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Abstract—This paper discusses the benefits of applying soft-
ware defined networking (SDN) to circuit based transport net-
works. It first establishes the need for SDN in the context of
transport networks. This paper argues that the use of SDN
in the transport layers could be the enabler for both packet-
optical integration and improved transport network applications.
Then, this paper proposes extensions to OpenFlow 1.1 to achieve
control of switches in multi-technology transport layers. The
approach presented in this paper is simple, yet it distinguishes
itself from similar work by its friendliness with respect to the
current transport layer control plane based on generalized multi-
protocol label switching (GMPLS). This is important as it will
enable an easier and gradual injection of SDN into existing
transport networks. This paper is completed with a few use case
applications of SDN in transport networks.

I. INTRODUCTION

Software defined networking (SDN) or split architecture is
a concept which allows network operators to flexibly man-
age routers and switches using software running on external
servers. Split architecture refers to the decoupling of the
control from the forwarding plane in switches and routers [1],
[2]. Equipment vendors can leverage on split architecture
designs to offer forwarding plane equipment separately from
control plane equipment and software. Network operators can
leverage on SDN to efficiently offer innovative services with
improved quality of experience to end users. Control plane
functions will thus see the day as soon as the need surfaces,
as opposed to today’s tedious process for integrating new
control plane functionalities. If applied adequately, SDN/split
architecture may also result in CAPEX and OPEX savings for
the operators in the long run.

OpenFlow [3], [4] is a standard protocol that can be
used for SDN. An alternative to OpenFlow would be IETF’s
ForCES [1] or any proprietary protocol. However, OpenFlow
is currently the only standard, available and widely accepted
protocol for SDN. OpenFlow gives a standard API to the
forwarding plane which can be used by the remote control
plane software to run the network and innovate with new
control plane applications.

OpenFlow and SDN functionalities have been studied in
the recent years for packet networks, but despite some work
in the past years, the question remains open on how to effi-
ciently integrate SDN in circuit switched and optical transport
networks.
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This article sheds light to this question by first, in Section II,
recalling where the need for SDN comes from and discussing
if there is a need for SDN-like functionalities at the transport
network layers. This section also overviews current relevant
work on the application of SDN to transport networks us-
ing OpenFlow. Then, Section III presents generalized multi-
protocol label switching (GMPLS) as the existing transport
layer control plane. Section IV presents the extensions required
to OpenFlow 1.1 to support circuit based transport networks
with the same benefits offered by a standard GMPLS control
plane. Then, in Section V, use case applications of SDN in
transport networks are presented. Finally, Section VI concludes
this paper with a summary of the discussions and current state
of the work. This paper does not give an overview of the Open-
Flow protocol but refers the reader to the specification [4].

II. SOFTWARE DEFINED NETWORKING

A. Why the need for SDN?

In packet networks, the need for SDN comes mainly
from new networking requirements imposed by new services:
mobile broadband, video content caches deployed in access
networks, cloud computing services and data centers deployed
across the networks. There is indeed a shift in traffic trends
associated with the larger presence of data centers and content
delivery networks (CDNs), as well as inter-data center and
inter-CDN communication. These will cause network opera-
tors to experience changes in traffic trends, with unpredictable
behavior and a wider spread of source-destination end points.
This creates the need, not only for new traffic engineering
(TE) functions, but also for a framework that allows the on-
demand creation and deployment of new TE mechanisms. TE
has often been described as a process of putting the traffic
where the resources are. Given the new traffic trends and their
sophisticated traffic management requirements, the process is
now referred to as traffic steering. SDN is the agreed on
solution to such requirements.

B. Why the need for SDN in transport networks?

Inevitably, the stress on packet networks caused by the
widespread of cloud computing and data center/CDN applica-
tions is reflected on the underneath transport network. Circuit
based optical transport networks need to become more flexible
with respect to the bandwidth demands of the above packet
network layers. The proposed solution at the transport layers is



the progress towards packet-optical integration. Packet-optical
integration is a term given to the tight coupling between the
packet network and transport layer equipment. It is a cost
effective practice that will allow the packet based routers
and switches to operate jointly with the underneath optical
network elements. Such practice, especially at the edges of
the network, will enable a more reactive approach in dealing
with the recent dynamic traffic trends. The integration is about
packet switches controlling the optical network switches. The
current transport networks (mainly based on SONET/SDH)
tend to be too slow to react dynamically to router traffic
shifts as the two networks usually have separate control planes.
Dynamic control planes such as GMPLS have been developed
at the IETF to re-mediate to this problem, but the complexity
and distributed nature of a control plane like GMPLS slows
down its widespread deployment and does not allow its use for
SDN like functionalities (e.g. on-demand creation of timely TE
mechanisms in support of traffic steering applications). SDN
applied to the transport layers can be the solution to packet-
optical integration. However, any SDN solution at the transport
layers needs to be gradual, as existing infrastructures cannot
be torn down.

C. Recent SDN proposals for transport layers

Two main propositions exist in the literature on how to
apply SDN to circuit based transport networks. First, there
is the OpenFlow Circuit Switched Addendum v.03 [5] which
is an extension to OpenFlow 1.0. It consists of seven ad-
ditions to the OpenFlow 1.0 specification. The Addendum
proposes extensions to accommodate certain transport layer
technologies, in particular time division multiplexing (TDM).
A basic circuit switched cross-connection table is defined
inside the OpenFlow switch. This cross-connect table is to
be kept separate from the usual OpenFlow packet flow table.
The circuit switch flow table has four fields per input and
output ports. These include the port, the lambda, the virtual
port and the TDM signal and time-slots (starting time slot
in the SONET/SDH encoding). Unfortunately, these exten-
sions re-define from scratch the circuit resources used by the
TDM and other transport technologies. This adds unnecessary
complication to the OpenFlow protocol and compatibility
issues with existing control planes (e.g. GMPLS). Second,
the European project OFELIA addresses the same issue [6]–
[8]. Their approach uses the user-network interface (UNI) and
allows the controller to interact with the transport network
element’s control plane (GMPLS or other). They developed
OpenFlow agents that communicate with the network element
using Simple Network Management Protocol (SNMP). This is
a short term solution in enabling OpenFlow on transport layers
and is not a solution for SDN and packet-optical integration.

III. GMPLS AS THE CURRENT TRANSPORT LAYER
CONTROL PLANE

A control plane is generally defined as the infrastructure and
intelligence responsible for the establishment and maintenance
of connections in a network. It usually consists of:

1) the protocols and mechanisms for the diffusion of infor-
mation (e.g. GMPLS routing protocols);

2) the algorithms and policies for finding the optimal
paths between end points (e.g. path computation element
(PCE)); and

3) the signaling for the setup and tear down of the connec-
tions (e.g. GMPLS signaling protocols).

The control plane interacts with the management plane on
one side and with the data plane on the other. The management
plane communicates with the control plane with standard
protocols such as NetConf. But the control plane usually uses
proprietary protocols to interact with the data plane. With SDN
and OpenFlow, this will change as the interface between the
data plane and the control plane is standardized. In the case of
circuit based transport networks, the desired scenario consists
of a set of networking elements serving various packet and
circuit switching technologies with various granularity layers,
all controlled by a unique centralized control plane.

Generalized multiprotocol label switching:

GMPLS [9], [10] is the de-facto control plane for transport
networks. It has been developed at the IETF with close
supervision by the ITU-T. GMPLS discusses optical and multi-
layer networks by differentiating between multi-layer (ML)
and multi-region (MR) concepts [11], [12]. A region refers to
switching technologies. A layer refers to granularities inside
a switching region. The interfaces on a GMPLS router or
node can have one or many of the six defined switching
capabilities. The interface can be 1-Packet switch capable
(PSC), 2- Layer 2 switch capable (L2SC), 3-Time division
multiplex capable (TDM), 4-Lambda switch capable (LSC),
5-Fiber switch capable (FSC), and 6-Data channel switch
capable (DCSC) . These six switch types are what GMPLS
nomenclature calls regions. An OC3, a VC4 or a VC11 are
examples of GMPLS layers in TDM region.

The interface switching capability (ISC) is the interface’s
ability to forward data of a particular data plane technology,
uniquely identified by the six GMPLS switching regions. A
node can have a single or multiple switching type capabilities.
Moreover, MR switches are denoted as Simplex or Hybrid.
Hybrid switch nodes have at least one interface which supports
more than one switching type (region). RFC5339 [13] defines
the concept of adjustment or adaptation between regions.
Hybrid switches need to further define the interface adjustment
capability (IAC) of their links. All these technological details
will need to be considered in the OpenFlow based control
plane defined in this paper.

To refer to specific transport level technologies, GMPLS
standardizes label formats per technology that will be bor-
rowed in the extensions proposed in Section IV. These 32 bit
labels are defined as in the following. RFC3471 [10] presents
the basic label in GMPLS used to signal a connection request
(i.e. label switched path (LSP)). The actual resources are
allocated using per technology specific labels. RFC4606 [14]
defines SUKLM encodings to represent TDM resources in a
single GMPLS label. RFC6205 [15] encodes the wavelength



division multiplexing (WDM) labels as described by ITU-T
G.694.1 (Dense WDM) and G.694.2 (Coarse WDM) labels.
Optical transport network (OTN) technology is being stan-
dardized at the IETF with GMPLS labels specifying each
OTN layer and granularity. The IETF is currently working
on the standardization of GMPLS labels for the flexible grid
in WDM networks [16]. As seen below in Section IV, reusing
these existing standardized encodings will remove some of
the burden of developing a new control plane; however it is
important to recognize that many optical issues in GMPLS are
still a matter of investigation.

IV. PROPOSED TRANSPORT LAYER EXTENSIONS TO
OPENFLOW 1.1

This section presents the OpenFlow 1.1 protocol extensions
that allow a unified control of ML/MR switches in today’s
transport networks. The goal is to allow the OpenFlow con-
troller to effectively retrieve the information of the switch’s
ports, switching technologies, available bandwidth (time slot,
wavelength, etc.), and available MR adjustment capabilities
and capacities.

OpenFlow usually relies on a centralized control plane (e.g.
NOX [17]) which commands the switch’s behavior via a secure
layer 4 interface. Inside the switch, the interface between the
data plane and this channel is implementation specific and
out of scope of this paper. It is interesting to note that the
OpenFlow protocol already handles two different packet based
switching regions (PSC and L2SC), in a non-hierarchical or
flat way. This is not a challenge because both regions are
packet switched. For the case of optical and circuit based
ML/MR switches, a more future proof architecture is desirable
when extending OpenFlow since adding new tuples for each
transport layer switching technology is not adequate.

Similar to [5], this work proposes a circuit flow table. A
circuit flow table has a different use than the current packet
flow table; the former will only represent existing connections
while the latter serves in a per tuple lookup process. The
fundamental difference between circuit switched and packet
switched OpenFlow is therefore the fact that the circuit flow
table is not used to lookup circuits. The OpenFlow controller
is responsible for setting up the circuits’ cross-connections
in the switch using the OpenFlow protocol and treating mes-
sages received from the switch regarding the current state
of connections. The circuit cross-connections are established
generally in a proactive way, i.e., no packet is forwarded to
the controller for circuit flows. However, a packet sent to the
controller can trigger the establishment of a new circuit cross-
connect (e.g. pre-configured cross-connects, similar to virtual
TE-links in GMPLS). The extensions proposed in this section
consider hybrid switches with both circuit based and packet
based interfaces. This is not be confused with the OpenFlow-
hybrid terminology defined in [4].

The proposed OpenFlow extensions partly rely on existing
GMPLS features. While GMPLS covers the three control
plane roles presented in Section III, the proposed OpenFlow
extensions only rely on GMPLS’ way of provisioning new

Fig. 1. Possible OpenFlow multi-layer/multi-region switch architecture

Fig. 2. Circuit flow table entry

connections with the standardized label encodings (role 3).
There is no need for diffusion of information (role 1, e.g. TE-
link advertisements performed by GMPLS routing protocols),
as the information is usually centralized in the OpenFlow
controller. The problem of how to gather this information is
out of scope of this paper. Finally, TE and PCE applications
are also centralized in the OpenFlow controller (role 2).

The proposed node architecture of an OpenFlow ML/MR
switch is shown in Fig. 1. Packet flow tables (left side of
Fig. 1) are consulted on the fly for each packet to determine
its forwarding and required actions. Circuit flows (right side
of Fig. 1) represent existing physical circuits established by
the switch. The circuit IDs serve as virtual ports to other
flows. A circuit ID is a virtual port to which incoming packet
flows can be forwarded. Other circuit flows can also point to a
circuit ID and hence form circuit hierarchies (the equivalent to
GMPLS LSP nesting [12]). The circuit flows do not affect the
on the fly processing of packets. The proposed architecture is
an extension to the OpenFlow 1.1 specification, the left side
of Fig. 1 is therefore left unmodified.

Fig. 2 shows that each entry in the circuit flow table consists
of a set of circuit identifiers and descriptive fields. Again, the
circuit table is just an internal representation of existing cross-
connects inside the switch and a new entry is added each time
the controller signals the establishment of a new circuit. For
the case of bidirectional circuits, the circuit will occupy two
entries in the circuit flow table, as resources (In/Out Labels)
may not be symmetrical in both directions. The different
circuit flow table fields are described below.
• Circuit Identifier (CCT ID): a 32 bit unsigned integer

represents the circuit flow and also corresponds to a
virtual port to which other flows can be forwarded.

• In Port/Out Port: a 32 bit unsigned integer represents
the incoming/outgoing port number between which the



circuit cross-connects have been programmed.
• General Label: a 32 bit unsigned integer represents the

information required to fully characterize the cross con-
nect as part of an end-to-end circuit. This label thus
represents the encoding, switch type and payload ID,
using GMPLS standard encodings [10]. The OpenFlow
extension separates these three values as in the following:

– Encoding: an 8 bit unsigned integer that desig-
nates the encoding type of the connection. For
example, for a packet over SONET circuit flow,
the encoding is SONET. The GMPLS compliant
encodings are defined in an enumeration named
ofp_cct_encoding.

– Switch Type: an 8 bit unsigned integer that designates
the switching type (region) used on the link. This is
particularly important for hybrid switches which may
have interfaces supporting more than one region. The
GMPLS compliant switch type encodings are defined
in an enumeration named ofp_swtype.

– G-PID: a 16 bit unsigned integer that designates
the payload of the client using the circuit, as de-
fined in RFC3471 [10]. The GMPLS compliant
encodings are defined in an enumeration named
ofp_cct_gpid.

• In Label/Out Label: a 32 bit unsigned integer represents
the incoming/outgoing label following GMPLS standard-
ized labels per technology (TDM, WDM, etc.).

• Adaptation actions: the adaptation of the signal from the
input towards the output port. This field can also be used
in the future for specific technology related actions (e.g.
related to optical technologies).

The establishment of a new circuit flow (and hence its addition
to the circuit flow table) must carry enough information to
allow the switch to program its cross-connections. To be able
to signal the new circuit flow cross-connect, the controller first
needs to know the features of the switch, its ports, and the
available resources. The information stored in the circuit flow
table comes from the controller and is sufficient for the switch
to establish the circuit connection. To this end, and for fast
circuit restoration applications, the controller needs to keep an
updated view of the switch’s resources and state. It may also
require residing in close proximity to avoid communication
delays. The control plane design optimization is out of scope
of this paper.

V. SDN USE CASES FOR TRANSPORT NETWORKS

This section presents use cases specific to the application
of SDN and split architecture in a ML/MR transport network.
Some of these applications are possible even without the
SDN/split architecture, but are made easier and more efficient
with it. For each use case, the benefits of the SDN/split
architecture remain the same and are mainly shown around:

1) Centralized control (new TE mechanisms, optimized
routing and traffic/bandwidth steering possibilities).

2) Ability to quickly and independently scale and evolve
data plane and control plane functionalities (i.e., data

Fig. 3. Control plane views provided to packet-optical integrated applications

plane’s or control plane’s ML/MR functionality to
evolve or just scale disjointedly).

The first point can generally be achieved without split archi-
tecture at perhaps higher cost or less flexibility. However the
second point usually requires a split architecture design.

A. Smooth migration towards packet-optical integration

The proposed extensions to OpenFlow can be used to
smooth the migration process towards ML/MR, fully packet-
optical integrated nodes. Packet-optical integration is not
only a physical combination of the two domains but is also
about the routers and switches to control the optical switches
(i.e., unified control plane). There is a need for a gradual
migration towards a fully packet-optical integrated network.
Fully packet-optical integrated nodes will for example consist
of routers with reconfigurable optical add-drop multiplexers
(ROADMs) in the same box. Today’s transport networks
separate these two functionalities in separate boxes. Often,
the control planes completely separate the packet layers from
the transport optical layer, and at best offer an overlay model
(e.g. GMPLS overlay model). The integration of packet-optical
domains is desired for rapid and flexible traffic steering. The
migration (node replacement) may take some time and require
detailed planning. OpenFlow based split architecture can ease
this process by defining migration applications that leverage
on the data plane abstraction given by OpenFlow. The network
applications will not have to worry about the underlying
hardware changes as OpenFlow will provide a common control
plane view of the various network elements. Fig. 3 presents
how a controller application can have the desired view for
both separated and physically integrated packet-optical func-
tionalities. In both cases, and during the transition, the benefits
of packet-optical integration are experienced. This method by
itself can be considered as a partial packet-optical integration.
Note that the mechanism to migrate to a fully SDN based
transport network is incorporated in the SDN philosophy itself.
Moreover, this method can be used for the integration of
any other type of technology into an existing network; the
integration will be programmed through SDN.

B. Bandwidth steering in support of traffic steering

The previous use case presented a smooth migration to-
wards packet-optical integrated technology. Packet-optical in-
tegration is required because traffic is becoming increasingly
distributed in addition to the bandwidth requirements varying



Fig. 4. Example optimized restoration as a result of flexible control plane

both in size and in direction. All these will require various-
sized traffic trunks to be quickly and dynamically steered. A
SDN/split architecture based ML/MR control plane is well
suited for the development of such steering functionalities,
with fast and cost effective (software based) operator cus-
tomization possibilities (e.g. efficiently putting the transport
layer at the service of the packet layers). A ML/MR OpenFlow,
or centralized ML/MR control, can orchestrate the traffic
steering with the underneath transport layer bandwidth steering
functions.

C. More efficient multi-layer/multi-region recovery and
restoration

Typically in a ML/MR network a single failure in a server
layer may induce a cascade of failures in client layers.
With a proper splitting of centralized/end-to-end versus dis-
tributed/local failure recovery techniques, OpenFlow can offer
the best of both worlds when dealing with restoration sce-
narios. Like with G/MPLS, fast restoration paths can be pre-
configured in advance. Fig. 4 shows an example. Upon failure,
point (1) in Fig. 4, the protected services can be re-routed in a
timely fashion, (2)-(3). Failure detection mechanisms are yet
to be incorporated into the OpenFlow architecture. At the same
time (2), the centralized controller can be notified about the
failure. Then, the controllers PCE application can re-optimize
the rest of the traffic (4), and update the forwarding behavior
of the network elements (5). This last point usually puts a
signaling burden on dynamic control planes (e.g. GMPLS).
The split architecture and its flexible SDN based controller
alleviate this problem.

VI. CONCLUSION

This paper showed the relevance of applying SDN concepts
to transport layer networks. Transport networks are ML/MR
and thus composed of multiple technologies and granularity
layers. The proposed solution builds on top of the OpenFlow
1.1 specification, and with minor additions, allows a ML/MR
switch to be controlled from a distant controller. The exten-
sions are complete as they are based on the GMPLS standards
which, under the supervision of IETF and ITU-T, fully cover
existing technologies and can easily extend to cover upcoming

ones. This allows the OpenFlow extensions to not only be
inherently compatible with GMPLS control planes, but to also
inherit the extensibility feature of GMPLS (i.e., simply define
new label encodings each time a new technology surfaces).
This paper also presented a few use case applications of SDN
for ML/MR transport networks, all aligned with the current
trend for packet-optical integration. Current work consists in
the alignment of the proposed extensions with new versions of
OpenFlow currently in development at the Open Networking
Foundation (ONF).
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