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Abstract:- A Stochastic Conjngate Gradient Algorithms
{SCGA) is proposed for the solving nonlinear optimization
problem associated with the multi-user constant modulus
glgorithm (CC-CMA) for DS-CDMA receivers in a multi-user
environment. The algorithm referred to as the stochastic
conjugalte gradient CC-CMA (SCGCC-CMA). Simulations
show that the SCGCC-CMA algorithm preserves the fast
convergence rate of the block-shanno cross correlation
constant modulus algorithm (BSCC-CMA) [1]), can be
configured to perform similar to the recursive least squares
(RLS) version of the CC-CMA algorithm, and can cutperform
the conventional CC-CMA for less cost. The propoesed
algorithms can also be used in DS/CDMA systems to solve the
problem of joint blind channel equalization and blind source
separation in a single-user and multi-user environment.
Alternatively, a window sliding parameter may be adjusted to
trade off between performance and computation to match
system requirements, We will also propose a convergence
analysis for the proposed algorithms.

1. INTRODUCTION

In a communication system, channel equalisation/interference
cancellation is required to eliminate intersymbol interference
(ISI) and multiple access interference (MAI). Blind algorithms,
which do not require a training sequence, have the potential to
increase channel bandwidth efficiency. Among all blind
equalisation algorithms, the constant modulus algerithm (CMA)
[7], which exploits the constant modulus property of the signal,
appears to be the algorithm of choice due to its computational
simplicity [2]. For single-user and multi-user environments with
zero mean, circularly symmetric sources, provided that the so-
called zero and length condition are satisfied, the CMA algorithm
converges globally to a solution where ISI and MAI are removed
7). To prevent the same source being repeatedly retrieved in a
multi-user environment, a multi-user CMA was proposed in [4].
However, when the adaptation of the CC-CMA algorithm is
realised with normal stcchastic gradient type algorithm, the rate
of convergence to such a solution can be toe slow. To mitigate
this limitation, in [1] we employed an approximation of the
Hessian matrix to represent the local curvature of the CC-CMA
cost function. An order of magnitude improvement in
convergence rate is observed. The problem with such appreaches
is that considerable memory/computational requirements are
required for storing, updating, and inverting an estimate of the
assoctated Hessian. In [1], we also proposed an alternative type
of modified Newton algorithm, Block-Shanno cross correlation
constant modulus algorithm (BSCC-CMA), that implicitly
computes a-positive definite approximation to the inverse of the
Hessian of the objective function using computational/memory

requirements which are roughly O(M) as opposed to O(M?). The
block cross-correlation constant modulus objective function is
developed to implement a modified Newton's afgorithm. The
resulting algorithm is based on Shanno's technique to circumvent
much of the computation associated with the line search of
conjugate gradient techniques [2], [3]). The objective in the
present paper is to extend these ideas to develop a low cost block
adaptive filter that converges to a optimum value of the CC-
CMA cost function significantly faster.

For every block of data, the BSCC-CMA algetithm updates the
filter tap weights along specified search directions until a
stopping criterion is reached. Then it produces a block of outputs
and proceeds to the next block of data, The BSCC-CMA
algorithm has superior convergence properties to the RLS- type
CC-CMA and Newton-like CC-CMA as reported in [1}. However
it can be very expensive to tet the BSCC-CMA converge all the
way before proceeding to the next block of data. In this paper, we
propose a stochastic conjugate gradient method to reduce the
computational complexity while preserving the power of BSCC-
CMA [1]. The algorithm developed in this paper can be
summarised as follows. For every K samples, a data block of size
N is formed, a search direction is determined (using Shanno's
Technique (1], [2], [3], [5]), and an appropriate step size is
determined based on the current block of data. Next the filter tap
weights are updated once, and a block of X outputs is produced.
Now instead of converging on each block, we find one search
direction per block, and span the search direction across blocks.
This eliminates costly inner loops, and significantly reduces
complexity. Also data blocks can be overlapped in such a way
that as more overlap is added, convergence speed increases at the
cost of an increased computation. In section 2, we will discuss the
BSCC-CMA developed in [1], in section 3, we will develop
SCGCC-CMA algorithm, in section 4, we will analyse the
convergence of SCGCC-CMA in terms of their macro guantities
and finally simulations and conclusions will be summarised.

2. BLOCK SHANNO CROSS CORRELATION-CMA
ALGORITHM (BSCC-CMA).

Given an objective function f : RM—®, the classical Newton's
algorithm [1, 214-215] updates the filter tap weights as

wj = w1 Hoteon (wj—l)g(wj—l) 1
where H .0 (Wit )R € R¥*¥ is the Hessian of the objective
function f, g(w;_1)® € RM is the gradient of the objective
function f, evaluated at wj_pandj is an iteration index.
Shanno’s algorithm is a type of modified Newton's algorithm
that approximates the inverse of the Hessian H %, (w;-1) by
the Shanno approximation, which is a positive definite matrix
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denoted by H ™ (wy_;). This matrix is implicitly determined by
the gradients of the two most recent iterations, a search direction,
and a step-size based on a previous iteration. The complexity of
the implicit calculation of H ~* (w;_1) is of O{M), as opposed to
O(M?), for the calculation ofH;,,,.. (w;_1). Shanno’s
algorithm builds up a trajectory ofwg, wy, wy, ... iteratively
according to

w; = wj-1 + ’dej 2)
where d, is the search direction, written as
dij= - H! (wj-l)g(wj-l) 3)

Shanno’s approximation of the inverse of the Hessian is given by
{1, 218-220].

y:4 v
‘Lljdj_l + djfl‘ltj
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Suppose +y; is positive real number that satisfies the step size
constraints

f (w.f—l + ’Y;‘d;) <f (wj—l) + am(wf-l)dj
" i
9(‘%‘-1 + ’Y;'dj) d; = 59(wj_1) d;

&)
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where 0 < e < 8 < 1,[1]. A procedure for calculating the step
size is outlined in [1).If ; satisfies the above constraints, the
algorithm is guaranteed to converge to a set of critical points 1],
31

2.1. BLOCK SHANNO CC-CMA FORMATION AND
GRADIENT CALCULATION

In order to apply Shanno’s algorithm, we first extend the CC-
CMA objective function to admit block processing. Let a block
of data be defined as:

D= [I((i - I)N)Er((i - I)N +'l)i ___;::((N - l)] € oM=K o
and define a block CC-CMA objective function
Flw) = fﬁz[lﬂxh((i“l)N) +Q|z_1]2 )

+ TVKT i EIEW?:H, ((i - 1N + D)z, (i - I)N + 0~ 8w, :

§="M b=l =0

In (8),z({(i — 1)N + ) € CM represents the received signal
vector corresponding to the n® transmitted symbol interval,
where n={{—1)N +§,i>20,0< Q< N, and the length of
z, i.e. M, is equal to the length of the filter tap. Here, w.is a
complex filter tap weight vector for the I equaliser. Since the
Shanno algorithm requires the input data to be real, we develop
an altemative form of the block objective function to
accommodate complex input signals involved with complex
channels. First, we define

,wr
w=| %
wC

©

and then define two kinds of real vectors containing complex
data, .
@' (n)

o[ 2] e[ 2]

Next, we define the real objective function and its gradient with
respect to w as

N-1
flw) = &Z[wTXl(n)w - 1]2
n=0

. M N1 2
+ ol 2 Z[Zw Xg(n.)w]
§=—M L n=0 .
= o) = 157 wrx x
v £(w) = glw) = 52 [0 Xi(n)w — 1] X (m)w

n=0

(10

an

=1

+ % i Z{ []{ijXz(n)w] rvz:)fz(ﬂ)w]} (12)

5o M bFly - D =0
where .
Xi(n) = @, (n)af (n) + 2,4 (n)zf, (n) (13)
Xa(n) =z (n)z], (n = 6) + 2, (n - 8)af (n)  (14)

These equations are used in the following sections for the
development of the SCGCC-CMA algorithm.

3. STOCHASTIC CONJUGATE GRADIENT BASED CC-
CMA ALGORITHM (SCGCC-CMA)

3.1 SCGCC-CMA Algorithm Description:

To facilitate analysis, we introduce the quantities that we call
"macro” quantities, which is denoted by superscript "k'". The
macre data block, which is an ensemble of  {D,
D1y ey D1} is denote by D*. Note that {Dy_,} are the
complex input data blocks of the form defined in equation (8),
where 7 =0,1,...,7 — 1.Here T is the search direction reset
interval and 7 is the search direction reset counter. The macro
[ilter tap weight vector is defined as

Wk wﬁ
Wi uk
wF = Lt T Bt (15)
W 'T k
—T+1 w;Ll

and the macro search direction and gradient vector can defined
as

di df [ o 9.
dF = dk:—l _ df andgb=| % | = g’{
dr—41 dk_, | gk-—T+1 g,

The macro gradient difference veetor is defined as

w ul % - gt

B T I P (16)
Ye-T+ uk, . _glic"—l - g
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The macro objective function is defined as

flw, D¥) = Zn(w,, Dyi_r)

1—50

a7

where fi.(*} is the block CC-CMA objective function defined in
(8) for data block D;. The SCGCC-CMA objective function is
defined as

F(w) = Epe{f(w, DY) (18)
In the macro quantity notation, the SCGCC-CMA algorithm may
be described as follows:

ALGORITHM 1: SCGCC-CMA: Let oy satisfy

o 00
Seor=o0 ad Y efr<oo
k=0 k=0
Fork=0,1,2,... update according to
w* = w* ! + epz(w*t, DY) (19)
where
Thdg
k
Hut L, DFy = | T (20)
Ye-r1df

Assume there exists a confinuous function T suck that
Y-y = To{w*~, DY is the properly chosen stepsize defined in
{6} and (7),

-g if t=10
- +“t'"-t + (8f - Ctﬂf)dzk—l
d‘? - a‘k = dl:1 "r
ko il
b =
L2
o =t 'ld}.u:lj""ug

Algorithm 1 is developed so as to conform to the framework of
bounded discrete-time stochastic dynamic systems. These
definitions will be later used in the SCGCC-CMA convergence
analysis. The practical implementation version of the algorithm
updates the filter tap weight vector once per data block DF using
the Shanne update. A computer implementation version that does
not rely on macro-quantities can be found in the following
section.

3.2, SCGCC-CMA ALGORITHM: Simulation Version

Let: i - (Initially set to G} index for data blocks, f(w)
CC-CMA objective function defined in (8) evaluated at
glaw])
atw;

- block
w},
- gradient of block CC-CMA defined in (12} evaluated

Step 1: Form a block of data D; (of size M x N, where N is the
Block size) from the received signal using (7). Set j = 0. Initialise

the filier tap weight vector w) to all elements being zero except
one element being unity.
Step 2: Do the following.

i: j=j+1, .
it : Calculate the gradient of this block of data atwi™,
ifi: [freset search direciion flag is true (see Step 3);

df = — glw]™) + afu + (8] - claf)di™! @
_ ~ e, T g A
where ul = g(w!™) — glwi™), o = = dj?l(”ul’. ) @)
"]'r g(ur’_ ! ) - qu I2
b = ?r,—, o= df;fu{ @

iv: Update the filter tap weights w! = wi™ +~id, wherevl isa
positive real number that satisfies the constrainis in (3) and (6).

| is sufficiently small, or K blocks of data have been
processed after the last search direction reset. Where K is an
integer less that or equal to the dimension of the filter tap.

v If|gtul

Step 3: Generate output for this block (D;), and go to the Step 1
Jor the next block of data (D).

Let f(w,)denote the value of the objective function evaluated at
w;. We implement the so called the back tracking line search [2],,
[6] scheme to find the appropriate step size:

Given O<a <1f2, O<p«],
(2) 7=1
(ii} whzlef(w, + ;d ) > f(wj) + a'y,g( )d_.,
Y=

From cur simulation, we observed that an average of iwo
iterations are needed for this while loop. The tendency is, the
larger the block size, the smaller the number of iterations needed.
For comparative purposes, we also compare the CC-CMA with
two other block-based methods that :u_—e variants of the BSCC-
CMA algorithm. In (21) if we setal =0, a block conjugate
gradient CC-CMA (BCGCC-CMA) algorithm results [1).
Furthermore, if we set a.’ and b’ both equal to zero, then we
obtain a block gradlent descent CC-CMA (BGBCC-CMA)
algorithm [1].

4. SCGCC-CMA CONVERGENCE ANALYSIS

With the SCGCC-CMA described in the foregoing form, we may
now use a stochastic approximation theorem to prove
convergence. The stochastic approximation theorem we use is
discussed in [2, pp.169). Similar stochastic approximation
theorems are provided in [2], [3], [4]. The SCGCC-CMA
convergence theorem makes use of the following definition for
bounded discrete-time dynamical systems [2}. All subsequent
analysis is centered around this class of systems.

Definition 1: A stochastic sequence D°, D', D?, ..., isa
bounded stochastic sequence if there exists a finite real number K
such that |D"| < K with probability one for k =0,1,2...
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Definition 2: Let D, D' D2, ..., be a bounded stochastic
quence of independent and identicaily distributed M by N
random matrices with the common probability mass (density)
Sunction Pp=5-{0,00), where S &RV  dssume the
sequence of strictly positive real numbers oy, oy, ... satisfies

Jim = [Zm:a,] =00 © (24)
t=D

im = [iaf] <o (24b)
=0

Let z=RM x RM*NAR be a continuous function in both
arguments on RM and RM*N_ Assume the stochastic sequence of
dimensional random matrices w®,u?, ..... is a bounded
stochastic process such that fork = 0,1, ...

wh = wht 4 aga(ul, DY

(25)
Then the stochastic sequence wP® ,w',....is generated by a
bounded discrete-time stochastic dynamical system with
generator function z with respect to the stochastic sequence
{Dk} and Y-

In order to show the macro-tap weight vector {w®} will converge
to the set of critical points of the macro-objective function, we
make use of the stochastic approximation theorem [2], which is
cited as follows:

THEOREM 1:Stochastic Approximation Theorem : Suppose
the stochastic process: z = RM x RM*NRM s generated by
the bounded discrete-time stochastic dynamical system defined in
(25), where is the generated function for the dynamical system
with respect to the stochastic sequence {D*} € RM*N. Assume
there exisisZ : RM x RM such that for allw € RM

7 (w) = Ep [z(w, D")] < oo 26)
Let f: RM x R be a continuous function on RM. Assume the
gradient of f, g:RM xRM  and the Hession of f.
H:RM « RM*M | oxists and are continuous on RM, Assume
that for all w € RM
9(w)7z (w) < 0 7

Let

= {weR": glw)z (w) =0} (28)
Then w— (Y with probability one as k-00 .

THEOREM 2: SCGCC-CMA Convergence Theorem 2 :
Suppose a given data block set is a bounded stochastic sequence.
Let be the macro filter tap weight vector generated by the
bounded discrete-time dynamical system defined by (18), in
which M is the filter tap length, and T is the algorithm reset
time. Also suppose the generator function z is defined in (20).
Then w converges to the set of critical points of the macro
objective function defined in (13) with probability one.

Proof: Since the stepsize is assumed to satisfy (24a) and (24b),
the system defined in (25) is a bounded discrete-time dynamical

system. We can prove the convergence for SCGCC-CMA
algorithm by applying the Stochastic Approximation Theorem.
Thus we need to verify that: (1} The SCGCC-CMA objective
function f(w) as defined in(I9), its gradient and Hessian are
continuous (2). 7 = Epe{z(w, D*}} exists and [V f(w)]Tz <0
is satisfied.

First, from (11), (12) and from its Hessians, it can be
easily seen that the block CMA objective function fi{w), its
gradient Vf,(k)and Hessian V2fi(w) are continuous. Thus
from (18}, we know that the macro objective function, its gradient
and Hessian are continuous. Finally, from {19}, we can see that
the SCGCC-CMA objective function, its gradient and Hessian are
also continucus. Secondly, Z exists because z is a continuous
finction of its two arguments, and {D*} is a bounded stochastic
sequence, thus

Z () = f z(w, D*)P(D*)dD* 29
is finite for a given w. Thirdly, let us verify condition 3.We can
rewrite the Shanno search direction vector as the follows {2,
p.218):

df = — Hig} (30)
where gF is the gradient for data block D¥ and H¥ is the Shanno
estimate of the inverse of the Hessian matrix,

k _ Ak
H =4 I

+o " €0

kBT 13
where AF=1- “—‘I%ﬁ-,uf =gf—gf jand of = }uﬂ[ﬁﬁf
+ l—:‘%,]. Since the search direction is reset to — gf every T steps,

't

for case of ¢t =0:

ds = — g5 (32)
we have [df]7gk < 0. For case of t= 1, df = — Hfgt. From
(31), we can see that if [¢f]Tu$ > 0, then Hessian H is positive
definite, and [2f]Tg% < 0. By applying the step size constraint in
(6), we have

[d1Tgt — +1d5]" gt > 0 (33)

thus
{df|(ek — ab) + (1 = D)laf) s > 0 (34
that is, [Tt >0 (35)

Therefore, from (31), we know that Hessian matrix HF is positive
definite [2], and [df|Tgf < 0. If we proceed with a similar
derivation for t = 2, 3,...T, we can show that is is semi-positive
definite for all ¢, and (df]Tg¥ < 0 for all £.

Thus if we start from wf_, which is generated from data block
D} |, the SCGCC-CMA algorithm drives the filter tap weight
vector towf based on data block Df with the search direction
vector df. Hence moving from wf ; to w¥ is a down-hill step
with respect to the block CC-CMA objective function f(w, D).
Since every step that SCGCC-CMA moves down-hill, the
averaged search direction Z {w)leads down-hill of the SCGCC-
CMA objective function of f{w). Now by implementing the
Stochastic ApproxXimation Theorem, we have proved that the
SCGCC-CMA algorithm converges to a set of critical points.
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With the knowledge of the block CC-CMA objective function
{13, [5], we know that the critical points that SCGCC-CMA
converges to is actually the global minimum. [n the proof, we
assumed that stepsize oy satisfies the conditions (24a) and (24b).
However, in the computer implementation of the algorithm these
constraints are relaxed by setting a4 to one, and a satisfactory
convergence result is observed. Moreover, the stepsize
constraints (5) and (6) for 7¥ can also be relaxed,

5. SLIDING WINDOW SCGCC-CMA

To provide more control over the balance between the
computational complexity and performance, we further introduce
the sliding-window type SCGCC-CMA. The sliding-window
SCGCC-CMA also takes in N data at a time, but generate only
K outputs, X < N, that is, K — N data elements from the
current block will be reused for the next data block. The sliding-
window SCGCC-CMA scheme provides control over the balance
between the computational complexity and performance. Such
flexibility will be very useful in higher data rate system. By
adding more overlap between blocks, we increase the
convergence rate and lower the residual error floor. However, we
also raise the computational complexity.

6. SIMULATIONS

In a QPSK system with source alphabet (£1/sqrt(2) =(1/sqrt{2))),
we assume d = 3 users, K = 4 sensors  twelve random complex
channels of order 1 (M = 1) and three 12 tap (i.e. N =2 and R
{N + 1) = 12) space-time equalisers adapted with the proposed
algorithms. The block size for used for BSCC-CMA, SCGCC-
CMA, BCGCC-CMA and BGDCC-CMA was 100. The channel
convolution matrix is full rank square matrix of dimension of 12
and k = 4, White Gaussian noise of SNR 30dB is present at the
channel output. The forgetting factor A for the RLS version of
CC-CMA [1) and the step size u are set to 0.99 and 0.01
respectively. The constellation diagrams of the output of the
equalizers are shown in Fig 1. (d), (e) and (f). Afier
approximately 700 samples, all equalisers of RLSCC-CMA
algorithm give open eye pattern. Comparing the residual error,
which is defined as %@{k—w , in Fig. 1 (a), (b), and (c).
RLSCC-CMA algorithm shows much faster convergence than the
conventional CC-CMA algorithm. In fact, for equalizer-2, clear
open-eye constellation cannot be achieved even with 3900
samples. In Fig. 1. (g), (h) and (i), the combined channel +
equalizer the three equalizers is given. The different position
sections of the largest impulse confirm the retrieval all three
sources. That is, equalizer-1, 2 and 3 retrieve sources with
different delays. Fig. 2 (a), (b), (¢} shows the ISI of proposed
SCGCC-CMA, BSCC-CMA, BSCGCC-CMA and BGDCC-
CMA. All of the proposed algorithms converge within the first 5
blocks. Fig. 2 (g), (h), (i) shows the combined channel +
equalizer response for the proposed BSCC-CMA algorithm. Fig.2
(), (e), (f) shows the output constellation for the BSCC-CMA
algorithm.
7. CONCLUSIONS

To overcome the slow convergence of the conventional CC-
CMA algorithm, several new quasi-Newton adaptive algorithms
with rapid convergence property are propesed baséd upon the

cross-correlation and constant modulus (CC-CM) criterion,
namely the stochastic conjugate gradient CC-CMA (8CGCC-
CMA) and variants of the BSCC-CMA algorithms or fast
convergent quasi-Newton type cross-cotrelation and constant
modulus algorithm (FCQN-CCCMA). Simulation shews the alt
of these proposed algorithms outperforms the conventional CC-
CMA in terms of their super fast convergence and the
compactness of their output constellations. We also studied the
convergence analysis of the proposed algorithms.
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Figure 1. The Performance comparison between RLSCC-CMA
and CC-CMA (a), (b)and (c) Residual error of EQ-1,2 and 3.
(d), (e), and (f) show the Eye diagram of EQ-1, 2 and 3 after 500
samples. (g), (h) and (i) shows the combined channel + EQ-1
impulse response of hl,h2 and h3.

b
] [t !t
i 4 & 8 D P
it
[ I T I AT
2 o » I ¢ = B 12 @ 0 ® 1 B z a4 & & 8D ®
£ - Gkt

Fig. 2. Intersymbol Interference between the proposed SCGCC-
CMA (2), BSCC-CMA (1), BCGCC-CMA (3), BGDCC-CMA
{4) for EQ-1, EQ-2.
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