
Stochastic Conjugate Gradient based Multi-user Constant Modulus 
Algorithm for use in Multiuser DS-CDMA Environment 

P. Arasaratnam, S. Zhu and A.G. Constantinides 

Communication and Signal Processing Group, Dept. Of Electrical and Electronic Engineering, 
Ini~erial colleze of Science, Technology and Medicine, Exhibition Road, London. SW7 2BT. U.K, - .. 

e-mail: a.kiei 

Abstract:- A Stochastic Conjugate Gradient Algorithms 
(SCGA) is proposed for the solving nonlinear optimization 
problem assodated with the multi-nser constant modulus 
algorithm (CC-CMA) for DSCDMA receivers in a multi-user 
environment. The algorithm referred to as the stochastic 
conjngate gradient CC-CMA (SCGCC-CMA). Simulatious 
show that the SCGCCCMA algorithm preserves the fast 
convergence rate of the block-sbaMo cross correlation 
wnstmt modulus algorithm (BSCC-CMA) [I], can be 
configored to perform slmilar to the recursive leist squares 
(IUS) version of the CC-CMA algorithm, and can outperform 
the wnventional CC-CMA for less wst. The proposed 
algoritbna can also he used In DWCDMA systems to solve the 
problem of joint blind channel eqndization and blind source 
reparation in a singleuser and multi-user environment. 
Alternatively, a window sliding parameter may be adjusted to 
trade off between performance and computation to match 
system requirements. We will also propose a convergence 
analysis for the proposed algorithms. 

1. INTRODUCTION 

In a communication system, channel equalisatiodinterference 
cancellation is required to eliminate intersymbol interference 
0%) and multiple access interference (MAI). Blind algorithms, 
which do not require a training sequence, have the potential to 
increase channel bandwidth efficiency. Among all blind 
equalisation algorithm, the consfant modulus algorithm (CMA) 
[7], which exploits the constant modulus property of the signal, 
appears to be the algorithm of choice due to its computational 
simplicity [2]. For single-user and multi-user environments with 
zero mean, circularly Syrmmtric sources, provided that the so- 
called zero and length condition are satisfied, the CMA algorithm 
converges globally to a solution where IS1 and MA1 are removed 
[7]. To prevent the same source being repeatedly retrieved in a 
multi-user environment, a multi-user CMA was proposed in [4]. 
However, when the adaptation of the CC-CMA algorithm is 
realised with normal stochastic gradient type algorithm, the rate 
of convergence to such a solution can be too slow. To mitigate 
this limitation, in [ I ]  we employed an approximation of the 
Hessian matrix to represent the local curvature of the CC-CMA 
wst function. An order of magnitude improvement in 
convergence rate is observed. The problem with such approaches 
is that considerable memorylcomputational requirements are 
required for storing, updating, and inverting an estimate of the 
associated Hessian. In [I] ,  we also proposed an altemative type 
of modified Newton algorithm, Block-Shanno cross correlation 
constant modulus algorithm (BSCC-CMA), that implicitly 
wmputes a.positive definite approximation to the inverse of the 
Hessian of the Objective function using computationaVmemory 
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requirements which are roughly O(M)  as opposed to O(M1). The 
block cross<onelation constant modulus objective function is 
developed to implement a modified Newton's algorithm. The 
resulting algorithm is based on Shanno's technique to circumvent 
much of the computation associated with the line search of 
conjugate gradient techniques [2], [3]. The objective in the 
present paper is to extend these ideas to develop a low cost block 
adaptive filter that converges to a optimum value of the CC- 
CMA cost function significantly faster. 

For every block ofdata, the BSCC-CMA algorithm updates the 
filter tap weights along specified search directions until a 
stopping criterion is reached. Then it produces a block of outputs 
and proceeds to the next block of data. The BSCC-CMA 
algorithm has superior convergence properties to the IUS- type 
CC-CMA and Newton-like CC-CMA as reported in [I]. However 
it can be very expensive to let the BSCC-CMA converge all the 
way before proceeding to the next block of data. In this paper, we 
propose a stochastic conjugate gradient method to reduce the 
computational complexity while preserving the power of BSCC- 
CMA [I]. The algorithm developed in this paper can be 
d s e d  as follows. Far every K samples, a data block of size 
N is formed, a search direction is determined (using Shanno's 
Technique [I], [Z], [3], [SI), and an appropriate step size is 
determined based on the current block of data. Next the filter tap 
weights are updated once, and a block of K outputs is produced. 
Now instead of converging on sash block, we find one search 
direction per block, and span the search direction across blocks. 
This eliminates costly inner loops, and significantly reduces 
complexity. Also data blocks can be overlapped in such a way 
that as more overlap is added, convergence speed increases at the 
cost of an increased computation. In section 2, we will discuss the 
BSCC-CMA developed in [I] ,  in section 3, we will develop 
SCGCC-CMA algorithm, in section 4, we will analyse the 
convergence of SCGCC-CMA in terms of their macro quantities 
and finally simulations and,conclusions will be summarised. 

2. BLOCK SHANNO CROSS CORRELATION-CMA 
ALGORITHM (BSCC-CMA). 

Given an objective function f : 92"+91, the classicalNewon's 
algorithm[1,214-215]updatesthefiltertapweightsas 

where Hm,,,,m(wj-~)32 E WXM is the Hessian of the objective 
function j, g(wj+l )L E PM is the gradient of the objective 
function f, evaluated at wj-1 a n d j  is an iteration index. 
Shanno's algorithm is a type of modified Newton's algorithm 
that approximates the inverse of the Hessian H&,,(wj+,) by 
the Shanno approx!mation, which is a positive definite matrix 
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denoted byH-'(w;+l). This matrix is implicitly determined by 
the gradients of the hvo most recent iterations, a search direction, 
and a step-size based on a previous iteration. The complexity of 
the implicit calculation ofH-'(wj+,) is of OW), as opposed to 
O(Mz),  for the calculation ofH&ton(w,-l). Shanno's 
algorithm builds up a trajectory ofwo, wl, w2, ... iteratively 

and then define WO kinds of real vectors containing complex 
data, 

s,(n) = [ -.'(VI) I'Jn)] and z,(n) = [-::;))I (10) 

Next, we define the real objective function and its gradient with 
according to respect to was 

N-l 

w, = w,-1+ 7,d,  (2) f ( w ) = - ~ [ w T x l ( n ) w - 1 ] 2  
4N "=O 

where & is the search direction, Written as M N-l 
+ 6 c c[c"x2(442 (11) 

6=-M h#b n=O 
N-l di = - H-'(wi-,)g(wj-,) (3) 

f ( w )  = g(w)  = -e [wTX,(n)w - l ] x ( n ) w  
Shanno's approximation of the inverse of the Hessian is given by N"=O 
[ I ,  21 8.2201. 

+ 6 5 E{ [ F J X 2 ( + ]  ~ X 2 C n ) w ] }  n=O (12) 

(13) 

u,dF, + d,-,u: dj+,d;, 6=-M l,#b n=O 

H-l(w,-l) = I  - + C.-- (4) where 
x d n )  = ~~,,(+f , (n)  + ~~,,,(+:,,(n) 

d:u;+i ' dFlu, 

Suppose 7; is positive real number that satisfies the step size 
constraints 

f(w,-i+yjd,) 5 f(wi-1) +oLTjg(w;,)di (5 )  
H 

g(wi-1+ rdj)x4 2 P S ( ~ , - ~ )  4 (6) 

where0 < LI < p < 1, [I] .  A procedure for calculating the step 
size is outlined in [I].If 7, satisfies the above constraints, the 
algorithm is guaranteed to converge to a set of critical points [I], 
[31. 

2.1. BLOCK S H A " 0  CC-CMA FORMATION AND 
GRADIENT CALCULATION 

In order to apply Shanno's algorithm, we first extend the CC- 
CMA objective function to admit block processing. Let a block 
of data be defined as: 

Xz(n) = ~il,,(~)~f,(~ - 6 )  + s, ,(n - 6)zz,,(n) (14) 

These equations are used in the following sections for the 
development of the SCGCC-CMA algorithm. 

3. STOCHASTIC CONJUGATE GRADIENT BASED CC- 
CMA ALGORITHM (SCGCCCMA) 

3.1 SCGCC-CMA Algorithm Deseription: 

To facilitate analysis, we introduce the quantities that we call 
"macro" quantities, which is denoted by superscript "k'". The 
macro data block, which is an ensemble of (01, 
Dk-,, .,,., D ~ - T + , }  is denote by Dk. Note that {Dk-?} are the 
complex input data blocks of the form defined in equation (8), 
where 7 = 0,1, ..., T - 1.Here T is the search direction reset 
interval and 7 is the search direction reset counter. The macro 
filter top weight vector is defined as 

r w k i  b i 1  D. = [ z ( ( i -  t)N):r((i- t )N+ 1 ) :  ... :z(iN- l)] ECYxN (7) 

and define a black CC-CMA objective function (15) 

In (8), r(( i  - l)N + n) E CM represents the received signal 
vector corresponding to the n" transmitted symbol interval, 
where n= (i- l)N + R ,  i 2 0 , O  5 n < N, andthe length of 
I, i.e. M, is equal to the length of the filter tap. Here,w,is a 
complex filter tap weight vector fdi the I'h equaliser. Since the 
Shanno algorithm requires the input data to be real, we develop 
an alternative form of the block objective function to 
accommodate complex input signals involved with complex 
channels. First. we define 

w =  [3] (9) 

and the macro search direction and gradient vector can defined 

The macro gradient dilfereenee vector is defined as 
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The macro objectiwfinction is defined as 

where fk(.) is the block CCCMA objective function defined in 
(8) for data block DI. The SCGCCCMA objective function is 
defined as 

f(w) = ELPU(W,D')) (18) 

In the macro quantity notation, the SCGCC-CMA algorithm may 
be described as follows: 

ALGORITHM 1: SCGCC-CMA Lct mt satisfy 

Fork = 0,1,2, _._. .. update axording to 

+ m*z(wk-', D*) (19) wI = wk-l 

where 

(20) 

Assume there aim a continuous function rt such thnr 
7t-l = r,(wk-l ,  Dk) is the properly chosen stepsize defined in 
(6) and (7). 

Algorithm I is developed so as to conform to the framework of 
bounded discrete-time stochastic dynamic systems. These 
definitions will be later used in the SCGCC-CMA convergence 
analysis. The practical implementation version of the algorithm 
updates thc filter tap weight vector once per data block Dk using 
the Shanno update. A computer implementation version that does 
not rely on macro-quantities can be found in the following 
section. 

3.2. SCGCCCMA ALGORITHM: Simulation Version 

La: i - (Initially set to 0) indexfir data block, f ( w )  - block 
CC-CMA objective function defined in (8) evaluated at 4 , 
g ( d )  - gradient ofblock CC-CMA defined in (12) evaluated 
a t 4 ;  

Step I :  Fonn n block ofdata D, (of size M x N .  where N is the 
block size)from the received signal wing (7). Set j = 0. Initialire 

the filter tap weight vectorw: to all elements being zero except 
one element being unily. 
Step 2: Do the following. 

i :  j = j + l ,  
ii : Calculate the gradient ofthis block ofdata at tb-', 

iii : Ifreset search directionflag is true (see Step 3): 

. .  
iv: Updote thefilter tap weights4 = tu-' + $d:, where3 is a 
positive red number that satisfies the comtraint8 in (5) and (6). 

v: I f I g ( 4 ) l  Is suficiently smll. or K blocks of data have been 
procersed nfier the lart seareh direction reset. Where K is an 
integer less that or equal to the dimension ofthefilter tap. 

Step 3: Generate ourputfor this block (Di).  &go to the Step I 
for the nerf block ofdnto (D;+l). 

Let f (w,) denote the value of the objective function evaluated at 
w,. We implement the so called the back tracking line search [Z];. 
[6] scheme to find the appropriate step size: 

Given 0 < 0 < 1 / 2 ,  O < P < l ,  
( i )  7= 1; 
(ii) whi le /  w, + y  d > f w, + m y  w f  d,  ( ' J J ( 1 4 ' 1  

7 = T'P.  

From our simulation, we observed that an average of two 

iterations are needed for this while Imp. The tendency is, the 
larger the block size, the smaller the number of iterations needed. 
For comparative purposes, we also compare the CC-CMA with 
two other block-based methods that are variants of the BSCC- 
CMA algorithm. In (21) if we seta: = 0, a block conjugate 
gradient CC-CMA (BCGCC-CMA) algorithm results [I]. 
Furthermore, if we set a{ and b: both equal to zero, then we 
obtain a block gradient descent CC-CMA (BGDCCCMA) 
algorithm [I]. 

4. SCGCCCMA CONVERGENCE ANALYSIS 

With the SCGCC-CMA described in the foregoing form, we may 
now use a stochastic approximation theorem to prove 
convergence. The stochastic approximation theorem we use is 
discussed in [2, pp.1691. Similar stochastic approximation 
theorems are provided in (21, [3], [4]. The SCGCC-CMA 
convergence theorem d e s  use of the following definition for 
bounded discrete-time dynamical systems [Z]. All subsequent 
analysis is centered around this class of systems. 

Definition 1: is n 
bounded stochastic sequence Crhere exists nfinite real number K 
suchrhntlD*l < K withprobabilifyonefor k=O,1 ,2  ... 

A stochastic sequence Do, D',  D', ...., 
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Definition 2: LetDo, D', D2, ...., be a bounded stochastic 
sequence o/ independent 4nd identically distributed M by N 
random matricer with the common probability mass (density) 
/unction PD = S-r(O, m), where S E R M x N .  Assume the 
sequence ofsm'dlypositive real numbers ao, el, .... sotisfie3 

Let z = W M  x W M x N 4  be a continuous function in both 
arguments on W M  and RMXN.  Assume the stochastic sequence o/ 
dimension41 random matrices W O ,  w l ,  ..... is a bounded 
stochmtxprocesssuch that/ork = 0,1, .... 

wk = wk-' + akz(wh-', D k )  (25) 

Then the stochnstic sequence wo,wl,.. . . . iE generated by a 
bounded discrete-time stochastic dynamical system with 
generator junction I with respect to the stochastic sequence 
(D') and% 

In order to show the macro-tap weight vector { w k )  will converge 
to the set of critical points of the macro-objective function, we 
make use of the stochastic approximation theorem [2], which is 
cited as follows: 

system. We can prove the convergence for SCGCC-CMA 
algorithm by applying the Stochastic Approximation Theorem. 
Thus we need to verify that: ( I )  The SCGCC-CMA objective 
function f ( w )  as defined in(19), its gradient and Hessian are 
continuous (2). 5 = E s ( z ( w ,  D k ) )  exists and [Vf (w)]'? < 0 
is satisfied. 

First, from ( I I ) ,  (12) and fiom its Hessians, it can be 
easily seen that the block CMA objective function f k (w) ,  its 
gradient Vf,Jk)and Hessian V2 fh(w) are continuous. Tlus 
from (18), we h o w  that the macro objective function, its gradient 
and Hessian are continuous. Finally, from (19), we can see that 
the SCGCC-CMA objective function, its gradient and Hessian are 
also continuous. Secondly, z exists because L is a continuous 
function of its two arguments, and (Dk}  is a bounded stochastic 
sequence, thus 

t (w) = z(w,Dk)P(Dk)dD* (29) I 
is finite for a given w. Thirdly, let us verify condition 3.We can 
rewrite the Shanno search direction vector as the follows [2, 
p.2181: 

d: = - H/gt (30) 

where 9: is the gradient for data block 0: and H f  is the Shanno 
estimate of the inverse of the Hessian matrix, 

THEOREM 1 : S t c d d i c  Approximation Theorem : suppose where A; ~ I - = 9: - g;-l and = lU;1 I& the stochastic process: z = PM x W M x N - W M  is generated by 

there existst : RRM x PM such that for U / /  w E W M  : 

1st I 
the bounded di&rete-rime mcharric dynomicd T S m  defined 
(25). where is the generated function for the dynamical system 
with respect to the stochartie sequence {Dh} E W M x N .  Assume 

+ %I. Since the search direction is reset to - gr every T steps, 

for case Of = O: 
l",l 

d o " = -  90 (32) 

t (tu) = Eo. [,(tu, D')] < m 

Let f : PM x W be a continuous function on 
gradient o/ f. g .  PM x W M ,  and the 
H : LM x PMxM,  exists and ore continuous 
thotfor all w E P M  : 

d w ) %  ( w )  5 0 

Then VH R with probobilify one as k-tm 

P'. Assume the 
Hessian sf f ,  
on P'. Assume 

we have [d;JTg; < 0. For case o f t  = 1, df = - H:gf. From 
(31), we can see that if [d;lTu: > 0, then Hessian Hf is positive 
definite, and [d!]'& < 0. By applying the step size constraint in 

thus 
ld;l=(d - s:, + (1 - +)Id;lTd > 0 

that is, [d;lTu: > 0 (35) 

(34) 

Therefore, from (31), we know that Hessian matrix H: is positive 
definite [2], and [df]'.& < 0. If we proceed with a similar 
derivation for t  = 2.3. ... T, we can show that is is semi-positive 
definite for all t, and [dfl'g: < 0 for all t. 

Thus ifwe start from w b l  which is generated from data block 
D;-,, the SCGCC-CMA drives the filter tap weight 

vector d:. Hence moving from wL1 14 w: is a down-hill step 
with respect to the block CC-CMA objective function f (w,  D f ) .  

averaged search direction z ( U )  leads down-hill of the SCGCC- 
CMA objective function of f ( w ) .  Now by implementing the 

': SCGCC-CMA ' 
Suppose 4 given dui0 blockser is a boundedstochusticsequence. 

bounded discrete-time dynamical system defined by (19). in 
which M is thefilter tap length, and T is the olgorithm reset 
time. Also suppose the generoto,: function z is defined in (20). 

objectivefunction defined in (IS) with probability one. 

Let be the macro filter 1 4 ~  weight vector generated by the based On data block D; with the search direction 

Since every step that SCGCC-CMA moves down-hill, the 

Stochastic Approximation T h e m "  we have pmved that the 
SCGCC-CMA algorithm converges to a Set of critical poinn. 

Then 

proof: Since the stepsize is assumed satisfy (24a) 
the defined in (25) is  a bounded discrete.time 

to the set of critic41 points of the macro 

(24b), 
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With the knowledge of the block CC-CMA objective function 
[I] ,  [ 5 ] ,  we know that the critical points that SCGCC-CMA 
converges to is actually the global minimum. In the proof, we 
assumed that stepsize O L ~  satisfies the conditions (24a) and (24b). 
However, in the computer implementation of the algorithm these 
constraints are relaxed by setting OLL to one, and a satisfactory 
convergence result is observed. Moreover, the stepsize 
constraints ( 5 )  and (6) for 7: can also be relaxed. 

5. SLIDING WINDOW SCGCC-CMA 

To provide more control over the balance between the 
computational complexity and performance, we further introduce 
the sliding-window type SCGCC-CMA. The sliding-window 
SCGCC-CMA also takes in N data at a time, but generate only 
K outputs, K 5 N, that is, K - N data elements from the 
current block will be reused for the next data block. The sliding- 
window SCGCC-CMA scheme provides control over the balance 
between the computational complexity and performance. Such 
flexibility will be very useful in higher data rate system. By 
adding more overlap b e t w m  blocks, we increase the 
convergence rate and lower the residual error floor. However, we 
also raise the computational complexity. 

6. SIMULATIONS 

In a QPSK system with source alphabet (*llsqrt(2) +(l/sqrt(Z))j), 
we assume d = 3 users, R = 4 sensors twelve random complex 
channels of order I (M = I) and three I2 tap (i.e. N = 2 and R 
(N + 1) = 12) space-time equalisers adapted with the proposed 
algorithms. The block size for used for BSCC-CMA, SCGCC- 
CMA, BCGCC-CMA and BGDCC-CMA was 100. The channel 
convolution matrix is full rank square matrix of dimension of 12 
and I( = 4. White Gaussian noise of S N R  30dB is present at the 
channel output. The forgetting factor h for the RLS version of 
CC-CMA [I] and the step size U are set to 0.99 and 0.01 
respectively. The constellation diagrams of the output of the 
equalizers are shown in Fig 1. (d), (e) and (0. AAer 
approximately 700 samples, all equalisers of RLSCC-CMA 
algorithm give open eye panem. Comparing the residual error, 

which is defined as ' ' h ' ( k , ! ! ~ ~ ~ ~ / ~ ' ) *  , in Fig. 1 (a), @), and (c). 
RLSCC-CMA algorithm shows much faster convergence than the 
conventional CC-CMA algorithm. In fact, far equalizer-2, clear 
open-eye constellation cannot be achieved even with 3900 
samples. In Fig. I .  (g), (h) and (i), the combined channel + 
equalizer the three equalizers is given. The different position 
sections of the largest impulse confirm the retrieval all three 
sources. That is, equalizer-I, 2 and 3 retrieve sources with 
different delays. Fig. 2 (a), (b), (c) shows the IS1 of proposed 
SCGCC-CMA, BSCC-CMA, BSCGCC-CMA and BGDCC- 
CMA. All of the proposed algorithms converge within the first 5 
blocks. Fig. 2 (g), (h), (i) shows the combined channel + 
equalizer response for the proposed BSCC-CMA algorithm. Fig.2 
(d), (e), (0 shows the output constellation for the BSCC-CMA 

7. CONCLUSIONS 
algorithm. 

To overcome the slow convergence of the conventional CC- 
CMA algorithm, several new quasibNewton adaptive algorithms 
with rapid convergence property are proposed basM upon the 

cross-correlation and constant modulus (CC-CM) criterion, 
namely the stochastic conjugate gradient CC-CMA (SCGCC- 
CMA) and variants of the BSCC-CMA algorithms or fast 
convergent quasi-Newton type cross-correlation and constant 
modulus algorithm (FCQN-CCCMA). Simulation shows the all 
of these proposed algorithms outperforms the conventional CC- 
CMA in terms of their super fast convergence and the 
compacmess of their output constellations. We also shldied the 
convergence analysis of the proposed algorithms. 
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Figure I .  The Performance comparison between RLSCC-CMA 
and CC-CMA (a), (b)and (c) Residual error of EQ-1,2 and 3. 
(d), (e), and (0 show the Eye diagram of EQ-I, 2 and 3 aAer 500 
samples. (91, (h) and (i) shows the combined channel + EQ-I 
impulse response ofhl,h2 and h3. 
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FiK. 2. Intersymbol Interference between the orooosed SCGCC- 
CMA (21, BSCC-CMA (I), BCGCC-CMA (3);BGDCC-CMA 
(4) far EQ-I, EQ-2. 
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