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abstract

Three axioms provide a formal definition of relative importance in a statis-
tical or econometric model by identifying the likelihood that any ordering
of independent variables is correctly ordered with respect to their rel-
ative importance. The expected contribution to model performance of
independent variables with respect to this distribution is the proportional
marginal decomposition of model performance with respect to the perfor-
mance measure. Decomposition components are shown to be equal to the
proportional value (Ortmann (2000), Feldman (1999, 2002)) of an appro-
priately constructed cooperative game. Also addressed are admissibility
criteria for measures of relative importance, other measures of relative im-
portance, examples, procedures for constructing confidence intervals, and
extensions and limitations.
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1 Introduction

This paper provides a precise and flexible definition of the relative importance of
explanatory variables in statistical and econometric models. It also proposes four
fundamental criteria that measures of relative importance should meet. The definition
of relative importance is based on three axioms that identify a probability distribution
over the possible orderings of variables in a model. The resulting method, proportional
marginal decomposition (PMD), may be used with a wide variety of models and
performance measures, including least squares and maximum likelihood.

Firth (1998) traces the concept of relative importance as far back as Hooker and
Yule (1908). A need for better measures of statistical relative importance has recently
been expressed in many fields. Healy (1990) and Schemper (1993) in medicine, Frees
(1998) addressing insurance risk analysis, Soofi, Retzer and Yasai-Ardekani (2000) in
management science and Kruskal and Majors (1989) in social science are examples.
Many proposed measures have been criticized.2 While general measures of relative
importance have not found wide-spread acceptance, specialized methods have found
increasing acceptance, for example, in time series analysis since Sims (1980).3

In practice, statistical significance measures such as t-statistics are widely used
as de facto measures of relative importance. Elementary considerations dictate that
statistical significance measures are not reliable measures of relative importance. For
example, the joint marginal contribution to model performance of two explanatory
variables increases with their mutual correlation. However, their marginal contri-
butions to explained variance and, thus, their statistical significance levels decline.
Relative importance is a measure of full contribution.

The most important direct purpose of a measure of statistical relative importance
is to reduce the time, effort and skill required to identify and assess the effect of the
joint correlations present among explanatory variables. A useful summary measure
of relative importance is of obvious utility.

The principal roadblock to development of acceptable general measures of relative
importance is that pure statistical theory has been an insufficient basis. But this
should not foreclose the possibility that useful, if imperfect, methods might be devel-
oped through other means. Any map-maker’s map necessarily distorts the curvature
of the earth’s surface, yet maps are ubiquitous. The admissibility criteria advanced
in this paper provide a set of minimal standards for acceptable measures of relative
importance.

The most frequently proposed measure of relative importance has been variance
decomposition by averaging marginal contributions of independent variables over all

2King (1987) provides an iconoclastic criticism on the inappropriate use of standard regression
coefficients, bivariate correlation and partial correlation. Both Heckman (1995) and Goldberger and
Manski (1995) severely criticize the ad hoc use of relative importance measures. Ehrenberg’s (1990)
letter “The unimportance of relative importance,” is disdainful of the concept of relative importance
in statistics.

3See, for example, Campbell (1992).



orderings of variables. The averaging method appears to have been first proposed by
Lindeman, Merenda and Gold (1980). Kruskal (1987) and Chevan and Sutherland
(1991) propose essentially the same method. Soofi, Retzer and Yasai-Ardekani (2000)
show that averaging is a maximum entropy estimator. Averaging is shown here to
violate the proper exclusion criterion for measures of relative importance. A variable
with a true beta of zero can have a positive relative importance.

The most widely used measure of relative importance today appears to be the well
known variance decomposition CV Di = βi

∑
βj σij. I refer to this method as covari-

ance decomposition. Pratt (1987) provides an axiomatic characterization. Covariance
decomposition is widely used commercially, for example, in current portfolio manage-
ment and analysis software.4 It violates two proposed relative importance criteria.
Variables with non-zero true betas can be assigned zero relative importance. This
violates the proper inclusion criterion. Covariance components can also be negative,
violating the nonnegativity criterion.

The measures of relative importance considered hare have a relationship to co-
operative game and bargaining theory. This relationship appears to have first been
noted by Stufken (1992).5 Define a statistical cooperative game by making an equiva-
lence between the independent variables in a model and the players in a cooperative
game. The coalitions in the game then represent all possible subsets of variables. If
the worth of a coalition is defined as the marginal contribution to explained variance
of its variables, then the Shapley (1953) value of the game is equal to the result of
the averaging method. If, instead, the worth of a coalition is the model imputed ag-
gregate variance for these variables (i.e., β′SΣSβS, where the subscript represents the
restriction of the estimated full model parameters to variables in S), then the Shapley
value of the game is the model’s covariance decomposition. Further, if the worth of
a coalition is again defined by the marginal contribution to explained variance, then
the proportional value (Ortmann (2000) and Feldman (1999, 2002)) of this game is
equal to the model’s proportional marginal variance decomposition.

In addition to being an interpretive aid, measures of relative importance may be
of practical use in some aspects of model construction. For example, in data-based
model decisions, simple rules incorporating relative importance measures are likely
to result in more robust models.

Section 2 of this paper presents the proposed admissibility criteria for measures
of relative importance. Section 3 presents the notational framework, axioms, and
fundamental results defining proportional marginal decomposition. Section 4 derives
properties of the measures of relative importance considered in this paper and, par-
ticularly, their admissibility according to the criteria of Section 2. Section 5 concerns
application and presents several examples, including an extend example based on
the analysis of a hedge fund. The empirical sample distribution properties of rel-
ative importance measures are also examined. Section 6 provides discussion about
applications and extensions. Section 7 is the conclusion.

4Providers include Barra, Factset and Northfield.
5See Myerson (1991) for an introduction to cooperative game theory.
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2 Admissibility Criteria

The standards for admissibility criteria must necessarily be considerably greater than
for axioms. Axioms must withstand a test of reasonableness. It must be considered
unreasonable that a measure of relative importance violates an admissibility criterion.
These criteria withstand this test.

Let Θ be a statistical model with model performance measure µ, estimated pa-
rameter vector β and true but unobserved parameter vector β∗. Consider a measure
of relative importance φ(Θ, µ, β).

1. Nonnegativity. All decomposition components must be greater or equal to
zero: φi(Θ, µ, β) ≥ 0 for variable i in the model.

2. Proper exclusion. Spurious variables included in a model should receive no
decomposition share. If β∗i = 0 then φi(Θ, µ, β∗) = 0.

3. Proper inclusion. Variables properly part of the model should receive a de-
composition share. If β∗i 6= 0 then φi(Θ, µ, β∗) 6= 0.

4. Full contribution. Relative importance must measure total contribution to
model performance. Let S be a set of variables such that for a variable i in S
and any variable j not in S, σij = 0. Then

∑
i∈S φi(Θ, µ, β∗) = w(S), where

w(S) is the joint marginal contribution to model performance of the variables
in S. The sum of relative importance components of the variables in S must
equal their joint marginal contribution to model performance.

Nonnegativity is perhaps the most basic criterion. Relative importance may be
understood as a measure of the relative information contributed to the model by
a variable. Information is inherently nonnegative.6 Similarly, measures of model
performance are inherently nonnegative as well.

Proper exclusion is necessary for consistency with statistical theory. What would
it mean that a variable with a true beta of zero had positive relative importance?
(Note, the definition concerns the true and not the sampled-based value of the rel-
ative importance measure.) Proper inclusion is also necessary for consistency with
statistical theory. What would it mean that a variable with nonzero true beta had
zero relative importance?

Full contribution is the essence of relative importance. It is the only criterion un-
avoidably violated by statistical significance measures. Full contribution also requires
efficiency of a relative importance estimator in the game theoretic sense. The ex-
planatory power of the complete model based on all variables must be divided among

6See Theil (1987) and Theil and Chung (1988) regarding an information theoretic interpretation
of model performance measures. Note, also, Theil’s (1971) comments regarding the unsuitability of
covariance decomposition as a measure of relative importance due to violation of this criterion (p.
167, Section 4.2).
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these. The conditions for application of full contribution are trivially satisfied in this
case since there are no variables that are not in the set of all variables.

These criteria appear unobjectionable. It is difficult, also, to identify other qual-
ities of a measure of relative importance that should also be considered essential.
For example, some might wish to make linearity a criterion. Linearity may be un-
objectionable as an axiom. However, there appears to be no compelling statistical
or information theoretic basis to consider it a required property of an admissible
estimator.

3 Proportional Marginal Decomposition

The basic framework is that of a probability distribution over the set of all pos-
sible permutations – or orders – of variables in a statistical model. The intuitive
understanding of the probability associated with any ordering is that it indicates the
likelihood that the ordering is a correct ordering of the variables in terms of their
relative importance. The exact meaning of relative importance is determined by the
axioms that identify the probability distribution.

3.1 Analytic Framework

Consider a model Θ with n independent variables N = {1, 2, . . . , n} and a single
dependent variable y. Sets of independent variables are represented by S ⊆ N . Let
µ be a measure of model performance such as log likelihood or explained variance
(or R2) of the model. Model performance conditional on restricting the independent
variables to the set S will be indicated by µΘ(S). Acceptable measures of model
performance must be weakly monotonic, that is, if S ⊂ T , then µΘ(S) ≤ µΘ(T ).
Performance measures associated with model likelihood or statistical tests are natural
model performance measures.

Marginal contributions to model performance are the basis of many statistical
tests, and, particularly the likelihood ratio test and the F-test. Define the function
w on all subsets of N as follows:

w(S) = µΘ(N)− µΘ(N \ S). (1)

Note that w(S) ≥ 0 for all S by construction and that w is a cooperative game. Then
w(S) is called the worth of the set S.

Let R(N) be the set of all n! orderings of the variables of N and let r =
(r1, r2, . . . , rn) ∈ R(N) be an ordering. Define Sr

k to be the set of the first k variables
in the order r. If S has k variables, S is included in r if and only if S = Sr

k. That is,
a set of k variables is included in an order r if and only if the first k variables in r
are all in the set S. The notation S ∈ r indicates S is included in r. Let r(i) be the
position of variable i in order r, so i = rr(i).
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Relative importance may now be formally defined as a binary relation. If variable
j is more important than variable i, write i ≺ j. An ordering r ∈ R(N) will be
considered to be in order of increasing relative importance if r1 ≺ r2 ≺ · · · rn−1 ≺ rn.

Take an r ∈ R(N). Consider that r defines an order of entry of variables into the
model Θ. Perhaps awkwardly, the order is the reverse of the variable ordering in r.
First rn enters, then rn−1, and r1 is the last to enter. This convention has the result
that w(Sr

i ) is the marginal contribution of the last i variables to enter Θ in order
r. We can also define the joint marginal contribution vector of included sets to be
MC(r) = (w(Sr

i ))
n
i=1, the vector of marginal contributions of the sets included in r.

The individual positional marginal contribution to performance of the variable in
position i relative to order r is represented by Mi(r), where

Mi(r) = w(Sr
i )− w(Sr

i−1), (2)

Sr
0 = w(Ø) = 0. The positional marginal contribution of a variable i is then repre-

sented by Mr(i)(r). Marginal contributions are also defined relative to sets, so that
the marginal contribution of variable i to w(S) is Mi(S) = w(S)− w(S \ i).

Let p ∈ ∆n! be the relative importance probability distribution to be defined on
R(N). Rather than work with p directly, it will be easier to work with the likelihood
function L(r) implicitly defined as follows:

p(r∗) =
L(r∗)∑

r∈R(N)

L(r)
, (3)

where L(r) ≥ 0.

The expected marginal contribution to model performance of a variable i with
respect to p is then

φi(w) = Ep [Mi(r)] =
∑

r∈R(N)

p(r)Mr(i)(r). (4)

3.2 Axioms

Assume order r has the property that M1(r) < M2(r) < · · · < Mn(r), that is the
positional marginal contributions to model performance of individual variables are
strictly increasing. Then it might be reasonable to conclude that it is relatively
likely that r is correctly ordered according to increasing relative importance and
r1 ≺ r2 ≺ · · · ≺ rn. The question, however, is how much more likely is it that r is
correctly ordered than another ordering r∗? The first task is to define a reasonable
set of axioms that allow us to answer this question.

The most obvious necessary property of any decomposition procedure should be
that when all n variables are orthogonal, the shares φi for each variable i must be its
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individual marginal contribution Mi(i) = w(i). But orthogonality implies Mr(i)(r) =
Mi(i) = w(i) for all r. Thus every probability distributions on R(N) must give the
correct expectation according to equation (4) when variables are orthogonal. Call
this the random order orthogonal decomposition property. No axiom is needed.

3.2.1 Anonymity

The first axiom is essentially technical in nature. It requires that the likelihood L(r)
should depend only on sets included in r, and, further should depend only on w(S)
for S ∈ r and not the identity of S or the variables included in S. These properties
are reflected in the axiom of anonymity.

Axiom 3.1 Anonymity: If MC(r∗) = MC(r) then L(r∗) = L(r).

Clearly, w(S) for S 6∈ r influence p(r) through equation (3). It is thus redundant
that these effects should also enter directly through L(r). The requirement that only
w(S) and not the identity of S should influence L(r) is similar to the better known
symmetry axiom that is used in the identification of the Shapley value. The effect is
to eliminate likelihood functions that vary with the identity of variables in particular
positions in an ordering.

3.2.2 Proper Exclusion

The second axiom is a version of the proper exclusion criterion of Section 2. The limit
condition formulation is a technical device necessary to avoid division by zero. The
meaning and effect is the same as the simpler proper exclusion condition. A variable
with a zero beta should receive zero decomposition share.

Axiom 3.2 Limit Proper Exclusion: Let w be defined by a model Θ and perfor-
mance measure µ where β∗i = 0. Consider a sequence of games wk, k = 1, 2, . . . ,∞,
where wk is based on βk

j = β∗j for j 6= i, β1
i > 0, and βk

i → 0. Then

lim
k→∞

ϕi(wk) = 0.

3.2.3 Equal Proportional Effect

Finally, consider how L(r) should change with respect to changes in MC(r), the
marginal contributions of sets included in r. I propose that a change in marginal
contribution of any set of variables S included in r should result in a change in
likelihood of equal proportional magnitude. Absolute values are considered because
the sign the change is determined by limit proper exclusion.

Axiom 3.3 Equal Proportional Effect:

∣∣∣∣
∂ ln L(r)
∂ ln w(S)

∣∣∣∣ = 1.
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Equal proportional effect is a simple and natural approach to consistently take
into account the marginal contributions to model performance of all included sets.
The obvious alternative choice would to assume a linear relationship. The result
would be to bias the measure toward the contributions of large sets with relatively
larger marginal contributions. Attempts could be made to correct for the number
of variables in a set. For example, the change in likelihood could be linear in the
per-variable marginal contribution of a set. Such an approach does not fit well with
the typically nonlinear decline in joint marginal contribution to explained variance as
the number of variables declines. Note that the assumption of a non-zero linear effect
could not identify the averaging approach as it requires that MC(r) have no effect
on L(r).

The most questionable aspect of the axiom of equal proportional effect is not
the choice of proportionality, but rather the requirement of equality of proportional
effects. Why should the magnitude of the proportional change in likelihood not be
twice the magnitude of the proportional change in marginal contribution? Or why
should it be fixed at all and not estimated from Θ?

If the relationship is to be fixed, then a relationship of equality is natural if only
because there is no apparent rationale for any other choice. Estimating a coefficient
α = ∂ ln L(r)/∂ ln w(S) from the data has an appeal to it, but Section 6.2 argues that
allowing α to depend on the data is inappropriate because then relative importance
would then effectively be a function of statistical significance.

3.3 The Main Result

Our first step in assembling the implications of these axioms is to observe that limit
proper exclusion requires the ∂ ln L(r)/∂ ln w(S) < 0. This can be seen by considering
the marginal contribution of a variable i. Assume that i is first in order r: Sr

1 = i.
Assume the marginal contribution w(Sr

1) becomes smaller. Then p(r) must grow
relative to the probability of orders r∗ where i is not first if the expected contribution
of i is to decline.

Next, since dX/dY = dX/d ln Y (1/Y ), limit proper exclusion and equal propor-
tional effect together requires that −∂ ln L(r)/∂w(S) = 1/w(S). This then implies

− ln L(r) = cr +
∑
S∈ r

∫ w(S)

x=0

1

x
dx = cr +

∑
S∈ r

ln w(S), (5)

where cr is a possible multiplicative factor consistent with limit proper exclusion and
equal proportional effect axioms. Anonymity requires that cr is constant for all r ∈ R.
Because cr is a constant and L(r) appears in both the numerator and denominator
of equation (3), cr may be assumed equal to zero.

Multiplying both sides of (5) by (−1) and taking antilogs leads to the following.

Lemma 3.1 Given a model Θ, a performance measure µ and a game w generated by
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µ, the likelihood determined by the axioms of anonymity, limit proper exclusion and
equal proportional effect is

L(r) =

( ∏
S∈ r

w(S)

)−1

.

Define the normalizing factor P (N) as follows:

P (N) =


 ∑

r∈R(N)

L(r)



−1

(6)

The probability in the expectation (4) is then defined as p(r) = P (N)L(r) and
substitution into (4) yields the following representation of the expectation defining
proportional marginal decomposition:

ϕi(w) = P (N)
∑

r∈R(N)

L(r)Mr(i)(r). (7)

The normalizing factor (6) for sets formed by removing one variable from N is easily
proved to have a direct relationship to likelihoods and marginal contributions defined
on R(N).

Lemma 3.2 For any i ∈ N ,

P (N \ i) =


 ∑

r∈R(N)

L(r) Mr(i)(r)



−1

,

Proof: See Appendix B.

This result is of significance because the definition of P (S) for any S ⊂ N is the
same as one representation of the ratio potential P (S, w) of a cooperative game.7

Substitution of the result of Lemma 3.2 into equation (7) yields the relationship
ϕi(w) = P (N)/P (N \ i). This is the definition of the proportional value (e.g., Ort-
mann (2000) Definition 2.2, Feldman (2002) Equation (2.3)), and proves the following
theorem.

7Feldman (2002) Lemma 2.1 derives this representation. See Appendix A for a description of
the ratio potential. The concept of the potential of a cooperative game is introduced in Hart and
Mas-Colell (1989), who define a linear potential that generates the Shapley value. Feldman (1999,
2002) and Ortmann (2000) develop the ratio potential that generates the proportional value.
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Theorem 3.1 The decomposition of the performance of a model Θ based on inde-
pendent variables N , performance measure µ, cooperative game w defined by N and
µ, and relative importance axioms anonymity, limit proper exclusion and equal pro-
portional effect, ϕ(w), is the proportional value of w.

The representation of the proportional value of equation (7) is, in fact, equivalent
to the random order representation provided by Lemma 2.9 of Feldman (2002). The
proof of Lemma 3.2 here provides a direct and more transparent route to this result.

3.4 Computing the Proportional Value When a w(S) = 0

The case of computing the proportional value and a proportional marginal decompo-
sition when the marginal contribution of at least one set S is equal to zero must be
considered. Since L(r) = ∞ for any r that includes S with w(S) = 0, the probability
distribution is not defined. This situation may be addressed by considering the game
wε defined with respect to an ε > 0 by the relation wε(S) = w(S) + |S| ε. To w(S) is
added ε times the number of variables in the set. Then ϕ(w) is defined by the relation

ϕ(w) = lim
ε→0

ϕ(wε). (8)

This result is based on Feldman (2002) Theorem 6.1, which provides sufficient
conditions for this limit to be well defined. Basically, the limit is well defined except
in the circumstance that there is an S with |S| > 1, with w(S) > 0, and w(R) = 0 for
all proper subsets of S. In empirical work it is virtually impossible to find arrive at
this condition except in cases of perfect multicolinearity among a set of independent
variables.

3.5 Estimation Consistency

For any model Θ and performance measure µ the sample value of ϕ is defined by
the expectation (4). In practice we must be concerned with the relationship between
sample values of ϕ and its true value. Given the nonlinearity of ϕ it is clear that
the expected value of ϕ is not, in general, its true value. This is obvious because
the expectation of the product of two random variables is not the product of their
expectation. It is however, easy to show that sample values of ϕ are consistent
estimators of the true value.

Lemma 3.3 Consider a model Θ with performance measure µ where the true param-
eter values β∗ are consistently estimated by β. Then plim ϕ(w) = ϕ∗(w).

Proof: Since plim β = β∗, Slutsky’s theorem on the consistency of functions of consistent
random variables leads to plim MCi(r) = MC∗

i (r) for least squares models and, also, given
mild regularity conditions for other models as well. Similarly, the product of consistent
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random variables must also converge in probability and the inverse of a consistent random
variable must also converge in probability. Thus plim L(r) = L∗(r). A final application of
Slutsky’s theorem then gives the result. ¤

3.6 Bootstrapped Confidence Intervals

Given the nonlinearity of the proportional value, analytic characterization of the sam-
ple distribution of a proportional marginal decomposition will be difficult. Bootstrap
approaches to determining confidence intervals are straightforward. Here is one of the
simplest. Let y = Θ(X)+ε with ε ∼ D(0, Σ, . . .), where y is (n×1) and D is a density
function. D could be gaussian, in which case the error covariance matrix is sufficient
for identification. A set of bootstrapped vectors y′i, i = 1, 2, . . . , m is then created
by setting y′i = y + εi with εi (n × 1) and distributed εi ∼ D(0, Σ, . . .). Confidence
intervals are then based on the distribution of decomposition estimates based on the
models {y′i = Θ(X)}m

i=1. This approach can, of course, be applied to other measures
of relative importance.

4 General Properties

This sections develops some general properties of the three measures of relative im-
portance studied in this paper. Of particular importance are the admissibility of these
estimators according to the criteria developed in Section 2.

4.1 Proportional Marginal Decomposition

Proportional marginal decomposition takes a very intuitive form in two variable mod-
els (with no intercept). Joint explanatory power is allocated to the explanatory vari-
ables in proportion to their individual marginal contributions.

ϕi(w) =
w(i)

w(i) + w(j)
w(ij) (9)

Silber, et al. (1995) use this simple form of joint allocation of model explanatory
power in a study comparing the relative importance of patient and patient character-
istics in predicting medical treatment outcomes. In this study individual explanatory
factors are aggregated into two groups.

In models with more than two variables the equal proportional change relationship
is observed. The proportional change in decomposition share to variable i when
variable j is removed from S is equal to the proportional change to j’s share when i
is removed. Let ϕi(S, w) be the decomposition share of variable i when the model is
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based on the game w with marginal contributions restricted to the variables in the
set S.

ϕi(S, w)

ϕi(S \ j, w)
=

ϕj(S, w)

ϕj(S \ i, w)
(10)

Feldman (1999, 2002) shows the proportional value has this property. Ortmann
(2000), Theorem 2.6 characterizes the proportional value with this property.

4.2 The Averaging Method

The averaging method has the representation

AMCVi(w) =
1

n!

∑

r∈R(N)

Mr(i)(r). (11)

Lemma 4.1 AMCV (w) = Sh(w), where Sh(w) is the Shapley value of w.

Proof: The Shapley value of a player in a game is well known to be the player’s average
marginal contribution over all orders.8. ¤

Soofi, Retzer and Yasai-Ardekani (2000) show that the averaging method is a
maximum entropy estimator. This is also evident from Lemma 6.3, below. The
maximum entropy approach is here equivalent to a Bayesian null prior over orderings
implying that all orderings should be equally likely. This paper has taken a contrary
approach by assuming that the probability of an ordering should be conditioned on
the marginal explanatory power of the sets included in the ordering.

4.3 Covariance Decomposition

Covariance decomposition is related to the derivative of model variance with respect
to model betas. Model variance σ2 = β′Σβ, so dσ2/dβ = 2Σβ. Thus

CV Di = βi
1

2

dσ2

dβi

= βi

n∑
j=1

σijβj. (12)

The relationship between covariance decomposition and traditional marginal anal-
ysis makes it useful in the marginal analysis, for example, of portfolio positions (See,
e.g. Litterman (1996).)

Lemma 4.2 Define w(S) = β′SΣβ. Then CV D(w) = Sh(w).

8See, for example, Myerson (1991), pp. 438
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Proof: Note first that Mi(S) = βi(σ2
i + 2

∑
j∈S,j 6=i βjσij). Variable i is in every S by

definition. Each j is clearly in half of the S that contain i (and is ‘behind’ of i in half of
the orderings). Thus, the average marginal contribution is βi(

∑
j∈N βjσij). ¤

There is another relationship between covariance decomposition and cooperative
game theory. Aumann-Shapley prices (Billera and Heath (1986)) are a type of average
marginal price based on the value of a nonatomic game. In the context of model
performance we can think of the price of variable i as the marginal increase model
risk to a small increase in the true value βi. If model explained variance is the measure
of model performance than Aumann-Shapely prices are defined by the relation

pi =

∫ 1

0

Di(rβ) dr,

where Di = dσ2/dβi and the dependence on rβ is immaterial for a linear derivative.
The Aumann-Shapely price vector is then 1/2MC. The total risk ‘price’ of each
factor is then its magnitude times its price. This is its covariance decomposition
component, as shown by equation (12). This relationship may be interpreted to
mean that covariance decomposition provides a consistent decomposition of model
performance based on linear risk prices.

4.4 Admissibility

The admissibility of relative importance measures is examined criterion by criterion.
Only PMD satisfies all admissibility criteria.

4.4.1 Nonnegativity

Lemma 4.3 The proportional marginal and averaging methods, and any method that
can be represented in random order form as in equation (4), satisfy nonnegativity for
any monotonic measure of model performance.

Proof: Any expectation over a set with nonnegative values must be nonnegative. ¤

Lemma 4.4 Covariance decomposition violates the nonnegativity criterion.

Proof: Consider equation (12) and a two variable example. Then CV Di(w) < 0 if β2σ12 <
−β1σ

2
1. This condition is clearly possible. ¤

4.4.2 Proper Exclusion

The proportional marginal method satisfies proper exclusion by design. Covariance
decomposition also clearly satisfies proper exclusion, since by equation (12), β∗i = 0
requires that CV Di = 0 as well.
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Lemma 4.5 The averaging method violates proper exclusion.

Proof: Consider equation (11) and a model where M1(r) = 0 for every r such that r1 = i
but that there is a least one S such that Mi(S) > 0. This implies that there is at least one
r∗ such that j = r∗(i) and Mj(r∗) > 0 and AMCVi(w) > 0. ¤

4.4.3 Proper Inclusion

Lemma 4.6 Any relative importance measure with a representation as a random
order expectation as in equation (4) satisfies proper inclusion.

Proof: Let r be an ordering such that r1 = i. Since p(r|β∗) = 0 (in the limit as defined by
equation (8)) if and only if β∗i = 0, EpMr(i) > 0 and Ep[Mr(i)(r)] > 0. ¤

Lemma 4.7 Covariance decomposition does not satisfy proper inclusion.

Proof: Consider equation (12). Whenever dσ2/dβi = 0 then CV Di must be equal to zero
as well. So it can be that β∗i 6= 0 and CV Di = 0. For example, in a two variable model
dσ2/dβ1 = 0 if β2σ12 = −β1σ

2
1 ¤

An explanatory variable will receive a zero covariance share whenever it functions
as a perfect hedge against the aggregate variance components of other variables that
it is correlated with. This result is consistent with marginal analysis, however it is
not consistent with what should be expected of a measure of relative importance.

4.4.4 Full Contribution

Proportional marginal, averaging, and covariance decompositions all satisfy the full
contribution criterion. The proof that the proportional marginal and averaging meth-
ods satisfy full contribution follows from the first proof following, a general proof that
applies to any decomposition that can be represented in random order form as in
equation (4). Covariance decomposition is addressed in the second proof.

Lemma 4.8 Let Θ be a model with performance measure µ and explanatory variables
N . Construct the statistical cooperative game w based on Θ, N , and µ. Let R ⊂ N
be a set of variables such that for all i ∈ R and j 6∈ R, σij = 0. Let p be any
probability distribution over R(N) and let φ be the expectation with respect to p defined
by equation (4). Then

∑
i∈R

φi(w) = w(R).

13



Proof: The marginal contribution to model performance of any set S must be equal to the
sum of the marginal contribution of the sets S ∩ R and S ∩ (N \ R). Thus, the marginal
contribution of any variable i ∈ S to model performance will be Mi(Sr

r(i) ∩ S). Then for
any i ∈ S

φi(w) =
∑

r∈R(N)

p(r)Mi(Sr
r(i) ∩R)

and the sum of φi(w) over all i ∈ R is necessarily w(R). ¤

Lemma 4.9 Let Θ be a model with performance measure µ and explanatory variables
N . Construct the statistical cooperative game w based on Θ, N , and µ. Let S ⊂ N
be a set of variables such that for all i ∈ S and j 6∈ S, σij = 0. Then

∑
i∈S

CV Di(w) = w(S).

Proof: The sum on the left-hand side of the equation in the statement of the lemma ex-
pands to

∑
i∈S

∑
j∈N βiσijβj . But since σij = 0 for j 6∈ S, the formula simplifies to∑

i∈S

∑
j∈S βiσijβj = β′SΣSβs = w(S). ¤

5 Applications and Examples

This section considers the practical application of proportional marginal decomposi-
tion. Before examining several examples, the signing of nonnegative relative impor-
tance measures by the sign of the associated factor beta is discussed. Only elementary
examples are presented in order to focus on basic properties.

All examples are based on OLS regression and explained variance as the measure
of model performance. The first three examples are based on simulated data. Ex-
ample 1 addresses the most basic point that statistical significance is not a reliable
indicator of relative importance. Example 2 illustrates the principal limitation of
the averaging approach, which is that variables with no statistical significance can
have large variance shares. Example 3 illustrates the principal problem of covariance
decomposition: statistically significant variables can have zero or negative variance
components. In each example PMVD provides the qualitatively correct relationship
while one of the other methods fail to do so. Example 4 is based on real data and
profiles the performance of a hedge fund against conventional asset benchmarks. It
is both an example of the potential practical benefit of PMD and an examination of
empirical properties of relative importance measures.
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5.1 The Signing Convention

If a relative importance measure satisfies the nonnegativity criterion there is the
option to sign importance components by the sign of the factor beta. For simple linear
models the signing convention provides useful interpretive information. For some
purposes signed PMD components themselves might provide sufficient information.
Other nonnegative relative importance measures may be signed as well. In these
examples AMCV components are also signed.

5.2 Example 1: Correlated variables

In the first example x0 is the dependent variable, x1 and x2 are correlated independent
variables, and x3 is an uncorrelated independent variable. The correlation between
x1 and x2 is set to 75%. Table 1 presents the results. In this example, the theoretical
joint contribution explained variance of x1 and x2 is 77.78% of explained R2. All
measures of relative importance imply that x1 and x2 jointly account for about 80%
of explained R2. Casual interpretation of the t-statistics or marginal contributions
to explained variance might be interpreted to mean that x3 is the most important
variable.

5.3 Example 2: Spurious independent variable

Table 2 shows the results of an analysis where x0 = 1.5x1 +ε1, and x2 = x1 +ε2. So x2

is a spurious regressor. Statistical testing easily determines that x2 is not statistically
significant. PMVD gives it 0.2% variance share. Covariance decomposition also gives
x3 a fairly small share of explained variance, 3.6%. The averaging method, however,
allocates x2 32.0% of the total 79.3% explained variance. This result is an empirical
demonstration that the averaging method violates the proper exclusion criterion of
relative importance.

In Table 3, x0 = 1.5x1 + 2x2ε1, while x3 = x1 + 0.75x2 + ε2. This time x3 is the
spurious variable. The correlation of x3 with x0 is considerably higher than any other
variable. Again, the t-test indicates no statistical significance and PMVD gives a zero
variance share (ϕ3(w) ≈ 10−6). This time the averaging method gives x3 the largest
variance share. In addition to strongly biasing the relative importance of x1 and x2 in
relation to x3, the averaging method appears to distort the importance of x1 relative
to x2 as well.

5.4 Example 3: Negatively correlated variables

Table 4 presents an example based on the relation x0 = x1+x2+ε1 with x2 = −x1+ε2.
The variances of x1, ε1 and ε2 are set so that x1 is uncorrelated with x0. Note that x1 is
still a statistically significant regressor. All methods except covariance decomposition
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indicate that x1 is an important variable in the model. The theoretical covariance
decomposition value is zero because dσ2/dβ1 = 0. (See equation (12)). This violates
the positive inclusion criterion for relative importance measures. The covariance
decomposition tells us that x1 is hedging some of the variance in x2. This information
appears not to be useful for a measure of relative importance.

Table 5 shows that covariance decomposition components can be negative, in
violation of the nonnegativity criterion. The basic model is x0 = x1 + x2 + ε1, where
x2 = −1.5x1+ε2. The error disturbances are var(x1)=1, var(ε1)=0.25 and var(ε2)=0.5.
Now the CVD variance share for x1 is -86.0%. The negative value is not from the
signing convention of Section 5.1 and has no meaning in the context of a measure of
relative importance.

The only reasonable interpretation is as if the model were a portfolio and the
factors are portfolio holdings. The portfolio interpretation is that adding x1 to the
portfolio reduces total risk. But x1 may not be a hedge and, again from the portfolio
point of view, most of the diversification benefit of having both x1 and x2 in a portfolio
is being awarded to x1. The ratio of PMVD component shares has value ϕ1/ϕ2 =
.39 but the ratio of CVD components has value CV D1/CV D2 = .54. Covariance
decomposition allocates considerably more relative importance to x1 than PMVD.

5.5 Example 4: Analysis of a Long/Short Fund

This example is a based on a simple factor model analysis of the Laudus Rosenberg
Long/Short Fund using conventional asset indexes as explanatory variables. This
model might be used to assess the profile of the fund against conventional asset mar-
kets. The benchmarks, their abbreviations as will be used here, and their descriptive
statistic are found in Table 6. This analysis is based on 81 months of data from
January 1998 to September 2004.

5.5.1 Basic analysis

The fund is a small cap long/short fund that reports its holdings. It is approximately
market neutral. Table 7 presents the results of a linear OLS regression of the funds
returns on the returns of the independent variables shown in Table 6. Table 6 reports
the Bera-Jarque nonnormality test results for the residuals. The hypothesis that they
are normally distributed cannot be rejected at conventional significance levels.

Review of the results presented in Table 7 reveal a number of patterns. All relative
importance measures agree that the TBILL is of negligible importance in spite of its
large beta and statistical significance levels. This is logical considering cash volatility
and the small likelihood that fund strategy relies on cash derivatives. Small cap
growth (SCG) has the largest beta besides cash, the highest statistical significance
level and the largest relative importance shares according to all estimators. These
results are all consistent with the fund’s strategy.
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Perhaps the most striking result in this example is that PMVD (and AMCV)
find that large cap growth (LCG) is the second most important factor in the model
and, particularly, is more important than the mid cap growth factor (MCG). LCG
does not appear to be very important if one were to judge from its t-statistic of -
1.23 (p=0.221), yet its PMVD share of 9.2% is larger than the 5.8% for MCG. The
t-statistic for MCG is 2.50 (p=0.015). More importantly, given that this fund invests
in small to (low) mid cap equities, there is no reason to expect strong large cap factor
loadings. Thus, it would be logical to suspect that the LCG PMVD component is
not accurate.

Large cap value (LCV) also has a sizable negative PMVD component. This sign
agreement between LCG and LCV is in contrast to the sign reversal found for mid
and small cap indexes. This later pattern suggests that a significant aspect the fund’s
strategy might be to be long the small cap value premium and short the mid cap
value premium. The sign agreement for large cap factors suggest that the correlation
between these factors might provide a partial explanation for their observed levels of
statistical significance.

Pursuing the hypothesis that there might be a common large cap factor, a simple
test would be to constrain the betas of the large cap growth and value factors to be
equal, or almost equivalently, to replace them with a large cap factor represented by
the S&P 500. If this is done the R2 decreases from 55.52% to 55.19%. The F-test
on the constraint has value 0.523, with p = 0.47, indicating the hypothesis that the
coefficients are the same cannot be rejected. The t-statistic for the large cap factor
increases to -2.11 (p= 0.038) and the PMVD component is -16.6%. This represents
a slight increase from the combined -15.6% of the two factors separately. (Also, the
MCG PMVD component rises slightly from 5.8% to 6.4% and its t-statistic rises to
2.59. (p=0.011).)

Also noteworthy is that the AMCV large cap component is only -10.6%, in com-
parison to the -14.5% sum of the individual components. These results are consistent
with the known properties of the Shapely value. If players in a game are aggregated,
there aggregate value may be very different from the sum of their individual values.
The proportional value is much less subject to this type of aggregation bias.9 Further
results of this constraint (or aggregation) test are not reported to save space.

The constraint test shows that the aggregate large cap factor is statistically sig-
nificant. This result and the stability of the total large cap PMVD share provides
credibility for reliance on PMD measures of relative importance. It further illustrates
the potential value of a measure of relative importance in providing direction for
model analysis.

9Note that there are two types of aggregation that might be of interest. The first is linearity or
additivity, e.g. φ(v+w) = φ(v)+φ(w). The Shapley value is additive while the proportional value is
not. The aggregation considered here, of variables (players) must be considered of more importance
in statistical modeling.
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5.5.2 Bootstrap analysis

Bootstrap simulation provides another way to examine the results and the reliability
of relative importance measures. A simple bootstrap with 500 simulations generated
as described in Section 3.6 was constructed using normally distributed bootstrap
residuals. Using normally distributed bootstrap residuals is a reasonable choice given
the approximate normality of the actual residuals. It is also a desirable choice so that
the characteristics of the bootstrapped distributions of relative importance measures
can be clearly associated with the measures and not the residual distribution.

Summary statistics from bootstrap simulations are presented in Table 8. Mean
bootstrap betas and their standard deviations are consistent with the OLS results.
Bootstrap PMVD components tend to be slightly larger in magnitude than the em-
pirical shares displayed in Table 7. This is a consequence of the reported skew in
component shares. AMCV component means tend to be smaller than the empiri-
cal results. CVD bootstrap means appear to be quite close to empirical values. All
relative importance measures have large normality rejection rates based on the Bera-
Jarque test. The effect of the high levels of skew and kurtosis in relative importance
measures is difficult to evaluate simply from summary statistics.

Figure 1 shows the univariate distributions of PMVD component shares for all
factors except TBILL, which is excluded to save space. It is apparent that there
are three basic types of distributions: approximately normal distributions such as
observed for SCG; highly skewed distributions that look almost exponential in nature
such as observed for LCG, and symmetric highly kurtotic distributions such as ob-
served for HYLD. The skew and kurtosis appear to result from the highly nonlinear
implied ordering probabilities necessary for proportional decompositions to satisfy
limit proper exclusion. The effect is perhaps most dramatic for factors that have
strong influence but little marginal contribution, such as LCG, where the skew dom-
inates. Factors with little explanatory power at any point in the relative importance
ordering, like HYLD, appear to have simply the high kurtosis. The skew and kurtosis
indicate that these components must be assumed to have less reliability than factors
like SCG. Note, also, that all factors with reasonably large PMVD shares (say, greater
than about 3%) have small tails extending across into the quadrant of the opposite
sign. Factors with large PMVD shares are unlikely to have bootstrap realizations
with significant component shares of opposite magnitude.

Figure 2 shows univariate AMCV component share distributions. The striking
difference with the PMVD distributions is their bimodality. The bimodality results
from the combination of a factor’s low statistical significance with the averaging
method’s failure to satisfy proper exclusion.

Figure 3 is provided for completeness and shows univariate CVD component
shares. A tendency for extended tails is evident in these distributions as well. This
is probably a reflection of the fact that this measure is a sum of weighted pairwise
beta products. These products will be distributed approximately according to the χ2

distribution.
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Figure 4 shows bivariate scatter plots of the distribution of bootstrap betas. This
figure is provided for reference. The generally elliptical nature of these scatters and
their slopes are consistent with what we should expect.

Figure 5 shows bivariate scatter plots of the distribution of bootstrap PMVD
component shares. These results are very striking. Only a limited analysis can be
presented here. I will focus on the LCG and LCV scatters with other factors. Notice
their generally right-triangular form. The LCG x LT chart (LCG on the x-axis)
is easiest to interpret. Scaled LCG values are always larger than scaled LT values
(see chart caption for scaling definition). This profile is also found with SCV, both
positive factors. The more typical profile for scatters with LCG and LCV is the
upper triangular profile that can be seen for LCG x LCV and with other negative
factors. The upper triangular profile is described in the caption for the figure. The
interpretation in both cases is the same. Low scaled values of LCG correspond to
large negative shares. As LCG or MCV share increases, the shares of all other factors
are constrained (not so surely for MCG, however). This might be thought to be due
to the overall constraint that shares must add to total R2. But if this were true,
the same pattern would be observed for all factor combinations, and, particularly, for
SCG with it large component shares.

Figure 6 shows bivariate scatter plots of the distribution of AMCV component
shares. The bimodality found in the univariate distributions of Table 2 is now reflected
as a clover structure when at least one factor is bimodal. Finally, for completeness,
Figure 7 shows CVD bootstrap component bivariate scatters. These scatters appear
very similar to the beta scatters of Figure 4.

6 Discussion

6.1 Generalized Proportional Marginal Decomposition

The axiom of equal proportional effect could be relaxed to require only proportional
effect:

Axiom 6.1 Proportional Effect:

∣∣∣∣
∂ ln L(r)
∂ ln w(S)

∣∣∣∣ = α, α ∈ R

Note that axiom of limit proper exclusion is formally satisfied whenever α > 0. It
is then straightforward to verify the following lemma.

Lemma 6.1 Given a model Θ, a performance measure µ and a game w generated by
µ, the likelihood determined by the axioms of anonymity, limit proper exclusion and
equal proportional effect is

L(r, α) =

( ∏
S∈ r

w(S)

)−α

, α > 0.
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Defining a generalized normalizing factor P (N, α)

P (N,α) =


 ∑

r∈R(N)

L(r, α)



−1

, (13)

a continuum of probability distributions indexed by α results:

pα(r) = P (N,α)L(r, α). (14)

Substitution in the expectation (4) then leads to the following result:

Lemma 6.2 The expected contribution of variable i to the performance of model Θ
relative to the game w defined by a performance measure µ and according to the
probability distribution defined by the axioms of anonymity, limit proper exclusion
and proportional effect is

ϕα
i (w) = P (N, α)

∑

r∈R(N)

L(r, α)Mr(i)(r),

for α > 0.

Since L(r, α = 0) = 1, the Shapley value is the limit point for this continuum:

Lemma 6.3 ϕα=0(w) = Sh(w).

Finally, the next lemma is follows from pervious results in Section 4.4.

Lemma 6.4 Each element in the continuum of generalized proportional marginal de-
compositions identified by Lemma 6.2 is an admissible measure of relative importance.

Proof: Every element of this continuum clearly satisfies nonnegativity and proper exclusion.
Lemma 4.6 guarantees proper inclusion and Lemma 4.9 proves that ϕα(w) satisfies full
contribution. ¤

Note that P (N,α) is only a potential when α = 1. This is in the sense that
ϕα

i (w) 6= P (N, α)/P (N \ i, α) for α 6= 1. Lemma 3.2 does not generalize.

6.2 Calibration

The existence of the generalized continuum of proportional marginal decompositions
as described by Lemma 6.2 invites calibration. Why not find the empirical α that
best fits any particular model? After all, relative importance is defined by reference
to a probability distribution over orderings of model explanatory variables.
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For example, consider a bivariate OLS model. What is the relationship between
the probability that one variable is “most important” and the probability that it’s
marginal contribution to variance is greatest? According to the basic proportional
marginal decomposition approach, the probability that one variable is most important
is proportional to its variance share. Lemma 6.2 implies that this probability could
be matched precisely by relaxing the requirement of equal proportionality.

Calibration may be useful problems indirectly related to relative importance, but
I believe that calibration is not a useful approach to the assessment of relative impor-
tance. Such an approach would make relative importance a function of the number
of observations and quantity of unexplained variance (i.e. noise) in the model. The
seems unhelpful. Further, these considerations suggest an additional potential crite-
rion for relative importance. Theoretical relative importance shares should be invari-
ant with respect to noise and the number of observations. Note this criterion would
reject only calibration and not estimation of relative importance using a generalized
proportional decomposition with fixed α 6= 1.

6.3 Relationship to Cooperative Game Theory

The properties of the cooperative value functions associated with different measures
of relative importance provide insight into their mechanism. The Shapley value is
linear while the proportional value is inherently nonlinear. The proportional value
has the property that a player with zero individual worth must receive zero value.10

If there are only two explanatory variables, the Shapley value implies equal division
of joint explanatory power while the proportional value requires that it is divided
in proportion to individual marginal explanatory power. Noncooperative models of
the Shapley value give players equal bargaining power while noncooperative models
of the proportional value give players with greater expected payoffs more bargaining
power11 The inadmissibility of two types of linear estimators of relative importance
and the admissibility of a continuum of proportional estimators suggest that relative
importance is an inherently nonlinear measure.

7 Conclusion

This paper advances four fundamental criteria for the admissibility of measures of
statistical relative importance. The measure of relative importance developed here,
proportional marginal decomposition, is admissible under these criteria. PMD and
the generalization developed in Section 6.1 are the only relative importance measures
know to be admissible.

10Assuming all other players have positive individual worth, see Feldman (2002), Theorem 6.1.
11This statement assumes that bargaining power is equivalent to the probability of having the

opportunity to make a proposal. Regarding models of the Shapley value, see Gul (1986) or Hart and
Mas-Colell (1989). Feldman (2002) proposes a noncooperative implementation of the proportional
value.
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Proportional marginal decompositions may be estimated consistently. Examples
demonstrate the practical value of this approach over several existing alternative
measures. The empirical example also demonstrate that the nonlinearity of the PMD
method calls for some caution.

The results developed in this paper and much of the relative importance literature
cited demonstrate the close relationship between measures of relative importance and
cooperative value. Feldman (2002) advances a dual model of cooperative value in
which the Shapley and proportional values are merely modes of manifestation a more
fundamental notion of value. The dual model proposes that one mode might be found
more relevant in any specific situation. This paper demonstrates that the proportional
mode provides a better representation of statistical relative importance.

Appendix A: Computing the Proportional Value

Calculating a proportional marginal decomposition using the expectations approach
quickly becomes impractical from a computational viewpoint. A model with 10 in-
dependent variables would require the evaluation of 10! orderings. Feldman (1999)
and Ortmann (2000) show the proportional value may be computed using a ratio
potential, which is defined by the recursive relation

P (S) = w(S)

(∑
i∈S

P (S \ i)−1

)−1

, (15)

for all S ⊂ N , and P (Ø) = c > 0. The proportional value of player i is then
ϕi(w) = P (N)/P (N \ i).

Appendix B: Proof of Lemma 3.2

Proof: The structure of P (N \i) is identical to P (N) except that it is based on the permuta-
tion set R(N \i). Consider any ro ∈ R(N \i). There are n orderings (r1, r2, . . . , rn) ∈ R(N)
that result when i is inserted into r0 at the jth position so that rj

j = i. If

L(ro) =
n∑

j=1

L(rj)Mr(i)(r
j), (16)

the result follows. The key to this reduction becomes more apparent when the marginal
contribution Mr(i)(r) is represented as w(Sj

j )− w(Sj
j−1), that is, as the difference between

the worth of smallest set including i in the order j and the worth of the just smaller set.
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The relation on the right hand of the above equation can then be expanded into 2n − 1
separate terms. Consider first the term with w(Sn

n) in the numerator. Since Sn
n = N , this

term simplifies to the term on the left side of the equation. The remaining terms cancel
each other out. Specifically, consider the terms associated with Sj−1

j−1 and Sj
j−1:

w(Sj−1
j−1)

w(Sj−1
1 ) · · ·w(Sj−1

j−1) · · ·w(Sj−1
n )

+
−w(Sj

j−1)

w(Sj
1) · · ·w(Sj

j−1) · · ·w(Sj
n)

= 0. (17)

The sum is zero because for all k < j−1 and all k > j−1, w(Sj−1
k ) = w(Sj

k) because either
i has not yet entered, or i has already entered. For position j− 1, where Sj−1

j−1 6= Sj
j−1 these

terms cancel out on both sides. ¤
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Table 1: Two 75% correlated and one uncorrelated independent variables

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept -0.0439 0.1309 -0.34 0.7377
x1 1.1138 0.1971 5.65 0.0000 0.0531 21.2% 22.4% 22.2%
x2 1.2031 0.2042 5.89 0.0000 0.0577 24.9% 23.6% 23.7%
x3 1.1849 0.1349 8.78 0.0000 0.1282 13.0% 13.1% 13.2%

The true model is x0 = x1 + x2 + x3 + ε1, var(x1)= var(x2)=var(x3)=1.0,
σ12 = 0.75. var(ε1) = 2.0. n = 250. R2= 0.5911.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribu-
tion to variance, and CVD is the covariance decomposition. Marginal
variance contributions are not calculated for the intercept. Variance de-
compositions do not consider the contribution of the intercept term.

Correlations x0 x1 x2 x3

x0 100.0% 63.0% 64.5% 36.7%
x1 63.0% 100.0% 75.7% -0.4%
x2 64.5% 75.7% 100.0% 2.8%
x3 36.7% -0.4% 2.8% 100.0%

In this example, the correlation between x1 and x2 is 75%. T-statistics
correctly indicate that x3 is much more precisely estimated. All variance
decomposition methods correctly imply that x1 and x2 are together by far
more important in driving model performance.
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Table 2: Spurious variable in model with one true independent variable

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept 0.0169 0.0277 0.61 0.542
x1 1.4720 0.1220 12.06 0.000 0.1537 79.1% 47.3% 75.7%
x2 0.0677 0.1051 0.64 0.520 0.0004 0.2% 32.0% 3.6%

The true model is x0 = 1.5x1 + ε1, with x2 = x1 + ε2 and var(x1) =
0.25, var(ε1) = 0.16, and var(ε2) = 0.0625. n = 200. R2 = 0.793.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribu-
tion to variance, and CVD is the covariance decomposition. Marginal
variance contributions are not calculated for the intercept. Variance de-
compositions do not consider the contribution of the intercept term.

Correlations x0 x1 x2

x0 100.0% 88.5% 79.1%
x1 88.5% 100.0% 91.5%
x2 79.1% 91.5% 100.0%

In this simple example the variable x2 is not part of the true model in spite
of its relatively high correlation with x0. All measures except AMCV, the
averaging method, correctly identify this condition.
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Table 3: Spurious variable in model with two true independent variables

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept -0.0328 0.0333 -0.98 0.326
x1 1.5635 0.2248 6.95 0.000 0.0520 30.1% 13.4% 22.1%
x2 2.1296 0.1779 11.97 0.000 0.1540 48.9% 31.9% 56.9%
x3 -0.0017 0.2159 -0.01 0.994 0.0000 0.0% 33.6% -0.1%

The true model is x0 = 1.5x1 + 2x2 + ε1, with x3 = x1 + 0.75x2 + ε2 and
var(x1) = 0.25, var(ε1) = 0.25, and var(ε2) = 0.16. n = 200. R2 = 0.789.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribution
to variance, and CVD is the covariance decomposition. Marginal variance
contributions are not calculated for the intercept. Variance decomposi-
tions do not consider the contribution of the intercept term. PMVD and
AMCV variance components are signed by the sign of the factor beta.

Correlations x0 x1 x2 x3

x0 100.0% 29.6% 59.8% 73.8%
x1 29.6% 100.0% -47.3% 69.4%
x2 59.8% -47.3% 100.0% 23.2%
x3 73.8% 69.4% 23.2% 100.0%

In this case, PMVD allocates almost a zero variance share (ϕ3 ≈ 10−6)
to x3 even though x3 has the highest simple Pearson correlation with x0.
The averaging approach gives x3 the largest share.
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Table 4: Negatively correlated independent variables I

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept 0.0182 0.0194 0.94 0.3472
x1 0.9880 0.0456 21.66 0.0000 0.5987 33.3% 29.9% -0.2%
x2 1.0017 0.0414 24.22 0.0000 0.7486 41.6% 44.9% 75.0%

The true model is x0 = x1 + x2 + ε1, x2 = −x1 + ε2. var(x1)= 1,
var(ε1)=0.25, var(ε2)=.5, n = 200. R2= 0.7486.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribu-
tion to variance, and CVD is the covariance decomposition. Marginal
variance contributions are not calculated for the intercept. Variance de-
compositions do not consider the contribution of the intercept term.

Correlations x0 x1 x2

x0 100.0% -0.1% 38.7%
x1 -0.1% 100.0% -89.5%
x2 38.7% -89.5% 100.0%

In this example x1 and x2 are highly negatively correlated. The component
of x2 correlated with x1 is exactly balanced by x1. The result is that x1 has
an almost zero covariance decomposition component. Note all methods
except covariance decomposition yield similar implications for the relative
importance of the independent variables.
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Table 5: Negatively correlated independent variables II

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept 0.0182 0.0194 0.94 0.3472
x1 0.9888 0.0648 15.27 0.0000 0.1679 24.4% 30.2% -86.0%
x2 1.0017 0.0414 24.22 0.0000 0.4227 61.4% 55.6% 171.8%

The true model is x0 = x1 + x2 + ε1, x2 = −1.5x1 + ε2. var(x1)= 1,
var(ε1)=0.25, var(ε2)=.5, n = 200. R2= 0.8580.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribu-
tion to variance, and CVD is the covariance decomposition. Marginal
variance contributions are not calculated for the intercept. Variance de-
compositions do not consider the contribution of the intercept term.

Correlations x0 x1 x2

x0 100.0% -66.0% 83.1%
x1 -66.0% 100.0% -94.9%
x2 83.1% -94.9% 100.0%

As in the example of Table 4a, x1 and x2 are highly negatively correlated.
In this example the component of x2 correlated with x1 is not completely
neutralized by x1. The result is a negative covariance component for x1.
All methods except covariance decomposition yield similar implications
for the relative importance of the independent variables. The negative
covariance component reflect the fact that var(β1x1) < var(β1x1 + β2x2),
so x1 could be interpreted as a hedging factor in some contexts.
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Table 6: Descriptive Statistics for Long-Short Fund Analysis

Factor Abbrev. Mean Std.
Dev.

Skew Excess
Kurto-
sis

Bera
Jarque
p-value

S&P/BARRA 500 Growth LCG 0.337% 0.055 -0.359 -0.453 0.2960
S&P/BARRA 500 Value LCV 0.479% 0.050 -0.483 0.683 0.0941
S&P/BARRA MidCap 400 Growth MCG 1.017% 0.069 -0.126 0.954 0.1935
S&P/BARRA MidCap 400 Value MCV 0.973% 0.053 -0.323 0.994 0.0933
Russell 2000 Growth SCG 0.417% 0.084 -0.201 0.125 0.7416
Russell 2000 Value SCV 0.854% 0.049 -0.791 1.719 0.0001
MSCI EAFE Free EAFE 0.409% 0.047 -0.433 0.182 0.2663
MSCI Emerging Mkts EM 0.637% 0.074 -0.856 1.957 0.0000
LB Hi-Yld HYLD 0.444% 0.025 -0.451 2.149 0.0001
LB U.S. LT Govt LT 0.658% 0.026 -0.850 2.064 0.0000
U.S. 30 Day TBill TBILL 0.275% 0.002 0.011 -1.578 0.0150
Laudus Rosenberg Fund 0.269% 0.039 0.249 0.984 0.1286
Residuals 0.000% 0.026 -0.428 0.386 0.2266

The excess kurtosis of the normal distribution is zero. The Bera Jar-
que p-values are based on the Bera Jarque test statistic and represent
the confidence level in rejecting the hypothesis of asset return distribu-
tion normality based the sample values for the skew and kurtosis of the
distribution. This test statistic is distributed χ(2). The hypothesis that
the residuals are normality distributed cannot be rejected at conventional
significance levels.

Corr. LR LCG LCV MCG MCV SCG SCV EAFE EM HYLD LT TBILL
LR 1.00 -0.63 -0.54 -0.56 -0.42 -0.64 -0.43 -0.53 -0.54 -0.36 0.28 -0.05
LCG -0.63 1.00 0.76 0.81 0.60 0.74 0.52 0.79 0.67 0.41 -0.24 -0.03
LCV -0.54 0.76 1.00 0.71 0.90 0.62 0.74 0.78 0.72 0.46 -0.30 0.01
MCG -0.56 0.81 0.71 1.00 0.70 0.90 0.73 0.74 0.72 0.44 -0.21 0.01
MCV -0.42 0.60 0.90 0.70 1.00 0.59 0.85 0.70 0.70 0.41 -0.19 0.00
SCG -0.64 0.74 0.62 0.90 0.59 1.00 0.77 0.72 0.75 0.52 -0.22 -0.07
SCV -0.43 0.52 0.74 0.73 0.85 0.77 1.00 0.66 0.69 0.52 -0.18 -0.09
EAFE -0.53 0.79 0.78 0.74 0.70 0.72 0.66 1.00 0.74 0.47 -0.23 -0.11
EM -0.54 0.67 0.72 0.72 0.70 0.75 0.69 0.74 1.00 0.56 -0.29 -0.18
HYLD -0.36 0.41 0.46 0.44 0.41 0.52 0.52 0.47 0.56 1.00 -0.02 -0.19
LT 0.28 -0.24 -0.30 -0.21 -0.19 -0.22 -0.18 -0.23 -0.29 -0.02 1.00 0.05
TBILL -0.05 -0.03 0.01 0.01 0.00 -0.07 -0.09 -0.11 -0.18 -0.19 0.05 1.00
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Table 7: OLS-Based Analysis

Parameter beta std. err. t-stat p-val MV PMVD AMCV CVD
Intercept 0.0074 0.0068 1.08 0.2831
LCG -0.1829 0.1481 -1.23 0.2210 0.0098 -9.2% -9.0% 16.0%
LCV -0.1963 0.2088 -0.94 0.3505 0.0057 -6.4% -5.5% 13.6%
MCG 0.3563 0.1423 2.50 0.0147 0.0403 5.8% 6.6% -35.4%
MCV -0.1965 0.2235 -0.88 0.3823 0.0050 -0.9% -2.9% 11.2%
SCG -0.5158 0.1371 -3.76 0.0003 0.0911 -26.7% -13.8% 71.9%
SCV 0.3578 0.2010 1.78 0.0794 0.0204 3.6% 3.6% -19.6%
EAFE 0.0895 0.1330 0.67 0.5032 0.0029 0.7% 4.2% -5.7%
EM 0.0172 0.0843 0.20 0.8386 0.0003 0.1% 4.8% -1.8%
HYLD -0.0793 0.1702 -0.47 0.6425 0.0014 -0.1% -2.0% 1.8%
LT 0.1564 0.1363 1.15 0.2552 0.0085 1.1% 2.2% 2.9%
TBILL -2.5169 2.1349 -1.18 0.2424 0.0089 -1.0% -1.0% 0.6%

Acronyms are defined in Table 6. The equation R2 is 55.52%.

MV is the marginal contribution to variance, PMVD is proportional
marginal variance decomposition, AMCV is average marginal contribu-
tion to variance, and CVD is the covariance decomposition. Marginal
variance contributions are not calculated for the intercept. Variance de-
compositions do not consider the contribution of the intercept term.

Note low statistical significance level for LCG in comparison to its PMD
variance share. Note also, low PMVD allocations compared to AMCV and
CVD allocations for EAFE, EM, HYLD, and LT. This result is consistent
with statistical significance levels.
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Table 8: Bootstrap simulation statistics

Measure Factor Mean
Value

Std.
Dev.

Skew Excess
Kurtosis

Bera-
Jarque
statistic

p-val

LCG -0.176 0.136 0.083 -0.391 3.77 0.1518
LCV -0.195 0.198 0.091 -0.247 1.96 0.3758
MCG 0.355 0.143 -0.086 0.253 1.95 0.3778
MCV -0.193 0.218 -0.146 0.092 1.96 0.3762
SCG -0.514 0.133 -0.058 -0.017 0.28 0.8688

Beta SCV 0.362 0.195 0.162 0.023 2.20 0.3335
EAFE 0.068 0.132 -0.284 0.345 9.18 0.0102
EM 0.022 0.079 -0.052 -0.172 0.83 0.6588
HYLD -0.081 0.171 -0.118 -0.081 1.30 0.5209
LT 0.154 0.135 -0.070 -0.028 0.43 0.8077
TBILL -2.449 2.148 -0.180 -0.121 3.01 0.2220
LCG -0.100 0.098 -1.058 0.800 106.54 0.0000
LCV -0.054 0.059 -1.438 2.821 338.21 0.0000
MCG 0.057 0.021 -0.627 1.537 82.02 0.0000
MCV -0.014 0.023 -1.135 4.811 589.52 0.0000
SCG -0.242 0.082 -0.169 -0.272 3.93 0.1402

PMVD SCV 0.035 0.022 0.269 -0.598 13.50 0.0012
EAFE 0.000 0.032 -3.494 15.499 6022.09 0.0000
EM -0.003 0.028 -3.642 20.478 9842.13 0.0000
HYLD -0.008 0.019 -2.230 6.120 1194.58 0.0000
LT 0.020 0.025 1.742 4.248 628.61 0.0000
TBILL -0.014 0.017 -1.739 4.415 658.04 0.0000
LCG -0.079 0.052 1.691 2.794 401.02 0.0000
LCV -0.043 0.043 1.003 0.201 84.74 0.0000
MCG 0.066 0.021 -5.354 36.949 30830.22 0.0000
MCV -0.020 0.027 1.255 0.354 133.77 0.0000
SCG -0.136 0.031 -0.302 -0.109 7.85 0.0198

AMCV SCV 0.037 0.016 -3.653 18.360 8134.83 0.0000
EAFE 0.015 0.047 -1.146 -0.347 112.00 0.0000
EM 0.001 0.052 -0.523 -1.476 68.14 0.0000
HYLD -0.016 0.024 -0.263 -0.428 9.61 0.0082
LT 0.025 0.022 1.034 2.103 181.33 0.0000
TBILL -0.014 0.018 -1.911 5.604 958.80 0.0000
LCG 0.159 0.128 0.228 -0.327 6.56 0.0375
LCV 0.142 0.147 0.385 0.520 17.95 0.0001
MCG -0.343 0.134 0.119 0.512 6.63 0.0364
MCV 0.115 0.132 0.612 0.691 41.20 0.0000
SCG 0.717 0.219 0.323 0.028 8.72 0.0128

CVD SCV -0.190 0.100 -0.051 0.119 0.51 0.7742
EAFE -0.037 0.083 0.675 0.660 47.08 0.0000
EM -0.018 0.079 0.378 0.143 12.34 0.0021
HYLD 0.025 0.044 0.942 1.078 98.18 0.0000
LT 0.034 0.033 0.905 0.593 75.53 0.0000
TBILL 0.012 0.016 2.285 7.090 1482.53 0.0000
Intercept 0.005 0.007 0.241 -0.051 4.90 0.0865
R2 0.587 0.060 -0.234 0.174 5.19 0.0746

Statistics for bootstrap test based on 500 simulations. Mean betas and
standard deviations are consistent with OLS results reported in Table 7.
PMVD and AMCV share components show high levels skew and kurtosis.
CVD share components show significant nonnormality as well.
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Figure 1: PMVD component bootstrap distributions

Acronyms are defined in Table 6. PMVD variance components are signed
by the sign of the factor beta, see Section 5.1. TBILL distribution is not
shown.

PMVD MCG, SCG, and SCV components are approximately normally
distributed. The distribution of all other components are highly skewed
and kurtotic. Observe that LCG, LCV, and LT have highly asymmetric
distributions which have an exponential character. This profile appears
characteristic of variables with relatively weak marginal contribution to
model performance but relatively strong contribution to the performance
of submodels based on smaller sets of variables.
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Figure 2: AMCV component bootstrap distributions

Acronyms are defined in Table 6. AMCV variance components are signed
by the sign of the factor beta, see Section 5.1. TBILL is distribution not
shown.

Signed AMCV components produce distinctive bimodal bootstrapping
distributions. Bimodality is principally a reflection of the averaging
method’s violation of the proper exclusion criterion. In bootstrap scenar-
ios variables with small statistically insignificant betas, but of opposite
sign from the beta based on real data, can have large variance shares.
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Figure 3: CVD component bootstrap distributions

Acronyms are defined in Table 6. TBILL distribution is not shown.
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Figure 4: Beta bootstrap bivariate scatter plots

Acronyms are defined in Table 6. Bivariate beta scatters plots are pro-
vided for reference. They appear approximately elliptically distributed.
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Figure 5: PMVD bootstrap bivariate scatter plots

Acronyms are defined in Table 6. PMVD bivariate scatter plots show
a distinctive conditional distribution pattern. Let X represent the vari-
able charted on the horizontal axis and Y the variable charted on the
vertical axis and define 0-1 scaled variables X∗ and Y ∗ by the following
transformation: X∗

i = (Xi − Xmin)/(Xmax − Xmin). Then LCG has the
approximate relationship LCG∗ > (1−Y ∗) with all variables except SCV
and LT , which are predominantly positively signed, where the relation-
ship is LCG∗ > Y ∗. Both relationships indicate strong conditionality and
small values of other components when LCG is large. See Section ?? for
more discussion.
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Figure 6: AMCV bootstrap bivariate scatter plots

Acronyms are defined in Table 6. Many of the signed AMCV bivariate
bootstrap scatter plots have a distinctive clover type of pattern resulting
from the bimodal bootstrap beta component distribution shown in Figure
2. This is further evidence that averaging is not a reliable decomposition
procedure.
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Figure 7: CVD bootstrap bivariate scatter plots

Acronyms are defined in Table 6. The bivariate distribution of CVD
bootstrap components is broadly similar to the bivariate distribution of
beta coefficients shown in Figure 4.
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