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Abstract
Foaming occurs in many distillation and absorption processes. The drainage of liquid foams involves the interplay of
gravity, surface tension, and viscous forces. In this paper, the nonlinear foam drainage equation is solved by using
the Adomian’s decomposition method , modified Adomian’s decomposition method , variational iteration method ,
modified variational iteration method, homotopy perturbation method, modified homotopy perturbation method and
homotopy analysis method. The existence and uniqueness of the solution and convergence of the proposed methods
are proved in details. Finally an example shows the accuracy of these methods.

Keywords: Nonlinear foam drainage equation, Adomian decomposition method (ADM) , Modified Adomian decomposition method
(MADM), Variational iteration method (VIM) , Modified variational iteration method (MVIM), Homotopy perturbation method
(HPM), Modified homotopy perturbation method (MHPM), Homotopy analysis method (HAM).

1 Introduction

Foams are of great importance in many technological processes and applications, and their properties are subject
of intensive studies from both practical and scientific points of view [1]. Liquid foam is an example of soft matter
(or complex fluid)with a very welldefined structure that first clearly described by Joseph plateau in the 19th century.
Weaire et al. [2] showed in their work simple answers to many such questions exist, but no going experiments
continue to challenge our understanding. Foams and emulsions are wellknown to scientists and the general public
alike because of their everyday occurrence [3, 4]. Foams are common in foods and personal care products such
as creams and lotions, and foams often occur, even when not desired, during cleaning (clothes, dishes, scrubbing)
and dispensing processes [5]. They have important applications in the food and chemical industries, firefighting,
mineral processing, and structural material science [6]. Less obviously, they appear in acoustic cladding, lightweight
mechanical components, and impact absorbing parts on cars, heat exchangers, and textured wallpapers (incorporated
as foaming inks) and even have an analogy in cosmology. The packing of bubbles or cells can form both random
and symmetrical arrays, such as sea foam and bees honeycomb. History connects foams with a number of eminent
scientists, and foams continue to excite imaginations [7]. There are now many applications of polymeric foams [8] and
more recently metallic foams, which are foams made of metals such as aluminum [9]. Some commonly mentioned
applications include the use of foams for reducing the impact of explosions and for cleaning up oil spills. In addition,
industrial applications of polymeric foams and porous metals include their use for structural purposes and as heat
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exchange media analogous to common finned structures [10]. Polymeric foams are used in cushions and packing and
structural materials [11]. Glass, ceramic, and metal foams [12] can also be made and find an increasing number of
new applications. In addition, mineral processing utilizes foam to separate valuable products by flotation. Finally,
foams enter geophysical studies of the mechanics of volcanic eruptions [5]. Recent research in foams and emulsions
has centered on three topics which are often treated separately but are, in fact, interdependent: drainage, coarsening,
and rheology, see Figure 1. We focus here on a quantitative description of the coupling of drainage and coarsening.
Foam drainage is the flow of liquid through channels (plateau borders) and nodes (intersections of four channels)
between the bubbles, driven by gravity and capillarity [13, 14, 15]. During foam production, the material is in the
liquid state, and fluid can rearrange while the bubble structure stays relatively unchanged. The flow of liquid relative
to the bubbles is called drainage. Generally, drainage is driven by gravity and/or capillary (surface tension) forces and
is resisted by viscous forces [5]. Because of their limited time stability and despite the numerous studies reported in
the literature, many of their properties are still not well understood, in particular the drainage of the liquid in between
the bubbles under the influence of gravity [16, 17]. Drainage plays an important role in foam stability. Indeed, when
foam dries, its structure becomes more fragile; the liquid films between adjacent bubbles being thinner, then can
break, leading to foam collapse. In the case of aqueous foams, surfactant is added into water, and it adsorbs at the
surface of the films, protecting them against rupture [18]. Most of the basic rules that explain the stability of liquid
gas foams were introduced over 100 years ago by the Belgian Joseph Plateau who was blind before he completed his
important book on the subject. This modern-day book by Weaire and Hutzler provides valuable summaries of plateaus
work on the laws of equilibrium of soap films, and it is especially useful since the original 1873 French text does not
appear to be in a fully translated English version.Weaire and Hutzler note that SirW. Thompson (Lord Kelvin) was
simulated by Plateau’s book to examine the optimum packing of free space by regular geometrical cells. His solution
to the problem remained the best until quite recently. Why does this area of theoretical research, still active today,
have connections with the apparently frivolous theme of bubbles? It is because the packing of free space involves the
minimization of the surface energy of the structure (i.e., least amount of boundary material). Thus, one might ask
why such an often-observed medium as a foam has not provided the optimum solution to this problem much earlier,
perhaps, this shows that observation is often biased towards what one expects to see, rather than to the unexpected.
Also, in nature, there are packing problems, such as the bees’ honeycomb. Its shaped ends provide a nice example
of Plateau’s rules in a natural environment [7]. Recent theoretical studies by Verbist and Weaire describe the main
features of both free drainage [19, 20], where liquid drains out of a foam due to gravity, and forced drainage [21],
where liquid is introduced to the top of a column of foam. In the latter case, a solitary wave of constant velocity
is generated when liquid is added at a constant rate [22]. Forced foam drainage may well be the best prototype for
certain general phenomena described by nonlinear differential equations, particularly the type of solitary wave which
is most familiar in tidal bores.
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Figure 1: Schematic illustration of the interdependence of drainage, coarsening, and rheology of foams

In this work, we develope the ADM, MADM, VIM, MVIM, HPM, MHPM and HAM to solve this equation as follows
[21]:

ut(x, t)+2u2(x, t)ux(x, t)−u2
x(x, t)−

1
2

uxx(x, t)u(x, t) = 0. (1.1)

With the initial condition:

u(x,0) = g(x) =−
√

c tanh(
√

cx), (1.2)

where c is the velocity of the wave front.
The paper is organized as follows. In section 2, the mentioned iterative methods are introduced for solving Eq.(1.1).
In section 3 we prove the existence , uniqueness of the solution and convergence of the proposed methods. Finally,
the numerical example is shown in section 4.
In order to obtain an approximate solution of Eq.(1.1), let us integrate one time Eq.(1.1) with respect to t using the
initial condition we obtain,

u(x, t) = g(x)−2
∫ t

0
F1(u(x,τ) dτ +

∫ t

0
F2(u(x,τ)) dτ +

1
2

∫ t

0
F3(u(x,τ)) dτ, (1.3)

where,

F1(u(x, t)) = u2(x, t)ux(x, t),
F2(u(x, t)) = u2

x(x, t),
F3(u(x, t)) = uxx(x, t)u(x, t).

In Eq.(1.3), we assume g(x) is bounded for all x in J = [0,T ](T ∈ R).
The terms F1(u(x, t)) , F2(u(x, t)) and F3(u(x, t)) are Lipschitz continuous with | F1(u)−F1(u∗) |≤ L1 | u− u∗ | ,
| F2(u)−F2(u∗) |≤ L2 | u−u∗ | and | F3(u)−F3(u∗) |≤ L3 | u−u∗ |.

2 The iterative methods

2.1 Description of the MADM and ADM
The Adomian decomposition method is applied to the following general nonlinear equation

Lu+Ru+Nu = f , (2.4)
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where u(x, t) is the unknown function, L is the highest order derivative operator which is assumed to be easily invert-
ible, R is a linear differential operator of order less than L,Nu represents the nonlinear terms, and f is the source term.
Applying the inverse operator L−1 to both sides of Eq.(2.4), and using the given conditions we obtain

u(x, t) = z(x)−L−1(Ru)−L−1(Nu), (2.5)

where the function z(x) represents the terms arising from integrating the source term f . The nonlinear operator
Nu = G1(u) is decomposed as

G1(u) =
∞

∑
n=0

An, (2.6)

where An, n≥ 0 are the Adomian polynomials determined formally as follows:

An =
1
n!
[

dn

dλ n [N(
∞

∑
i=0

λ iui)]]λ=0. (2.7)

The first Adomian polynomials (introduced in [23, 24, 25] ) are:

A0 = G1(u0),

A1 = u1G′1(u0),

A2 = u2G′1(u0)+
1
2!

u2
1G′′1(u0), (2.8)

A3 = u3G′1(u0)+u1u2G′′1(u0)+
1
3!

u3
1G′′′1 (u0), ...

2.1.1 Adomian decomposition method
The standard decomposition technique represents the solution of u(x, t) in Eq.(2.4) as the following series,

u(x, t) =
∞

∑
i=0

ui(x, t), (2.9)

where, the components u0,u1, . . . which can be determined recursively

u0(x, t) = g(x),

u1(x, t) =−2
∫ t

0
A0(x, t) dt +

∫ t

0
B0(x, t) dt +

1
2

∫ t

0
Z0(x, t) dt,

...

un+1(x, t) =−2
∫ t

0
An(x, t) dt +

∫ t

0
Bn(x, t) dt +

1
2

∫ t

0
Zn(x, t) dt, n≥ 0. (2.10)

Substituting Eq.(2.8) into Eq.(2.10) leads to the determination of the components of u.

2.1.2 The modified Adomian decomposition method
The modified decomposition method was introduced by Wazwaz [26]. The modified forms was established on the

assumption that the function g(x) can be divided into two parts, namely g1(x) and g2(x). Under this assumption we
set

g(x) = g1(x)+g2(x). (2.11)

Accordingly, a slight variation was proposed only on the components u0 and u1. The suggestion was that only the part
g1 be assigned to the zeroth component u0, whereas the remaining part g2 be combined with the other terms given in
Eq.(2.11) to define u1. Consequently, the modified recursive relation
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u0 = g1(x),

u1 = g2(x)−L−1(Ru0)−L−1(A0), (2.12)
...

un+1 =−L−1(Run)−L−1(An), n≥ 1,

was developed.
To obtain the approximation solution of Eq.(1.1), according to the MADM, we can write the iterative formula
Eq.(2.12) as follows:

u0 = g1(x),
u1 = g2(x)−2

∫ t
0 A0(x, t) dt +

∫ t
0 B0(x, t) dt + 1

2
∫ t

0 Z0(x, t) dt,
...
un+1 =−2

∫ t
0 An(x, t) dt +

∫ t
0 Bn(x, t) dt + 1

2
∫ t

0 Zn(x, t) dt, n≥ 1.

(2.13)

The operators Fi(u(x, t)) (i = 1,2,3) are usually represented by the infinite series of the Adomian polynomials as
follows:

F1(u) =
∞

∑
i=0

Ai,

F2(u) =
∞

∑
i=0

Bi,

F3(u) =
∞

∑
i=0

Zi.

where Ai, Bi and Zi are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [27]:

An = F1(sn)−∑n−1
i=0 Ai,

Bn = F2(sn)−∑n−1
i=0 Bi,

Zn = F3(sn)−∑n−1
i=0 Zi.

(2.14)

Where sn = ∑n
i=0 ui(x, t) is the partial sum.

2.2 Description of the VIM and MVIM
In the VIM [28, 29, 30, 31, 32, 33, 34, 35], it has been considered the following nonlinear differential equation:

Lu+Nu = g, (2.15)

where L is a linear operator, N is a nonlinear operator and g is a known analytical function. In this case, the functions
un may be determined recursively by

un+1(x, t) = un(x, t)+
∫ t

0
λ (x,τ){L(un(x,τ))+N(un(x,τ))−g(x,τ)}dτ, n≥ 0, (2.16)

where λ is a general Lagrange multiplier which can be computed using the variational theory. Here the function
un(x,τ) is a restricted variations which means δun = 0. Therefore, we first determine the Lagrange multiplier λ that
will be identified optimally via integration by parts. The successive approximation un(x, t), n ≥ 0 of the solution
u(x, t) will be readily obtained upon using the obtained Lagrange multiplier and by using any selective function u0.
The zeroth approximation u0 may be selected any function that just satisfies at least the initial and boundary conditions.
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With λ determined, then several approximation un(x, t), n ≥ 0 follow immediately. Consequently, the exact solution
may be obtained by using

u(x, t) = lim
n→∞

un(x, t). (2.17)

The VIM has been shown to solve effectively, easily and accurately a large class of nonlinear problems with approxi-
mations converge rapidly to accurate solutions.
To obtain the approximation solution of Eq.(1.1), according to the VIM, we can write Eq.(2.16) as follows:

un+1(x, t) = un(x, t)+L−1
t (λ [un(x, t)−g(x)+2

∫ t
0 F1(un(x, t)) dt

−
∫ t

0 F2(un(x, t)) dt− 1
2
∫ t

0 F3(un(x, t)) dt]), n≥ 0.
(2.18)

Where,

L−1
t (.) =

∫ t

0
(.) dτ.

To find the optimal λ , we proceed as

δun+1(x, t) = δun(x, t)+δL−1
t (λ [un(x, t)−g(x)+2

∫ t
0 F1(un(x, t)) dt

−
∫ t

0 F2(un(x, t)) dt− 1
2
∫ t

0 F3(un(x, t)) dt]).
(2.19)

From Eq.(2.19), the stationary conditions can be obtained as follows: λ ′ = 0 and 1+λ = 0. Therefore, the Lagrange
multipliers can be identified as λ =−1 and by substituting in Eq.(2.18), the following iteration formula is obtained.

u0(x, t) = g(x),
un+1(x, t) = un(x, t)−L−1

t (un(x, t)−g(x)+2
∫ t

0 F1(un(x, t)) dt
−
∫ t

0 F2(un(x, t)) dt− 1
2
∫ t

0 F3(un(x, t)) dt),n≥ 0.
(2.20)

To obtain the approximation solution of Eq.(1.1), based on the MVIM [36, 37, 38], we can write the following iteration
formula:

u0(x, t) = g(x),
un+1(x, t) = un(x, t)−L−1

t (2
∫ t

0 F1(un(x, t)−u(x, t)) dt
−
∫ t

0 F2(un(x, t)−u(x, t)) dt− 1
2
∫ t

0 F3(un(x, t)−u(x, t)) dt),n≥ 0.
(2.21)

Eq.(2.20) and Eq.(2.21) will enable us to determine the components un(x, t) recursively for n≥ 0.

2.3 Description of the HAM
Consider

N[u] = 0,

where N is a nonlinear operator, u(x, t) is an unknown function and x is an independent variable. let u0(x, t) denote
an initial guess of the exact solution u(x, t), h ̸= 0 an auxiliary parameter, H1(x, t) ̸= 0 an auxiliary function, and L
an auxiliary linear operator with the property L[s(x, t)] = 0 when s(x, t) = 0. Then using q ∈ [0,1] as an embedding
parameter, we construct a homotopy as follows:

(1−q)L[ϕ(x, t;q)−u0(x, t)]−qhH1(x, t)N[ϕ(x, t;q)] = Ĥ[ϕ(x, t;q);u0(x, t),H1(x, t),h,q]. (2.22)

It should be emphasized that we have great freedom to choose the initial guess u0(x, t), the auxiliary linear operator
L, the non-zero auxiliary parameter h, and the auxiliary function H1(x, t).
Enforcing the homotopy Eq.(2.22) to be zero, i.e.,

Ĥ1[ϕ(x, t;q);u0(x, t),H1(x, t),h,q] = 0, (2.23)

we have the so-called zero-order deformation equation
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(1−q)L[ϕ(x, t;q)−u0(x, t)] = qhH1(x, t)N[ϕ(x, t;q)]. (2.24)

When q = 0, the zero-order deformation Eq.(2.24) becomes

ϕ(x;0) = u0(x, t), (2.25)

and when q = 1, since h ̸= 0 and H1(x, t) ̸= 0, the zero-order deformation Eq.(2.24) is equivalent to

ϕ(x, t;1) = u(x, t). (2.26)

Thus, according to Eq.(2.25) and Eq.(2.26), as the embedding parameter q increases from 0 to 1, ϕ(x, t;q) varies
continuously from the initial approximation u0(x, t) to the exact solution u(x, t). Such a kind of continuous variation
is called deformation in homotopy [39, 40, 41, 42, 43].
Due to Taylor’s theorem, ϕ(x, t;q) can be expanded in a power series of q as follows

ϕ(x, t;q) = u0(x, t)+
∞

∑
m=1

um(x, t)qm, (2.27)

where,

um(x, t) =
1

m!
∂ mϕ(x, t;q)

∂qm |q=0 .

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero auxiliary parameter h and the auxiliary
function H1(x, t) be properly chosen so that the power series Eq.(2.27) of ϕ(x, t;q) converges at q = 1, then, we have
under these assumptions the solution series

u(x, t) = ϕ(x, t;1) = u0(x, t)+
∞

∑
m=1

um(x, t). (2.28)

From Eq.(2.27), we can write Eq.(2.24) as follows

(1−q)L[ϕ(x, t,q)−u0(x, t)] = (1−q)L[∑∞
m=1 um(x, t) qm] = q h H1(x, t)N[ϕ(x, t,q)]⇒

L[∑∞
m=1 um(x, t) qm]−q L[∑∞

m=1 um(x, t)qm] = q h H1(x, t)N[ϕ(x, t,q)] (2.29)

By differentiating Eq.(2.29) m times with respect to q, we obtain

{L[∑∞
m=1 um(x, t) qm]−q L[∑∞

m=1 um(x, t)qm]}(m) = {q h H1(x, t)N[ϕ(x, t,q)]}(m) =

m! L[um(x, t)−um−1(x, t)] = h H1(x, t) m ∂ m−1N[ϕ(x,t;q)]
∂qm−1 |q=0 .

Therefore,

L[um(x, t)−χmum−1(x, t)] = hH1(x, t)ℜm(um−1(x, t)), (2.30)

where,

ℜm(um−1(x, t)) =
1

(m−1)!
∂ m−1N[ϕ(x, t;q)]

∂qm−1 |q=0, (2.31)

and

χm =

{
0, m≤ 1
1, m > 1

Note that the high-order deformation Eq.(3.7) is governing the linear operator L, and the term ℜm(um−1(x, t)) can be
expressed simply by Eq.(2.31) for any nonlinear operator N.
To obtain the approximation solution of Eq.(1.1), according to HAM, let

N[u(x, t)] = u(x, t)−g(x)+2
∫ t

0 F1(u(x, t)) dt−
∫ t

0 F2(u(x, t)) dt− 1
2
∫ t

0 u(x, t) dt,
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so,

ℜm(um−1(x, t)) = um−1(x, t)−g(x)+2
∫ t

0 F1(um−1(x, t)) dt−
∫ t

0 F2(um−1(x, t)) dt
− 1

2
∫ t

0 F3(um−1(x, t)) dt.
(2.32)

Substituting Eq.(2.32) into Eq.(3.7)

L[um(x, t)−χmum−1(x, t)] = hH1(x, t)[um−1(x, t)−g(x)+2
∫ t

0 F1(um−1(x, t)) dt
−
∫ t

0 F2(um−1(x, t)) dt− 1
2
∫ t

0 F3(um−1(x, t)) dt +(1−χm)g(x)(x)].
(2.33)

We take an initial guess u0(x, t) = g(x), an auxiliary linear operator Lu = u, a nonzero auxiliary parameter h = −1,
and auxiliary function H1(x, t) = 1. This is substituted into Eq.(2.33) to give the recurrence relation

u0(x, t) = g(x),

un+1(x, t) =−2
∫ t

0 F1(un(x, t)) dt +
∫ t

0 F2(un(x, t)) dt + 1
2
∫ t

0 F3(un(x, t)) dt, n≥ 0.
(2.34)

Therefore, the solution u(x, t) becomes

u(x, t) = ∑∞
n=0 un(x, t)

= g(x)+∑∞
n=1

(
−2

∫ t
0 F1(un(x, t)) dt +

∫ t
0 F2(un(x, t)) dt + 1

2
∫ t

0 un(x, t) dt.
)
.

(2.35)

Which is the method of successive approximations. If

| un(x, t) |< 1,

then the series solution Eq.(2.35) convergence uniformly.

2.4 Description of the HPM and MHPM
To explain HPM [44, 45, 46, 47, 48] , we consider the following general nonlinear differential equation:

Lu+Nu = f (u), (2.36)

with initial conditions
u(x,0) = f (x).

According to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = Lu−Lv0 + p Lv0 + p [Nu− f (u)] = 0, (2.37)

where p ∈ [0,1] is an embedding parameter and v0 is an arbitrary initial approximation satisfying the given initial
conditions.
In HPM, the solution of Eq.(2.37) is expressed as

u(x, t) = u0(x, t)+ p u1(x, t)+ p2 u2(x, t)+ ... (2.38)

Hence the approximate solution of Eq.(2.36) can be expressed as a series of the power of p, i.e.

u = lim
p→1

u = u0 +u1 +u2 + ...

where,
u0(x, t) = g(x),
...
um(x, t) = ∑m−1

k=0 −2
∫ t

0 F1(um−k−1(x, t)) dt +
∫ t

0 F2(um−k−1(x, t)) dt+
1
2
∫ t

0 F3(um−k−1(x, t)) dt, m≥ 1.

(2.39)
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To explain MHPM [49, 50, 51], we consider Eq.(1.1) as

L(u) = u(x, t)−g(x)+2
∫ t

0 F1(um−k−1(x, t)) dt−
∫ t

0 F2(um−k−1(x, t)) dt
− 1

2
∫ t

0 F3(um−k−1(x, t)) dt.

Where F1(u(x, t)) = g1(x)h1(t), F2(u(x, t)) = g2(x)h2(t) and F3(u(x, t)) = g3(x)h3(t). We can define homotopy
H(u, p,m) by

H(u,0,m) = f (u), H(u,1,m) = L(u),

where, m is an unknown real number and

f (u(x, t)) = u(x, t)− z(x, t).

Typically we may choose a convex homotopy by

H(u, p,m) = (1− p) f (u)+ p L(u)+ p (1− p)[m(g1(x)+g2(x)+g3(x))] = 0, 0≤ p≤ 1. (2.40)

Where m is called the accelerating parameters, and for m = 0 we define H(u, p,0) = H(u, p), which is the standard
HPM.
The convex homotopy Eq.(2.40) continuously trace an implicity defined curve from a starting point H(u(x, t)−
f (u),0,m) to a solution function H(u(x, t),1,m). The embedding parameter p monotonically increase from 0 to 1
as trivial problem f (u) = 0 is continuously deformed to original problem L(u) = 0.
The MHPM uses the homotopy parameter p as an expanding parameter to obtain

v =
∞

∑
n=0

pnun, (2.41)

when p→ 1, Eq.(2.37) corresponds to the original one and Eq.(2.41) becomes the approximate solution of Eq.(1.1),
i.e.,

u = lim
p→1

v =
∞

∑
m=0

um.

Where,

u0(x, t) = g(x),
u1(x, t) =−2

∫ t
0 F1(u0(x, t)) dt +

∫ t
0 F2(u0(x, t)) dt + 1

2
∫ t

0 F3(u0(x, t)) dt−m(g1(x)+g2(x)+g3(x)),
u2(x, t) =−2

∫ t
0 F1(u1(x, t)) dt +

∫ t
0 F2(u1(x, t)) dt + 1

2
∫ t

0 F3(u1(x, t)) dt+
m(g1(x)+g2(x)+g3(x)),
...
um(x, t) = ∑m−1

k=0 −2
∫ t

0 F1(um−k−1(x, t)) dt +
∫ t

0 F2(um−k−1(x, t)) dt + 1
2
∫ t

0 F3(um−k−1(x, t)) dt, m≥ 3.

(2.42)

3 Existence and convergency of iterative methods

We set,

α1 := T (2L1 +L2 +
1
2

L3),

β1 := 1−T (1−α1), γ1 := 1−T α1.

Theorem 3.1. Let 0 < α1 < 1, then Eq.(1.1), has a unique solution.
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Proof. Let u and u∗ be two different solutions of Eq.(1.3) then

| u−u∗ |=| −2
∫ t

0 [F1(u(x, t))−F1(u∗(x, t))] dt +
∫ t

0 [F2(u(x, t))−F2(u∗(x, t))] dt
+ 1

2
∫ t

0 [F3(u(x, t))−F3(u∗(x, t))] dt |
≤ 2

∫ t
0 | F1(u(x, t))−F1(u∗(x, t)) | dt +

∫ t
0 | F2(u(x, t))−F2(u∗(x, t)) | dt+

1
2
∫ t

0 | F3(u(x, t))−F3(u∗(x, t)) | dt
≤ T (2L1 +L2 +

1
2 L3) | u−u∗ |= α1 | u−u∗ | .

From which we get (1−α1) | u− u∗ |≤ 0. Since 0 < α1 < 1, then | u− u∗ |= 0. Implies u = u∗ and completes the
proof.

Theorem 3.2. The series solution u(x, t) = ∑∞
i=0 ui(x, t) of Eq.(1.1) using MADM convergence when

0 < α1 < 1, | u1(x, t) |< ∞.

Proof. Denote as (C[J],∥ . ∥) the Banach space of all continuous functions on J with the norm ∥ g(t) ∥= max | g(t) |,
for all t in J. Define the sequence of partial sums sn, let sn and sm be arbitrary partial sums with n≥ m. We are going
to prove that sn is a Cauchy sequence in this Banach space:

∥ sn− sm ∥= max∀t∈J | sn− sm |= max∀t∈J | ∑n
i=m+1 ui(x, t) |=

max∀t∈J | −2
∫ t

0(∑
n−1
i=m Ai) dt +

∫ t
0(∑

n−1
i=m Bi) dt+

1
2
∫ t

0(∑
n−1
i=m Zi) dt | .

From [27], we have

∑n−1
i=m Ai = F1(sn−1)−F1(sm−1),

∑n−1
i=m Bi = F2(sn−1)−F2(sm−1),

∑n−1
i=m Zi = F3(sn−1)−F3(sm−1).

So,

∥ sn− sm ∥= max∀t∈J | −2
∫ t

0 [F1(sn−1)−F1(sm−1)] dt +
∫ t

0 [F2(sn−1)−F2(sm−1)] dt+
1
2
∫ t

0 [F3(sn−1)− (F3(sm−1)] dt |≤
2
∫ t

0 | F1(sn−1)−F1(sm−1) | dt +
∫ t

0 | F2(sn−1)−F2(sm−1) | dt
+ 1

2
∫ t

0 | F3(sn−1)−F3(sm−1) | dt ≤ α1 ∥ sn− sm ∥ .

Let n = m+1, then

∥ sn− sm ∥≤ α1 ∥ sm− sm−1 ∥≤ α2
1 ∥ sm−1− sm−2 ∥≤ ...≤ αm

1 ∥ s1− s0 ∥ .

From the triangle inquality we have

∥ sn− sm ∥≤∥ sm+1− sm ∥+ ∥ sm+2− sm+1 ∥+...+ ∥ sn− sn−1 ∥
≤ [αm

1 +αm+1
1 + ...+αn−m−1

1 ] ∥ s1− s0 ∥
≤ αm

1 [1+α1 +α2
1 + ...+αn−m−1

1 ] ∥ s1− s0 ∥≤ αm
1 [

1−αn−m
1

1−α1
] ∥ u1(x, t) ∥ .

Since 0 < α1 < 1, we have (1−αn−m
1 )< 1, then

∥ sn− sm ∥≤
αm

1
1−α1

max∀t∈J | u1(x, t) | . (3.43)

But | u1(x, t) |< ∞ , so, as m→ ∞, then ∥ sn− sm ∥→ 0. We conclude that sn is a Cauchy sequence in C[J], therefore
the series is convergence and the proof is complete.
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Theorem 3.3. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t) to Eq.(1.1) by using

MADM is estimated to be

max | u(x, t)−
m

∑
i=0

ui(x, t) |≤
kαm

1
1−α1

. (3.44)

Proof. From inequality Eq.(3.43), when n→ ∞, then sn→ u and

max | u1(x, t) |≤ T (max∀t∈J | 2F1(u0(x, t)) |+max∀t∈J | F2(u0(x, t)) |+
1
2 max∀t∈J | F3(u0(x, t)) |).

Therefore,

∥ u(x, t)− sm ∥≤
αm

1
1−α1

T (max∀t∈J | 2F1(u0(x, t)) |+max∀t∈J | F2(u0(x, t)) |+
1
2 max∀t∈J | F3(u0(x, t)) |).

Finally the maximum absolute truncation error in the interval J is obtained by Eq.(3.44).

Theorem 3.4. The solution un(x, t) obtained from the relation Eq.(2.20) using VIM converges to the exact solution of
the Eq.(1.1) when 0 < α1 < 1 and 0 < β1 < 1.

Proof.
un+1(x, t) = un(x, t)−L−1

t ([un(x, t)−g(x)+2
∫ t

0 F1(un(x, t)) dt−
∫ t

0 F2(un(x, t)) dt
− 1

2
∫ t

0 F3(un(x, t)) dt.])
(3.45)

u(x, t) = u(x, t)−L−1
t ([u(x, t)−g(x)+2

∫ t
0 F1(u(x, t)) dt−

∫ t
0 F2(u(x, t)) dt

− 1
2
∫ t

0 F3(u(x, t)) dt.])
(3.46)

By subtracting relation Eq.(3.45) from Eq.(3.46),

un+1(x, t)−u(x, t) = un(x, t)−u(x, t)−L−1
t (un(x, t)−u(x, t)

+2
∫ t

0 [F1(un(x, t))−F1(u(x, t))] dt−
∫ t

0 [F2(un(x, t))−F2(u(x, t))] dt−
1
2
∫ t

0 [F3(un(x, t))−F3(u(x, t))] dt),

if we set, en+1(x, t) = un+1(x, t)− un(x, t), en(x, t) = un(x, t)− u(x, t),| en(x, t∗) |= maxt | en(x, t) | then since en is a
decreasing function with respect to t from the mean value theorem we can write,

en+1(x, t) = en(x, t)+L−1
t (−en(x, t)+2

∫ t
0 [F1(un(x, t))−F1(u(x, t))] dt

−
∫ t

0 [F2(un(x, t))−F2(u(x, t))] dt− 1
2
∫ t

0 [F3(un(x, t))−F3(u(x, t))] dt)
≤ en(x, t)+L−1

t [−en(x, t)+L−1
t | en(x, t) | (T (2L1 +L2 +

1
2 L3)]

≤ en(x, t)−Ten(x,η)+T (2L1 +L2 +
1
2 L3)L−1

t L−1
t | en(x, t) |

≤ (1−T (1−α1) | en(x, t∗) |,

where 0≤ η ≤ t. Hence, en+1(x, t)≤ β1 | en(x, t∗) |.
Therefore,

∥en+1∥= max∀t∈J | en+1 |≤ β1 max∀t∈J | en |≤ β1∥en∥.

Since 0 < β1 < 1, then ∥en∥→ 0. So, the series converges and the proof is complete.

Theorem 3.5. The solution un(x, t) obtained from the Eq.(2.22) using MVIM for the Eq.(1.1) converges when 0 <
α1 < 1 , 0 < γ1 < 1.

Proof. The Proof is similar to the previous theorem.
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Theorem 3.6. The maximum absolute truncation error of the series solution u(x, t) = ∑∞
i=0 ui(x, t)to Eq.(1.1) by using

VIM is estimated to be

∥en∥ ≤
β n

1 k
′

1−β1
, k

′
= max | u1(x, t) | .

Proof.
un+1−un = (un+1−u)+(u−un) = en− en+1
→ en = en+1− (un+1−un)
∥en∥= ∥en+1− (un+1−un)∥ ≤ ∥en+1∥+∥un+1−un∥ ≤ β1∥en∥+∥un+1−un∥

→ ∥en∥ ≤ ∥un+1−un∥
1−β1

≤ β n
1 k
′

1−β1
.

Theorem 3.7. If the series solution Eq.(2.34) of Eq.(1.1) using HAM convergent then it converges to the exact solution
of the Eq.(1.1).

Proof. We assume:
u(x, t) = ∑∞

m=0 um(x, t),
F̂1(u(x, t)) = ∑∞

m=0 F1(um(x, t)),
F̂2(u(x, t)) = ∑∞

m=0 F2(um(x, t)),
F̂3(u(x, t)) = ∑∞

m=0 F3(um(x, t)).

Where,
lim

m→∞
um(x, t) = 0.

We can write,

n

∑
m=1

[um(x, t)−χmum−1(x, t)] = u1 +(u2−u1)+ ...+(un−un−1) = un(x, t). (3.47)

Hence, from Eq.(3.47),

lim
n→∞

un(x, t) = 0. (3.48)

So, using and the definition of the linear operator L, we have

∞

∑
m=1

L[um(x, t)−χmum−1(x, t)] = L[
∞

∑
m=1

[um(x, t)−χmum−1(x, t)]] = 0.

therefore from , we can obtain that,

∞

∑
m=1

L[um(x, t)−χmum−1(x, t)] = hH1(x, t)
∞

∑
m=1

ℜm−1(um−1(x, t)) = 0.

Since h ̸= 0 and H1(x, t) ̸= 0 , we have
∞

∑
m=1

ℜm−1(um−1(x, t)) = 0. (3.49)

By substituting ℜm−1(um−1(x, t)) into the relation Eq.(3.49) and simplifying it , we have

∑∞
m=1 ℜm−1(um−1(x, t)) = ∑∞

m=1[−2
∫ t

0 F1(um−1(x, t)) dt
+
∫ t

0 F2(um−1(x, t)) dt + 1
2
∫ t

0 F3(um−1(x, t)) dt +(1−χm)g(x)]
= u(x, t)−g(x)+2

∫ t
0 F̂1(u(x, t)) dt−

∫ t
0 F̂2(u(x, t)) dt− 1

2
∫ t

0 F̂3(u(x, t)) dt.
(3.50)

From Eq.(3.49) and Eq.(3.50), we have
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u(x, t) = g(x)−2
∫ t

0 F̂1(u(x, t)) dt +
∫ t

0 F̂2(u(x, t)) dt + 1
2
∫ t

0 F̂3(u(x, t)) dt.

Therefore, u(x, t) must be the exact solution.

Theorem 3.8. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t) to Eq.(1.1) by using

HAM is estimated to be

∥en∥ ≤
αn

1 k
′

1−α1
, k

′
= max | u1(x, t) | .

Proof. The Proof is similar to the 3.6 theorem

Theorem 3.9. If | um(x, t) |≤ 1, then the series solution u(x, t) = ∑∞
i=0 ui(x, t) of Eq.(1.1) converges to the exact

solution by using HPM.

Proof. We set,

ϕn(x, t) =
n

∑
i=1

ui(x, t),

ϕn+1(x, t) =
n+1

∑
i=1

ui(x, t).

| ϕn+1(x, t)−ϕn(x, t) |= D(ϕn+1(x, t),ϕn(x, t)) = D(ϕn +un,ϕn)

= D(un,0)≤ ∑m−1
k=0 −2

∫ t
0 | F1(um−k−1(x, t)) | dt +

∫ t
0 | F2(um−k−1(x, t)) | dt

+ 1
2
∫ t

0
∫ t

0 | F3(um−k−1(x, t)) | dt.

→
∞

∑
n=0
∥ ϕn+1(x, t)−ϕn(x, t) ∥≤ mα1 | g(x) |

∞

∑
n=0

(mα1)
n.

Therefore,

lim
n→∞

un(x, t) = u(x, t).

Theorem 3.10. If | um(x, t) |≤ 1, then the series solution u(x, t) = ∑∞
i=0 ui(x, t) of Eq.(1.1) converges to the exact

solution by using MHPM.

Proof. The Proof is similar to the previous theorem.

Theorem 3.11. The maximum absolute truncation error of the series solution u(x, t) = ∑∞
i=0 ui(x, t) to Eq.(1.1) by

using HPM is estimated to be

∥en∥ ≤
(nα1)

nnk
′

1−α1
, k

′
= max | u1(x, t) | .

Proof. The Proof is similar to the 3.6 theorem
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4 Numerical example

In this section, we compute a numerical example which is solved by the ADM, MADM, VIM, MVIM, HPM,
MHPM and HAM. The program has been provided with Mathematica 6 according to the following algorithm where
ε is a given positive value.

Algorithm 1:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations Eq.(2.10) for ADM , Eq.(2.13) for MADM, Eq.(2.34) for HAM, Eq.(2.39)
for HPM and Eq.(2.42) for MHPM.
Step 3. If | un+1−un |< ε then go to step 4,
else n← n+1 and go to step 2.
Step 4. Print u(x, t) = ∑n

i=0 ui(x, t) as the approximate of the exact solution.

Algorithm 2:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations Eq.(2.20) for VIM and Eq.(2.21) for MVIM.
Step 3. If | un+1−un |< ε then go to step 4,
else n← n+1 and go to step 2.
Step 4. Print un(x, t) as the approximate of the exact solution.

Example 4.1. Consider the nonlinear foam drainage equation as follows:

ut(x, t)+2u2(x, t)ux(x, t)−u2
x(x, t)−

1
2

uxx(x, t)u(x, t) = 0..

With initial condition:

g(x) =−
√

2tanh(
√

2x).

ε = 10−3.

(x,t) Errors
ADM(n=24) MADM(n=22) VIM(n=17) MVIM(n=14)

(0.13,0.14) 0.0073348 0.0062219 0.0044609 0.0031315
(0.23,0.17) 0.0074426 0.0063547 0.0045113 0.0032231
(0.31,0.24) 0.0075605 0.0064606 0.0046718 0.0033322
(0.44,0.37) 0.0076421 0.0065736 0.0047839 0.0034212
(0.52,0.45) 0.0077515 0.0066877 0.0048618 0.0035368
(0.7,0.47) 0.0078105 0.0067136 0.0049857 0.0036493

Table 1: Numerical results for Example 4.1

(x,t) Errors
HPM(n=15) MHPM(n=13) HAM(n=9)

(0.13,0.14) 0.0054265 0.0033171 0.0025829
(0.23,0.17) 0.00552491 0.0034596 0.0026534
(0.31,0.24) 0.0056742 0.0035277 0.0027509
(0.44,0.37) 0.0057822 0.0036288 0.0027593
(0.52,0.45) 0.0058157 0.0037344 0.0028902
(0.7,0.47) 0.0059739 0.0038482 0.0029085
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Table 1, shows that, approximate solution of the nonlinear foam drainage equation is convergence with 9 iterations by
using the HAM . By comparing the results of Table 1 , we can observe that the HAM is more rapid convergence than
the ADM, MADM, VIM, MVIM, HPM and MHPM.

5 Conclusion

The homotopy analysis method has been shown to solve effectively, easily and accurately a large class of nonlinear
problems with the approximations which are convergent are rapidly to exact solutions. In this work, the HAM has
been successfully employed to obtain the approximate solution to analytical solution of the nonlinear foam drainage
equation. For this purpose, we showed that the HAM is more rapid convergence than the ADM, MADM, VIM,
MVIM, HPM and MHPM.

References

[1] S. D. Stoyanov, V. N. Paunov, E. S. Basheva, I. B. Ivanov, A. Mehreteab, G. Broze, Motion of the front between
thick and thin film: hydrodynamic theory and experiment with vertical foam films, Langmuir, 13 (1997) 1400-
1407.
http://dx.doi.org/10.1021/la9608019

[2] D. Weaire, S. Hutzler, S. Cox, N. Kern, M. D. Alonso, D. D. Drenckhan, The fluid dynamics of foams, Journal
of Physics Condensed Matter,15 (2003) 65-73.
http://dx.doi.org/10.1088/0953-8984/15/1/307

[3] R. K. Prud’homme, S. A. Khan, Foams: Theory,Measurements and Applications, Marcel Dekker, New York,
NY, USA, (1996).

[4] D. L. Weaire, S. Hutzler, The Physics of Foams, Oxford University Press, Oxford, UK, (2000).

[5] H. A. Stone, S. A. Koehler, S. Hilgenfeldt, M. Durand, Perspectives on foam drainage and the influence of
interfacial rheology, Journal of Physics Condensed Matter, 15 (2003) 283-290.
http://dx.doi.org/10.1088/0953-8984/15/1/338

[6] S. Hilgenfeldt, S. A. Koehler, H. A. Stone, Dynamics of coarsening foams: accelerated and selflimiting drainage,
Physical Review Letters, 86 (2001) 4704-4707.
http://dx.doi.org/10.1103/PhysRevLett.86.4704

[7] J. I. B. Wilson, Essay review, scholarly froth and engineering skeletons, Contemporary Physics, 44 (2003) 153-
155.
http://dx.doi.org/10.1080/0010751031000095107

[8] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge,
UK, (1997).

[9] J. Banhart, Metallschaume, MIT, Bermen, Germany, (1997).

[10] S. A. Koehler, H. A. Stone, M. P. Brenner, J. Eggers, Dynamics of foam drainage, Physical Review E, 58 (1998)
2097-2106.
http://dx.doi.org/10.1103/PhysRevE.58.2097

[11] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge,
UK, (1999).

[12] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. w. Hutchinson, H. N. G. Wasley, Metal Foams: A Design
Guide, Society of Automotive Engineers, Boston, Mass, USA, (2000).

International Scientific Publications and Consulting Services



Communications on Advanced Computational Science with Applications
http://www.ispacs.com/journals/cacsa/2014/cacsa-00021/ Page 16 of 18

[13] R. A. Leonard, R. Lemlich, A study of interstitial liquid flow in foam. Part I. Theoretical model and application
to foam fractionation, AIChE Journal, 11 (1965) 18-29.
http://dx.doi.org/10.1002/aic.690110108

[14] I. I. Gol’dfarb, K. B. Kann, I. R. Shreiber, Liquid flow in foams, Fluid Dynamics, 23 (1988) 244-249.
http://dx.doi.org/10.1007/BF01051894

[15] J. J. Bikerman, Foams; theory and industrial applications, Reinhold, (1953).

[16] D. Weaire, S. Hutzler, G. Verbist, E. A. J. Peters, A review of foam drainage, Advances in Chemical Physics,
102 (1997) 315-374.
http://dx.doi.org/10.1002/9780470141618.ch5

[17] A. Bhakta, E. Ruckenstein, Decay of standing foams: drainage, coalescence and collapse, Advances in Colloid
and Interface Science, 70 (1997) 1-123.
http://dx.doi.org/10.1016/S0001-8686(97)00031-6

[18] M. Durand, D. Langevin, Physicochemical approach to the theory of foam drainage, European Physical Journal
E. 7 (2002) 35-44.
http://dx.doi.org/10.1007/s10189-002-8215-0

[19] G. Verbist, D. Weaire, Soluble model for foam drainage, Europhysics Letters, 26 (1994) 631-634.
http://dx.doi.org/10.1209/0295-5075/26/8/013

[20] G. Verbist, D. Weaire, A. M. Kraynik, The foam drainage equation, Journal of Physics Condensed Matter, 8
(1996) 3715-3731.
http://dx.doi.org/10.1088/0953-8984/8/21/002

[21] G. Verbist, D. Weaire, Soluble model for foam drainage, Europhysics Letters, 26 (1994) 631-641.
http://dx.doi.org/10.1209/0295-5075/26/8/013

[22] D. Weaire, S. Hutzler, N. Pittet, D. Pardal, Steady-state drainage of an aqueous foam, Physical Review Letters,
71 (1993) 2670-2673.
http://dx.doi.org/10.1103/PhysRevLett.71.2670

[23] S. H. Behriy, H. Hashish, I. L. E-Kalla, A. Elsaid, A new algorithm for the decomposition solution of nonlinear
differential equations, App.Math.Comput, 54 (2007) 459-466.
http://dx.doi.org/10.1016/j.camwa.2006.12.027

[24] M. A. Fariborzi Araghi, Sh. S. Behzadi, Solving nonlinear Volterra-Fredholm integral differential equations
using the modified Adomian decomposition method, Comput. Methods in Appl. Math, 9 (2009) 1-11.

[25] A. M. Wazwaz, Construction of solitary wave solution and rational solutions for the KdV equation by ADM,
Chaos, Solution and fractals, 12 (2001) 2283-2293.

[26] A. M. Wazwaz, A first course in integral equations, WSPC, New Jersey; (1997).
http://dx.doi.org/10.1142/3444

[27] I. L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations,
Appl.Math.Comput, 21 (2008) 372-376.
http://dx.doi.org/10.1016/j.aml.2007.05.008

[28] S. Abbasbandy, Numerical method for non-linear wave and diffusion equations by the variational iteration
method, Q1 Int. J. Numer. Methods Eng, 73 (2008) 1836-1843.
http://dx.doi.org/10.1002/nme.2150

International Scientific Publications and Consulting Services



Communications on Advanced Computational Science with Applications
http://www.ispacs.com/journals/cacsa/2014/cacsa-00021/ Page 17 of 18

[29] S. Abbasbandy, A. Shirzadi, The variational iteration method for a class of eight-order boundary value
differential equations, Z. Naturforsch, 63 (2008) 745-751.

[30] M. A. Fariborzi Araghi, Sh. S. Behzadi, Solving nonlinear Volterra-Fredholm integro-differential equations using
He’s variational iteration method, International Journal of Computer Mathematics, 88 (2011) 829-838.
http://dx.doi.org/10.1080/00207161003770394

[31] M. Ghasemi , M. Tavasoli , E. Babolian, Application of He’s homotopy perturbation method of nonlinear integro-
differential equation, Appl.Math.Comput, 188 (2007) 538-548.
http://dx.doi.org/10.1016/j.amc.2006.10.016

[32] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30 (2006)
700-708.
http://dx.doi.org/10.1016/j.chaos.2006.03.020

[33] J. H. He, Variational principle for some nonlinear partial differential equations with variable cofficients, Chaos,
Solitons and Fractals, 19 (2004) 847-851.
http://dx.doi.org/10.1016/S0960-0779(03)00265-0

[34] J. H. He, Wang. Shu-Qiang, Variational iteration method for solving integro-differential equations, Physics Let-
ters A, 367 (2007) 188-191.
http://dx.doi.org/10.1016/j.physleta.2007.02.049

[35] J. H. He, Variational iteration method some recent results and new interpretations, J. Comp. and Appl. Math,
207 (2007) 3-17.
http://dx.doi.org/10.1016/j.cam.2006.07.009

[36] A. Yildirim, S. T. Mohyud-Din, D. H. Zhang, Analytical solutions to the pulsed Klein-Gordon equation using
Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES), Com-
puters and Mathematics with Applications, 59 (2010) 2473-2477.
http://dx.doi.org/10.1016/j.camwa.2009.12.026

[37] T. A. Abassy, El-Tawil, H. El. Zoheiry, Toward a modified variational iteration method (MVIM),
J.Comput.Apll.Math, 207 (2007) 137-147.
http://dx.doi.org/10.1016/j.cam.2006.07.019

[38] T. A. Abassy, El-Tawil, H. El. Zoheiry, Modified variational iteration method for Boussinesq equation, Com-
put.Math.Appl, 54 (2007) 955-965.
http://dx.doi.org/10.1016/j.camwa.2006.12.040

[39] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC
Press,Boca Raton, (2003).
http://dx.doi.org/10.1201/9780203491164

[40] S. J. Liao, Notes on the homotopy analysis method: some definitions and theorems, Communication in Nonlinear
Science and Numerical Simulation, 14 (2009) 983-997.
http://dx.doi.org/10.1016/j.cnsns.2008.04.013

[41] Sh. S. Behzadi, The convergence of homotopy methods for nonlinear Klein-Gordon equation,
J.Appl.Math.Informatics, 28 (2010) 1227-1237.

[42] Sh. S. behzadi, M. A. Fariborzi Araghi, The use of iterative methods for solving Naveir-Stokes equation,
J.Appl.Math.Informatics, 29 (2011) 1-15.

International Scientific Publications and Consulting Services



Communications on Advanced Computational Science with Applications
http://www.ispacs.com/journals/cacsa/2014/cacsa-00021/ Page 18 of 18

[43] M. A. Fariborzi Araghi, Sh. S. Behzadi, Numerical solution of nonlinear Volterra-Fredholm integro-differential
equations using Homotopy analysis method, Journal of Applied Mathematics and Computing, 37 (2011) 1-12.
http://dx.doi.org/10.1007/s12190-010-0417-4

[44] J. Biazar, H. Ghazvini, Convergence of the homotopy perturbation method for partial differential equations,
Nonlinear Analysis: Real World Application, 10 (2009) 2633-2640.
http://dx.doi.org/10.1016/j.nonrwa.2008.07.002

[45] M. A. Fariborzi Araghi, S. S. Behzadi, Numerical solution for solving Burger’s-Fisher equation by using Iterative
Methods, Mathematical and Computational Applications, 16 (2011) 443-455.

[46] S. A.Sezer, A. Yildirim, S. T. Mohyud-Din, Hes homotopy perturbation method for solving the fractional KdV-
Burgers-Kuramoto equation, International Journal of Numerical Methods for Heat and Fluid Flow, 21 (2011)
448-458.
http://dx.doi.org/10.1108/09615531111123119

[47] A. A.Yildirim, Solution of BVPs for Fourth-Order Integro-Differential Equations by using Homotopy Perturba-
tion Method, Computers and Mathematics with Applications, 56 (2008) 3175-3180.
http://dx.doi.org/10.1016/j.camwa.2008.07.020

[48] A. A.Yildirim, The Homotopy Perturbation Method for Approximate Solution of the Modified KdV Equation,
Zeitschrift fr Naturforschung A,A Journal of Physical Sciences, 63 (2008) 621-626.

[49] S. Abbasbandy, Modified homotopy perturbation method for nonlinear equations and comparsion with Adomian
decomposition method, Appl.Math.Comput, 172 (2006) 431-438.
http://dx.doi.org/10.1016/j.amc.2005.02.015

[50] A. Golbabai, B. Keramati, Solution of non-linear Fredholm integral equations of the first kind using modified
homotopy perturbation method, Chaos Solitons and Fractals, 5 (2009) 2316-2321.
http://dx.doi.org/10.1016/j.chaos.2007.06.120

[51] M. Javidi, Modified homotopy perturbation method for solving system of linear Fredholm integral equations,
Mathematical and Computer Modelling, 50 (2009) 159-165.
http://dx.doi.org/10.1016/j.mcm.2009.02.003

International Scientific Publications and Consulting Services


