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Summary. The mechanization of mathematics refers to the use of computers to
find, or to help find, mathematical proofs. Turing showed that a complete reduction
of mathematics to computation is not possible, but nevertheless the art and science
of automated deduction has made progress. This paper describes some of the history
and surveys the state of the art.

1 Introduction

In the nineteenth century, machines replaced humans and animals as phys-
ical laborers. While for the most part this was a welcome relief, there were
occasional pockets of resistance. The folk song John Henry commemorates an
occasion when a man and a machine competed at the task of drilling railroad
tunnels through mountains. The “drilling” was done by hammering a steel
spike. The machine was steam-powered. The man was an ex-slave, a banjo
player with a deep singing voice and a reputation for physical strength and
endurance. He beat the machine, drilling fourteen feet to its nine, but it was
a Pyrrhic victory, as he died after the effort.

Even before the first computers were developed, people were speculating
about the possibility that machines might be made to perform intellectual
as well as physical tasks. Alan Turing was the first to make a careful analy-
sis of the potential capabilities of machines, inventing his famous “Turing
machines” for the purpose. He argued that if any machine could perform a
computation, then some Turing machine could perform it. The argument fo-
cuses on the assertion that any machine’s operations could be simulated, one
step at a time, by certain simple operations, and that Turing machines were
capable of those simple operations. Turing’s first fame resulted from applying
this analysis to a problem posed earlier by Hilbert, which concerned the pos-
sibility of mechanizing mathematics. Turing showed that in a certain sense,
it is impossible to mechanize mathematics: We shall never be able to build
an “oracle” machine that can correctly answer all mathematical questions
presented to it with a “yes” or “no” answer. In another famous paper [101],
Turing went on to consider the somewhat different question, “Can machines
think?”. It is a different question, because perhaps machines can think, but
they might not be any better at mathematics than humans are; or perhaps
they might be better at mathematics than humans are, but not by thinking,
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just by brute-force calculation power. These two papers of Turing lie near
the roots of the subjects today known as automated deduction and artificial
intelligence.1

Although Turing had already proved there were limits to what one could
expect of machines, nevertheless machines began to compete with humans
at intellectual tasks. Arithmetic came first, but by the end of the century
computers could play excellent chess, and in 1997 a computer program beat
world champion Garry Kasparov. The New York Times described the match:
“In a dazzling hourlong game, the Deep Blue IBM computer demolished
an obviously overwhelmed Garry Kasparov and won the six-game man-vs.-
machine chess match.”2

In 1956, Herb Simon, one of the “fathers of artificial intelligence”, pre-
dicted that within ten years, computers would beat the world chess champion,
compose “aesthetically satisfying” original music, and prove new mathemati-
cal theorems.3 It took forty years, not ten, but all these goals were achieved—
and within a few years of each other! The music composed by David Cope’s
programs [33–35] cannot be distinguished, even by professors of music, from
that composed by Mozart, Beethoven, and Bach.4

In 1976, a computer was used in the proof of the long-unsolved “four
color problem’.5 This did not fulfill Simon’s prediction, because the role of
the computer was simply to check by calculation the 1476 different specific
cases to which the mathematicians had reduced the problem [2,3]. Today this
would not cause a ripple; but in 1976 it created quite a stir, and there was
serious discussion about whether such a “proof” was acceptable! The journal
editors required an independent computer program to be written to check
the result. The use of computer calculations to provide “empirical” evidence
1 One controversy concerns the question whether the limiting theorems about Tur-

ing machines also apply to human intelligence, or whether human intelligence has
some quality not imitable by a Turing machine (a vital force, free will, quantum
indeterminacy in the synapses?) These questions were already taken up by Tur-
ing, and were still under discussion (without agreement) by scientific luminaries
at the end of the twentieth century [79,80].

2 After the game, IBM retired Deep Blue, “quitting while it was ahead.” Some
said that Kasparov lost only because he got nervous and blundered. No rematch
was held. In October, 2002, another champion played another computer program:
This time it was a draw.

3 This prediction is usually cited as having been made in 1957, but I believe it
was actually first made in 1956 at Simon’s inaugural address as President of the
Operations Research Society of America.

4 That level of performance was not demanded by Simon’s prediction, and his
criterion of “aesthetically satisfying” music was met much earlier. It is interesting
that Simon set a lower bar for music than for mathematics and chess, but music
turned out to be easier to computerize than mathematics.

5 This problem asks whether it is possible to color any map that can be drawn on
a plane using at most four colors, in such a way that countries with a common
border receive different colors.
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for mathematical claims has led to “experimental mathematics” and even to
reports of the “death of proof” [53]. As Mark Twain said, “the reports of my
death are greatly exaggerated”.

On December 10, 1996, Simon’s prediction came true. The front page of
the New York Times carried the following headline: Computer Math Proof
Shows Reasoning Power. The story began:

Computers are whizzes when it comes to the grunt work of mathematics.
But for creative and elegant solutions to hard mathematical problems,
nothing has been able to beat the human mind. That is, perhaps, until
now. A computer program written by researchers at Argonne National
Laboratory in Illinois has come up with a major mathematical proof that
would have been called creative if a human had thought of it. In doing so,
the computer has, for the first time, got a toehold into pure mathematics,
a field described by its practitioners as more of an art form than a science.

The theorem was proved by the computer program EQP, written by Bill
McCune. Before it was proved, it was known as the Robbins Conjecture,
and people seem reluctant to change the name to “EQP’s theorem”. It is
about certain algebras. An algebra is a set with two operations, written as
we usually write addition and multiplication, and another operation called
“complement” and written n(x). If an algebra satisfies certain nice equations
it is called a Boolean algebra. Robbins exhibited three short simple equations
and conjectured that these three equations can be used to axiomatize Boolean
algebras; that is, those three equations imply the usual axioms for Boolean
algebras. A complete, precise statement of the Robbins conjecture is given in
Fig. 1.

EQP solved this problem in a computer run lasting eight days, and using
30 megabytes of memory. The proof it produced, however, was only fifteen
lines long and fits onto a single page or computer screen. You sometimes
have to shovel a lot of dirt and gravel to find a diamond.6 Since the proof
was easily checkable by humans, there was no flurry of discussion about the
acceptability of the proof, as there had been about the four-color problem.
(There was, however, a bit of discussion about whether humans had really
given this problem their best shot— but indeed, Tarski studied it, and none
of the humans who were tempted to be critical were able to find a proof, so
these discussions were generally short-lived.) An amusing sidelight: The job
was just running in the background and its successful completion was not
noticed until a day later!
6 In 1966 (within ten years of Simon’s prediction), a computer program was in-

volved in the solution of an open problem. The user was guiding an interactive
theorem prover known as SAM to a proof of a known theorem, and noticed that
an equation that had been derived led directly to the answer to a related open
question [47]. This event is “widely regarded as the first case of a new result in
mathematics being found with help from an automated theorem prover”, accord-
ing to [72], p. 6.
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Fig. 1. What exactly is the Robbins Conjecture?

A Boolean algebra is a set A together with binary operations + and · and a unary
operation − , and elements 0, 1 of A such that the following laws hold: commutative
and associative laws for addition and multiplication, distributive laws both for
multiplication over addition and for addition over multiplication, and the following
special laws: x + (x · y) = x, x · (x + y) = x, x + (−x) = 1, x · (−x) = 0. This
definition, and other basic information on the subject, can be found in [73]. The
Robbins conjecture says that any algebra satisfying the following three equations
is a Boolean algebra.

x + y = y + x

(x + y) + z = x + (y + z)

n(n(x + y) + n(x + n(y))) = x

Previous work had shown that it is enough to prove the Huntington equation:

n(n(x) + y) + n(n(x) + n(y)) = x.

That is, if this equation is satisfied, then the algebra is Boolean. What EQP actually
did, then, is come up with a proof that the three Robbins equations imply the Hunt-
ington equation. Take out your pencil and paper and give it a try before reading on.
You don’t need a Ph. D. in mathematics to understand the problem: Just see if the
three Robbins equations imply the Huntington equation. It is important to under-
stand the nature of the game: You do not need to “understand” the equations, or the
“meaning” of the symbols n, + and ·. You might be happier if you could think of +
as “or”, · as “and”, and n as “not”, but it is completely unnecessary, as you are not
allowed to use any properties of these symbols except those given by the equations.

It seems, however, that the intellectual triumph of the computer is by no
means as thorough as the physical triumph of the steam drill. The computer
has yet to beat a human chess champion reliably and repeatedly, and the
number of mathematical theorems whose first proof was found by a computer
is still less than 100, though there is some fuzziness about what counts as a
theorem and what counts as a computer proof. No graduate student today
chooses not to become a mathematician for fear that the computer will prove
too difficult a competitor. The day when a computer produces a five hundred
page proof that answers a famous open question is not imminent.

Another analogy, perhaps closer than the steam drill, is to mechanizing
flight. With regard to mechanizing mathematics, are we now at the stage of
Leonardo da Vinci’s drawings of men with wings, or at the stage of the Wright
brothers? Can we expect the analog of jetliners anytime soon? Airplanes fly,
but not quite like birds fly; and Dijkstra famously remarked that the question
whether machines can think is like the question, “Can submarines swim?”.
Since people have no wings, the prospect of machines flying did not create the
anxieties and controversies that surround the prospect of machines thinking.
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But machines do mathematics somewhat in the way that submarines swim:
ponderously, with more power and duration than a fish, but with less grace
and beauty.7

Acknowledgments. I am grateful to the following people, who read drafts
and suggested changes: Nadia Ghamrawi, Marvin Jay Greenberg, Mike Palle-
sen, and Larry Wos.

2 Before Turing

In this section we review the major strands of thought about the mecha-
nization of mathematics up to the time of Turing. The major figures in this
history were Leibniz, Boole, Frege, Russell, and Hilbert. The achievements
of these men have been discussed in many other places, most recently in
[39], and twenty years ago in [38]. Therefore we will keep this section short;
nevertheless, certain minor characters deserve more attention.

Gottfried Leibniz (1646-1716) is famous in this connection for his slogan
Calculemus, which means “Let us calculate.” He envisioned a formal language
to reduce reasoning to calculation, and said that reasonable men, faced with
a difficult question of philosophy or policy, would express the question in
a precise language and use rules of calculation to carry out precise reason-
ing. This is the first reduction of reasoning to calculation ever envisioned.
One imagines a roomful of generals and political leaders turning the crank of
Leibniz’s machine to decide whether to launch a military attack. It is inter-
esting that Leibniz did not restrict himself to theoretical speculation on this
subject—he actually designed and built a working calculating machine, the
Stepped Reckoner. He was inspired by the somewhat earlier work of Pascal,
who built a machine that could add and subtract. Leibniz’s machine could
add, subtract, divide, and multiply, and was apparently the first machine
with all four arithmetic capabilities.8 Two of Leibniz’s Stepped Reckoners
have survived and are on display in museums in Munich and Hanover.

George Boole (1815-1864) took up Leibniz’s idea, and wrote a book [26]
called The Laws of Thought. The laws he formulated are now called Boolean
7 This is the fine print containing the disclaimers. In this paper, “mechanization

of mathematics” refers to getting computers to find proofs, rather than having
them check proofs that we already knew, or store proofs or papers in a database
for reference, or typeset our papers, or send them conveniently to one another, or
display them on the Web. All these things are indeed mechanizations of mathe-
matics, in a broader sense, and there are many interesting projects on all these
fronts, but we shall limit the scope of our discussions to events in the spirit of
John Henry and Big Blue. Moreover, we do not discuss past and present efforts to
enable computer programs to make conjectures, or to apply mechanized reason-
ing to other areas than mathematics, such as verification of computer programs
or security protocols, etc.

8 The abacus does not count because it is not automatic. With Leibniz’s machine,
the human only turned the crank.
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Algebra–yes, the same laws of concern in the Robbins conjecture. Like Leib-
niz, Boole seems to have had a grandiose vision about the applicability of
his algebraic methods to practical problems– his book makes it clear that he
hoped these laws would be used to settle practical questions. William Stanley
Jevons (1835-1882) heard of Boole’s work, and undertook to build a machine
to make calculations in Boolean algebra. He successfully designed and built
such a machine, which he called the Logical Piano, apparently because it
was about the size and shape of a small piano. This machine and its creator
deserve much more fanfare than they have so far received: This was the first
machine to do mechanical inference. Its predecessors, including the Stepped
Reckoner, only did arithmetic. The machine is on display at the Museum
of Science at Oxford. The design of the machine was described in a paper,
On the Mechanical Performance of Logical Inference, read before the British
Royal Society in 1870.9

Gottlob Frege (1848-1925) created modern logic including “for all”, “there
exists”, and rules of proof. Leibniz and Boole had dealt only with what we
now call “propositional logic” (that is, no “for all” or “there exists”). They
also did not concern themselves with rules of proof, since their aim was to
reach truth by pure calculation with symbols for the propositions. Frege took
the opposite tack: instead of trying to reduce logic to calculation, he tried to
reduce mathematics to logic, including the concept of number. For example,
he defined the number 2 to be the class of all classes of the form {x, y} with
x 6= y. Loosely speaking, 2 is the class of all classes with two members; but
put that way, the definition sounds circular, which it is not. His major work,
the Begriffschrift [43], was published in 1879, when Frege was 31 years old.
He described it as a symbolic language of pure thought, modeled upon that
of arithmetic.

Bertrand Russell (1872-1970) found Frege’s famous error: Frege had over-
looked what is now known as the Russell paradox.10 Namely, Frege’s rules
allowed one to define the class of x such that P (x) is true for any “concept”
P . Frege’s idea was that such a class was an object itself, the class of ob-
jects “falling under the concept P”. Russell used this principle to define the
class R of concepts that do not fall under themselves. This concept leads to
a contradiction known as Russell’s Paradox. Here is the argument: (1) if R
falls under itself then it does not fall under itself; (2) this contradiction shows
that it does not fall under itself; (3)therefore by definition it does fall under
itself after all.

9 In December 2002, an original copy of this paper was available for purchase from
a rare book dealer in New York for a price exceeding $2000.

10 Russell was thirty years old at the time–about the same age that Frege had been
when he made the error. Russell’s respectful letter to Frege with the bad news is
reprinted in [102], p. 124, along with Frege’s reply: “Your discovery of the contra-
diction caused me the greatest surprise and, I would almost say, consternation,
since it has shaken the basis on which I intended to build arithmetic.”
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Russell (with co-author Whitehead) wrote Principia Mathematica [91] to
save mathematics from this contradiction. They restricted the applicability of
Frege’s class-definition principle, thus blocking Russell’s paradox, and showed
(by actually carrying out hundreds of pages of proofs) that the main lines
of mathematics could still be developed from the restricted principle. This
work was very influential and became the starting point for twentieth-century
logic; thirty years later, when Gödel needed a specific axiom system for use
in stating his incompleteness theorem, the obvious choice was the system of
Principia.

David Hilbert (1862-1943) was one of the foremost mathematicians of the
early twentieth century. He contributed to the development of formal logic
(rules for reasoning), and then became interested in a two-step reductionist
program that combined those of Leibniz and Frege: he would first reduce
mathematics to logic, using formal languages, and then reduce logic to com-
putation. His plan was to consider the proofs in logic as objects in their
own right, and study them as one would study any finite structure, just as
mathematicians study groups or graphs. He hoped that we would then be
able to give algorithms for determining if a given statement could be proved
from given axioms, or not. By consideration of this research program, he
was led to formulate the “decision problem” for logic, better known by its
German name, the “Entscheidungsproblem”. This problem was published in
1928 in the influential logic book by Hilbert and Ackermann [51]. This was
the problem whose negative solution made Turing famous; the next section
will explain the problem and its solution.

3 Hilbert and the Entscheidungsproblem

The Entscheidungsproblem asks whether there exists a decision algorithm
such that:

• It takes two inputs: a finite set of axioms, and a conjecture.
• It computes for a finite time and outputs either a proof of the
conjecture from the axioms, or “no proof exists”.
• The result is always correct.

Part of the reason for the historical importance of this problem is that it
was a significant achievement just to state the problem precisely. What are
axioms ? What is a proof? What is an algorithm? Progress on the first two of
those questions had been made by Russell and by Hilbert himself. There was
an important difference in their approaches, however. Russell worked with
proofs and axioms in order to find axioms that were evidently true, and would
therefore enable one to derive true (and only true) mathematical theorems.
He had in mind one fixed interpretation of his axioms–that is, they were about
the one true mathematical universe of classes, if they were about anything
at all. In the many pages of Principia Mathematica, Russell and Whitehead
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never discussed the question of what we would today call the interpretations
of their formal theory. Hilbert, on the other hand, understood very well that
the same axioms could have more than one interpretation. Hilbert’s most
well-known work on axiomatization is his book Foundations of Geometry [50].
This book provided a careful axiomatic reworking of Euclid from 21 axioms.
Hilbert emphasized the distinction between correct reasoning (about points,
lines, and planes) and the facts about points, lines, and planes, by saying
that if you replace “points, lines, and planes” by “tables, chairs, and beer
mugs”, the reasoning should still be correct. This seems obvious to today’s
mathematicians, because the axiomatic approach to mathematics proved so
fruitful in the rest of the twentieth century that every student of mathematics
is today steeped in this basic idea. But, at the dawn of the twentieth century,
this idea seemed radical. The mathematician Poincaré understood Hilbert’s
point very clearly, as one can see in the following quotation [78], but he
thought it antithetical to the spirit of mathematics:

Thus it will be readily understood that in order to demonstrate a theorem,
it is not necessary or even useful to know what it means. We might replace
geometry by the reasoning piano imagined by Stanley Jevons, or . . . a
machine where we should put in axioms at one end and take out theorems
at the other, like that legendary machine in Chicago where pigs go in alive
and come out transformed into hams and sausages.

The date of that quotation is 1908, almost a decade after Foundations of
Geometry. But the concept of “proof” was still a bit unclear. The distinction
that was still lacking was what we call today the distinction between a first-
order proof and a second-order proof. The axioms of geometry in Hilbert’s
book included the “continuity axiom”, which says that if you have two subsets
A and B of a line L, and all the points of A lie to the left11 of all the
points of B, then there exists a point P on L to the right of all points of
A not equal to P , and to the left of all points of B not equal to P . This
axiom is intended to say that there are no “holes” in a line. For example,
if L is the x-axis, and if A is the set of points with x2 < 2, and if B is
the set of points with x > 0 and x2 > 2, then the axiom guarantees the
existence of x =

√
2. But the statement of the axiom mentions not only points,

lines, and planes (the objects of geometry) but also sets of points. Remember
that Foundations of Geometry was written before the discovery of Russell’s
paradox and Principia, and apparently Hilbert did not see the necessity of
careful attention to the axioms for sets as well as to the axioms for points,
lines, and planes. A second-order theory or axiomatization is one that, like
Hilbert’s axiomatization of geometry, uses variables for sets of objects as well
as variables for objects. Peano’s axioms for number theory are another famous

11 Hilbert’s axioms use a primitive relation “x is between y and z”. We can avoid
the informal term “lie to the left” using this relation.
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example of a second-order axiomatization.12 Incidentally, Peano’s publication
[75] was a pamphlet written in Latin, long after Latin had been displaced as
the language of scholarship, so that the publication has been viewed as an
“act of romanticism”. Peano, originally a good teacher, became an unpopular
teacher because he insisted on using formal notation in elementary classes;
nevertheless, his work eventually became influential, and it is his notation
that is used today in logic, not Frege’s.

In both these two famous examples, the theories achieve their aim: They
uniquely define the structures they are trying to axiomatize. Every system
of objects satisfying Hilbert’s axioms for plane geometry is isomorphic to the
Euclidean plane. Even if we begin by assuming that the system consists of
tables, chairs, and beer mugs, it turns out to be isomorphic to the Euclidean
plane. Every system of objects satisfying Peano’s axioms is isomorphic to
the natural numbers. But the second-order nature of these axiom systems
is essential to this property. The technical term for this property is that the
theory is categorical. These are second-order categorical theories. The concept
of second-order theory versus first-order theory is not easy to grasp, but is
very important in understanding the theoretical basis of the mechanization
of mathematics, so here goes:

If we require a first-order version of the continuity axiom, then instead
of saying “for all sets A and B . . .”, the axiom will become many axioms,
where A and B are replaced by many different first-order formulas. In other
words, instead of being able to state the axiom for all sets of points, we
will have to settle for algebraically definable sets of points. We will still be
able to define

√
2, but we will not be able to define π, because π cannot be

defined by algebraic conditions. Another way of looking at this situation is to
consider systems of “points” that satisfy the axioms. Such systems are called
“models”. In the case at hand, we have the “real plane” consisting of all
points (x, y), and on the other hand, we have the smaller “plane” consisting
only of the numbers (x, y) where x and y are solutions of some polynomial
equation with integer coefficients. Both these satisfy the first-order axioms
of geometry, but the smaller plane lacks the point (π, 0) and hence does not
satisfy the second-order continuity axiom.

Similarly, in arithmetic, if we do not use variables for sets in stating the
induction axiom, we will be able only to “approximate” the axiom by in-
cluding its specific instances, where the inductive set is defined in the fixed

12 These famous axioms characterize the natural numbers N as follows: 0 is in N ,
and if x is in N then the successor x+ of x is in N , and 0 is not the successor of
any number, and if x+ = y+ then x = y. (The successor of 0 is 1, the successor
of 1 is 2, etc.) To these axioms Peano added the axiom of induction: if X is any
set satisfying these properties with X instead of N , then N is a subset of X.
The induction axiom is equivalent to the statement that every non-empty set
of natural numbers contains a least element, and is also equivalent to the usual
formulation of mathematical induction: for sets X of natural numbers, if 0 is in
X, and if whenever n is in X so is n+, then X contains all natural numbers.
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language of arithmetic. There are theorems that say a certain equation has
no solution in integers, whose proofs require proving a very complicated for-
mula P by induction, as a lemma, where the formula P is too complicated
to even be stated in the language of arithmetic–perhaps it requires more
advanced mathematical concepts. Just as there exist different models of first-
order geometry (in which π does or does not exist), there also exist different
models of first-order number theory, some of which are “non-standard”, in
that the “numbers” of the model are not isomorphic to the actual integers.
These non-standard models are more difficult to visualize and understand
than a plane that “simply” omits numbers with complicated definitions, be-
cause these models contain “numbers” that are not really numbers, but are
“extra”.

Using modern language, we say that a first-order theory, even one formed
by restricting a second-order categorical theory to its first-order instances,
generally has many models, not just one. This situation was not clearly un-
derstood in the first two decades of the twentieth century,13 but by 1928,
when Hilbert and Ackermann published their monograph on mathematical
logic [51], it had become clear at least to those authors. Clarity on this point
led directly to the formulation of the Entscheidungsproblem: Since a first-
order theory generally has many models, can we decide (given a theory)
which formulas are true in all the models? It also led directly to the formu-
lation of the completeness problem: Are the formulas true in all the models
exactly those that have proofs from the axioms? The former problem was
solved by Turing and Church, the latter by Gödel, both within a few years
of the publication of Hilbert-Ackermann. These developments laid the foun-
dations of modern mathematical logic, which in turn furnished the tools for
the mechanization of mathematics.

The distinction between second-order and first-order confuses people be-
cause it has two aspects: syntax and semantics. A theory which has variables
for objects and for sets of those objects (for example integers and sets of
integers) is syntactically second-order. We can write down mathematical in-
duction using the set variables. But then, we can still consider this as a
first-order theory, in which case we would allow models in which the set vari-
ables range over a suitable countable collection of sets of integers, and there
would also be models with non-standard integers in which the set variables
range over a collection of “subsets of integers” of the model. Or, we can con-
sider it as a second-order theory, in which case we do not allow such models,
but only allow models in which the set variables range over all subsets of the
integers of the model. Whether it is second-order or first-order is determined
by what we allow as a “model” of the theory, not by the language in which
we express the theory.

13 See for example [67], Part III for more details on the views of Hilbert and his
contemporaries.
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4 Turing’s negative solution of the
Entscheidungsproblem

The developments described above still left the Entscheidungsproblem some-
what imprecise, in that the concept algorithm mentioned in the problem had
not been defined. Apparently Hilbert hoped for a positive solution of the
problem, in which case it would not have been necessary to define “algo-
rithm”, as the solution would exhibit a specific algorithm. But a negative
solution would have to prove that no algorithm could do the job, and hence
it would be necessary to have a definition of “algorithm”.

Alan Turing (1912-1954), answered the question “What is an algorithm?”
in 1936 [100] by defining Turing machines.14 He used his definition to show
that there exist problems that cannot be solved by any algorithm. The most
well-known of these is the halting problem–there exists no Turing machine
that takes as inputs a Turing machine M and an input x for M, and de-
termines correctly whether M halts on input x. Indeed, we don’t need two
variables here: no Turing machine can determine correctly whether M halts
at input M .

In that same remarkable 1936 paper [100], Turing applied his new Turing
machines to give a negative solution to the Entscheidungsproblem. His solu-
tion makes use of the result just mentioned, that the halting problem is not
solvable by a Turing machine. We shall describe his solution to the Entschei-
dungsproblem now, but not the solution to the halting problem, which is
covered in any modern textbook on the theory of computation. (The reader
who does not already know what a Turing machine is should skip to the next
section.) The solution has three steps:

• Write down axioms A to describe the computations of Turing ma-
chines.
• Turing machine M halts at input x if and only if A proves the
theorem “M halts at input x”.
• If we had an algorithm to determine the consequences of axioms
A, it would solve the halting problem, contradiction. Hence no such
algorithm exists.15

14 Turing “machines” are conceptual objects rather than physical machines. They
could be built, but in practice the idea of these machines is used, rather than
physical examples. Such a machine can be specified by a finite list of its parts
(“states”) and their connections (“instructions”). They work on “inputs” that are
represented by symbols on an input device, usually called a “tape”. Whenever
the tape is about to be used up, an attendant will attach more, so conceptually,
the tape is infinite, yet the machine could still be built. Turing’s key idea was
that the descriptions of the machines can be given by symbols, and hence Turing
machines can accept (descriptions of) Turing machines as inputs.

15 In more detail the argument is this: Suppose some Turing machine K accepts
inputs describing axiom sets S and potential theorems B, and outputs 1 or 0
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The “computations” referred to in the first step can be thought of as
two-dimensional tables. Each row of the table corresponds to the tape of the
Turing machine at a given stage in its computation. The next row is the next
stage, after one “move” of the machine. There is an extra mark (you can
think of a red color) in the cell where the Turing machine head is located at
that stage. When we refer to cell (i, j) we mean the j-th cell in the i-th row.
The axioms say that such a table T is a computation by machine M if for all
the entries in T , the contents of cell (i+1, j) are related to the contents of the
three cells (i, j − 1), (i, j), and (i, j + 1) according to the program of Turing
machine M . Although this uses natural numbers (i, j) to refer to the cells of
T , only a few basic and easily axiomatizable properties of the numbers are
needed for such an indexing. Of course, it takes some pages to fill in all the
details of the first two steps, but the basic idea is not complicated once one
understands the concepts involved.

Turing’s result showed conclusively that it will never be possible to com-
pletely mechanize mathematics. We shall never be able to take all our math-
ematical questions to a computer and get a correct yes-or-no answer. To
understand the definitiveness of Turing’s result, one needs Gödel’s complete-
ness theorem. The completeness theorem identifies the two natural meanings
of “logical consequence”: P is a logical consequence of A, if P is true in all
systems (models) that satisfy axioms A. On the other hand, P should hope-
fully be a logical consequence of A, if and only if there exists a proof of P
from A. This turns out to be the case, and is exactly the content of Gödel’s
completeness theorem. Therefore, Turing’s result means that we shall never
be able to take all questions of the form, “does theorem P follow from axioms
A?” to a computer and get a guaranteed correct yes or no answer.

5 Church and Gödel

Turing’s negative solution of the Entscheidungsproblem was followed in the
1930’s by other “negative” results. In 1936, Alonzo Church (1903-1995) in-
vented the lambda-calculus (often written λ-calculus) and used it to give a
definition of algorithm different from Turing’s, and hence an independent so-
lution of the Entscheidungsproblem [29]. He also proved the result we now

according as S proves B or does not prove B. To solve the halting problem, which
is whether a given Turing machine M halts at a given input x, we construct the
set of axioms A (depending on M) as in the first step. We then construct the
sequence of symbols y expressing “M halts at input x”. According to step 2, M
halts at x if and only if A proves the theorem y. By hypothesis, we can determine
this by running Turing machine K at the inputs A and y. If we get 1, then M halts
at x, and if we get 0, it does not. If K behaves as we have supposed, this algorithm
will solve the halting problem. Since it involves only Turing machines connected
by simple steps, it can be done by another Turing machine, contradicting Turing’s
result on the unsolvability of the halting problem. Hence no such machine K can
exist.
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summarize in the statement, “Arithmetic is undecidable”. Since Peano’s ax-
ioms are not first-order, the Entscheidungsproblem does not directly apply
to them, and one can ask whether there could be an algorithm that takes a
first-order statement about the natural numbers as input, and correctly out-
puts “true” or “false”. The Entscheidungsproblem does not apply, since there
exists no (finite first-order) system of axioms A whose logical consequences
are the statements true in the natural numbers. Church showed that, nev-
ertheless, there is no such algorithm. Church’s student Kleene proved the
equivalence of the Turing-machine and the λ-calculus definitions of algorithm
in his Ph. D. thesis, later published in [60].16

In 1931, Kurt Gödel [45] proved his famous “incompleteness theorem”,
which we can state as follows: Whatever system of axioms one writes down in
an attempt to axiomatize the truths about the natural numbers, either some
false statement will be proved from the axioms, or some true statement will
not be proved. In other words, if all the axioms are true, then some true fact
will be unprovable from those axioms. Gödel used neither Turing machines
nor λ-calculus (neither of which was invented until five years later), but in
essence gave a third definition of algorithm.17 The bulk of Gödel’s paper is
devoted, not to his essential ideas, but to the details of coding computations
as integers; although he did not use Turing machines, he still had to code
a different kind of computation as integers. Nowadays, when “Ascii codes”
used by computers routinely assign a number to each alphabetic character,
and hence reduce a line of text to a very long number, using three digits per
character, this seems routine. For example, ‘a’ has the Ascii code 97, ‘b’ is
assigned 98, ‘c’ gets 99, and so on. Thus “cat” gets the number 099097116.
Such encodings can also be used to show that Turing machine computations
can be encoded in numbers.

Making use of Turing machines, it is not very difficult to understand
the main idea of Gödel’s proof. The technical details about coding can be
used to construct a number-theoretical formula T (e, x, y) that expresses that
e is a code for a Turing machine (a finite set of instructions), and y is a
code for a complete (halting) computation by machine e at input x. In other
words, “machine e halts at input x” can be expressed by “there exists a
y such that T (e, x, y).” Now suppose that we had a correct and complete
axiomatization A of the true statements of arithmetic. We could then solve
the halting problem by the following algorithm: we simultaneously try to
prove “machine e does not halt at input e” from the axioms A, and we run

16 Kleene went on to become one of the twentieth century’s luminaries of logic; his
[61] is probably the most influential logic textbook ever written, and he laid the
foundations of “recursion theory”, which includes the subject now known as the
theory of computation.

17 Gödel’s definition seemed at the time rather specialized, and (unlike Turing five
years later) he made no claim that it corresponded to the general notion of
“computable”, though that turned out to be true.
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machine e at input e to see if it halts. Here “simultaneously” can be taken to
mean “in alternating steps.” At even-numbered stages, we run e at input e for
one more step, and, at odd-numbered stages, we make one more deduction
from the axioms A. If e halts at input e, we find that out at some even-
numbered stage. Otherwise, by the assumed completeness and correctness of
the axioms A, we succeed at some odd-numbered stage to find a proof that
e does not halt at input e. But since the halting problem is unsolvable, this
is a contradiction; hence no such set of axioms A can exist. That is Gödel’s
incompleteness theorem.

6 The Possible Loopholes

The results of Turing, Church, and Gödel are commonly called “negative”
results in that they show the impossibility of a complete reduction of mathe-
matics or logic to computation. Hilbert’s program was a hopeless pipe dream.
These famous results seem to close the doors on those who would hope to
mechanize mathematics. But we are not completely trapped; there are the
following possible “loopholes”, or avenues that may still prove fruitful.

• Maybe there exist interesting axiom systems A such that, for that
particular axiom system, there does exist a “decision procedure”, that
permits us to compute whether a given statement P follows from A
or not.
• Maybe there exist interesting algorithms f that take an axiom sys-
tem A and an input formula P and, sometimes, tell us that P follows
from A. Even if f is not guaranteed to work on all P , if it would work
on some P for which we did not know the answer before, that would
be quite interesting.
• Even if such an f worked only for a particular axiom system A of
interest, it still might be able to answer mathematical questions that
we could not answer before.

These loopholes in the negative results of the thirties allow the partial
mechanization of mathematics. It is the pursuit of these possibilities that
occupies the main business of this paper.

7 The first theorem-provers

When the computer was still newborn, some people tried to write programs
exploiting the loopholes left by Church and Gödel. The first one exploited the
possibility of decision procedures. There was already a known decision pro-
cedure for arithmetic without multiplication. This is essentially the theory of
linear equations with integer variables, and “for all” and “there exists”. This
theory goes by the name of “Presburger arithmetic”, after M. Presburger,
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who first gave a decision procedure for it in [82]. It cried out for implemen-
tation, now that the computer was more than a thought experiment. Martin
Davis took up this challenge [37], and in 1954 his program proved that the
sum of two even numbers is even. This was perhaps the first theorem ever
proved by a computer program. The computer on which the program ran was
a vacuum tube computer known as the “johnniac”, at the Institute for Ad-
vanced Study in Princeton, which had a memory of 1024 words. The program
could use a maximum of 96 words to hold the generated formulas.

In 1955, Newell, Shaw, and Simon wrote a program they called the Logic
Theorist[74]. This program went through another loophole: it tried to find
proofs, even though according to Turing it must fail sometimes. It proved
several propositional logic theorems in the system of Principia Mathemat-
ica. The authors were proud of the fact that this program was “heuristic”,
by which they meant not only that it might fail, but that there was some
analogy between how it solved problems and how a human would solve the
same problems. They felt that a heuristic approach was necessary because
the approach of systematically searching for a proof of the desired theorem
from the given axioms seemed hopeless. They referred to the latter as the
“British Museum” algorithm, comparing it to searching for a desired item in
the British Museum by examining the entire contents of the museum. Ac-
cording to [38], Alan Newell said to Herb Simon on Christmas 1955, about
their program, “Kind of crude, but it works, boy, it works!”. In one of Simon’s
obituaries [66] (he died in 2001 at age 84), one finds a continuation of this
story:

The following January, Professor Simon celebrated this discovery by walk-
ing into a class and announcing to his students, “Over the Christmas holi-
day, Al Newell and I invented a thinking machine.” A subsequent letter to
Lord Russell explaining his achievement elicited the reply : “I am delighted
to know that ‘Principia Mathematica’ can now be done by machinery. I
wish Whitehead and I had known of this possibility before we wasted 10
years doing it by hand.” 18

In 1957, the year of publication of Newell, Shaw, and Simon’s report [74], a
five week Summer Institute for Symbolic Logic was held at Cornell, attended
by many American logicians and some researchers from IBM. At this meet-
ing, Abraham Robinson introduced the idea of Skolem functions [explained
below], and shortly after the meeting a number of important advances were
made. Several new programs were written that searched more systematically
for proofs than the Logic Theorist had done. The problem was clearly seen as
“pruning” the search, i.e. eliminating fruitless deductions as early as possible.
Gelernter’s geometry prover [44] used a “diagram” to prune false goals. The
mathematical logician Hao Wang wrote a program [103] based on a logical
system known as “natural deduction”. Wang’s program proved all 400 pure
predicate-calculus theorems in Principia Mathematica. Davis and Putnam
18 Russell may have had his tongue firmly in cheek.
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[40] published a paper that coupled the use of Skolem functions and conjunc-
tive normal form with a better algorithm to determine satisfiability. Over
the next several years, these strands of development led to the invention of
fundamental algorithms that are still in use. We shall discuss three of these
tools: Skolemization, resolution, and unification.

Skolem functions are used to systematically eliminate “there exists”. For
instance, “for every x there exists y such that P (x, y)” is replaced by P (x, g(x)),
where g is called a “Skolem function”. When we express the law that every
nonzero x has a multiplicative inverse in the form x 6= 0 → x ·x−1 = 1, we are
using a Skolem function (written as x−1 instead of g(x). Terms are built up,
using function and operation symbols, from variables and constants; usually
letters near the beginning of the alphabet are constants and letters near the
end are variables (a convention introduced by Descartes). Certain terms are
distinguished as “propositions”; intuitively these are the ones that should be
either true or false if the variables are given specific values. The use of Skolem
functions and elementary logical manipulations enables us to express every
axiom and theorem in a certain standard form called “clausal form”, which
we now explain. A literal is an atomic proposition or its negation. A clause is
a “disjunction of literals”; that is, a list of literals separated by “or”. Given
some axioms and a conjectured theorem, we negate the theorem, and seek a
proof by contradiction. We use Skolem functions and logical manipulations
to eliminate “there exists”, and then we use logical manipulations to bring
the axioms and negated goal to the form of a list of clauses, where “and”
implicitly joins the clauses. This process is known as “Skolemization.” The
clausal form contains no “there exists”, but it does contain new symbols for
the (unknown) Skolem functions. The original question whether the axioms
imply the goal is equivalent to the more convenient question whether the
resulting list of clauses is contradictory or not.

In automated deduction, it is customary to use the vertical bar to mean
“or”, and the minus sign to mean “not”. An inference rule is a rule for
deducing theorems from previously-deduced theorems or axioms. It therefore
has “premisses” and “conclusions”. As an example of an inference rule we
mention the rule modus ponens, which is already over 2000 years old: from p
and “if p then q” infer q. In clausal notation that would be, from p and −p|q
infer q. Resolution generalizes this rule. In its simplest form it says, from p|r
and −p|q, infer r|q. Even more generally, r and q can be replaced with several
propositions. For example, from p|r|s and −p|q|t, we can infer r|s|q|t. The
rule can be thought of as “cancelling” p with −p. The cancelled term p does
not have to be the first one listed. If we derive p and also −p, then resolution
leads to the “empty clause”, which denotes a contradiction.

The third of the three tools we mentioned is the unification algorithm.
This was published by J. A. Robinson[89]. Robinson’s publication (which
contained more than “just” unification) appeared in 1965, but at that time
unification was already in the air, having been implemented by others as early
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as 1962. See [38] for this history. The purpose of the unification algorithm
is to find values of variables to make two terms match. For example: given
f(x, g(x)) and f(g(c), z), we find x = g(c), z = g(g(c)) by applying unifica-
tion. The input to the algorithm is a pair of terms to be unified. The output
is a substitution; that is, an assignment of terms to variables. We shall not
give the details of the unification algorithm here; they can be found in many
books, for example in [25], Ch. 17, or [5], pp. 453 ff.

Combining resolution and unification, we arrive at the following rule of
inference: Suppose that p and s can be unified. Let ∗ denote the substitu-
tion found by the unification algorithm. Then from p|q and −s|r infer q∗|r∗
provided p∗ = s∗. This rule is also commonly known as “resolution”–in fact,
resolution without unification is only of historical or pedagogical interest.
Resolution is always combined with unification. J. A. Robinson proved [89]
that this rule is refutation complete. That means that if a list of clauses is
contradictory, there exists a proof of the empty clause from the original list,
using resolution as the sole rule of inference.19

The basic paradigm for automated deduction then was born: Start with
the axioms and negated goal. Perform resolutions (using unification) until a
contradiction is reached, or until you run out of time or memory. The modern
era in automated deduction could be said to have begun when this paradigm
was in place.20 One very important strand of work in the subject since the
sixties has been devoted to various attempts to prevent running out of time
or memory. These attempts will be discussed in the section “Searching for
proofs” below.21

19 We have oversimplified in the text. The resolution rule as we have given it does
not permit one to infer p(z) from p(x)|p(y). Either the resolution rule has to be
stated a bit more generally, as Robinson did, or we have to supplement it with
the rule called factoring, which says that if A and B can be unified, and ∗ is the
substitution produced by the unification algorithm, we can infer A∗.

20 There were several more attempts to write programs that proved theorems
“heuristically”, to some extent trying to imitate human thought, but in the end
these programs could not compete with an algorithmic search.

21 It is true that several other approaches have been developed, and have succeeded
on some problems. We note in particular the successes of ACL2 [20] and RRL
[59] on problems involving mathematical induction, and regret that our limited
space and scope do not permit a fuller discussion of alternative approaches. The
author is partial to approaches derived from the branch of mathematical logic
known as “proof theory”; in the USSR this approach was followed early on, and
an algorithm closely related to resolution was invented by Maslov at about the
same time as resolution was invented. A theorem-prover based on these principles
was built in Leningrad (1971). See [68] for further details and references.
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8 Kinds of Mathematical Reasoning

In this section, we abandon the historical approach to the subject. Instead,
we examine the mechanization of mathematics by taking inventory of the
mathematics to be mechanized. Let us make a rough taxonomy of mathe-
matics. Of course librarians and journal editors are accustomed to classifying
mathematics by subject matter, but that is not what we have in mind. In-
stead, we propose to classify mathematics by the kind of proofs that are used.
We can distinguish at least the following categories:

• Purely logical
• Simple theory, as in geometry (one kind of object, few relations)
• Equational, as in the Robbins problem, or in group or ring theory.
• Uses calculations, as in algebra or calculus
• Uses natural numbers and mathematical induction
• Uses definitions (perhaps lots of them)
• Uses a little number theory and simple set theory (as in undergraduate

algebra courses)
• Uses inequalities heavily (as in analysis)

Purely logical theorems are more interesting than may appear at first
blush. One is not restricted to logical systems based on resolution just be-
cause one is using a theorem-prover that works that way. There are hundreds
of interesting logical systems, including various axiom systems for classical
propositional logic, multi-valued logic, modal logic, intuitionistic logic, etc.
All of these can be analyzed using the following method. We use a predicate
P (x) to stand for “x is provable”. We use i(x, y) to mean x implies y. Then,
for example, we can write down −P (x)|−P (i(x, y))|P (y) to express “if x and
i(x, y) are provable, so is y.” When (a commonly-used variant of) resolution
is used with this axiom, it will have the same effect as an inference rule called
“condensed detachment” that has long been used by logicians. We will return
to this discussion near the end of the paper, in the section on “Searching for
proofs”.

Euclidean geometry can be formulated in a first-order theory with a sim-
ple, natural set of axioms. In fact, it can be formulated in a theory all of
whose variables stand for points; direct references to lines and planes can be
eliminated [97]. But that is not important—we could use unary predicates
for points, lines, and planes, or we could use three “sorts” of variables. What
we cannot do in such a theory is mention arbitrary sets of points; therefore,
the continuity axiom (discussed above) cannot be stated in such a theory. We
can state some instances of the continuity axiom (for example, that a line
segment with one end inside a circle and one end outside the circle must meet
the circle); or we could even consider a theory with an axiom schema (infi-
nitely many axioms of a recognizable form) stating the continuity axiom for
all first-order definable sets. But if we are interested in Euclid’s propositions,
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extremely complex forms of the continuity axiom will not be necessary–we
can consider a simple theory of geometry instead. It will not prove all the the-
orems one could prove with the full first-order continuity axiom, but would
be sufficient for Euclid. On the other hand, if we wish to prove a theorem
about all regular n-gons, the concept of natural number will be required, and
proofs by mathematical induction will soon arise. In first-order geometry, we
would have one theorem for a square, another for a pentagon, another for a
hexagon, and so on. Of course not only Euclidean, but also non-Euclidean
geometry, can be formulated in a first-order theory. I know of no work in
automated deduction in non-Euclidean geometry, but there exists at least
one interesting open problem in hyperbolic geometry whose solution might
be possible with automated deduction.22

Another example of a simple theory is ring theory. Ring theory is a subject
commonly taught in the first year of abstract algebra. The “ring axioms” use
the symbols + and ∗, and include most of the familiar laws about them, except
the “multiplicative inverse” law and the “commutative law of multiplication”,
x ∗ y = y ∗ x. Many specific systems of mathematical objects satisfy these
laws, and may or may not satisfy additional laws such as x ∗ y = y ∗ x. A
system of objects, with two given (but possibly arbitrarily defined) operations
to be denoted by the symbols + and ∗, is called a ring if all the ring axioms
hold when the variables range over these objects and + and ∗ are interpreted
as the given operations. In ring theory, one tries to prove a theorem using
only the ring axioms; if one succeeds, the theorem will be true in all rings.
However, in books on ring theory one finds many theorems about rings that
are not formulated purely in the language of ring theory. These theorems have
a larger context: they deal with rings and subrings, with homomorphisms and
isomorphisms of rings, and with matrix rings. Homomorphisms are functions
from one ring to another that preserve sums and products; isomorphisms
are one-to-one homomorphisms; subrings are subsets of a ring that are rings
in their own right; matrix rings are rings whose elements are matrices with
coefficients drawn from a given ring. Thus passing from a ring R to the ring
of n by n matrices with coefficients in R is a method of constructing one
ring from another. If, however, we wish to consider such rings of matrices
for any n, then the concept of natural number enters again, and we are
beyond the simple theory level. Also, if we wish to formulate theorems about
arbitrary subrings of a ring, again we have a theory that (at least on the face
of it) is second-order. A recent master’s thesis [54] went through a typical

22 The open problem is this: Given a line L and a point P not on L, prove that
there exist a pair of limiting parallels to L through P . The definition of limiting
parallel says that K and R form a pair of limiting parallels to L through P if
one of the four angles formed at P by K and R does not contain any ray that
does not meet L. It is known that limiting parallels exist, but no first-order proof
is known, and experts tell me that producing a first-order proof would be worth
a Ph. D.



20 Michael Beeson

algebra textbook [56], and found that of about 150 exercises on ring theory,
14 could be straightforwardly formalized in first-order ring theory. One more
could be formulated using a single natural-number variable in addition to
the ring axioms. The rest were more complex. The 14 first-order exercises,
however, could be proved by the theorem-proving program Otter. (Otter is a
well-known and widely used modern theorem prover, described in [70], and
readily available on the Web.)

A great many mathematical proofs seem to depend on calculations for
some of the steps. In fact, typically a mathematical proof consists of some
parts that are calculations, and some parts that are logical inferences. Of
course, it is possible to recast calculations as logical proofs, and it is pos-
sible to recast logical proofs as calculations. But there is an intuitive dis-
tinction: a calculation proceeds in a straightforward manner, one step after
another, applying obvious rules at each step, until the answer is obtained.
While performing a calculation, one needs to be careful, but one does not
need to be a genius, once one has figured out what calculation to make. It is
“merely a calculation.” When finding a proof, one needs insight, experience,
intelligence–even genius–to succeed, because the search space is too large for
a systematic search to succeed.

It is not surprising that a good deal of progress has been made in mecha-
nizing those parts of proof that are calculations. It may be slightly surprising
that methods have been found for automatically discovering new rules to be
used for calculations. Furthermore, the relations between the computational
parts of proofs and the logical parts have been explored to some extent. How-
ever, there is still some work to be done before this subject is finished, as we
will discuss in more detail below.

One aspect of mathematics that has not been adequately mechanized at
the present time is definitions. Let me give a few examples of the use of
definitions in mathematics. The concept “f is continuous at x”, where f is
a real-valued function, has a well-known definition: “for every ε > 0 there
exists δ > 0 such that for all y with |y − x| < δ, we have |f(x) − f(y)| < ε.”
One important virtue of this definition is that it sweeps the quantifiers “for
every” and “there exists” under the rug: We are able to work with con-
tinuity in a quantifier-free context. If, for example, we wish to prove that
f(x) = (x + 3)100 is a continuous function, the “easy way” is to recognize
that f is a composition of two continuous functions and appeal to the theorem
that the composition of two continuous functions is continuous. That theo-
rem, however, has to be proved by expanding the definitions and using ε and
δ. This kind of argument does not mesh well with the clausal form paradigm
for automated reasoning, because when the definition is expanded, the result
involves quantifiers. Theorem-proving programs usually require clausal form
at input, and do not perform dynamic Skolemization. Theorems that have
been proved about continuity have, therefore, had the definition-expansion
and Skolemization performed by hand before the automated deduction pro-
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gram began, or have used another paradigm (Gentzen sequents or natural
deduction), that does not suffer from this problem, but is not as well-suited
to searching for proofs. Merely recognizing f(x) = (x + 3)100 as a composi-
tion of two functions is beyond the reach of current theorem-provers–it is an
application of the author’s current research into “second-order unification”.

One might well look, therefore, for the simplest example of a definition.
Consider the definition of a “commutator” in group theory. The notation
usually used for a commutator is [x, y], but to avoid notational complexities,
let us use the notation x ⊗ y. The definition is x ⊗ y = x−1y−1xy, where as
usual we leave the symbol ∗ for the group operation unwritten, and assume
that association is to the right, i.e. abc = a(bc). We can find problems in group
theory that mention commutators but do not need second-order concepts or
natural numbers for their formulation or solution. Here we have a single
definition added to a simple theory. Now the point is that sometimes we will
need to recognize complicated expressions as being actually “nothing but”
a commutator. Long expressions become short ones when written using the
commutator notation. On the other hand, sometimes we will not be able to
solve the problem without using the definition of x⊗y to eliminate the symbol
⊗. That is, sometimes the definition of x ⊗ y will be needed in the left-to-
right direction, and sometimes in the right-to-left direction. Existing theorem-
provers have no method to control equations with this degree of subtlety.
Either ⊗ will always be eliminated, or never. This example definition also
serves to bring out another point: definitions can be explicit, like the definition
of x ⊗ y given above, or implicit. Cancellative semigroups are systems like
groups except that inverse is replaced by the cancellation law, xy = xz implies
y = z. We can define x ⊗ y in the context of cancellative semigroups by the
equation xy = yx(x ⊗ y). This is an “implicit definition”. If the law holds in
a semigroup S, for some operation ⊗, we say “S admits commutators.”

Consider the following three formulas, taken from [41], and originally from
[64].

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z) (1) commutator is associative
(x ∗ y) ⊗ z = (x ⊗ z) ∗ (y ⊗ z) (2) commutator distributes over product
(x ⊗ y) ∗ z = z ∗ (x ⊗ y) (3) semigroup is nilpotent class 2

These three properties are equivalent in groups (in fact, in cancellative semi-
groups that admit commutators). One of the points of considering this exam-
ple is that it is not clear (to the human mathematician) whether one ought
to eliminate the definition of x ⊗ y to prove these theorems, or not. Otter
is able to prove (1) implies (2), (2) implies (3), and (3) implies (1), in three
separate runs, in spite of not having a systematic way to handle definitions;
but the proofs are not found easily, and a lot of useless clauses are generated
along the way.23

23 An example of the use of a definition to help Otter find a proof that it cannot find
without using a definition is the proof of the “HCBK-1 problem” found recently
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Another interesting problem involving commutators is often an exercise in
an elementary abstract algebra course: Show that in a group, the commutator
subgroup (consisting of all x ⊗ y) is a normal subgroup. For the part about
normality, we have to show that for all a,b, and c, c−1(a ⊗ b)c has the form
u⊗v for some u and v. Otter can find several proofs of this theorem, but the
u and v in the first few proofs are not the ones a human would find—although
it does eventually find the human proof—and Otter does a fairly large search,
while a human does very little searching on this problem.

In mathematics up through calculus, if we do not go deeply into the foun-
dations of the subject but consider only what is actually taught to students,
there is mostly calculation. In abstract algebra, most of the work in a one-
semester course involves some first-order axioms (groups, rings, etc.), along
with the notions of subgroup, homomorphism, isomorphism, and a small
amount of the theory of natural numbers. The latter is needed for the con-
cept of “finite group” and the concept of “order of a group”. Number theory
is needed only (approximately) up to the concept of “a divides b” and the
factorization of a number into a product of primes. One proves, for example,
the structure theorem for a finite abelian group, and then one can use it to
prove the beautiful theorem that the multiplicative group of a finite field is
cyclic. These theorems are presently beyond the reach of automated deduc-
tion in any honest sense, although of course one could prepare a sequence of
lemmas in such a way that the proof could ultimately be found.

However, there is a natural family of mathematical theories that is just
sufficient for expressing most undergraduate mathematics. Theories of this
kind include a simple theory as discussed above (simple axioms about a single
kind of object), and in addition parameters for subsets (but not arbitrary
quantification over subsets), variables for natural numbers and mathematical
induction, and functions from natural numbers into the objects of the simple
theory, so that one can speak about sequences of the objects. These additional
features, plus definitions, will encompass most of the proofs encountered in
the first semester of abstract algebra. If we add inequalities and calculations
to this mix, we will encompass undergraduate analysis, complex analysis, and
topology as well.24

Of course, there exist branches of mathematics that go beyond this kind
of mathematics (e.g. Galois theory or algebraic topology). We propose to not
even think about automated deduction in these areas of mathematics. Deal-
ing with the challenges of second-order variables (without quantification),

by Robert Veroff. Although it is too technical to discuss here, the problem is
listed as an open problem (which previously had a model-theoretic proof, but
no first-order proof) in Appendix 3 of [72] (which also lists other challenges to
theorem-proving programs). The solution can be found on Veroff’s web page.

24 There is an obvious objection to the above taxonomy: Functions can be reduced
to sets, and numbers can be reduced to sets, so that all of mathematics can be
formalized in set theory. This objection will be taken up in the last section of the
paper.
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definitions, calculations, incorporating natural numbers, sequences, and in-
duction, should keep researchers busy for at least a generation. At that point
computers should have more or less the capabilities of an entering Ph. D.
student in mathematics. Now, in 2003, they are at approximately freshman
level. I do not mean that this progress is inevitable—it will require resources
and effort that may not be forthcoming. But it is possible.

9 Computer Algebra

“Computer algebra”, while a common and descriptive term, is a bit mislead-
ing since the subject encompasses calculus and to some extent combinatorics,
as well as algebra. Originally computers were viewed as numerical calcula-
tors. In fact, when the first checkers-playing program was written in 1948,
there was no printer at the IBM research lab that could print anything but
numbers, so the output of the checkers playing program had to be coded nu-
merically. But by the late 1950s, realization was spreading that there was such
a thing as “symbolic computation”, and algebra and calculus were among the
first areas attacked. Programs for elementary calculus were soon written, in-
corporating rules of thumb (“heuristic” is the ten-dollar word for a rule of
thumb) for elementary integration. John McCarthy invented LISP, a com-
puter language designed for programming symbolic tasks, and the field of
computer algebra began to develop soon afterwards. The subject had, and
still has, two sides. One side is the theoretical development of algorithms to
solve problems of specific classes. The other side is the efficient, practical
implementation of those algorithms in useful programs.

In the sixties and seventies, there were several important theoretical devel-
opments in the subject. Although we cannot afford a thorough introduction
to computer algebra, we will mention three developments. Consider the fol-
lowing Mathematica input: Factor[x119−1]. Mathematica responds instantly
with

(−1 + x)(1 + x + x2 + x3 + x4 + x5 + x6)(1 + x + x2 + x3 + x4 + x5

+x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16)
(1 − x + x7 − x8 + x14 − x15 + x17 − x18 + x21 − x22 + x24 − x25

+x28 − x29 + x31 − x32 + x34 − x36 + x38 − x39 + x41 − x43 + x45

−x46 + x48 − x50 + x51 − x53 + x55 − x57 + x58 − x60 + x62 − x64

+x65 − x67 + x68 − x71 + x72 − x74 + x75 − x78 + x79 − x81 + x82

−x88 + x89 − x95 + x96)

This was not done by trial and error. It uses algorithms for polynomial fac-
torization25 that first factor the polynomial mod p for various small primes
25 For readers unfamiliar with mod p, this means that numbers are always replaced

with their remainders after division by p. For example, 3 times 5 is 1 mod 7,
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p, and then put the results together cleverly, using a 19th-century theorem
known as Hensel’s lemma. The factorization mod p can be done quickly, using
an algorithm discovered by Berlekamp in 1967. The application of Hensel’s
lemma to this problem was discovered by Zassenhaus in 1969. Full historical
and mathematical details can be found in [57] and [63].

Our second example concerns the integration of elementary functions. An
elementary function is one that you might encounter in freshman calculus:
it is defined using multiplication, addition, subtraction, division, trig func-
tions, exponents, and logarithms. Much effort in freshman calculus goes into
rules and methods for computing elementary integrals of elementary func-
tions. However, not every elementary function has an elementary integral.
For example,

∫
ex2

dx cannot be expressed in elementary form. Risch [95,96]
discovered in 1969 that the trial-and-error methods you may have studied
in freshman calculus, such as integration by substitution and integration by
parts, can be replaced by a single, systematic procedure, that always works if
the integral has any elementary answer. A complete exposition of the theory
is in [21].

Our third example concerns sets of simultaneous polynomial equations.
Say, for example, that you wish to solve the equations

z + x4 − 2x + 1 = 0
y2 + x2 − 1 = 0

x5 − 6x3 + x2 − 1 = 0

If you ask Mathematica to solve this set of three equations in three unknowns,
it answers (immediately) with a list of the ten solutions. Since the solutions
do not have expressions in terms of square roots, they have to be given in the
form of algebraic numbers. For example, the first one is x = α, y = α−1, z =
−1 + 2α, where α is the smallest root of −1 + α2 − 6α3 + α5 = 0. This
problem has been solved by constructing what is known as a “Gröbner basis”
of the ideal generated by the three polynomials in the original problem. It
takes too much space, and demands too much mathematical background, to
explain this more fully; see [106], Chapter 8 for explanations. (This example is
Exercise 4, p. 201). Although methods (due to Kronecker) were known in the
nineteenth century that in principle could solve such problems, the concept
of a Gröbner basis and the algorithm for finding one, known as “Buchberger’s
algorithm”, have played an indispensable role in the development of modern
computer algebra. These results were in Buchberger’s Ph. D. thesis in 1965.
Thus the period 1965-70 saw the theoretical foundations of computer algebra
laid.

It took some time for implementation to catch up with theory, but as the
twenty-first century opened, there were several well-known, widely available
programs containing implementations of these important algorithms, as well

because 15 has remainder 1 after division by 7. So (x + 3)(x + 5) = x2 + x + 1
mod 7.
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as many others. Symbolic mathematics up to and including freshman calculus
can thus be regarded as completely mechanized at this point. While one
cannot say that the field is complete–every year there is a large international
conference devoted to the subject and many more specialized conferences–on
the whole the mechanization of computation has progressed much further
than the mechanization of proof.

In addition to the well-known general-purpose symbolic computation pro-
grams such as Maple, Mathematica, and Macsyma, there are also a number
of special-purpose programs devoted to particular branches of mathematics.
These are programs such as MAGMA, PARI-GP (algebraic number theory),
SnapPea (topology), GAP (group theory), Surface Evolver (differential geom-
etry), etc. These are used by specialists in those fields.

What is the place of computer algebra in the mechanization of mathe-
matics? Obviously there are some parts of mathematics that consist mainly
of computations. The fact is that this part of mathematics includes high-
school mathematics and first-year calculus as it is usually taught, so that
people who do not study mathematics beyond that point have the (mis)-
impression that mathematics consists of calculations, and they imagine that
advanced mathematics consists of yet more complicated calculations. That is
not true. Beginning with the course after calculus, mathematics relies heavily
on proofs. Some of the proofs contain some steps that can be justified by cal-
culation, but more emphasis is placed on precisely defined, abstract concepts,
and the study of what properties follow from more fundamental properties
by logical implication.

10 Decision Procedures in Algebra and Geometry

The “first loophole” allows the possibility that some branches of mathematics
can be mechanized. An algorithm which can answer any yes-no question in
a given class of mathematical questions is called a “decision procedure” for
those questions. We will give a simple example to illustrate the concept. You
may recall studying trigonometry. In that subject, one considers “trigono-
metric identities” such as cos(2x) = cos2 x− sin2 x. The identities considered
in trigonometry always have only linear functions in the arguments of the
trig functions; for example, they never consider sin(x2), although sin(2x + 3)
would be allowed. Moreover, the coefficients of those linear functions are al-
ways integers, or can be made so by a simple change of variable. The question
is, given such an equation, determine whether or not it holds for all values
of x (except possibly at the points where one side or the other is not de-
fined, e.g. because a denominator is zero.) You may be surprised to learn
that there is a decision method for this class, which we now give. First, use
known identities to express everything in terms of sin and cos. If necessary,
make a change of variable so that the linear functions in the arguments of
sin and cos have integer coefficients. Even though everything is in now in
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terms of sin and cos, there could still be different arguments, for example
sin(2x) − sin x. If so, we next use the identities for sin(x + y) and cos(x + y)
to express everything in terms of sin x and cos x. The equation is now a ratio-
nal function of sin x and cos x. Now for the key step: Make the “Weierstrass
substitution” t = tan(x/2). Then sin x and cos x become rational functions
of t. Specifically, we have sin x = 2t/(1 + t2) and cos x = (1 − t2)/(1 + t2).
After this substitution, the equation becomes a polynomial identity in one
variable, and we just have to simplify it to “standard form” and see if the
two sides are identical or not. All that suffering that you went through in
trigonometry class! and a computer can do the job in an instant.

The question is, then, exactly where the borderline between mechaniz-
able theories and non-mechanizable theories lies. It is somewhere between
trig identities and number theory, since by Turing and Church’s results, we
cannot give a decision procedure for number theory. The borderline is in
some sense not very far beyond trig identities, since a result of Richardson
[85] shows that there is no algorithm that can decide the truth of identities
involving polynomials, trig functions, logarithms, and exponentials (with the
constant π allowed, and the restriction that the arguments of trig functions
be linear removed).26 Nevertheless, there are many examples of decision pro-
cedures for significant bodies of mathematics. Perhaps the most striking is
one first explored by Alfred Tarski (1902-1983). The branch of mathematics
in question is, roughly speaking, elementary algebra. It is really more than
elementary algebra, because “for all” and “there exists” are also allowed, so
such questions as the following are legal:

• Does the equation x3 − x2 + 1 = 0 have a solution between 0 and 1?
• For which values of a and b does the equation x4 − ax3 + b take on only

positive values as x varies?

The first question has an implicit “there exists an x”, and the second has an
implicit “for all x”. We will call this part of mathematics “Tarski algebra.”

“For all” and “there exists” are called “quantifiers”. A formula without
quantifiers is called “quantifier-free”. For example, ‘x2 + 2 = y’ is quantifier-
free. A quantifier-free formula might have the form

f(x1, . . . , xn) = 0 & g(x1, . . . , xn) ≥ 0,

where f and g are polynomials. More generally, you might have several in-
equalities instead of just one. Using simple identities, one can show that any
quantifier-free formula is equivalent to one in the form indicated. That is,
if such formulas are combined with “not”, “and”, or “or”, the result can be
equivalently expressed in the standard form mentioned. Tarski’s idea is called
26 The exact borderline for classes of identities still is not known very accurately.

For example, what if we keep the restriction that the arguments of trig functions
should be linear with integer coefficients, but we allow logarithms and exponen-
tials?
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Fig. 2. What is Tarski algebra?

The technical name of this branch of mathematics is the theory of real-closed fields.
The language for this branch of mathematics has symbols for two operations +
and ·, the inverse operations −x and x−1, the additive and multiplicative identity
elements 0 and 1, the ordering relation <, and the equality relation =. The axioms
include the usual laws for + and ·, and axioms relating < to the operations + and ·.
Defining 0 < x as P (x) (P for “positive”), those axioms say that the sum of positive
elements is positive and the product of positive elements is positive. These are the
axioms of ordered fields. The axioms for real-closed fields specify in addition that all
positive elements have a square root, and all polynomials of odd degree have a root.
One will, of course, need infinitely many axioms to express this without mentioning
the concept of “natural number”, one axiom for each odd degree. The classical
theory of real-closed fields is developed in most algebra textbooks, for example in
[65], pp. 273 ff.
Tarski algebra escapes the negative results of Church and Gödel because it does not
have variables for natural numbers. The variables range over “real numbers”–these
are the numbers that correspond to points on a line and are used for coordinates.
Even though the variables of Tarski algebra are meant to stand for such numbers,
not all individual numbers can be defined in Tarski algebra. In this language, one
cannot directly write integers in decimal notation such as 3. Instead of 3, one
officially has to write 1 + 1 + 1. Aside from the inconvenience, one can in effect
write any rational number; for example 2/3 is (1 + 1)(1 + 1 + 1)−1. But one does
not, for example, have a name for π.

elimination of quantifiers. He showed in [97] that every formula in Tarski al-
gebra is equivalent to one without any quantifiers. For example, the question
whether x2 +bx+c = 0 has a solution x with 0 ≤ x appears to involve “there
exists an x”, but from the quadratic formula we find that the answer can be
expressed by a condition involving only b and c, namely, b2−4c ≥ 0 and either
b ≤ 0 or c ≤ 0. The quantifier “there exists x” has been eliminated. Several
classical results of algebra have a similar flavor. For example, Sturm’s theorem
from the 1830s [65], p. 276, counts the number of roots of a polynomial in an
interval in terms of the alternations of signs in the coefficients. Another classi-
cal result is the existence of the resultant: If we are given polynomials f(a, x)
and g(a, x), we can compute another polynomial R(a, b) called the resultant
of f and g, such that R(a, b) = 0 if and only if a common solution x can
be found for the equations f(a, x) = 0 and g(a, x) = 0. Again the quantifier
“there exists x” has been eliminated. Tarski showed that algebraic methods
can always be applied to eliminate “there exists” from algebraic formulas,
even ones involving inequalities. The elimination of one quantifier depends
essentially on the fact that a polynomial has only finitely many roots, and we
can compute the number, the maximum size, and some information about
the location of the roots from the coefficients of the polynomial. Applying
this procedure again and again, we can strip off one quantifier after another
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(from the inside out), eliminating all the quantifiers in a formula with nested
quantifiers. We need only deal with “there exists” because “for all” can be
expressed as “not there exists x not” . Tarski’s procedure is a decision pro-
cedure for Tarski algebra, because if we start with a formula that has only
quantified variables (so it makes an assertion that should be true or false),
after we apply the procedure we get a purely numerical formula involving
equations and inequalities of rational numbers, and we can simply compute
whether it is true or false.

Descartes showed several centuries earlier that geometry could be reduced
to algebra, by the device of coordinates. This reduction, known as analytic
geometry, coupled with Tarski’s reduction of algebra with quantifiers to com-
putation, yields a reduction of geometry (with quantifiers) to computation.
In more technical words: a decision procedure for Euclidean geometry. Thus
Hilbert’s program, to reduce mathematics to computation, might seem to
be achieved for the mathematics of the classical era, algebra and geome-
try. Tarski’s student Szmielew made it work for non-Euclidean (hyperbolic)
geometry too [27]. Since the Weierstrass substitution reduces trigonometry to
algebra, a decision method for real-closed fields also applies to trigonometry,
as long as the arguments of the trig functions are linear.

Tarski’s result is regarded as very important. Hundreds of researchers have
pursued, and continue to pursue, the lines of investigation he opened. There
are two reasons for that: First, his results contrast sharply with Church’s
and Gödel’s, and show that the classical areas of algebra and geometry are
not subject to those limiting theorems. Second, there are plenty of open
and interesting problems that can be formulated in the theory of real-closed
fields, and this has raised the hope that decision procedures implemented on
a computer might one day routinely answer open questions. Our purpose in
this section is to investigate this possibility.

First, let us give an example of an open problem one can formulate in
Tarski algebra. Here is an example from the theory of sphere-packing. This
example, and many others, can be found in [32]. The “kissing problem” asks
how many n-dimensional spheres can be packed disjointly so that they each
touch the unit sphere centered at origin. For n = 2 the answer is six (2-spheres
are circles). For n = 3 the answer is 12. For n = 4 the answer is either 24, or
25, but nobody knows which! The problem can be formulated in the theory
of real-closed fields, using 100 variables for the coordinates of the centers of
the spheres. We simply have to say that each center is at distance 2 from
the origin and that each of the 300 pairs of points are at least 2 units apart.
Explicitly, we wish to know if there exist x1, . . . , x25, y1, . . . , y25, z1, . . . , z25,
and w1, . . . , w25 such that x2

i + y2
i + z2

i + w2
i = 4 and (xi − xj)2 + (yi −

yj)2 + (zi − zj)2 + (wi −wj)2 ≥ 4 for i 6= j. All we have to do is run Tarski’s
algorithm on that formula, and the open problem will be answered.27

27 Another interesting sphere-packing problem was open for centuries, until it was
solved in 1998. Namely, what is the densest packing of spheres into a large cube
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Well then, why is this problem still open? The suspicion may be dawning
on you that it isn’t so easy to run this procedure on a formula with 100
quantified variables! In the half-century since Tarski’s work, researchers have
found more efficient algorithms for quantifier elimination, but on the other
hand, they have also proved theorems showing that any algorithm for quanti-
fier elimination must necessarily run slowly when large numbers of variables
are involved. These lines of research now almost meet: the best algorithms
almost achieve the theoretical limits. However, it seems that the edge of ca-
pability of algorithms is close to the edge of human capability as well, so the
possibility that decision procedures might settle an open question cannot be
definitively refuted. We therefore review the situation carefully.

First we review the worst-case analyses that show quantifier elimination
must run slowly. Fischer and Rabin showed [42] that any algorithm for quan-
tifier elimination in real-closed fields will necessarily require exponential time
for worst-case input formulas; that is, time of the order of 2dn where n is the
length of the input formula, and d is a fixed constant. This is true even for for-
mulas involving only addition (not multiplication). Later [104,36] a stronger
lower bound was proved: sometimes quantifier elimination will require time
(and space) of the order 22n

(double exponential). ( See [84] for a survey of
results on the complexity of this problem.) Taking n = 64 we get a number
with more than 1018 decimal digits. No wonder the kissing number problem
is still open.

Tarski’s original algorithm, which was never implemented, was in prin-
ciple much slower even than double exponential. Tarski’s method eliminates
one quantifier at a time, and the formula expands in length by a double ex-
ponential each time, so the running time cannot be bounded by any tower of
exponents. Fischer and Rabin’s result was obtained in the fall of 1972, but
not published until 1974. In the interim, not knowing that efficient quantifier
elimination is impossible, George Collins invented an improved quantifier-
elimination method known as cylindric algebraic decomposition (CAD) [31].
Actually, according to the preface of [28], Collins had been working on quan-
tifier elimination since 1955, but the 1973 work generalized his method to n
variables and hence made it a general quantifier elimination method. Collins’s
method runs in double exponential time, much better than Tarski’s method,
and almost best-possible [36]. We knew from Fischer and Rabin’s lower bound
that there was no hope of a really efficient quantifier elimination algorithm,
but the CAD method is much faster than Tarski’s or Cohen’s methods. The
worst case, when the algorithm takes time 22n

, arises only when there are lots
of variables. The algorithm is double exponential in the number of variables,

in 3-space? Kepler conjectured that it is the usual packing used by grocers for
stacking oranges, but this was difficult to prove. It can, however, easily be for-
mulated in the theory at hand, so in principle, “all we have to do” is quantifier
elimination.
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but for a fixed number of variables, the time increases only as some power of
the length of the input.28

‘Moore’s law” is the observation, made in 1965 by Gordon Moore, co-
founder of Intel, that data density in computers (bits per square centimeter)
has been growing exponentially, doubling every 12-18 months, ever since the
integrated circuit was invented in 1962. Perhaps incorrectly, many people also
use “Moore’s law” to refer to the exponential increase in computer speed.29

One should clearly understand that Moore’s law cannot help us much with
an algorithm whose running time is double exponential. If the running time
is 22n

and we want to increase n by one, we need a computer that runs 22n

times faster, as a short calculation will show you: take the ratio of the new
running time, 22n+1

, to the old running time 22n

. You will get 22n

when you
simplify that ratio. It takes 2n Moore’s law doubling periods just to increase n
by one. The import of the double-exponential running time theorems about
quantifier elimination is therefore almost as grim as the import of Gödel’s
theorem. It seems that Fischer, Rabin, Weispfenning, and Davenport have
destroyed Tarski’s dream as thoroughly as Gödel destroyed Hilbert’s.

But people never give up! Maybe there is an escape route. It was discov-
ered in 1992 by Grigorev [46] that if we restrict attention to formulas that
only have “there exists”, and no “for all”, then we can escape the dreaded
double-exponential. He gave a decision procedure for this class of formulas
which is “only” exponential in the number of variables. This is an impor-
tant difference, since with an exponential algorithm, if it doesn’t run today,
perhaps our children will be able to run it; while with a double-exponential
running time, our posterity is also doomed to failure. Further improvements
since 1992 are described in [8].

A Web search shows that dozens, if not hundreds, of researchers are work-
ing on quantifier elimination these days. Although we know that quantifier
elimination will take “forever” on large problems, there still might be some
interesting open problems within reach—a tantalizing possibility. Hong [52]
made improvements to the CAD algorithm, calling his enhanced version “par-
tial CAD”, and implemented it in a program called qepcad (quantifier elimi-
nation by partial CAD). This program has subsequently been improved upon
by many other people, and is publicly available on the Web [22]. At least some
of its functionality has been included with Mathematica versions 4.1 and 4.2,
in the Experimental package. But to the best of my knowledge, the algorithms
in [46] and [8] have not been implemented.

28 The interested reader should pursue the CAD algorithm in [28]; we cannot take
the space here even to correctly define what a CAD is, let alone describe the
original algorithm and its recent improvements in full.

29 Moore’s paper contains a prophetic cartoon showing a “happy home computer”
counter between “notions” and “cosmetics”. Bill Gates was ten years old at the
time.
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It seems fair to ask, then, what are the present-day limits of quantifier
elimination in algebra? The first interesting example, often used as a bench-
mark for quantifier elimination, is to find the conditions on a, b, c, d such that
the fourth-degree polynomial x4 + ax3 + bx2 + cx + d is positive for all x.
That is, to eliminate the quantifier “for all x” in that statement. The an-
swer is a surprisingly complex polynomial in a,b,c, and d. Qepcad does this
five-variable problem almost instantaneously. The curious reader can find the
answer at the qepcad examples web page [22].

It was fairly easy to create a Mathematica notebook with functions de-
fined to facilitate asking simple questions about sphere packing.I defined
TwoSpheres[M ], which uses InequalityInstance to ask whether there exist
two disjoint spheres of radius 1 in a cube of side 2M . This is a seven-variable
problem, counting M and the coordinates of the centers of the spheres. To
make it a six-variable problem, we can put in specific values of M : Mathe-
matica answers the query, TwoSpheres[7/4] with True; and with a suitable
variant of the question, it could even exhibit an example of two such spheres.
TwoSpheres[3/2] returns False. The time required is less than a second. The
seven-variable problem, with M variable, seems to be too difficult for Mathe-
matica’s CylindricalAlgebraicDecomposition function. I also tried these prob-
lems with the version of qepcad available from [22]; this program was able
to expressTwoSpheres[M ] as M ≥ 1 & 3M2 − 6M + 2 ≥ 0. The least such
M is 1 + 1/

√
3, which is the value of M one finds with pencil and paper if

one assumes that the centers of the spheres are on the main diagonal of the
cube. But the program did not make that assumption–it proved that this is
the best possible arrangement. Similar queries ThreeSpheres[M ], for various
specific values of M , never returned answers. After several hours I stopped
Mathematica; in the version of qepcad from [22], the jobs failed (after several
hours) because they ran out of memory. Nine variables is too many in 2003.

Using a double-exponential algorithm, we could expect that with running
time varying as 22n

, if n = 7 corresponds to one second, then n = 8 should
correspond to 2128 seconds, or more than 1035 years, so a sharp cutoff is to
be expected. As calculated above, to increase n from 7 to 8, we need 27,
or 128, doublings of computer speed. But the kissing problem needs only
existential quantifiers, so as discussed above, it sneaks under the wall: we
can solve it in “only” exponential time. In that case if 27 corresponds to one
second, then 28 is only two seconds; but to attack the kissing problem we
need 100 variables, and 2100 corresponds to 293 seconds–about 1024 years.
[Physicists know a convenient coincidence: that to three significant digits,
there are π × 107 seconds per year.] Even when the work of Grigorev is
implemented, it still won’t solve the kissing problem. Nevertheless, there may
well be open questions with fewer than fifteen variables, so it seems the jury
is still out on the potential usefulness of quantifier elimination.

Quantifier elimination has not been the only decision method used in
geometry. In 1978, Wu Wen-Tsen pioneered the reduction of geometry to
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polynomial ideal theory, introducing “Wu’s method” [115]. The idea here is
that an important class of geometric theorems can be stated in algebraic
language without using inequalities. If the theorem can be stated using only
conjunctions of equations in the hypothesis and an equation in the conclusion,
then it reduces to asking if a certain polynomial lies in the ideal generated
by a finite set of other polynomials. Since that time, other methods, based
on Gröbner bases, have also been applied to geometric theorem proving. This
work has reduced geometric theorem-proving to computer algebra, and when
it is applicable, it seems to be more efficient than quantifier elimination. Many
interesting theorems in classical plane and solid geometry have been proved
this way.

11 Equality Reasoning

The usual axioms for equality, as given in mathematics textbooks, are

x = x reflexivity
x = y & y = z → x = z transitivity

x = y → y = x symmetry
x = y & φ(x) → φ(y) substitutivity

In this form, these axioms are useless in automated deduction, because they
will (in fact even just the first three will) generate a never-ending stream of
useless deductions. The “right method” for dealing with equality was discov-
ered three times in the period 1965-1970, independently in [87], [47], and [62].
The approaches had slightly different emphases, although the kernel of the
methods is the same. We will first explain the Knuth-Bendix method.

By an “oriented equation” p = q we simply mean a pair of terms separated
by an equality sign, so that p = q is not considered the same oriented equation
as q = p. The idea is that an oriented equation is to be used from left to
right only. The oriented equation x(y + z) = xy + xz can be used to change
3 ∗ (4 + 5) to 3 ∗ 4 + 3 ∗ 5, but not vice-versa. The variables can be matched
to complicated expressions, although this example shows them matched to
constants. Another name for “oriented equation” is “rewrite rule”, which
conveys an intuition about how rewrite rules are to be used.

Suppose one is given a set E of oriented equations. Given an expression
t, we can rewrite t or its subterms using (oriented) equations from E until
no more rules can be applied. If this happens, the resulting term is called a
“normal form” of t. It need not happen: for example, if E includes the equa-
tion xy = yx, then we have ab = ba = ab = . . . ad infinitum. If one sequence
of rewrites does terminate in a normal form, it still does not guarantee that
every such sequence terminates (different subterms can be rewritten at dif-
ferent stages). If, no matter what subterm we rewrite and no matter what
equation from E we use, the result always terminates in a normal form, and
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if this happens no matter what term t we start with, then E is called termi-
nating.

Even this does not guarantee the uniqueness of the normal form of t.
That would be guaranteed by the following desirable property of E, known as
confluence. E is called confluent if whenever a term t can be rewritten (using
one or more steps) in two different ways to r and s, then there exists another
term q such that both r and s can be rewritten to q. This property clearly
ensures the uniqueness of normal forms because, if r and s were distinct
normal forms of t, it would be impossible to rewrite them as q.

These concepts will be made clear by considering the example of group
theory. Consider the usual three axioms of group theory:

e ∗ x = x

i(x) ∗ x = e

(x ∗ y) ∗ z = x ∗ (y ∗ z)

This set is not confluent. For example, the term (i(a)∗a)∗b) can be rewritten
to e ∗ b and then to b, but it can also be rewritten to i(a) ∗ (a ∗ b), which
cannot be rewritten further. Does there exist a terminating confluent set of
equations E extending these three, and such that each of the equations in
E is a theorem of group theory? This is an interesting question because if
there is, it would enable us to solve the word problem for group theory: given
an equation t = s, does it follow from the three axioms of group theory? If
we had a complete confluent set E, we could simply rewrite t and s to their
respective unique normal forms, and see if the results are identical. If so, then
the equation t = s is a theorem of group theory. If not, it is not a theorem.

The answer for group theory is a set of ten equations. These are the
original three, plus the following seven:

i(x) ∗ (x ∗ y) = y

x ∗ e = x

i(e) = e

i(i(x)) = x

x ∗ i(x) = e

x ∗ (i(x) ∗ y) = y

i(x ∗ y) = i(y) ∗ i(x)

We call this set of ten equations “complete” because it proves the same
equations as the original three axioms, i.e., all the theorems of group theory,
but it can do so by using the ten equations only left-to-right, while the original
three must be used in both directions to prove the same theorems. In technical
language: the ten equations constitute a complete confluent set. That set
happens to contain the original three axioms, but that can be viewed as
accidental. We would not have cared if the original axioms had themselves
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simplified somewhat in the final ten. (Of course, the original axioms of group
theory were chosen to be as simple as possible, so it is not really accidental
that they are among the ten.)

This solution of the word problem for groups can be vastly generalized.
Donald Knuth invented an algorithm, which was implemented by his student
Bendix (in FORTRAN IV for the IBM 7094), and has become known as
the Knuth-Bendix algorithm since they were the joint authors of [62]. This
algorithm was published in 1970, but the work was done considerably earlier.
The input is a set E of (unoriented or oriented) equations. The output (if
the algorithm terminates) is a set Q of oriented equations (rewrite rules)
that is confluent and terminating, and has the same (unoriented) equations
as logical consequences as the original set E. However, in general there is no
guarantee of termination. One can run this algorithm with the three axioms
of group theory as input and obtain the ten-equation system given above as
output.

The Knuth-Bendix method is (or can be with appropriate commands)
used by most modern theorem-provers. It is integrated with the other meth-
ods used in such theorem-provers. Here is an example of an interesting theo-
rem proved by this method: In a ring suppose x3 = x for all x. Then the ring
is commutative. This is proved by starting out with the set E containing the
ring axioms and the axiom xxx = x. Then the Knuth-Bendix algorithm is run
until it deduces xy = yx. When that happens, a contradiction will be found
by resolution with the negated goal ab 6= ba, so the Knuth-Bendix algorithm
will not go off ad infinitum using the commutative law (as it would if running
by itself.) The resulting proof is 52 steps long. Up until 1988 it took ten hours
to find this proof; then the prover RRL [59] was able to reduce this time to
two minutes. Actually, the hypothesis x3 = x can be replaced by xn = x for
any natural number n ≥ 2, and RRL could also do the cases n = 4, 6, 8 . . .,
and many other even values of n [117], but it still takes a human being to
prove it for all n, because the (only known) proof involves induction on n and
the theory of the Jacobsen radical (a second-order concept). The odd cases
are still quite hard for theorem provers.

The use of a set of oriented equations to rewrite subterms of a given term
is called “demodulation” in the automated theorem proving community, and
“rewriting” in an almost separate group of researchers who study rewrite rules
for other reasons. A set of oriented equations can be specified by the user of
Otter as “demodulators”. They will be used to “reduce” (repeatedly rewrite)
all newly-generated clauses. What the Knuth-Bendix algorithm does, in ad-
dition to this, is to use the existing demodulators at each stage to generate
new demodulators dynamically. The method is simple: Find a subterm of one
of the left-hand sides that can be rewritten in two different ways by differ-
ent demodulators. Reduce the left-hand side as far as possible after starting
in these two different ways. You will obtain two terms p and q. If they are
different, then the set of existing demodulators is manifestly not confluent,
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and the equation p = q is a candidate for a new demodulator. The pair p, q
is called a critical pair. Also q = p is a candidate, so the difficulty is which
way the new equation should be oriented. The solution is to put the “heavi-
est” term on the left. In the simplest case, “heaviest” just means “longest”,
but if the algorithm does not halt with that definition of “weight”, other
more complicated definitions might make the algorithm converge. In short,
the Knuth-Bendix algorithm depends on a way of orienting new equations,
and many papers have been written about the possible methods.

Because commutativity is important in many examples, but makes the
Knuth-Bendix algorithm fail to converge, some effort has been expended to
generalize the algorithm. If the matching for rewrites is done using “associative-
commutative unification” instead of ordinary unification, then the algorithm
still works, and one can simply omit the commutative and associative ax-
ioms [5]. This was the method employed in McCune’s theorem-prover EQP
to settle the Robbins Conjecture [71].

Returning to the late 1960s, we now describe the contribution of George
Robinson and Larry Wos. They defined the inference rule they called paramod-
ulation. This is essentially the rule used to generate new critical pairs at each
step of the Knuth-Bendix algorithm. But in [87], it was not restricted to theo-
ries whose only relation symbol is equality. Instead, it was viewed as a general
adjunct to resolution. One retains the reflexivity axiom x = x and replaces
transitivity, symmetry, and substitutivity with the new inference rule. They
used this method to find proofs of theorems that were previously beyond the
reach of computer programs. For example, with (x⊗y) defined as the commu-
tator of x and y, they proved that in a group, if x3 = 1 then (x⊗ y)⊗ y = 1.
Although this example is purely equational, the rule of paramodulation is
generally applicable, whatever relation symbols may occur in addition to
equality. Robinson and Wos proved [88] the refutation-completeness of this
method, i.e., any theorem has a proof by contradiction using resolution and
paramodulation, with the axiom x = x. On the other hand, Robinson and
Wos did not introduce the concept of confluence or of a complete confluent
set of rules, so, for example, the deduction of the ten group-theory theorems
given above escaped their notice.

For theories relying exclusively on equality, no serious distinction should
made between the Knuth-Bendix method and paramodulation. They are es-
sentially the same thing.30 Nevertheless, as mentioned before, there is a com-
munity of researchers in “rewrite rules” and an almost disjoint community
of researchers in “automated deduction”, each with their own conferences
and journals. The challenge for today’s workers in equality reasoning is to
connect the vast body of existing work with the work that has been done in

30 The four differences listed on p. 20 of [72] are actually differences in the way
the technique is used in Otter and the way it would be used in a program that
implemented only Knuth-Bendix.
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computer algebra, so that proofs involving computation can begin to be done
by computer. This task has hardly been begun.

12 Proofs Involving Computations

There have always been two aspects of mathematics: logical reasoning and
computation. These have historical roots as far back as Greece and Babylo-
nia, respectively. Efforts to mechanize mathematics began with computation,
and as discussed above, the machines of Pascal and Leibniz preceded the Log-
ical Piano. In our time, the mechanization of computation via computer has
been much more successful than the mechanization of logical reasoning. The
mechanization of symbolic computation (as opposed to numerical computa-
tion) began in the fifties, as did the mechanization of logic. What is inter-
esting, and surprising to people outside the field, is that the mechanization
of logic and the mechanization of computation have proceeded somewhat
independently. We now have computer programs that can carry out very
elaborate computations, and these programs are used by mathematicians “as
required”. We also have “theorem-provers”, but for the most part, these two
capabilities do not occur in the same program, and these programs do not
even communicate usefully.

Part of the problem is that popular symbolic computation software (such
as Mathematica, Maple, and Macsyma) is logically incorrect. For example:
Set a = 0. Divide both sides by a. You get 1 = 0, because the software
thinks a/a = 1 and 0/a = 0. This kind of problem is pervasive and is not
just an isolated “bug”, because computation software applies transformations
without checking the assumptions under which they are valid. Alternately, if
transformations are not applied unless the assumptions are all checked, then
computations grind to a halt because the necessary assumptions are not verifi-
able. The author’s software MathXpert [11], which was written for education
rather than for advanced mathematics, handles these matters correctly, as
described in [10]. Later versions of Mathematica have begun attacking this
problem by restricting the applicability of transformations and allowing the
user to specify assumptions as extra arguments to transformations, but this
is not a complete solution. Buchberger’s Theorema project [23] is the best at-
tempt so far to combine logic and computation, but it is not intended to be a
proof-finder, but rather a proof-checker, enabling a human to interactively de-
velop a proof. The difficulty here is that when the underlying computational
ability of Mathematica is used, it is hard to be certain that all error has been
excluded, because Mathematica does not have a systematic way of tracking
or verifying the pre-conditions and post-conditions for its transformations.

Another program that was a pioneer in this area is Analytica [30]. This
was a theorem-prover written in the Mathematica programming language.
“Was” is the appropriate tense, since this program is no longer in use or under
development. Analytica was primarily useful for proving identities, and made
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a splash by proving some difficult identities from Ramanujan’s notebooks.
It could not deal with quantified formulas and did not have state-of-the-art
searching abilities.

On the theorem-proving side of the endeavor, efforts to incorporate com-
putation in theorem-provers have been restricted to two approaches: using
rewrite rules (or demodulators), and calling external decision procedures for
formulas in certain specialized forms. The subject known as “constraint logic
programming” (CLP) can be considered in this latter category. Today there
are a few experiments in linking decision-procedure modules to proof-checkers
(e.g. qepcad to PVS), but there is little work in linking decision-procedure
modules to proof-finding programs.31

The author’s software MathXpert contains computational code that prop-
erly tracks the preconditions for the application of mathematical transforma-
tions. After publishing MathXpert in 1997, I then combined some of this code
with a simple theorem prover I had written earlier [9], and was therefore in
a unique position to experiment with the automated generation of proofs
involving computation. I named the combined theorem-prover Weierstrass
because the first experiments I performed involved epsilon–delta arguments.
These are the first proofs, other than simple mathematical inductions, to
which students of mathematics are exposed. I used Weierstrass in 1988-1990
to find epsilon-delta proofs of the continuity of specific functions such as pow-
ers of x, square root, log, sine and cosine, etc. Before this, the best that could
be done was the continuity of a linear function [19]. These proofs involve
simple algebraic laws (or laws involving sine, cosine, log, and the like), but,
what is more, they involve combining those computations with inequality
reasoning.

I then moved from analysis to number theory, and considered the proof
of the irrationality of e. Weierstrass was able, after several improvements,
to automatically generate a proof of this theorem [13]. The proof involves
inequalities, bounds on infinite series, type distinctions (between real numbers
and natural numbers), a subproof by mathematical induction, and significant

31 Possible exceptions: if the set of demodulators is confluent and complete, then
demodulation could be regarded as a decision procedure for equations in that
theory. Bledsoe’s rules [19], [25] (Ch. 8) for inequalities could be regarded as a
decision procedure for a certain class of inequalities. Theorem provers such as
EQP and RRL that have AC-unification could be regarded as having a decision
procedure for linear equations. Theorema does contain decision procedures, but it
is primarily a proof-checker, not a proof-finder. An extension of the prover RRL
called Tecton [1] has a decision procedure for Presburger arithmetic.
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mathematical steps, including correct simplification of expressions involving
factorials and summing an infinite geometrical series.32 33

Inequalities played a central role in both the epsilon-delta proofs and the
proof of the irrationality of e. Inequalities certainly play a central role in clas-
sical analysis. Books and journal articles about partial differential equations,
for example, are full of inequalities known as “estimates” or “bounds”, that
play key roles in existence proofs. Classically, mathematics has been divided
into algebra and analysis. I would venture to call algebra the mathematics of
equality, and analysis the mathematics of inequality.

The mechanization of equality reasoning has made more progress than the
mechanization of inequality reasoning. We have discussed the “first loophole”
above, which allows for the complete mechanization of certain subfields of
mathematics by a “decision procedure” that algorithmically settles questions
in a specific area. The mechanization of equality reasoning has benefited from
the discovery of decision procedures with surprisingly wide applicability. In
particular, a decision procedure has been found for a class including what
are usually called combinatorial identities. Combinatorial identities are those
involving sums and binomial coefficients, often in quite complicated algebraic
forms. To illustrate with a very simple example,
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In 1974 it was recognized by Gosper, who was at that time involved in
the creation of Macsyma, that almost all such identities are special cases
of a few identities involving hypergeometric functions, an area of mathemat-
ics initiated, like so many others, by Gauss. In 1982, Doron Zeilberger re-
alized that recurrence relations for such identities can be generated auto-
matically. This realization is the basis for “Zeilberger’s paradigm” (see [81],
p. 23). This “paradigm” is a method for proving an identity of the form∑

k summand(n, k) = answer(n). Namely: (i) find a recurrence relation satis-
fied by the sum; (ii) show that the proposed answer satisfies the same recur-
rence; (iii) check that “enough” initial values of both sides are equal. Here
“enough” depends on the rational functions involved in the recurrence rela-
tion. The key to automating proofs of combinatorial identities is to automate
32 Two things particularly amused me about this piece of work: First, one of the

referees said “Of course it’s a stunt.” Second, audiences to whom I lectured were
quite ready to accept that next I might be proving the irrationality of Euler’s
constant γ or solving other open problems. People today are quite jaded about
the amazing latest accomplishments of computers! What the referee meant was
that the “stunt” was not going to be repeated any time soon with famous open
problems of number theory.

33 It was difficult for others to build upon this work in that the code from MathXpert
could not be shared, because it is part of a commercial product no longer under
the author’s control. In the future, similar features should be added to an existing,
widely-used theorem prover, whose source code is accessible, such as Otter.
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the discovery of the appropriate recurrence relation. In [81], one can learn
how this is done, using methods whose roots lie in Gosper’s algorithm for
the summation of hypergeometric series, and in yet earlier work by Sister
Mary Celine on recurrence relations. The appendix of [81] contains pointers
to Mathematica and Maple implementations of the algorithms in question.
In addition to verifying proposed identities, some of these algorithms can,
given only the left-hand sum, determine whether there exists an “answer” in
a certain form, and if so, find it. The algorithms presented in [81] are note-
worthy because, unlike either proof-search or quantifier elimination for the
reals, they routinely perform at human level or better in finding and proving
combinatorial identities.

13 Searching for Proofs

In essence, automated deduction is a search problem. We have a list of axioms,
a few “special hypotheses” of the theorem to be proved, and the negation of
its conclusion, and some inference rules. These inputs determine a large space
of possible conclusions that can be drawn. We must search that space to see
if it contains a contradiction. In some approaches to automated deduction
(that do not use proof by contradiction), we might not put the negation of
the conclusion in, and then search the possible deductions for the conclusion,
instead of a contradiction. Either way, a search is involved. To the extent that
calculation is involved, the search can be limited–when we are calculating,
we “know what we are doing”. But the logical component of mathematics
involves, even intuitively, a search. We “find” proofs, we do not “construct”
them.

This search appears to be fundamentally infeasible. Let us see why by
considering a straightforward “breadth-first search”, as a computer scientist
would call it. Suppose we start with just 3 axioms and one rule of inference.
The three axioms we call “level 0”. Level n + 1 is the set of formulas that
can be deduced in one step from formulas of level n or less, at least one of
which has level exactly n. The “level saturation strategy” is to generate the
levels, one by one, by applying the inference rule to all pairs of formulas of
lower levels. It is difficult to count the size of the levels exactly because we
cannot tell in advance how many pairs of formulas can function as premisses
of the inference rule. But for a worst-case estimate, if Ln is the number of
formulas in level n or less, we would have Ln+1 = Ln + Ln(Ln − Ln−1). To
make a tentative analysis, assume that Ln−1 can be neglected compared to
the much larger Ln. Then the recursion is approximately Ln+1 = L2

n, which
is solved by Ln = 22n

. When n = 7 we have 2128, a number that compares
with the number of electrons in the universe (said to be 1044). Yet proofs of
level 30 are often found by Otter (according to [109], p. 225). Of course, we
have given a worst-case estimate, but in practice, level saturation is not a
feasible way to organize proof search.



40 Michael Beeson

Intuitively, the difficulty with level saturation is this: what we are doing
with level saturation (whether or not the negation of the conclusion is thrown
in) is developing the entire theory from the axioms. Naturally there will be
many conclusions that are irrelevant to the desired one. Whole books may
exist filled with interesting deductions from these axioms that are irrelevant
today in spite of being interesting on another day, and there will of course be
even more uninteresting conclusions. What we need, then, are techniques to

• prevent the generation of unwanted deduced clauses,
• discard unwanted clauses before they are used to generate yet more un-

wanted clauses,
• generate useful clauses sooner,
• use useful clauses sooner than they would otherwise be used.

Methods directed towards these objectives are called “strategies”.
In 1962, when none of the strategies known today had yet been invented,

the following problem was too difficult for automated theorem proving: In a
group, if x∗x = e for every x, then the group is commutative, i.e. z ∗y = y∗z
for every y and z. Today this is trivial (for both humans and computers). It
was consideration of this example that led Larry Wos to invent the “set of
support” strategy [107], which is today basic to the organization of a modern
theorem-prover.

Here is an explanation of (one version of) this strategy. Divide the axioms
into two lists, usable and set of support (sos). Normally, sos contains the
negation of the desired theorem (that is, it contains the “special hypothesis”
of the theorem and the negation of the conclusion of the theorem). The axioms
of the theory go into usable. To generate new clauses, use resolution (or a
variant of resolution) with one parent from sos and one parent from usable.
Specifically, pick one “given clause” from sos. Move the given clause from sos
to usable. Then make all possible inferences using the given clause as one
parent, with the other parent chosen from usable. Add the new conclusions
(possibly after some post-processing) to the sos list. Continue, choosing a
new given clause, until the set of support becomes empty or a contradiction
is derived.

The following fragment of an Otter input file illustrate the choice of sos
and usable in the example mentioned above. (Here f means the group oper-
ation, and g is the inverse.)

list(usable).
x = x. \% equality
f(e,x) = x. \% identity
f(g(x),x) = e. \% inverse
f(f(x,y),z) = f(x,f(y,z)). \%associativity
end_of_list.

list(sos).
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f(x,x) = e. \% special hypothesis
f(a,b) != f(b,a). \% Denial of conclusion
end_of_list.

Otter finds a 6-step proof, of level 4, for this problem. Wos, George Robin-
son, and Carson proved (acknowledging invaluable assistance from J. A.
Robinson) [107] that the appropriate use of this strategy still preserves the
refutation-completeness property; that is, if there exists a proof of contradic-
tion from the formulas in usable and sos together, then in principle it can
be found by this strategy, if we do not run out of space or time first. The
hypothesis of this theorem is that the usable list must itself be satisfiable,
i.e. not contain a contradiction. That will normally be so because we put the
denial of the conclusion into sos.

Another way of trying to generate useful formulas sooner, or to avoid
generating useless formulas, is to invent and use new rules of inference. Quite
a number of variations of resolution have been introduced and shown to
be useful, and various theorems have been proved about whether refutation
completeness is preserved using various combinations of the rules. For an
overview of these matters, see [109]. For additional details and many exam-
ples, see [108]. Nowadays, the user of a theorem-prover can typically specify
the inference rules to be used on a particular problem, and may try various
choices; while there may be a default selection (Otter has an “autonomous
mode”), expertise in the selection of inference rules is often helpful.

Another common way of trying to generate useful formulas sooner is to
simply throw out “useless” formulas as soon as they are generated, instead
of putting them in sos for further processing. For example, if a formula is a
substitution instance of a formula already proved, there is no use keeping it.
If you feel (or hope) that the proof will not require formulas longer than 20
symbols, why not throw out longer formulas as soon as they are generated?
More generally, we can assign “weights” to formulas. The simplest “weight”
is just the length (total number of symbols), but more complex weightings
are possible. Then we can specify the maximum weight of formulas to be
retained. Of course, doing so destroys refutation completeness, but it may
also enable us to find a proof that would otherwise never have been produced
in our lifetimes. If we do not find a proof, we can always try again with a
larger maximum weight.

The description of the sos strategy above leaves several things impre-
cise: how do we “select” a formula from sos to be the next given formula?
What is the nature of the “post-processing”? These questions have interest-
ing answers, and the answers are not unique. There are different strategies
addressing these questions. Otter has many user-controllable parameters that
influence these kinds of things. There are so many parameters that running
Otter is more of an art than a science. For a more detailed description of the
basic algorithm of Otter, see [109], p. 94, where the program’s main loop is
summarized on a single page.
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It has now been nearly forty years since the invention of the set of support
strategy, and the general approach to theorem proving described above has
not changed, nor has any competing approach met with as much success.
Over that forty years, the approach has been refined by the development of
many interesting strategies. The skillful application of these strategies has
led to the solution of more and more difficult problems, some of which were
previously unsolved. An impressive list of such problems solved just in the
last couple of years is given in [41].34 These problems are in highly technical
areas, so it is difficult to list and explain them in a survey article. To give a
taste of this kind of research, we shall explain just one of the areas involved:
propositional logic. You may think that propositional logic is trivial. After
all, you know how to decide the validity of any proposition by the method
of truth tables. Therefore it is first necessary to convince you that this is an
area with interesting questions. We write i(x, y) for “x implies y”, and n(x)
for “not x”. Since “and” and “or” can be defined in terms of implication and
negation, we will restrict ourselves to the connectives i and n. The Polish
logician Jan  Lukasiewicz (1878-1956) introduced the following axioms for
propositional logic:

i(i(x, y), i(i(y, z), i(x, z))) (1)
i(i(n(x), x), x) (2)
i(x, i(n(x), y)) (3)

To work with these axioms in Otter, we use the predicate P (x) to mean “x
is provable”. We then put into the usable list,

P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(n(x),x),x)).
P(i(x,i(n(x),y))).
-P(x) | -P(i(x,y)) | P(y).

Now to ask, for example, whether i(x, x) is a theorem, we put -P(i(c,c))
into list(sos). That is, we put in the negation of the assertion that i(c, c) is
provable. The steps taken by resolution correspond to the rule of “detach-
ment” used by logicians: To deduce a new formula from A and i(B, C), make
a substitution ∗ so that A∗ = B∗. Then you can deduce C∗.35 Why do we
34 If the non-expert user looks at the list given in [41] of difficult problems solved

using Otter, he or she will very likely not be able in a straightforward manner to
get Otter to prove these theorems. He or she will have to go to the appropriate web
site and get the input files prepared by the experts, specifying the inference rules
and parameters controlling the search strategies. As the authors state, they do
not have a single uniform strategy that will enable Otter to solve all these difficult
problems, and a lot of human trial and error has gone into the construction of
those input files.

35 Technically, since a theorem prover always uses the most general unifier, it corre-
sponds to the rule known as “condensed detachment”, in which only most general
substitutions are allowed.
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need the predicate P ? Because we are interested in proofs from L1–L3 us-
ing condensed detachment; P is used to force the theorem prover to imitate
that rule. We are not just interested in verifying tautologies, but in finding
proofs from the specific axioms L1–L3. Now, the reader is invited to try to
prove i(x, x) from the axioms L1–L3. This should be enough to convince you
that the field is not trivial. Other axiom systems for propositional logic were
given by Frege, by Hilbert, and by  Lukasievich. (See the wonderful appendix
in [83], where these and many other axiom systems are listed. The questions
then arise about the equivalence of these axiom systems. We want proofs of
each of these axiom systems from each of the others. The appendix of [109]
(pp. 554-55) lists Otter proofs of the some of these systems from L1-L3. For
example, the first axiom in Frege’s system is i(x, n(n(x))). Go ahead, John
Henry: try to prove it from L1-L3 using pencil and paper.

One type of interesting question studied by logicians in the 1930s through
1950s–and resumed again today with the aid of automated reasoning–was
this: given a theory T defined by several axioms, can we find a “single ax-
iom” for T ? That is, a single formula from which all the axioms of T can be
derived. If so, what is the shortest possible such axiom? This type of question
has been attacked using Otter for a large number of different systems, includ-
ing various logics, group theories, and recently, lattice theory. For example,
“equivalential calculus” is the logical theory of bi-implication (if and only
if). It can be represented using e(x, y) instead of i(x, y), and treated using a
“provability predicate” P as above. See [113] for an example of an Otter proof
that settled a long-open question in equivalential calculus, namely, whether
a certain formula XCB is a single axiom for this theory. This is perhaps the
most recent example of a theorem that has been proved for the first time by
a computer. Before it was proved (in April, 2002), people were not willing to
give odds either way on the question.

14 Proofs Involving Sets, Functions, and Numbers

If we examine a textbook for an introductory course in abstract algebra,
such as [56], we find that only about ten percent of the problems can be
formulated in the first-order languages of groups, rings, etc. The rest involve
subgroups, subrings, homomorphisms, and/or natural numbers. For example,
one of the first theorems in group theory is Lagrange’s theorem: if H is
a subgroup of a finite group G, then the order of H (the number of its
elements) divides the order of G. Here we need natural numbers to define the
order, and a bit of number theory to define “divides”; we need the concept of
subgroup, and the proof involves constructing a function to put H in one-one
correspondence with the coset Ha, namely, x 7→ xa. At present, no theorem-
proving program has ever generated a proof of Lagrange’s theorem, even
though the proof is very short and simple. The obstacle is the mingling of
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elements, subgroups, mappings, and natural numbers.36 The present power
of automated theorem provers has yielded results only in theories based on
equality and a few operations or in other very simple theories. At least half
of undergraduate mathematics should come within the scope of automated
proof generation, if we are able to add in a relatively small ability to deal with
sets, numbers, and functions. We do not (usually) need sets of sets, or sets
of sets of sets, and the like. Nor do we usually need functions of functions,
except special functions of functions like the derivative operator. If we add to
a first-order theory some variables for sets (of the objects of the theory) and
functions (from objects to objects), we have what is known as a second-order
theory. The lambda-calculus can be used to define functions, and sets can be
regarded as Boolean-valued functions. The author’s current research involves
adding capabilities to the existing, widely-used theorem prover Otter to assist
it in handling second-order theories, without interfering with its first-order
capabilities.37 Specifically, a new second-order unification algorithm [14,15],
has been added to Otter, and will be improved and applied. Preliminary
results, and the direction of the research program, are described in [16].

One may object to the use of second-order logic, and indeed to the whole
idea of a “taxonomy” of mathematics, on the grounds of the universality of
set theory. Let us begin by stating the objection clearly. Set theory is a “sim-
ple theory”, with one relation symbol for membership and a small number of
axioms. True, one of the “axioms” of ZF set theory is an infinite schema, with
one instance for each formula of the language; but there is another formula-
tion of set theory, Gödel–Bernays set theory (GB), which has a small finite
number of axioms. In GB, variables range over classes, and sets are defined as
classes which belong to some other class. (The idea is that properties define
classes, but not every class is a set—we escape the Russell paradox in GB
because the Russell class is a class, but not a set.) Because of the possibility
of formulating set theory in this way as a simple theory, the taxonomy given
above collapses–all of mathematics is contained in a single simple first-order
theory. Now for some relevant history: a century ago, this program for the
foundations of mathematics was laid out, but in the middle twentieth century,
the Bourbaki school prevailed, at least in practice, organizing mathematics
according to the “many small theories” program. At present, most work in

36 A proof of Lagrange’s theorem developed by a human has been checked by the
computer program ACL2, see [116]. That proof is not the ordinary proof, but
instead proceeds by mathematical induction on the order of the group. The ordi-
nary proof has been proof-checked using HOL [58]. That paper also presents an
interesting “theory hierarchy” showing exactly what is needed. It has also been
checked in Mizar [99].

37 Of course, second-order and (why not?) higher-order theorem proving has been
in existence for a long time, and there are even whole conferences devoted to the
subject, e.g. TPHOL (Theorem Proving in Higher-Order Logic). It seems that
most of this research is not directed towards proving new theorems, so it has not
been discussed in this paper.
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automated deduction is based on the “small theories” approach, although
one brave man, Belinfante, has been proceeding for many years to develop
computerized proofs based on GB set theory [17,18]. Following this approach,
he has enabled Otter to prove more than 1000 theorems in set theory–but
he still is not up to Lagrange’s theorem, or even close. Belinfante built on
the pioneering work of Quaife [94]. Finally: the answer to the objection is
simply that it is too complex to regard numbers and functions as built out
of sets. No mathematician does so in everyday practice, and neither should
automated deduction when the aim is to someday prove new theorems.38

On the other hand, one may take the opposite view and say that, because
of the difficulties of developing mathematics within set theory, one should use
“higher-order logic”. This has been the view of many of the “proof-checking”
projects, and they have been successful in checking proofs of many fairly
complicated theorems. A proper review of this work would double the length
of this article, so we must forego it. The interested reader can consult [105]
for a list of fifteen proof checkers and proof finders, as well as references to
further information.

15 Conclusion

Alan Turing wrote a seminal paper [101] in which he raised the question
“Can machines think?”.39 After discussing various examples, such as chess,
musical composition, and theorem proving, he then formulated the “Turing
test” as a replacement for that imprecise question. In the Turing test, a com-
puter tries to deceive a human into thinking that the computer is human.40

Of course in the foreseeable future it will be too difficult for a single com-
puter to be able to reach human level in many areas simultaneously; but we
might consider restricted versions of the Turing test for specific areas of en-
deavor. As mentioned in the introduction, the Turing test has already been
passed for musical composition: David Cope has written a program EMI (pro-
nounced “Emmy”, for Experiments in Musical Intelligence) which produces
music that regularly fools sophisticated audiences–at least, it did until Cope
stopped conducting “The Test” at his concerts—stopped because the experts
were too embarrassed. Since Cope is a composer rather than a computer sci-
entist, he presents his results primarily at concerts rather than conferences.

38 For the record, Belinfante agrees with this statement. His aim, however, is foun-
dational. As a boy, he took Principia Mathematica from his physicist father’s
bookshelf and said to himself, “Someday I’m going to check if all these proofs are
really right!”. That spirit still animates his work.

39 Like Stanley Jevon’s paper, an original copy of this journal article now is priced
at $2000.

40 A more detailed discussion of the Turing test can be found in Turing’s paper op.
cit. or in any modern textbook on artificial intelligence; the idea of a computer
trying to appear human is enough for our purposes.
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I heard a seven-piece chamber orchestra perform the Eighth Brandenburg
Concerto (composed by EMI). (Bach composed the first seven Brandenburg
Concertos.)

In theorem-proving, as in artificial intelligence, there was initially a divi-
sion between those who thought computers should be programmed to “think”
like humans and those who favored a more computational approach. Should
we try to find “heuristics” (rules of thumb) to guide a computer’s efforts to
find a proof, or play a game of chess, or compose a piece of music? Or should
we just give the computer the rules and a simple algorithm and rely on the
power of silicon chips? It is interesting to compare computerized chess and
computerized theorem-proving in this respect. Both can be viewed as search
problems: chess is a search organized by “if I make move x1 and he makes
move y1 and then I make move x2 and he makes move y2 and then . . .”; we
search the various possibilities, up to a certain “level” or “depth”, and then,
for each sequence of possible moves, we score the situation. Then we pick our
move, using a “max-min” algorithm. As in theorem proving, the difficulty is
to “prune the search tree” to avoid getting swamped by the consideration
of useless moves. In both endeavors, theorem proving and chess, one feels
that expert human beings have subtle and powerful methods. Chess players
analyze far fewer possibilities than chess programs do, and those good possi-
bilities are analyzed deeper. One feels that the same may be true of mathe-
maticians. In chess programs, “knowledge” about openings and end games is
stored in a database and consulted when appropriate. But in the mid-game,
every effort in chess programming to use more specialized chess knowledge
and less search has failed. The computer time is better spent searching one
move deeper. On the other hand, the game of go is played at only slightly
above the beginner level by computers. The board is 19 by 19 instead of 8 by
8, and there are more pieces; the combinatorial explosion is too deadly for
computers to advance much beyond this level at present.41

Similarly, in mathematics, so far at least, search has proved the most
fruitful general technique. One can view computer algebra and computerized
decision procedures, such as quantifier elimination or Wilf and Zeilberger’s
decision procedure for combinatorial sums, as ways of embedding mathemat-
ical knowledge in computer programs. Where they are applicable, they play
an indispensable role, analogous to the role of opening books and end game
databases in chess. In areas of mathematics in which it is difficult to bring
knowledge to bear (such as elementary group theory or propositional logic)

41 The game tree, searching n moves in the future, has about bn nodes, where at
a crude approximation b = 82 for chess and 192 for go. So the ratio is (19/8)2n.
Taking n = 10 we get more than 220, which is about a million: go is a million times
harder than chess. On the other hand, computer speeds and memory sizes have
historically increased exponentially, doubling every 18 months; so if Moore’s law
continues to hold, we might hope that go programs would perform well enough
in 30 years, even without improvements in the programs.
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because the axioms are very simple and tools from outside the subject area
are not applicable, theorem-proving programs can outperform human beings,
at least sometimes, just as in chess.

How did the trade-off between high-speed but simple computation and
heuristics play out in the area of musical composition? The answer to this
question is quite interesting, and may have implications for the future of re-
search in theorem proving. EMI does not compose from a blank slate. To use
EMI, you first decide on a composer to be imitated; let’s say Bach. Then,
you feed EMI several compositions by Bach. EMI extracts from these data
a “grammar” of musical structures. EMI then uses this grammar to gener-
ate a new composition, which will be perceived as “in the style of Bach”.
The selection of the initial database calls for musical expertise and for exper-
tise with EMI. For example, to compose the Eighth Brandenburg Concerto,
Cope chose some of the original seven Brandenburg Concertos and a couple
of violin concertos. When the database contained only the seven Branden-
burg Concertos, the resulting composition seemed too “derivative”, and even
contained recognizable phrases. Yet, once the data has been digested, the
program works according to specific, precise rules. There is nothing “heuris-
tic” about the process. A result that “looks human” has been achieved by
computational means.

This is at present not true of most proofs produced by most theorem-
provers. To exhibit a simple example, consider the theorem that a group
in which x2 = 1 for all x is commutative. A human proof might start by
substituting uv for x, to get (uv)2 = 1. Multiplying on the left by u and on
the right by v the desired result is immediate. The proof that a theorem-
prover finds is much less clever. In longer proofs, the computer’s inhuman
style stands out even more. The most notable feature of such proofs is that
theorem provers never invent concepts or formulate lemmas. A paper written
by a mathematician may have a “main theorem” and twenty supporting
lemmas. The proof of the main theorem may be quite short, but it relies on
the preceding lemmas. Not only does this help understanding, but the lemmas
may be useful in other contexts. The most powerful present-day theorem
provers never find, organize, or present their proofs in this way (unless led to
do so by a human after a failure to find the proof in one go).

Theorem-provers of the future should be able to invent terminology and
form definitions. The basis of their ability to do this should be an underlying
ability to monitor and reason about their own deduction process. As it is
now, humans using a theorem prover monitor the output, and then change
parameters and restart the job. In the future, this kind of feedback should
be automated and dynamic, so that the parameters of a run can be altered
(by the program itself) while the run is in progress. With this capability in
hand, one should then be able to detect candidates for “lemma” status: short
formulas that are used several times. It is then a good idea to keep an eye out
for further deductions similar in form to the formulas involved in the proof
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of the lemmas.42 Giving a program the ability to formulate its own lemmas
dynamically might, in conjunction with the ability to modify the criteria for
keeping or using deduced formulas, enable the program to find proofs that
might otherwise be beyond reach.

Such a prover might produce proofs that look more human. The inves-
tigation, the style of thought, and the development of the theory should
each look more like proofs people produce. Searching would still be the basis
(not heuristics), but the result would look less like it had been produced by
Poincaré’s famous machine that takes in pigs and produces sausages. This
type of prover would be a little more like EMI than today’s theorem provers.
One might even be able to prime it with several proofs by the famous logician
Meredith in order to have it produce proofs in propositional logic in Mered-
ith’s style, much as EMI can produce music in the style of Bach or the style
of Scott Joplin. At present this is rather farfetched, as there is nothing like
the “grammar” of Meredith’s proofs. The closest approximation at present
would be to tell the program to retain deduced clauses similar in form to the
lines of the proofs used to prime the program.

We do not expect, however, that all machine-generated proofs will “look
human”. For example, there exists a machine-generated proof that a certain
formula is a single axiom for groups satisfying x19 = 1 for all x. This proof
contains a formula 715 symbols long. No human will find that proof.

Remember: the question whether machines can think is like the ques-
tion whether submarines can swim. We expect machine mathematics to be
different from human mathematics–but it seems a safe prediction that the
twenty-first century will see some amazing achievements in machine mathe-
matics.
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