = 10 is

recommended) points closest to x for which Di has
provided the same label.

3. Calculate the proportion of points in which Di has
provided the true label and make it be the local class
accuracy of this classifier.

4. Choose the classifier with the highest LCA. Three
main situations may occur, which are:
4.1. If there is only one winner, let it label x.
4.2. If two classifiers are tied, choose a third classifier

with the second highest LCA.
4.3. If all classifiers are tied, pick a random class label

among the tied labels (Woods et al., 1997).
It is important to emphasize that the selection of the
most suitable classifier is made during the test phase and
only in case there is a disagreement among the classifiers.

3.1.2.2. Dynamic classifier selection based on multiple

classifier behavior (Dcs-MCS) (Giacinto and Roli, 2001).

There are two main differences of this method and the pre-
vious one. Firstly, k is variable and, secondly, a classifier is
selected if and only if the highest LCA is substantially
higher than the LCA values of the other classifiers. Other-
wise, the test pattern is classified by majority vote
technique. The main steps of the DCS-MCS are the
following:

1. For each test pattern, select the k nearest neighbor.
2. Select only the neighbor which has similarity higher than

a threshold.
3. Calculate the competence of each classifier to the

selected neighbor.
4. If the best classifier is substantially higher than the

other, select it.
5. Otherwise, use the majority vote fusion method.
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3.1.2.3. Dynamic classifier selection using also decision

templates (Dcs-DT) (Kuncheva, 2002). As the previous
one, this method can switch between combination and
fusion techniques (hybrid method). The main steps of this
method are described as follows:

• After the training process of all classifiers, the training
patterns are grouped into clusters, using a k-Means
clustering procedure (Kuncheva, 2002).

• The classification accuracy of all classifiers is estimated
and the classifier with the highest classification is defined
for each cluster.

• When a test pattern is clamped into the system, the near-
est cluster center is found. If the best classifier of the
nearest cluster is significantly better than the others,
then let the best classifier label the test pattern. Other-
wise, a fusion technique is used with all classifiers.

The main difference of this method and the previous one
is that a statistical test is performed in order to define
whether the best classifier (highest LCA) is significantly dif-
ferent from the others. In (Kuncheva, 2002), a paired t-test
was used to define the significance of the winner. If the win-
ner is not significantly different from the others, a fusion
scheme based on a decision template matrix is performed
(Kuncheva, 2002).

3.2. Diversity in ensembles

As already mentioned, there is no gain in a multi-classi-
fier system (MCS) that is composed of a set of identical
classifiers. The ideal situation, in terms of combining clas-
sifiers, would be a set of classifiers that reach an appropri-
ate trade-off between the accuracy of each member of the
ensemble and uncorrelation between their errors. Diversity
can be reached in three different ways:

• Variations of the parameters of the classifiers (e.g., vary-
ing the initial parameters, such as the weights and topol-
ogy, of a neural network model (Windeatt et al., 2005)).

• Variations of the training dataset of the classifiers (e.g.,
the use of learning strategies such as Bagging and Boost-
ing (Kuncheva, 2004)).

• Variations of the type of classifier (e.g., the use of diff-
erent types of classifiers, such neural networks and
decision trees, as members of an ensemble – hybrid
ensembles).

In this paper, variations of the diversity are captured
using different types of classifiers and different parameters.
There are different diversity measures available from differ-
ent fields of research. In (Kuncheva et al., 2002; Kuncheva
and Whitaker, 2003), for instance, 10 diversity measures
are defined, which can be classified as pairwise (classifiers
are considered on a pairwise basis and then average the
results) and non-pairwise (the whole group of classifiers is
considered). It is important to emphasize that no clear rela-
tionships have been found so far between the different
diversity measures proposed in the literature, and the accu-
racy of classifier ensembles (Kuncheva, 2004; Kuncheva
and Whitaker, 2003). In this paper, two measures are used,
in which one of them is pairwise and the other one is non-
pairwise.

3.2.1. The double fault measure (Giacinto and Roli, 2001)

This measure uses the proportion of the cases that have
been misclassified by both classifiers and it is defined as
follows:

DF i;k ¼
N 00

N 11 þ N 10 þ N 01 þ N 00
ð1Þ

where N00 is the number of patterns in which both are
wrong; N11 is the number of patterns in which both are cor-
rect; N01 is the number of patterns in which the first is
wrong and the second is right; N10 is the number of pat-
terns in which the first is right and the second is wrong.

This is a dissimilarity measure in the numerical taxon-
omy literature (Giacinto and Roli, 2001).

3.2.2. The entropy measure (E) (Kuncheva, 2004;

Kuncheva and Whitaker, 2003)

It is a non-pairwise measure and it is based on the
assumption that the highest diversity among classifiers is
manifested by [L/2] of the votes in yi with the same value
(0 or 1) and the other L � [L/2] with the alternative value.
If they all were 0’s or 1’s, there is no disagreement and they
are not diverse. One possible diversity measure based on
this concept can be defined as (Kuncheva, 2004; Kuncheva
and Whitaker, 2003):

E ¼ 1

N

XN

m¼1

1

ðL� ½L=2�Þ minflðzmÞ; L� lðzmÞg ð2Þ

l(zm) is the number of classifiers that correctly recognizes
zm. E varies between 0 and 1, where 0 indicates no differ-
ence and 1 indicates the highest possible diversity.

4. Experimental work

In this experimental work, an empirical comparison of
ensembles using several structures and sizes is performed.
The base classifiers to be used in this investigation are:
MLP (Multi-layer Perceptron), Fuzzy MLP, K-NN (near-
est neighbor), RBF (radial basis function), SVM (Support
Vector Machine), J48 decision tree and JRIP (Optimized
IREP). The choice of the aforementioned classifiers was
due to the different learning bias that they use during their
functioning. JRIP, for instance, is a propositional rule lear-
ner, Repeated Incremental Pruning to Produce Error
Reduction (RIPPER), which was proposed by William
W. Cohen as an optimized version of IREP (Canuto
et al., 2005). On the other hand, Fuzzy Multi-layer
Perceptron (MLP) is a variation of MLP that clamps
desired membership values (calculated incorporating fuzzy



476 A.M.P. Canuto et al. / Pattern Recognition Letters 28 (2007) 472–486
concepts) to the output nodes during the training phase
instead of choosing binary values as in a winner-take-all
method (Canuto et al., 2001). The errors may be then
back-propagated with respect to the desired membership
values as the fuzzy desired output. In (Canuto et al.,
2001), a method to calculate the fuzzy desired output was
described which is suitable for binary images.

Experiments were conducted using four different ensem-
ble sizes, using 3, 5, 7 and 9 base classifiers. The choice of a
small number of classifiers is due to the fact that diversity
has a strong effect in the performance of ensembles when
using less than 10 classifiers (Kuncheva, 2004). In this
sense, it is believed that the accuracy of the combination
methods used in ensembles with few members is more sen-
sitive to variations in the ensemble members than using lar-
ger numbers of members. For each ensemble size, hybrid
and non-hybrid structures of ensembles were created. For
the non-hybrid structures, the same type of the classifica-
tion methods was used, varying the initial and training
parameters of each method. For instance, in a MLP clas-
sifier, different number of hidden neurons, learning rate,
momentum and interactions are used to create different
versions of the same classifiers.

In order to make the choice of the structures (hybrid) of
the ensembles more systematic, ensembles with 1 (NH), 3
(HYB 3), 5 (HYB 5) and 7 (HYB 7) different types of clas-
sifiers were taken into consideration (for ensembles sizes 3,
5, 7 and 9). As there are several possibilities for each hybrid
structure, this paper presents the average of the accuracy
delivered by all possibilities of the corresponding hybrid
structure. For instance, when using ensembles with 3 types
of classifiers (HYB 3) for ensembles with three base classifi-
ers, there are nine possible structures. In this way, ensemble
with 3 types of classifiers (HYB 3) represents the average of
these nine possibilities. For all four ensemble sizes (3, 5, 7
and 9), the same procedure is performed. In this way, it
becomes easier to make a better analysis of the results.

All the classification methods used in this study, apart
from Fuzzy MLP, were obtained from the WEKA machine
learning visual package (http://www.cs.waikato.ac.nz/~ml/
weka/). The selection-based methods as well as most of the
combination methods were implemented in Java language.

4.1. Databases

Four different databases are used in this investigation,
which are described as follows.

• Database A: It is a breast cancer database, which was
developed by the University of Wisconsin and available
at Blake et al. (1998). Instances were extracted from
images of a fine needle aspirate (FNA) of a breast mass
and they describe features of the cell nucleus. A total
number of 32 attributes were used, in which 30 of them
are real-valued input features. Also, a total number of
682 instances were used, which are equally distributed
into malignant and benign examples.
• Database B: an image database, where instances were
drawn randomly from a database of seven outdoor
images (segmentation dataset from the UCI repository
(Blake et al., 1998)). The images were hand-segmented
to create a classification for every pixel. Each instance
is a 3 · 3 region. Nineteen continuous attributes were
extracted from the region and there are seven different
classes of regions, which are: brickface, sky, foliage,
cement, window, path and grass.

• Database C: It is a protein database which represents a
hierarchical classification, manually detailed, and repre-
sents known structures of proteins. The main protein
classes are all-a, all-b, a/b, a + b and small. It is an
unbalanced database, which has a total of 582 patterns,
in which 111 patterns belong to class all-a, 177 patterns
to class all-b, 203 patterns to a/b, 46 patterns to class
a + b and 45 patterns to class small.

• Database D: It is a primate splice-junction gene
sequences (DNA) with associated imperfect domain the-
ory, obtained from Blake et al. (1998). A total of 3190
Instances using 60 attributes were used. These attributes
describe sequences of DNA used in the process of crea-
tion of proteins.

4.2. Cross-validation

In order to evaluate the robustness of the classifier, a
common methodology is to perform cross-validation on
the classifier. 10- fold cross-validation has been proved to
be statistically good enough in evaluating the performance
of the classifier (Mitchell, 1997). In 10-fold cross-valida-
tion, the training set is equally divided into 10 different
subsets. Nine out of 10 of the subsets are used to train
the classifier and the tenth subset is used as the test set.
The procedure is repeated 10 times, with a different subset
being used as the test set.

4.3. T-test

The comparison of two supervised learning methods is,
often, accomplished by analyzing the statistical significance
of the difference between the mean of the classification cor-
rect rate, on independent test sets, from the methods eval-
uated. In order to evaluate the mean of the correct rate,
several (distinct) data sets are needed. However, the num-
ber of data sets available is often limited. One way to over-
come this problem is to divide the data sets into training
and test sets by the use of a k-fold cross-validation pro-
cedure (Mitchell, 1997), which has been used in this
investigation.

Applying the distinct algorithms to the same folds with k

at least equal to 10, the statistical significance of the differ-
ences between the methods can be measured, based on the
mean of the correct rate from the test sets. The p-value pro-
vided by the t-test means the degree of confidence of the
result. For instance, when using a confidence level of

http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.waikato.ac.nz/~ml/weka/
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95%, one sample is statistically different of the other only if
the p-value is lower than 0.05.
4.4. Individual classifiers

Before starting the investigation of the ensembles, it is
important to analyze the performance (accuracy) of the
individual classifiers. As already mentioned, variations of
the same classifiers were obtained using different setting
parameters. A special attention was made for the classifiers
to have a similar level of accuracy, since a classifier with a
poor accuracy can have a negative influence in the accuracy
of the ensemble. As nine variations of each classifier were
used in this investigation, for simplicity reasons, only the
average accuracies of classifiers are shown in Table 1.

According to the average accuracy provided by the clas-
sifiers, it can be seen that all classifiers have delivered a sim-
Table 1
Classifier accuracy (CA) and standard deviation (SD) of the Individual
Classifiers

Database A Database B Database C Database D

CA SD CA SD CA SD CA SD

knn 73.95 3.58 76.39 2.76 69.45 6.19 75.85 2.81
svm 80.05 4.59 84.75 2.66 83.90 5.55 81.89 3.84
mlp 84.61 3.11 84.88 2.47 78.71 3.45 84.69 4.11
fmlp 85.43 3.61 86.05 2.68 83.67 3.46 85.13 2.68
rbf 82.69 3.61 82.39 3.25 81.86 3.63 81.73 2.65
tree 78.58 3.93 81.69 3.51 78.17 4.52 79.99 3.64
jrip 81.11 3.55 82.75 3.99 74.51 5.21 81.88 3.67

Table 2
Accuracy and standard deviation of hybrid and non-hybrid ensembles with th

Ensembles with three base classifiers

Database A (breast cancer)

NH HYB 3

Voting 72.02 ± 7.01 75.58 ± 2.92
N Bayes 78.76 ± 4.71 78.58 ± 2.35
Sum 77.54 ± 6.03 78.21 ± 2.32
Average 77.78 ± 4.69 78.67 ± 3.3
Median 73.6 ± 3.71 76.94 ± 4.23
MLP 91.18 ± 3.82 92.37 ± 2.17
FuzzyMLP 91.95 ± 3.23 94.75 ± 2.12
DCS-LA 90.8 ± 3.3 92.21 ± 1.7
DCS-DT 90.79 ± 3.28 94.75 ± 2.29
DCS-MCB 92.41 ± 2.77 94.45 ± 1.71

Database C (proteins)

Voting 69.21 ± 11.03 71.71 ± 4.41
N Bayes 73.07 ± 9.56 76.51 ± 3.59
Sum 70.71 ± 10.25 76.02 ± 3.7
Average 72.31 ± 10.28 76 ± 3.83
Median 70.05 ± 11.46 74.6 ± 4.82
MLP 84.33 ± 7.31 90.25 ± 2.7
FuzzyMLP 89.69 ± 6.14 93.16 ± 3.48
DCS-LA 81.04 ± 6.64 89.43 ± 2.39
DCS-DT 86.01 ± 6.91 91.9 ± 2.79
DCS-MCB 88.39 ± 6.26 93.55 ± 2.74
ilar pattern of accuracy for all four databases. The Fuzzy
MLP classifier has provided the highest accuracy for data-
bases A, B and D, while SVM has delivered the highest
accuracy for database C.
4.5. Ensembles with three base classifiers

Table 2 shows accuracy and standard deviation of
ensembles with three base classifiers applied to all four dat-
abases. In this table, 10 different combination methods were
analyzed, which are: Voting, Naı̈ve Bayes (NB), Sum, Aver-
age, Median, MLP (multi-layer perceptron), Fuzzy MLP
and the remaining three are selection-based (Dcs, Dcs-
MCS and Dcs-DT). As it can be seen, three of the chosen
combination methods (Naı̈ve Bayes, MLP and Fuzzy
MLP) are trainable methods. In order to define the training
set of these combination methods, approximately 10% of
the instances of a database were taken out to create a vali-
dation set. For instance, for database D, 290 instances were
taken from the dataset to compose the validation set. In this
sense, the training set (to be used in the 10-fold cross-valida-
tion) will be composed of 2900 instances and the validation
set will be composed of 290 instances. These combination
methods were then trained using the validation set.

For each combination method, their performance using
one type of classifier (non-hybrid structure – NH) and three
types of classifiers (hybrid structure – HYB 3) will be inves-
tigated. As already mentioned, values presented in Table 2
represents the average accuracy and standard deviation of
all possibilities. The bold numbers in this table represents
the highest accuracy for each combination method. The
ree base classifiers

Database B (image)

Dif NH HYB 3 Dif

3.56 80.97 ± 6.06 82.56 ± 6.51 1.59
0.18 85.56 ± 6.58 85.11 ± 7.14 0.45
0.67 82.51 ± 5.55 83.02 ± 5.26 0.51
0.89 83.96 ± 6.4 84.36 ± 7.32 0.4
3.34 81.57 ± 6.62 82.72 ± 7.06 1.15
1.19 95.25 ± 2.97 94.49 ± 2.45 0.76
2.8 95.95 ± 2.4 96.35 ± 2.32 0.4
1.41 93.07 ± 2.95 94.79 ± 2.52 1.72
3.96 94.8 ± 3.04 95.63 ± 2.71 0.83
2.04 95.6 ± 2.04 95.72 ± 2.11 0.12

Database D (splice)

2.5 76.15 ± 4.68 78.3 ± 4.56 2.15
3.44 81.14 ± 4.46 82.93 ± 3.85 1.79
5.31 78.65 ± 3.48 80.67 ± 3.75 2.02
3.69 79.39 ± 4.4 81.85 ± 3.85 2.46
4.55 77.07 ± 5.36 79.59 ± 4.75 2.52
5.92 89.92 ± 2.12 92.73 ± 2.74 2.81
3.47 93.02 ± 3.01 95.34 ± 2.25 2.32
8.39 90.35 ± 2.77 92.77 ± 1.98 2.42
5.89 91.69 ± 2.51 94.15 ± 2.69 2.46
5.16 93.88 ± 2.8 95.87 ± 2.78 1.99
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fourth and seventh columns of Table 2 show the difference
in performance (Dif) delivered by the combination method
when varying the ensemble members. It is calculated by the
difference between the highest and the lowest accuracies.
This value aims to define the variation in performance
when using different ensemble members. In this sense, the
methods which have high values of Dif have a strong var-
iation when using different ensemble members. As a conse-
quence, it can be stated that they are strongly affected by
the choice of the ensemble members.

The accuracies of the ensembles were, on average, higher
than the corresponding individual classifiers. However,
some fusion-based methods had delivered a lower accuracy
than the best individual classifiers. In analyzing the accu-
racy of the combination methods, ensembles with Fuzzy
MLP had delivered the highest accuracy for databases A,
B and C, while Dcs-MCB had provided the highest accu-
racy for database D. Of the fusion-based methods, the
highest average accuracy was reached by ensembles com-
bined by Fuzzy MLP, while Dcs-MCB had delivered the
highest average accuracy of the selection-based methods.
It is important to emphasize that the highest accuracies
(bold numbers in Table 2) delivered by all combination
methods were reached when using a hybrid structure
(HYB 3), in most of the cases.

4.5.1. Difference in performance
When analyzing the difference in performance delivered

by the combination methods, in a general perspective, the
lowest variations (Dif) of the combination methods were
provided by database B, while the highest variations were
Table 3
p-Values of the statistical test performed between the highest and lowest accu

Ensembles with three base classifiers

A B C D

Voting 2.14E�06 0.0536 0.0183 0.0014
N Bayes 0.366 0.3341 0.0004 0.0026
Sum 0.145 0.2705 9.72E�07 0.0002
Average 0.0674 0.3540 0.0004 6.57E�
Median 1.02E�07 0.1393 0.0001 0.0006
MLP 0.00416 0.0334 5.97E�13 6.04E�
FuzzyMLP 3.20E�11 0.1305 1.59E�06 9.98E�
Dcs-LA 0.0001 2.41E�05 4.45E�25 8.87E�
Dcs-DT 6.96E�18 0.0296 1.09E�13 3.06E�
Dcs-MCB 2.41E�09 0.3561 1.28E�12 2.70E�

Ensembles with seven base classifiers

Voting 4.01E�27 0.1498 4.57E�07 1.28E�
N Bayes 3.51E�12 0.0311 3.58E�08 2.81E�
Sum 9.77E�11 0.0510 1.35E�06 7.95E�
Average 1.73E�05 0.2091 1.02E�05 0.0037
Median 3.54E�07 0.2055 5.83E�06 0.0062
MLP 2.09E�05 0.0157 7.61E�10 0.0831

FuzzyMLP 0.0119 0.0133 0.0020 0.0009
Dcs-LA 2.70E�06 0.0044 2.39E�05 2.23E�
Dcs-DT 2.64E�06 0.0163 4.44E�05 0.0001
Dcs-MCB 0.0215 0.0073 0.0006 0.0009
provided by database C. This is an expected result since
database C is an unbalanced database, while database B
is an equally distributed (balanced) database. Another
important fact to be observed is that, apart from database
D, the highest difference in performance was always
reached by a selection-based method (Dcs-LA for data-
bases B and C and Dcs-DT for database A). In contrast,
the lowest difference was always reached by a fusion-based
method (Naı̈ve Bayes for databases A and D, Fuzzy MLP
for database B and Voting for database C). Finally, the
lowest average difference in performance (all four data-
bases) delivered by the combination methods is reached
by Naı̈ve Bayes (1.46), followed by Average (1.86), Sum
(2.13), Fuzzy MLP (2.25), Dcs-MCB (2.33), Voting
(2.45), MLP (2.67), Median (2.89), Dcs-LA (3.29) and
Dcs-DT (3.49). It is important to analyze that the combi-
nation methods that provided the top two highest average
differences were selection-based methods.

In order to evaluate whether the difference in perfor-
mance delivered by the combination methods is significant,
the hypothesis tests (t-test) comparing the highest and low-
est accuracy ensembles, using a confidence level of 95%, is
performed. It is important to emphasize that the use of a
confidence level of 95% means that two differences will be
statistically significant if the p-value of this comparison is
less than 0.05. If the difference in performance of a combi-
nation method is statistically significant, this means that
the variation reached when changing the ensemble mem-
bers is strong enough to be detected by a statistical test.
In this sense, it can be stated that this combination method
is sensitive to changes in the ensemble members.
racies delivered by the combination methods for databases A–D

Ensembles with five base classifiers

A B C D

2.88E�11 0.0736 9.78E�06 0.0096
2.75E�05 0.1435 0.0010 0.0182
2.43E�09 5.65E�06 1.22E�06 0.0018

05 3.17E�11 0.1757 0.0007 0.0449
7.40E�08 0.2149 0.0001 0.0793

12 0.0068 0.0008 8.94E�16 0.0001
09 5.03E�08 0.1771 3.78E�09 0.0001
11 1.64E�09 3.52E�05 3.62E�15 7.06E�06
09 2.59E�10 0.0023 1.46E�12 0.0051
06 0.0001 0.2153 8.91E�11 0.0681

Ensembles with nine base classifiers

05 3.12E�28 3.15E�06 1.92E�42 9.95E�11
06 1.61E�21 1.47E�05 1.21E�31 3.27E�20
07 4.51E�27 3.65E�13 1.71E�50 5.02E�13

1.15E�10 0.0006 6.81E�16 6.79E�08
9.13E�11 0.0021 3.78E�20 4.62E�06
3.32E�19 0.0002 1.28E�33 1.72E�28
3.90E�10 0.0247 4.87E�24 4.35E�08

05 5.79E�23 3.79E�05 1.51E�22 2.87E�31
1.52E�18 0.0035 3.52E�14 7.15E�10
1.73E�07 0.0003 4.08E�11 0.0044
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Table 3 shows the p-values for all differences in perfor-
mance, including all four databases. In this table, the bold
numbers represent differences in performance which are
not statistically significant. It was observed from the top
left part of Table 3 that ensembles with MLP, Dcs-LA
and Dcs-DT combination methods have differences in per-
formance which are statistically significant in all four dat-
abases. Ensembles that have differences in performances
which are statistically significant in three databases (apart
from database B) are Voting, Median, Fuzzy MLP and
Dcs-MCB. Finally, ensembles that have differences in per-
formances which are statistically significant for two data-
bases are NB, Sum and Average. Based on this result, it
could be concluded that ensembles with MLP, Dcs-LA
and Dcs-DT are the top three methods affected by varia-
tions in the ensemble members (in all four databases). In
contrast, ensembles with NB, Sum and average are the least
three methods affected by variations in the ensemble mem-
bers, since the difference in performance is statistically sig-
nificant in only two databases.
4.5.2. Diversity
In order to analyze the level of diversity of the ensem-

bles, Table 4 shows two diversity measures applied for all
ensemble structures and sizes. The diversity measures were
described in Section 3.2. As already mentioned, double
fault is a pairwise measure while entropy is a non-pairwise
one. The first and second lines of Table 4 show the diversity
measures provided by ensembles with three base classifiers.
As it can be observed from Table 4, in most of the cases,
variations in the ensembles member were reflected in the
diversity of the ensembles in an expected way.

In analyzing the behavior of the diversity measures
when varying from non-hybrid (NH) to the hybrid (HYB
3) structures of the ensembles, it could be seen that the
Table 4
Two diversity measures applied to all ensemble structures and sizes for all fou

A B

Double fault Entropy Double fault Entrop

Ensembles with three base classifiers

NH 0.307 0.800 0.279 0.837
HYB 3 0.282 0.823 0.267 0.826

Ensembles with five base classifiers

NH 0.290 0.824 0.227 0.859
HYB 3 0.257 0.815 0.220 0.867
HYB 5 0.253 0.825 0.219 0.870

Ensembles with seven base classifiers

NH 0.280 0.816 0.249 0.854
HYB 3 0.239 0.849 0.257 0.859
HYB 5 0.236 0.871 0.239 0.824
HYB 7 0.200 0.920 0.260 0.830

Ensembles with nine base classifiers

NH 0.339 0.816 0.261 0.814
HYB 3 0.333 0.832 0.254 0.788
HYB 5 0.279 0.849 0.291 0.849
HYB 7 0.277 0.846 0.280 0.843
double fault measure has decreased, while entropy has
increased in three databases (apart from database B). For
both diversity measures, this means that hybrid ensembles
had provided higher level of diversity than the non-hybrid
ones. This is also reflected in the accuracy of the ensembles
since the highest accuracies were reached by the hybrid
structures (HYB 3), in almost all cases. In this sense, based
on the experiments of this paper, there might be a relation
between accuracy and diversity emerged by the choice of
the ensemble members. However, it is important to empha-
size that this is a data-dependent result, in which this may
not be true when using other databases.
4.6. Ensembles with five base classifiers

Table 5 shows the accuracy and standard deviation of
ensembles with five base classifiers applied to all four
databases. In this table, 10 different combination methods
were analyzed, which are: Voting, Naı̈ve Bayes (NB),
Sum, Average, Median, MLP (multi-layer Perceptron),
Fuzzy MLP and the remaining three are selection-based
(Dcs, Dcs-MCS and Dcs-DT). For each combination
method, their performance using one type of classifier
(NH), three types of classifiers (HYB 3) and five types of
classifiers (HYB 5) will be investigated. As in the previous
section, the fourth and seventh columns of Table 5 show
the difference in performance (Dif) delivered by the combi-
nation method when varying the ensemble members.

The accuracies of the ensembles were, on average, higher
than the corresponding ensembles with three base classifi-
ers. One interesting fact to be noticed is that all three selec-
tion-based methods did not improve the accuracy in
comparison with ensembles with three base classifiers for
database C, which is an unbalanced database. In contrast,
this fact was not observed for the fusion-based methods. In
r databases

C D

y Double fault Entropy Double fault Entropy

0.314 0.824 0.250 0.826
0.290 0.826 0.216 0.854

0.287 0.836 0.224 0.789
0.314 0.839 0.345 0.791
0.233 0.865 0.215 0.820

0.267 0.847 0.240 0.751
0.242 0.860 0.239 0.782
0.210 0.873 0.224 0.796
0.190 0.900 0.280 0.810

0.234 0.817 0.281 0.816
0.244 0.812 0.246 0.828
0.257 0.839 0.239 0.857
0.276 0.853 0.277 0.859



Table 5
Accuracy and standard deviation of hybrid and non-hybrid ensembles with five base classifiers

Ensembles with five base classifiers

Database A (breast cancer) Database B (image)

NH HYB 3 HYB 5 Dif NH HYB 3 HYB 5 Dif

Voting 73.85 ± 6.26 80.75 ± 6.11 82.61 ± 5.72 8.76 85.26 ± 3.48 84.43 ± 3.73 85 ± 2.65 0.83
N Bayes 78.44 ± 5.12 81.58 ± 4.66 81.23 ± 5.57 3.14 89.74 ± 4.68 88.97 ± 4.5 89.35 ± 4.61 0.77
Sum 77.56 ± 5.9 81.12 ± 3.78 84.24 ± 3.99 6.68 86.24 ± 4.09 85.45 ± 3.07 87.86 ± 2.05 2.41
Average 75.98 ± 4.9 81.63 ± 3.88 83.03 ± 4.89 7.05 88.15 ± 4.86 87.4 ± 5.25 88.01 ± 6.58 0.75
Median 76.02 ± 5.61 80.72 ± 5.45 83.5 ± 8.31 7.48 85.73 ± 5.3 84.84 ± 6.62 85.82 ± 6.57 0.89
MLP 93.47 ± 4.85 94.42 ± 2.41 95.45 ± 1.42 1.98 95.49 ± 3 94.59 ± 2.21 95.83 ± 1.64 1.24
FuzzyMLP 94.27 ± 2.85 96.43 ± 2.01 97.27 ± 2.26 3 96.86 ± 2.08 96.58 ± 1.9 96.92 ± 1.92 0.34
DCS-LA 91.2 ± 3.58 93.99 ± 2.22 95.53 ± 3.02 4.33 94.51 ± 2.78 95.51 ± 2.3 96.45 ± 1.33 1.94
DCS-DT 91.83 ± 2.99 94.33 ± 2.91 95.47 ± 2.05 3.64 96.1 ± 1.94 97.06 ± 2.27 96.58 ± 1.54 0.96
DCS-MCB 94.13 ± 3.34 95.32 ± 1.97 96.37 ± 2.29 2.24 96.54 ± 1.87 96.67 ± 2.12 96.82 ± 1.68 0.28

Database C (proteins) Database D (splice)

Voting 72.84 ± 6.79 75.95 ± 4.18 78.45 ± 5.43 5.61 78.86 ± 4.95 79.56 ± 4.62 81.31 ± 5.62 2.45
N Bayes 77.88 ± 8.22 79.39 ± 3.97 82.39 ± 4.77 4.51 82.16 ± 3.57 83.42 ± 4.02 82.57 ± 4.92 1.26
Sum 74.58 ± 6.99 78.47 ± 4.02 80.81 ± 4.87 6.23 80.58 ± 2.8 81.49 ± 3.4 82.5 ± 3.97 1.92
Average 76.31 ± 8.47 78.93 ± 5.06 81.15 ± 4.95 4.84 81.48 ± 3.47 82.57 ± 4.49 82.47 ± 4.15 1.09
Median 73.65 ± 7.8 77.34 ± 5.47 79.6 ± 6.81 5.95 79.86 ± 5.55 80.62 ± 5.71 81.52 ± 6.49 1.66
MLP 84.47 ± 4.88 89.19 ± 2.56 92.28 ± 2.75 7.81 92.99 ± 2.11 93.45 ± 2.35 94.65 ± 2.44 1.66
FuzzyMLP 89.27 ± 4.48 93.61 ± 3.9 94.38 ± 3.37 5.11 94.97 ± 2.23 95.33 ± 2.19 96.64 ± 2.2 1.67
DCS-LA 80.41 ± 7.05 86.65 ± 3.1 90.8 ± 2.32 10.39 93.16 ± 2.44 94.38 ± 1.98 95.34 ± 2.37 2.18
DCS-DT 85.33 ± 5.68 89.44 ± 2.07 92.88 ± 2.77 7.55 93.76 ± 3 94.93 ± 3.03 95.29 ± 2.85 1.53
DCS-MCB 87.94 ± 5.91 92.05 ± 1.87 94.89 ± 2.6 6.95 95.38 ± 2.17 95.57 ± 2.05 96.06 ± 2.4 0.68
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analyzing the accuracy of the combination methods, as in
the previous section, the highest accuracy was always
reached by ensembles combined by Fuzzy MLP (databases
B and C) and Dcs-MCB (databases A and D). As it was
expected, of the fusion-based methods, the highest average
accuracy was reached by ensembles combined by Fuzzy
MLP, while Dcs-MCB had delivered the highest average
accuracy of the selection-based methods. As in the previous
section, the highest accuracies (bold numbers in Table 5)
delivered by all combination methods were always reached
when using the totally hybrid structure (HYB 5), followed
by the partial hybrid structure (HYB 3) and by the non-
hybrid structure (NH), for all four databases.

4.6.1. Difference in performance

When analyzing the difference in performance delivered
by the combination methods (Dif), in a general perspective,
there was an improvement in the difference in performance,
when compared with ensembles using three base classifiers.
The magnitude of the increase is higher for the non-train-
able fusion-based methods, such as Voting, Sum, Average
and Median. In comparing ensembles combined by Fuzzy
MLP and by Dcs-MCB, the magnitude of the increase
was basically the same, being the two least affected meth-
ods when increasing the number of classifiers in an en-
semble from 3 to 5. Unlike the previous section, it was
observed that, apart from database C, the highest differ-
ence in performance was always reached by a fusion-based
method (Voting for databases A and D, Sum for database
B and Naı̈ve Bayes for database C). In contrast, the lowest
difference was reached by a fusion-based method in two
databases (MLP for database A and Naı̈ve for database
C) and by a selection-based method in two databases
(Dcs-MCB for databases B and D).

As in the previous section, the lowest average difference
in performance (all four databases) delivered by the combi-
nation methods is reached by Naı̈ve Bayes (2.42), followed
by Fuzzy MLP (2.53), Dcs-MCB (2.58), MLP (3.17), Dcs-
DT (3.42), Average (3.43), Median (4.00), Sum (4.31), Vot-
ing (4.41) and Dcs-LA (4.71). It is important to emphasize
the improvement reached by the selection-based methods
in the list of average difference, when compared with ensem-
bles using three base classifiers. Dcs-DT, for instance, was
the ninth method in the list of average difference for ensem-
bles with three base classifiers and, now, it is in fourth place.
In addition to this, ensemble with Dcs-DT is the only
method in which the average difference decreased, in com-
parison with ensembles using three base classifiers.

In order to evaluate whether the difference in perfor-
mance delivered by the combination methods is significant,
the hypothesis tests (t-test) comparing the highest and low-
est accuracy ensembles, using a confidence level of 95%, is
performed. Table 3 shows the p-values for all differences in
performance, including all four databases. It was observed
from the top right part of Table 3 that ensembles with Sum,
MLP, Dcs-LA and Dcs-DT combination methods have
differences in performance which are statistically significant
in all four databases. Ensembles that have differences in
performances which are statistically significant in three dat-
abases (apart from database B) are Voting, NB, Average,
Fuzzy MLP and Dcs-MCB. Finally, the only ensemble in
which the difference in performance is statistically signifi-
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cant for two databases is Median. Based on this result, it
could be concluded that ensembles with Sum, MLP, Dcs-
LA and Dcs-DT are the top four methods affected by vari-
ations in the ensemble members (in all four databases).

4.6.2. Diversity

In order to analyze the level of diversity of the ensem-
bles, Table 3 shows two diversity measures applied for all
ensemble structures and sizes. The fourth, fifth and sixth
lines of Table 3 show the diversity measures provided by
ensembles with five base classifiers. An interesting fact to
be noticed from Table 3 is that, unlike the previous section,
the double fault measure did not reflect the expected
decrease in the diversity of the ensembles. For databases
C and D, the double fault measure did not decrease when
varying from non-hybrid (NH) to hybrid (HYB3 and
HYB 5). It is important to emphasize that both databases
are unbalanced ones. In contrast, the entropy measure has
increased when changing from non-hybrid to hybrid struc-
tures for three databases (apart from database A). This
means that, according to the entropy measure, hybrid
ensembles had provided higher level of diversity than the
non-hybrid ones, which is also reflected in the accuracy
of the ensembles. In this sense, there might be a relation
between accuracy and diversity emerged by the choice of
the ensemble members, at least for the entropy measure.

4.7. Ensemble with seven base classifiers

Table 6 shows the accuracy and standard deviation of
ensembles with seven base classifiers applied to all four data-
Table 6
Accuracy and standard deviation of hybrid and non-hybrid ensembles with se

Ensembles with seven base classifiers

Database A (breast cancer)

NH HYB 3 HYB 5 HYB 7 D

Voting 76.51 ± 6.41 80.99 ± 3.04 74.87 ± 3.06 76.26 ± 2.69
N Bayes 79.39 ± 4.32 84.28 ± 2.18 87.09 ± 2.73 91.06 ± 3.94
Sum 77.1 ± 6.15 81.97 ± 3.14 78.25 ± 3.18 81.26 ± 3. 69
Average 78.17 ± 5.1 83.05 ± 4.64 83.05 ± 5.31 85.69 ± 4.69
Median 76.03 ± 7.2 81.36 ± 6.2 77.86 ± 7 81.26 ± 5.98
MLP 89.73 ± 5.82 95.03 ± 2.11 95.52 ± 1.35 97.81 ± 1.84
FuzzyMLP 93.75 ± 3.41 95.95 ± 1.36 95.78 ± 1.18 96.33 ± 2.39
DCS-LA 92.5 ± 3.1 95.15 ± 1.42 95.66 ± 1.24 97.36 ± 1.13
DCS-DT 92.33 ± 3.06 95.23 ± 2.04 96.02 ± 1.72 97.23 ± 2.14
DCS-MCB 94.51 ± 2.6 96.27 ± 2.11 94.89 ± 1.85 96.28 ± 1.99

Database C (proteins)

Voting 71.84 ± 6.05 73.26 ± 4.97 78.5 ± 5.27 82.59 ± 5.24 1
N Bayes 75.14 ± 5.72 78.65 ± 3.76 82.76 ± 6.19 86.59 ± 5.48 1
Sum 74.31 ± 5.87 77.03 ± 3.58 81.86 ± 6.09 84.33 ± 5.71 1
Average 74.88 ± 7 78.28 ± 5.03 82.08 ± 6.94 85.33 ± 5.14 1
Median 73.23 ± 6.89 74.55 ± 5.91 79.49 ± 6.16 83.97 ± 5.89 1
MLP 84.64 ± 5.98 86.55 ± 2.59 88.94 ± 2.66 92.64 ± 4.3
FuzzyMLP 90.25 ± 4.16 90.48 ± 2.33 91.34 ± 3.17 94.36 ± 3.59
DCS-LA 82.42 ± 6.69 84.14 ± 3.72 88.26 ± 2.64 91.76 ± 3.67
DCS-DT 85.52 ± 5.81 87.04 ± 2.89 91.26 ± 2.17 93.19 ± 1.28
DCS-MCB 88.39 ± 6.45 91.29 ± 2.06 93.22 ± 1.91 95.37 ± 238
bases. For each combination method, their performance
using one type of classifier (NH), three types of classifiers
(HYB 3), five types of classifiers (HYB 5) and seven types
of classifiers (HYB 7) will be investigated. As in the previ-
ous sections, the fourth and seventh columns of Table 6
show the difference in performance (Dif) delivered by the
combination method when varying the ensemble members.

The accuracies of the ensembles were, on average, higher
than the corresponding ensembles with five base classifiers.
However, for database C, the opposite fact was observed,
in which the accuracies delivered by ensembles with seven
base classifiers are slightly lower than ensembles with five
base classifiers.

In analyzing the accuracy of the combination methods,
unlike the previous section, the highest accuracy was
always reached by ensembles combined by Dcs-MCB, fol-
lowed closely by ensembles with Fuzzy MLP. As it was
expected, of the fusion-based methods, the highest average
accuracy was reached by ensembles combined by Fuzzy
MLP, while Dcs-MCB had delivered the highest average
accuracy of the selection-based methods. As in the previous
section, the highest accuracies (bold numbers in Table 6)
delivered by all combination methods were always reached
when using a totally hybrid structure (HYB 7), followed by
the two partially hybrid structures (HYB 5 and HYB 3)
and by the non-hybrid structure (NH), for all four data-
bases.

4.7.1. Difference in performance

When analyzing the difference in performance delivered
by the combination methods, in a general perspective, there
ven base classifiers

Database B (image)

if NH HYB 3 HYB 5 HYB 7 Dif

6.12 84.86 ± 3.94 84.54 ± 3.06 84.71 ± 4.59 85.56 ± 1.15 1.02
6.78 87.89 ± 6.05 89.17 ± 3.63 90.06 ± 5.05 91.56 ± 2.29 3.67
4.87 86.13 ± 3.16 86.26 ± 3.25 85.73 ± 3.62 87.67 ± 1.98 1.94
7.52 87.63 ± 5.58 87.51 ± 5.35 88.28 ± 5.34 89 ± 7.33 1.49
5.33 85.47 ± 6.57 85.2 ± 5.96 84.73 ± 6.4 86.58 ± 7.99 1.85
8.08 96.49 ± 1.85 96.01 ± 2.64 96.32 ± 2.59 97.89 ± 1.99 1.88
2.58 97.17 ± 1.8 97.15 ± 2.12 97.42 ± 2.47 95.56 ± 2.09 1.86
4.86 95.8 ± 2.02 95.95 ± 1.79 96.56 ± 1.9 97.56 ± 0.97 1.76
4.9 96.36 ± 1.69 96.73 ± 1.89 97.01 ± 2.0 97.56 ± 1.07 1.2
1.77 96.45 ± 1.78 97.09 ± 1.89 96.92 ± 2.49 97.98 ± 2 1.53

Database D (splice)

0.75 77.42 ± 5.66 79.15 ± 4.96 80.87 ± 4.28 85.56 ± 2.28 8.14
1.45 84.99 ± 4.27 84.03 ± 4.62 85.59 ± 3.61 91.11 ± 2.19 7.08
0.02 82.86 ± 4.55 82.37 ± 3.92 84.08 ± 4.22 88.78 ± 2.04 6.41
0.45 84.08 ± 4.55 83.6 ± 5.07 84.6 ± 5.39 88.47 ± 7.94 4.87
0.74 80.98 ± 6.61 80.89 ± 6.49 81.82 ± 6.57 86.48 ± 7.98 5.59
8 92.64 ± 2.85 94.04 ± 2.53 94.98 ± 2.5 95.19 ± 1.97 2.55
4.11 94.46 ± 2.95 95.3 ± 2.59 95.94 ± 1.97 97.66 ± 2.68 3.2
9.34 92.72 ± 3.16 94.29 ± 2.29 96.05 ± 2.18 97.09 ± 0.79 4.37
7.67 94.55 ± 2.54 95.38 ± 2.6 96.31 ± 2.66 95.7 ± 1.18 1.76
6.98 95.71 ± 2.84 95.34 ± 2.68 95.54 ± 2.65 96.99 ± 1.88 1.65
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was an improvement in the difference in performance, when
compared with ensembles with five base classifiers. In com-
paring ensembles with Fuzzy MLP and with Dcs-MCB, the
magnitude of the increase was basically the same, being the
two least affected methods when increasing the number of
classifiers in an ensemble from 5 to 7. As in the previous
section, it was observed that the highest difference in per-
formance was always reached by a fusion-based method.
In contrast, the lowest difference was reached by a
fusion-based method in two databases (Fuzzy MLP for
database C and Voting for database B) and by a selec-
tion-based method in two databases (Dcs-MCB for data-
bases A and D). The lowest average difference (all four
databases) delivered by the combination methods is
reached by Fuzzy MLP (2.94), followed by Dcs-MCB
(2.98), Dcs-DT (3.88), Dcs-LA (5.08), MLP (5.13), Sum
(5.81), Median (5.88), Average (6.08), Voting (6.51), and
Naı̈ve Bayes (7.25). It is important to emphasize the
improvement of the ensembles combined by Dcs-LA,
which was the last in the list of average difference for
ensembles with five base classifiers and, now, it is in fourth
place. Another interesting fact is that the selection-based
methods are in the top four places in the list of average
differences, which is the opposite of ensembles with three
base classifiers.

In order to evaluate whether the difference in perfor-
mance delivered by the combination methods is significant,
the hypothesis tests (t-test) comparing the highest and low-
est accuracy ensembles, using a confidence level of 95%, is
performed. Table 3 shows the p-values for all differences in
performance, including all four databases. It was observed
from the bottom left part of Table 3 that ensembles with
NB, Fuzzy MLP, Dcs-LA, Dcs-MCB and Dcs-DT combi-
nation methods have differences in performance which are
statistically significant in all four databases. All other
Ensembles have differences in performances which are sta-
tistically significant three databases (Voting, Sum, Average,
Median and MLP). It is important to emphasize that
although ensembles with Fuzzy MLP and Dcs-MCB have
the top two lowest average differences, these differences
are statistically significant because the standard deviation
of these combination methods are low. On the other hand,
ensembles combined by Average or Median, for instance,
have high standard deviations for database B (around
5.0), making the statistical test concludes that this differ-
ence is not significant.

4.7.2. Diversity

In order to analyze the level of diversity of the ensem-
bles, Table 3 shows two diversity measures applied for all
ensemble structures and sizes. Lines 8–11 of Table 3 show
the diversity measures provided by ensembles with seven
base classifiers. An interesting fact to be noticed from
Table 3 is that, as in the previous section, the double fault
measure did not reflect the expected decrease in the diver-
sity of the ensembles. For databases B and D, the double
fault measure did not decrease when varying from non-
hybrid to hybrid. In contrast, the entropy measure has
increased when changing from non-hybrid to hybrid struc-
tures for three databases (apart from database B). This
means that, according to the entropy measure, hybrid
ensembles had provided higher level of diversity than the
non-hybrid ones. This is also reflected in the accuracy of
the ensembles. In this sense, based on the experiments of
this paper, there might be a relation between accuracy
and diversity emerged by the choice of the ensemble mem-
bers, at least for the entropy measure.

4.8. Ensembles with nine base classifiers

Table 7 shows the accuracy and standard deviation of
ensembles with nine base classifiers applied to all four dat-
abases. For each combination method, their performance
using one type of classifier (NH), three types of classifiers
(HYB 3), five types of classifiers (HYB 5) and seven types
of classifiers (HYB 7) will be investigated. As in the previ-
ous sections, the fourth and seventh columns of Table 7
show the difference in performance (Dif) delivered by the
combination method when varying the ensemble members.

The accuracies of the ensembles were, on average, higher
than the corresponding ensembles with seven base classifi-
ers. In analyzing the accuracy of the combination methods,
as in the previous section, the highest accuracy was always
reached by ensembles combined by a selection-based
method. Also, the highest accuracies were reached when
using a totally hybrid structure (HYB 7), followed by the
two partially hybrid structures (HYB 5 and HYB 3) and
by the non-hybrid structure (NH), for all four databases.

As it was expected, of the fusion-based methods, the
highest average accuracy was reached by ensembles com-
bined by Fuzzy MLP, while Dcs-MCB had delivered the
highest average accuracy of the selection-based methods.
It is important to emphasize the increase in perfor-
mance reached by the Dcs-DT and Dcs-LA (Dcs-MCB
was always between the best or second best combiner).
For database C, for instance, the accuracies of Dcs-LA
and Dcs-DT were even higher than Fuzzy MLP, which
was not the case for ensembles with fewer base classifiers.

4.8.1. Difference in performance

When analyzing the difference in performance delivered
by the combination methods, in a general perspective, there
was an improvement in the difference in performance, when
compared with ensembles with seven base classifiers. As in
the previous section, it was observed that the highest differ-
ence in performance was always reached by a fusion-based
method. In contrast, the lowest difference was reached by a
fusion-based method in only one database (Fuzzy MLP for
database B) and by a selection-based method in three dat-
abases (Dcs-MCB for databases A and D and Dcs-DT for
database C).

The lowest average difference in performance (all four
databases) delivered by the combination methods is
reached by Dcs-MCB (1.94), followed by Fuzzy MLP



Table 7
Accuracy and standard deviation of hybrid and non-hybrid ensembles with nine base classifiers

Ensembles with nine base classifiers

Database A (breast cancer) Database B (image)

NH HYB 3 HYB 5 HYB 7 Dif NH HYB 3 HYB 5 HYB 7 Dif

Voting 75.32 ± 5.87 78.57 ± 2.98 84.31 ± 3.26 85.69 ± 2.16 10.37 85.21 ± 4.6 82.86 ± 4.63 86.07 ± 4.11 85.69 ± 2.16 3.21
N Bayes 81.21 ± 6.12 83.98 ± 2.51 88.78 ± 3.67 90.51 ± 3.22 9.3 88.89 ± 6.66 87.9 ± 3.87 90.7 ± 4.6 90.51 ± 3.22 2.8
Sum 79.23 ± 5.56 82.98 ± 3.35 87.2 ± 3.51 88.84 ± 2.24 9.61 85.01 ± 3.38 85.36 ± 3.42 87.31 ± 4.07 88.84 ± 2.24 3.83
Average 80.11 ± 7.03 83.23 ± 4.97 87.08 ± 6.42 87.95 ± 6.5 7.84 88.41 ± 6.03 86.91 ± 5.21 89.75 ± 5.99 87.95 ± 6.5 2.84
Median 78.25 ± 7.95 81.86 ± 6.39 85.36 ± 6.64 86.88 ± 6.82 8.63 84.8 ± 4.7 84.13 ± 5.48 86.39 ± 4.65 86.88 ± 6.82 2.75
MLP 91.68 ± 3.61 93.46 ± 2.11 95.48 ± 2.61 96.72 ± 1.9 5.04 95.49 ± 1.81 95.43 ± 2.58 95.7 ± 2.4 96.72 ± 1.9 1.29
FuzzyMLP 93.96 ± 2.88 95.86 ± 2.37 96.71 ± 2.12 96.73 ± 2.0 2.77 96.84 ± 2.61 96.44 ± 2.51 97.2 ± 2.4 96.73 ± 2 0.76
DCS-LA 93.09 ± 2.41 96.23 ± 1.69 96.63 ± 1.13 96.89 ± 1.2 3.8 95.95 ± 2.17 95.55 ± 1.98 96.18 ± 1.83 96.62 ± 1.2 1.07
DCS-DT 93.34 ± 2.77 95.81 ± 1.49 97.04 ± 1.34 96.86 ± 1.35 3.7 96.4 ± 2.38 96.43 ± 2.15 97.39 ± 1.87 97.18 ± 1.41 0.99
DCS-MCB 95.09 ± 3.1 95.52 ± 1.81 97.1 ± 2.15 97.38 ± 1.78 2.29 96.54 ± 1.8 96.47 ± 2.62 97.73 ± 1.87 97.38 ± 1.78 1.19

Database C (proteins) Database D (splice)

Voting 74.8 ± 3.93 78.36 ± 3 82.54 ± 4.84 85.43 ± 2.19 10.63 77.45 ± 3.88 79.45 ± 4.57 81.61 ± 4.72 82.56 ± 4.87 5.11
N Bayes 81.5 ± 2.64 82.96 ± 2.17 86.92 ± 6.4 90.09 ± 3.91 8.59 82.42 ± 3.47 83.6 ± 3.93 85.08 ± 3.97 88.8 ± 3.57 6.38
Sum 75.92 ± 3.65 79.64 ± 2.25 85.45 ± 5.34 88.17 ± 2.37 12.25 80.38 ± 3.03 82.06 ± 4.01 83.01 ± 3.48 85.9 ± 5.04 5.52
Average 79.94 ± 4.08 81.79 ± 3.63 86.49 ± 6.53 87.81 ± 6.05 7.87 81.27 ± 4.86 82.26 ± 5.03 84.56 ± 5.38 86.46 ± 6.12 5.19
Median 75.06 ± 6.22 79.09 ± 5.48 83.76 ± 7.49 86.49 ± 6.4 11.43 79.44 ± 6.67 80.15 ± 5.94 81.94 ± 5.55 84.71 ± 6.86 5.27
MLP 89.76 ± 2.84 91.83 ± 1.47 93.03 ± 2.39 96.19 ± 1.78 6.43 91.23 ± 2.38 93 ± 3.59 93.33 ± 2.53 96.2 ± 1.78 4.97
FuzzyMLP 91.71 ± 2.92 92.59 ± 2.56 94.6 ± 2.34 96.78 ± 1.88 5.07 94.42 ± 1.97 95.34 ± 2.35 96.5 ± 2.36 96.38 ± 1.88 2.08
DCS-LA 91.97 ± 2.7 92.83 ± 2.31 95.1 ± 2.81 96.3 ± 1.55 4.33 91.09 ± 2.74 92.89 ± 2.68 95.53 ± 2.61 96.46 ± 1.16 5.37
DCS-DT 93.59 ± 3.02 95.15 ± 2.67 96.58 ± 1.83 96.93 ± 1.46 3.34 94.07 ± 3.08 95.38 ± 3.15 96.63 ± 3.32 96.77 ± 1.62 2.7
DCS-MCB 93.8 ± 3.38 95.87 ± 2.28 96.29 ± 2.63 96.99 ± 1.7 3.19 95.58 ± 2.82 95.96 ± 2.61 96.43 ± 2.84 96.67 ± 1.96 1.09
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(2.67), Dcs-DT (2.68), Dcs-LA (3.64), MLP (4.43), Average
(5.94), Naı̈ve Bayes (6.77), Median (7.02), Voting (7.33),
and Sum (7.8). It is important to emphasize that the aver-
age difference in performance of the ensembles with Fuzzy
MLP was not higher than Dcs-MCB for the first time, since
for all other ensemble sizes Fuzzy MLP had lower average
difference. Another interesting fact is that, as in the previ-
ous section, the selection-based methods are in the top four
places in the list of average differences, which is the oppo-
site of ensembles with three base classifiers. Also, for the
top five ensembles, the average difference decreased, when
compared with ensembles with seven base classifiers. This
shows that these methods are not affected when increasing
the number of classifiers in an ensemble from 7 to 9.

In order to evaluate whether the difference in perfor-
mance delivered by the combination methods is significant,
the hypothesis tests (t-test) comparing the highest and low-
est accuracy ensembles, using a confidence level of 95%, is
performed. Table 3 shows the p-values for all differences in
performance, including all four databases. It was observed
from the bottom right part of Table 3 that all ensembles
have differences in performance which are statistically sig-
nificant in all databases. It could be concluded that all
ensembles are equally affected by variations in the ensemble
members when using ensembles with nine base classifiers,
since their differences in performance is statistically signi-
ficant in all four databases.
4.8.2. Diversity
In order to analyze the level of diversity of the ensembles,

Table 3 shows two diversity measures applied for all ensem-
ble structures and sizes. Lines 13–16 of Table 3 show the
diversity measures provided by ensembles with nine base
classifiers. As in the previous sections, the double fault mea-
sure did not reflect the expected decrease in the diversity of
the ensembles, for all four databases, showing no relation
between accuracy and diversity. In contrast, the entropy
has always increased, when varying from non-hybrid to
hybrid structures. This means that, based on the experi-
ments of this paper, there might be a relation between accu-
racy and diversity emerged by the choice of the ensemble
members, at least for the entropy measure.
4.9. Discussion of the results

The main aim of this investigation was to analyze the
effect of the choice of the ensemble members in diversity
and accuracy of the ensembles. In order to do that, several
structures and sizes of ensembles were analyzed. As a result
of this investigation, it can be concluded that, as expected,
the pattern of performance is data-dependent. However,
some general statements can be drawn from this analysis,
which can be described as follows.

• The highest accuracies were always reached by the
hybrid structures, for all four ensemble sizes analyzed.
The general pattern of performance was that the highest
accuracies were reached by totally hybrid ensembles
(HYB 7), followed by partially hybrid (HYB 5 and
HYB 3) and by non-hybrid structures (NH).

• The variation in performance when using different
ensemble members (Dif values) usually increased when
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increasing the number of classifiers in an ensemble.
However, when increasing from 7 to 9 base classifiers,
the difference in performance decreased for some combi-
nation methods.
– The selection-based methods had higher Dif values

than the fusion-methods for ensembles with few base
classifiers (for instance, three base classifiers). This
means that these methods are more sensitive to vari-
ations in the ensemble members than the fusion-
based methods, when using ensembles with few base
classifiers. However, as the number of base classifiers
increases, this situation changes. For instance, for
ensembles with nine base classifiers, all three selec-
tion-based methods were in the top four methods
with low average Dif values. This means that the
more base classifiers an ensemble has, the least sensi-
tive to variations in the ensemble members the selec-
tion-based methods are.

– However, as already mentioned, the Dif values tend
to increase when increasing the number of base clas-
sifiers for all combination methods. As a consequence
of this, the differences in performance tend to be sta-
tistically significant for all combination methods. For
instance, when using three base classifiers, only three
(out of 10) combination methods have differences in
performance statistically significant for all four data-
bases. In contrast, when using nine base classifiers,
all 10 combination methods have differences in per-
formance statistically significant for all four data-
bases.
• In relation to the diversity measures used in this investi-
gation, the double fault measure only reflected the
expected increase of diversity when using ensembles with
three base classifiers. For all other ensemble sizes, the
double fault measure had an inconstant behavior. On
the other hand, entropy, which is a non-pairwise mea-
sure, did reflect the expected increase of diversity with
all ensemble sizes. In this sense, there might be a relation
between accuracy and diversity emerged by the choice of
the ensemble members when using three base classifiers,
illustrated by both diversity measures. For the other
three ensemble sizes, the relation between accuracy
and diversity was illustrated only by the entropy mea-
sure. It is important to emphasize that this result was
not an expected one since that no clear relationships
have been found so far between the two diversity mea-
sures (double fault and entropy) and the accuracy of
classifier ensembles in the literature. This might be an
indication that it is a data-dependent result, in which
this may not be true when using other databases.
4.10. Analyzing the functioning of selection-based methods

As it can be noticed from this investigation, the selec-
tion-based methods are more sensitive to variations in the
ensemble members than the fusion-based methods when
using ensembles with few base classifiers. In order to under-
stand more the effects of the choice of the ensemble mem-
bers in the functioning of the DCS method, an analysis of
classifier distribution was performed. In this analysis, it is
shown the number of classifiers that were activated during
the test procedure, for each class. After that, an average of
the number of activated classifiers by the number of classes
is calculated. Classifiers that were activated less than 10%
of the test patterns were discarded. The ideal is that few
classifiers should be activated to recognize the test patterns
of a class (low average number of activated classifiers).
When having few activated classifiers, it could be said that
there is a high predominance of the classifiers over the clas-
ses, usually activating the same classifiers for test patterns
of the same class.

As a result of this analysis, it could be observed that the
non-hybrid structure (NH) uses more activated classifiers
to recognize the test patterns of a class than the hybrid ones
(HYB 3, HYB 5 or HYB 7). This fact is more evident when
using ensembles with three base classifiers, in which the
average number of activated classifiers for all hybrid
ensembles is, on average, 1.25, while it was 2.1 for the
non-hybrid structure (NH). This shows that the predomi-
nance of the classifiers for the non-hybrid ensembles is
lower than for the hybrid ones. It is believed that it is
caused by the similar behavior of the components of the
non-hybrid structures. Also, it could be noticed that, for
all other ensemble sizes, the number of activated classifiers
is always lower for the hybrid structures than for the non-
hybrid one.

Also, for the selection-based methods (DCS-DT and
DCS-MCS), an analysis of the fusion frequency during
the test phase was performed (number of times that the
fusion method was used). Fig. 1 shows the fusion frequency
of DCS-DT and DCS-MCS for the non-hybrid ensembles
(NH), ensembles with three types of classifiers (HYB 3),
ensembles with five types of classifiers (HYB 5) and ensem-
bles with seven types of classifiers (HYB 7). These struc-
tures were analyzed with all four ensembles sizes (ES 3,
ES 5, ES 7 and ES 9), for all four databases. As it can be
observed from Fig. 1, the fusion frequency is always higher
for the DCS-DT method. This is because this method uses
a statistical test in order to decide whether to use the selec-
tion or fusion method. On the other hand, the DCS-MCS
uses a threshold to decide between selection and fusion,
which is not a statistical test. In addition to that, the high-
est fusion frequencies are reached by the non-hybrid struc-
tures for almost all cases, decreasing as the ensembles
become more hybrid (HYB 5 and HYB 7). In addition,
ensembles with nine base classifiers (ES 9) did not show a
decrease in the fusion frequency, since all ensembles struc-
tures had similar values. The results in Fig. 1 only confirm
the lack of predominance of classifiers when using non-
hybrid ensembles. The selection-based methods (Dcs-DT
and Dcs-MCB) decrease the competence of the classifiers
in the classes to be recognized. In this sense, the fusion
method is more activated. This is reflected in the variation
of performance delivered by the selection-based methods



Fig. 1. The fusion frequency used in the DCS-DT and DCS-MCS methods.
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when varying ensemble members, mainly in ensembles with
few base classifiers.
5. Final remarks

In this paper, an investigation of different ensemble
structures and sizes was performed. The main aim of this
paper was to investigate how hybrid (different models of
classifiers) and non-hybrid (same model of classifiers)
ensemble structures behave, in terms of accuracy and diver-
sity, when varying the ensemble members. Also, it aimed to
investigate the effect of varying the ensemble members in
the performance of some combination methods. This inves-
tigation was done using four different databases.

Through this analysis, it could be observed that the
highest accuracies were almost always reached by the
hybrid structures, for all four ensemble sizes analyzed. Of
the fusion-based methods, the highest average accuracy
was reached by ensembles combined by Fuzzy MLP, while
Dcs-MCB had delivered the highest average accuracy of
the selection-based methods. In addition to this, the selec-
tion-based methods are more sensitive to variations in the
ensemble members (higher Dif values) than the fusion-
based methods, when using ensembles with few base classi-
fiers. When increasing the number of base classifiers, the
selection-based become less sensitive to variations in the
ensemble members. However, the Dif values tend to
increase when increasing the number of base classifiers
for all combination methods. As a consequence of this,
the differences in performance tend to be statistically signi-
ficant for all combination methods. In other words, all the
combination methods tend to be more sensitive to changes
in the ensemble members when using a high number of
base classifiers.

Finally, when analyzing the diversity of the ensembles, it
could be noticed that the entropy measure illustrated the
expected increase in diversity reached by the choice of the
ensemble members. However, the double fault measure
only reflected the relation with the expected diversity for
ensembles with three base classifiers. It is important to
emphasize that entropy is a non-pairwise measure, while
double fault is a pairwise measure.

The results obtained in this paper show that the choice
of the ensemble members is important to the accuracy
and diversity of ensembles. Of course, it is not the only fac-
tor to be taken into account. Other parameters, such as:
training data, feature input and/or initial parameters of
the classifiers have also to be taken into account.
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