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A Probabilistic Model to Combine Tags and Acoustic Similarity
for Music Retrieval

RICCARDO MIOTTO and NICOLA ORIO, University of Padova

The rise of the Internet has led the music industry to a transition from physical media to online products
and services. As a consequence, current online music collections store millions of songs and are constantly
being enriched with new content. This has created a need for music technologies that allow users to interact
with these extensive collections efficiently and effectively. Music search and discovery may be carried out
using tags, matching user interests and exploiting content-based acoustic similarity. One major issue in
music information retrieval is how to combine such noisy and heterogeneous information sources in order to
improve retrieval effectiveness. With this aim in mind, the article explores a novel music retrieval frame-
work based on combining tags and acoustic similarity through a probabilistic graph-based representation of
a collection of songs. The retrieval function highlights the path across the graph that most likely observes
a user query and is used to improve state-of-the-art music search and discovery engines by delivering more
relevant ranking lists. Indeed, by means of an empirical evaluation, we show how the proposed approach
leads to better performances than retrieval strategies which rank songs according to individual information
sources alone or which use a combination of them.
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1. INTRODUCTION

The increasing availability of multimedia user-generated content, such as Flickr1 for
photos, MySpace2 for music, and YouTube3 for videos, requires a parallel increase
in the development of technologies to search and retrieve this content. A common
approach is to exploit information retrieval techniques based on textual descriptors.
These can be provided by the user uploading the digital item in the form of free text or

1http://www.flickr.com/
2http://www.myspace.com/
3http://www.youtube.com/
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of keywords belonging to predefined categories and by users accessing the digital item
in the form of comments, ratings, and tags.

Tags are short phrases of one to about three words aimed at describing digital items;
in the case of music, they may define the genre, the instrumentation, the evoked mood,
the use a song is particularly suitable for, and so on. Tags are important because they
facilitate the interaction between users and music technologies; in fact, typical users of
music engines are more comfortable in expressing their requirements with descriptive
words rather than using musical terms (e.g., note and chord names, time signatures,
musical forms). Listeners extensively use tags to obtain playlist and recommenda-
tions, particularly when using a music discovery system. In this scenario, a user is not
looking for a specific song or artist, but may have some general criteria that he wishes
to satisfy. Examples of such criteria may be “pop songs with high energy that help
driving at night” as well as “songs similar to Yesterday, Beatles”. Common commercial
music discovery systems are Last.fm4 and Pandora5. Both use human-based annota-
tions to describe songs, but while Pandora hires expert musicologists to annotate the
songs, Last.fm relies on tags provided by final users.

However, the human-based annotation process does not scale well with present-
day music collections, where a large amount of new songs are released daily. This
problem is particularly relevant in the case of little known artists, whose songs are
initially provided without semantic descriptions and can hardly be included in any
search algorithms before being tagged. This is among the several factors that may
lead to the phenomenon of the long tail of songs and artists which are not included (or
are included after a long time) in the recommendation lists delivered by many state-
of-the-art music engines [Celma 2008]. For this reason, several automatic approaches
have been introduced in order to speed up the music tagging process, such as the
content-based autotaggers, the propagation of tags from similar songs, or the analysis
of users’ social behavior [Turnbull et al. 2008a].

Nevertheless, state-of-the-art systems that automatically collect tags can lead to
noisy representations, and this may negatively affect the effectiveness of retrieval al-
gorithms. For instance, content-based tagging systems need highly reliable training
data (i.e., verified tag-song associations) to obtain effective models for predicting the
tags of previously unseen songs. Additionally, these models sometimes have to handle
robustness issues such as parameter overfitting or term normalization, which are typ-
ically due to data sparseness. The use of social behavior to obtain tags may also result
in poor descriptors. Social tags are sometimes referred to as the wisdom of the crowd
since they are assigned to the songs by a large number of nonexpert humans. How-
ever, if a vocabulary of tags is not defined in advance, a human user of these systems
can annotate songs without restrictions. Therefore, tags can contain typos (e.g., “clas-
sickjazz”, “mellou”), be redundant (e.g., “hip-hop” - “hiphop”, “hard rock” - “hardrock” -
“harder rock”), or be simply not useful for retrieval purposes (e.g., “favorite artist”,
“mistagged”).

Alternatively, the retrieval mechanism can be carried out directly on the acoustic
content of the songs, without relying on a high-level semantic representation. This
was the initial and typical approach of Music Information Retrieval (MIR) researchers,
where audio and music processing is applied to compute acoustic similarity relation-
ships between songs of a collection. Such similarity connections can then be used to
rank songs in a content-based music retrieval system [Casey et al. 2008b]. However,
in music applications the problem of selecting an optimal similarity measure is diffi-
cult because of the intrinsic subjectivity of the task: users may not consistently agree

4http://www.last.fm/
5http://www.pandora.com/
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upon whether or to what degree a pair of songs or artists are acoustically similar. For
instance, the perceived similarity between two songs can be due to external factors,
such as being used in the same movie or aired in the same period of time. In this case,
tags can be used to leverage acoustic similarity because they contextualize a song, for
instance, describing its genre or a geographical area related to it. Hence, both ap-
proaches have some limitations when taken singularly; a combined use of them may
instead lead to a reduction of such disadvantages.

This article presents a general model for searching songs in a music collection
where both content-based acoustic similarity and autotags6 are combined together in a
probabilistic retrieval framework. That is, the goal is to partially overcome the lim-
itations of these two automatic strategies by applying them together in a unified
graph-based representation. In particular, each song is represented as a state of a
graph and is described by a set of tags, whereas each edge is weighted by the acoustic
similarity between the two songs it connects. The documents relevant for a given
query are retrieved by searching, in the space of possible paths through the graph, the
one that most likely is related to the request. Retrieval is performed efficiently and
does not require any preprocessing steps or parameter estimation (i.e., training). The
model is applicable in different music discovery scenarios, such as item-based recom-
mendation, playlist generation, and qualitative reranking of fast retrieval approaches.

The remainder of this article is organized as follows. After a discussion of related
work in Section 2, the model and the retrieval framework are defined in Sections 3
and 4, respectively. Sections 5, 6, and 7 address the description of the evaluation,
in particular the music representation used, the experimental setup, and the results.
Lastly, Section 8 provides a general conclusive discussion and possible future works.

2. RELATED WORK

A considerable amount of research has been devoted to semantic music search and
discovery engines. These systems allow queries in natural language, such as tags or
song metadata (e.g., title, artist, year) and return songs that are semantically related
to this query [Celma et al. 2006; Knees et al. 2007; Turnbull et al. 2007]. Barrington
et al. [2009] compare a content-based semantic retrieval approach with Apple iTunes
Genius, which recommends music by mainly exploiting user behavior (i.e., collabora-
tive filtering). They showed that, while Genius generally performs better, the content-
based research system achieves competitive results in the long tail of undiscovered
and little recommended songs.

The graph-based framework proposed in this article aims at improving the state-of-
the-art music discovery technologies by combining autotags with content-based acous-
tic similarity. Berenzweig et al. [2004] show that it is important to combine both
subjective (e.g., semantic labels) and acoustic representation when dealing with mu-
sic similarity. In the following, Sections 2.1 and 2.2 describe several techniques for
content-based acoustic similarity and automatic music tagging, respectively. A variety
of state-of-the-art retrieval approaches combining different sources of music informa-
tion are reviewed in Section 2.3, which also reports a brief summary of the original
model proposed in this article.

2.1. Acoustic Similarity

Acoustic similarity is an objective relationship, in the sense that it does not consider
the subjectivity of music perception. Typical approaches to compute the content-based

6Hereafter we focus on music collections where each song has already been annotated by any noisy auto-
matic tagging approach.
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acoustic similarity between two songs rely on comparing the features automatically
extracted from the audio signal of each song [Casey et al. 2008b]. Yet the choice of
the features to be extracted and of the similarity measure to be used is crucial in the
design of a MIR system, and strictly depends on the applicative scenario. For exam-
ple, automatic playlist generation gains little benefit from the use of melodic features,
while beat tracking and rhythm similarity may be particularly useful. Conversely,
the identification of different versions of a same music work requires focusing on the
melodic content, with the rhythm playing a secondary role. In any case, the audio de-
scriptors of a song are generally extracted from short snippets (e.g., 20–50 ms) of the
audio signal and result in a vector of features xt, where t is related to time in the audio
signal where the snippet occurs. The acoustic content of a song X is then represented
as a series of audio features, that is, X = (x1, ..., xT), where T depends on the length of
the song. This series of vectors can then be processed to compute acoustic similarity
relationships between the songs.

In the literature, most of the state-of-the-art systems for computing acoustic sim-
ilarity rely on timbral descriptors. The timbre can be defined as “the sound charac-
teristics that allow listeners to perceive as different two sounds with the same pitch
(i.e., the perceived fundamental frequency of a sound) and intensity (i.e., the energy of
the music vibration) but played by different instruments” [Orio 2006]. In our experi-
ments, we relied on timbral descriptors as well, sometimes additionally supported by
temporal descriptors; we refer the reader to Section 5.1 for the details.

Early approaches to define acoustic similarity from audio features used mixtures of
Gaussians to represent the songs and computed similarity as the divergence between
the models. In particular, interesting results were achieved using a single Gaussian
to model the timbral features of the songs, and Kullback-Leibler (KL) divergence
to compute pairwise similarity [Mandel and Ellis 2005]. Later, Jensen et al. [2009]
showed that this approach may have some weaknesses in the case of many different
instruments being played simultaneously, and proposed introducing a source separa-
tion component to improve its performances. Recently, other competitive algorithms
have been proposed. Hoffman et al. [2008] use the hierarchical Dirichlet process to
automatically discover the latent structure within and across groups of songs in order
to generate a compact representation of each song, which could be efficiently compared
using KL divergence. Alternatively, Seyerlehner et al. [2008] represent songs through
a nonparametric variant based on vector quantization; this representation allows
for more powerful search strategies, such as Locality Sensitive Hashing (LSH) and
KD-trees. LSH was used by Casey et al. [2008a] as well to compute acoustic similarity
between music excerpts represented as a series of temporal features. Music similarity
has been one of the tasks of the MIREX (Music Information Retrieval Evaluation
eXchange) since 2005 [Downie 2008]; other approaches for computing acoustic
similarity can be found in the records of the yearly campaigns.

See Section 5.2 for the details about the specific methods used in the evaluation
process. Yet, regardless of the strategy, when processing a music collection, acoustic
similarity is generally computed as a distance measure between the audio features of
each song and all the other documents in the collection. Given N songs, similarity can
be expressed by a N2 similarity matrix, where each generic entry (i, j) represents the
acoustic similarity of song i with song j [Pampalk 2006].

2.2. Music Automatic Tagging

In recent years, a variety of strategies have been proposed to automatically collect
tags for the songs of a music collection. In particular, early approaches concerned
social tagging (i.e., the users of the system assign the tags to the songs they listen
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Fig. 1. The semantic multinomial distribution over a set of 149 tags for the song “Billie Jean”, as performed
by Michael Jackson; the ten most probable tags are labeled.

to) [Lamere 2008], Web mining (i.e., the tags are searched by mining the Web pages
linked to a given song) [Knees et al. 2007] and tag propagation from similar songs
(i.e., assign the tags which already describe the artist, similar songs, similar artists,
etc.) [Sordo et al. 2007]. Each of these has advantages and disadvantages as described
by Turnbull et al. [2008a].

Recently, MIR researchers have proposed content-based automatic tagging systems
(autotaggers), which focus on modeling the characteristic acoustic patterns associated
with each tag of a semantic vocabulary in an annotated database. State-of-the-art
autotaggers are based on discriminative approaches, for example, boosting [Bertin-
Mahieux et al. 2008] and support vector machines [Mandel and Ellis 2008], as well
as generative models, for example, the Gaussian mixture models [Turnbull et al.
2008b], the codeword Bernoulli average model [Hoffman et al. 2009], and the time-
series model [Coviello et al. 2011]. Each tag model is used to compute the relevance of
that tag to a new song, and the most likely tags can then be assigned to the song. Addi-
tionally, approaches that add a second modeling layer to capture the tag co-occurrences
in the space of the autotagger outputs showed improvements in the quality of the final
predictions (e.g., see Yang et al. [2009], Ness et al. [2009], and Miotto and Lanckriet
[2012]).

Regardless of the strategy, automatic tagging systems may generally output a vec-
tor of tag weights, one for each tag of a semantic vocabulary. After normalizing, so that
entries sum to one, this vector may be interpreted as a Semantic MultiNomial (SMN),
that is, a probability distribution characterizing the relevance of each tag to a song. A
song can then be annotated by selecting the top-ranked tags in its SMN, or the SMN
itself can be used in the retrieval function (e.g., given a tag query, retrieval can be per-
formed by ranking songs according to the tag’s probability in their SMN) [Barrington
et al. 2009; Turnbull et al. 2007]. As an example, Figure 1 shows the semantic multi-
nomial achieved by a content-based autotagger over 149 different tags for the song
“Billie Jean”, as performed by Michael Jackson.

Depending on the tagging strategy, an SMN describing a song can be sparse or
dense. On the one hand, content-based autotaggers lead to a dense representation,
because they can estimate a model for each tag in the vocabulary. On the other hand,
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8:6 R. Miotto and N. Orio

strategies such as social tags and Web mining lead to a sparse representation because
it is not possible to collect a relevance value for each tag in the vocabulary (e.g., it is
unlikely that a user would tag a “classical” song as “heavy metal”). In this last case,
the tag not collected takes a zero value.

Refer to Section 5.3 for details about the autotagging strategies used in the evalua-
tion process.

2.3. Combining Music Descriptions to Improve Retrieval

As already mentioned in Section 1, this article presents a novel model to retrieve
songs by combining acoustic similarity and the semantic descriptions given by the
autotags. Again, our main goal is to propose a general methodology which overreaches
the limitations of these two automatic strategies by using them together for deliver-
ing higher-quality ranking lists in response to a given semantic query. That is, our
retrieval system attempts to return a list of music items which are acoustically coher-
ent and pertinent to the request and, at the same time, are ranked according to their
relevance to one or more semantic labels that give context to the user information
need.

In the literature, approaches that merge different heterogeneous descriptions of
music information were proposed in Slaney et al. [2008] for music classification,
in Turnbull et al. [2009] and Tomasik et al. [2009] for semantic retrieval, in McFee
and Lanckriet [2009] for artist similarity, and in Wang et al. [2010] for artist style
clustering. These methodologies generally learn the parameters of a function that
is used to join the different sources of information in order to provide the user with
more subjective song descriptions and similarity relationships. Our approach is con-
sistently different because it is built on a graph-based representation that combines
different music descriptions, and it does not rely on additional processing or training
to carry out retrieval. This point is particularly important in scenarios where it is
difficult to collect reliable ground-truth data for the training step. Moreover, rather
than providing a more meaningful description of songs or better similarity relation-
ships, our goal is to deliver a unified retrieval mechanism located on a higher level
than acoustic and semantic representations considered individually. This means that
it can also exploit these more sophisticated descriptions. A graph-based representa-
tion for music recommendation is also used by Bu et al. [2010]; however, instead of a
graph, they use a unified hypergraph to model and combine social media information
and music acoustic-based content. This approach is an application of ranking on graph
data [Agarwal 2006] and requires learning a ranking function; again, it can be high-
lighted that we do not need training operations to perform retrieval. Additionally, Bu
et al. [2010] cover a wider application than semantic retrieval, since they focus on the
design of a hybrid recommender which also considers user-profile data. However, we
do not investigate the extension of our model in a hybrid recommendation scenario
where user-profile is also taken into account. Social data and graph analysis were also
exploited by Fields et al. [2011] to combine acoustic similarity with musician social
networks to computing hybrid similarity measures for music recommendation.

Knees et al. [2009] examine the effect of incorporating audio-based similarity into
a tag-based ranking process, either by directly modifying the retrieval process or by
performing post-hoc audio-based reranking of the search results. The general idea
is to include in the ranking list songs that sound similar to those already collected
through tag-only retrieval; hence, acoustic similarity is used as a correction factor
that improves the ranking list. Again, our approach is different because tags and
acoustic similarity are used together at the same time in the retrieval process (i.e., one
representation is not used to correct the ranking scheme of the other).

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.
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The framework is proposed as the core component of a semantic music discovery
engine. However, the approach is very general and can be used in other scenarios as
well as with other media. The main requirement of the model is that a medium may
be represented by semantic descriptors, and that it is possible to compute a similarity
measure between digital items. In particular, image and video retrieval seem potential
scenarios where the proposed framework may be applied [Feng et al. 2004; Rasiwasia
and Vasconcelos 2007; Tsai and Hung 2008].

3. PROBABILISTIC MODELING OF A MUSIC COLLECTION

The goal of semantic music search and discovery engines is to retrieve a list of songs in
response to the description of a user information need. The latter can be represented
either directly by a general semantic indication, such as the tag “rock”, or indirectly by
a seed song, such as the audio content and the set of tags assigned to “My Sharona”.
In both cases, it can be assumed that the goal of the user is to observe consistently the
fulfilment of his information need during the time of his access to the music collection.
In particular, the user query can be interpreted as a sequence of observations through
time, that is, O = (o1, ..., oT), where T gives the number of retrieved songs and ot
expresses what the user is expected to listen to at time t. Therefore, the framework
here discussed provides a model to rank the songs of a music collection in a way that
maximizes the probability to observe over time music items that are relevant to the
user query in terms of both contextual and acoustic sources of information.

With this aim in mind, we propose to represent the music collection as a graph,
where each state is a song and the retrieval process is considered as a doubly embed-
ded stochastic process, where an underlying stochastic process can only be observed
through another set of stochastic processes that “emit” the sequence of observations.
This model can represent either content and context information, under the following
assumptions [Miotto and Orio 2010].

— If each state represents a song in the collection, acoustic content-based similarity
can be modeled by transition probabilities, which weight each edge connecting two
generic states of the model.

— If the symbols emitted by the states are semantic labels, the context that describes
each state can be represented by emission probabilities, which describe the relation-
ship between the tags and the song mapped into each generic state of the model.

Therefore, in such a process, at each time step the model performs a transition to a
new state according to transition probabilities and it emits a new symbol according to
emission probabilities. Thus each path across the graph has a total likelihood which
depends on both transition and emission probabilities. When a sequence of observa-
tions is given to the model, the states composing the most probable path need to be
computed through decoding.

This structure takes its ground from the definition of a Hidden Markov Model
(HMM), a double embedded stochastic process that is often used to represent physical
processes that evolve over time (e.g., speech, audio signal) [Rabiner 1989]. HMMs have
been widely used in MIR applications, such as segmentation [Raphael 1999], query-
by-singing [Shifrin et al. 2002], and automatic identification and alignment [Miotto
et al. 2010]. In particular, an HMM defines a structure that combines two stochastic
processes (i.e., transition and emission probabilities) to generate a sequence of obser-
vations, or dually, to highlight the most likely state sequence which has generated
a given series of observations. In our case, the user query defines the observations
(i.e., O), while the hidden sequence of states to be highlighted is the list of songs to
be retrieved. Despite this similarity in the model definition, we do not refer to our
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Fig. 2. General structure of the graph-based model: each song included in a music collection is represented
by a state and is described by a set of tags. States are linked together by edges weighted according to
acoustic similarity between the songs.

framework as an HMM because, compared to the formulation of Rabiner [1989], we
introduce some variations at the standard structure of the model as well as at the al-
gorithm to highlight the most likely path in order to better fit the applicative scenario.

A suitably built model can be used to address the examples provided at the begin-
ning of this section. On the one hand, the model can be used to create a path across
songs while observing, for a defined number of time steps, the semantic label “rock”.
On the other hand, the model can start the path from the state associated with the
song “My Sharona” and proceed to new states while observing the semantic labels as-
sociated with the seed song. In both cases, the songs in the path are likely to have
a similar content because of transition probabilities and are likely to be in the same
context because of emission probabilities. A graphical representation of the model is
shown in Figure 2; as can be seen, songs are linked together through edges which are
weighted according to the similarity between the audio signals. In addition, each state
is also described by a set of tags which contextualize each song.

3.1. Definition of the Model

The graph-based structure representing a collection of autotagged songs can be for-
mally defined through a set of parameters; in particular, the model λ is defined by:

— the number of songs N in the collection, each song represented by a state of the
graph. Individual states are denoted as S = {S1, ..., SN}, where each generic state Si
represents the song i, while a state at time t is generally denoted as s(t);

— the number of distinct tags that can be used to semantically describe a song. The
set of symbols is defined by a finite size vocabulary V = {w1, ..., w|V |};

— the state transition probability distribution A = {aij | i, j = 1, ...,N}, which defines
the probability of moving from state Si to state Sj in a single step. This distribu-
tion is related to the acoustic similarity between songs; therefore aij depends on the
audio similarity of song i with song j (i.e., A is a similarity matrix as defined in
Section 2.1);

— the emission symbol probability distribution B = {b1
i , ...,b

|V |
i | i = 1, ...,N}, which

represents the probability that each tag w ∈ V is associated with song i. Each
probability value represents the strength of the relationship song-tag; the vector
bi(·) is the semantic description of the general song i (i.e., an SMN as defined in
Section 2.2).

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.
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We use the compact notation λ = (A, B) to denote the model; the parameters N and |V |
can be inferred from the probability distributions.

Common approaches for computing acoustic similarity usually give a positive value
for each pair of songs, implying aij > 0 for each i, j. However, in particular with the
aim of improving scalability, at retrieval time, we consider each generic state Si to be
connected directly to only the subset of states R(Si), which includes the most acousti-
cally similar songs to song i; conversely, the transition probabilities with all the other
states are set to zero. This leads to a sparse transition matrix which can help to speed
up the retrieval process. Additionally, we show in Section 7.1 how the size of sub-
sets R(Si), with i = 1, ...,N, may also affect the retrieval performances of the model.
Self-transitions are set to zero as well, because self-similarity is not a relevant factor
in retrieval applications. Both transition and emission probabilities are normalized
to one to satisfy the stochastic propriety of the model formulation and to reduce the
numerical sparsity of the different relationships (i.e., song-tag and song-song), that is

N∑
j=1

aij = 1 , and
|V |∑
k=1

bk
i = 1 , with i = 1, ...,N . (1)

Because of these steps, transition probabilities are usually not symmetric (i.e., aij �= aji),
which, at least in the case of music, is a reasonable assumption. As an example, a
complex and extremely popular song such as “Stairway to Heaven” may have inspired
hundreds of songs that reprise part of its content. While each of them can be considered
similar to “Stairway to Heaven” in its original version, the latter may be only loosely
related to these songs.

After setting all the parameters, the model can be used to decode the most likely se-
quence of states which may have generated a given series of observations as discussed
in the following section.

4. RANKING THE SONGS

The goal of the retrieval function is to highlight a subset of songs that are relevant to
a particular query, either expressed by tags or by a seed song. The general problem
can be stated as follows [Rabiner 1989].

[G]iven the observation sequence O = {o1, ..., oT}, and the model λ, find
a corresponding state sequence {s∗(1), ..., s∗(T)} which is optimal in some
sense.

The description of the user information need is represented by the observations
sequence O; the value of T defines the number of songs which are retrieved. Yet, the
output of the search process is a list of songs ranked according to their relevance with
the given observation sequence.

4.1. The Retrieval Algorithm

The decoding problem of highlighting the list of states which most likely has gen-
erated a sequence of observations can be solved by using a variant of the Viterbi
algorithm [Forney 1973]. The latter acts as a max-sum algorithm and searches
efficiently in the space of possible paths to find the optimal one (i.e., the most likely
one). In particular, the algorithm is composed by a forward computation which finds
the maximization for the most probable path, and by a backward computation which
decodes the sequence of states composing such most probable path. The cost of the
process grows only linearly with the length of the desired ranking list; this means that
retrieval can be performed more efficiently simply by keeping the value of T relatively
small (i.e., shorter ranking lists).

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.
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ALGORITHM 1: The Retrieval Algorithm
1: Input: the model λ = (A, B), the vocabulary of tags V and the observation sequence

O = {o1, ...,oT}, such that, for each t = 1, ...,T,

ot(·) =

⎧⎨
⎩

{(o1
t , ..., o

k
t ) | oy

t = w ∈ V for y = 1, ...,k} if k-tag query-by-description

bq(·) if query-by-example with song q

2: Define the KL divergence DKL(x ‖ y) between general discrete probability distributions x
and y:

DKL(x ‖ y) =
∑|x|

k=1 xk · log xk
yk

, where |x| = |y|
3: Define R(Si) for each state Si ∈ λ, i.e. the subset of states to which Si is connected, according

to O, edit A such that,

aij =

⎧⎨
⎩

aij if j ∈ R(Si)

0 elsewhere,
for each i, j = 1, ...,N ,

and then normalize the edited A such that,
∑N

j=1 aij = 1 for i = 1, ...,N .

4: Define OBSi(t) with i = 1, ...,N, according to O and t:

query-by-description: OBSi(t) = bi(o1
t ) · bi(o2

t ) · ... · bi(ok
t ) for all t> 0

query-by-example: OBSi(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if t = 1 and i = q

0 if t = 1 and i �= q
1

DKL (bi(·)‖bq(·)) if t> 1

5: Initialization: for i = 1, ...,N:

δ1(i) = OBSi(1) , ψ1(i) = 0

6: Recursion: for t = 2, ...,T , i = 1, ...,N:

δt(i) = max1≤ j≤N[δt−1( j) · aji] · OBSi(t)

ψt(i) = arg max1≤ j≤N[δt−1( j) · aji]

ari = ari
η

with r = ψt(i) , η = 10

7: Decoding: highlight the optimal path

s(t)∗ =

⎧⎨
⎩

arg max1≤ j≤N[δt( j)] if t = T

ψt+1(s(t + 1)∗) if t = T − 1,T − 2, ...,1

8: Output: the ranking list {s(1)∗, ..., s(T)∗}.

The details of the retrieval function are provided in Algorithm 1. The overall time
complexity is O(TN2), whereas the space complexity is O(TN). In particular, as can
be seen in step 6 (first and second line), for each state Si, the forward computation at
time t seeks the next best movement across the graph, which is the one maximizing
the probability of the path at that time in terms of: (i) path at time t − 1, (ii) acoustic
similarity, and (iii) semantic description.
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Algorithm 1 (step 4) defines OBSi(·), a general function related to the type of query
(tags or seed song) which specifies how the semantic description of the generic song i
and the initial conditions of the model λ are considered during the retrieval process.
Motivations and details are discussed in Section 4.2.

The recursion step expressed in step 6 of Algorithm 1 introduces a variation of the
role of transition probabilities. In fact, because of the structure of the model, it could
happen that the optimal path enters a loop between the same subset of songs or, in
the worst case, jumps back and forth between two states. This would lead to retrieved
lists that present the same set of songs multiple times. Moreover, the loop could be
infinite, meaning that the algorithm cannot exit from it and the retrieval list would
only be composed by very few items. We addressed this problem by considering a
penalty factor that is applied to the transition probabilities when they have already
been chosen during the forward step. In fact, when a transition is chosen, we decrease
the corresponding probability value by factor η (we used η = 10), as shown in the third
line of step 6; this makes it unlikely for the states’ sequence to pass again through
that transition. Attenuation is carried out temporarily, meaning that it affects the
structure of the model only during the current retrieval operation. It should be noted
that after this modification there is no guarantee that the path is globally optimal;
however, what is relevant to our aims is that the path has a high probability of being
relevant to the query from both content and context information and, at the same time,
covers a large part of the collection.

Preliminary experiments pointed out another limitation of the model, which con-
cerns long sequences of observations; in fact, we noted a strong decrease in the re-
trieval precision when decoding long paths through the graph. Consequently, the
model appears to be generally poor at capturing long-range correlations between the
observed variables (i.e., between variables that are separated by many time steps).
In order to tackle this problem, we consider the retrieval process composed by many
shorter substeps, each one retrieving a subsequence of the final ranking list. When
one of the subsequences is delivered, the following retrieval substep restarts from the
last song previously suggested and is performed only on the songs not yet included in
the ranking. Given the locality of the approach, in this way we try to keep constant the
correlation between the query and the retrieved songs along the whole list. Addition-
ally, splitting the retrieval in substeps allows the system to better interact with the
final users, who can obtain the ranking list of songs incrementally, instead of having
to wait for the whole computation. For instance, the model can be set to deliver enough
songs at each substep to fill a Web page; in this way the remaining items may then be
retrieved while the user is already checking the first delivered results.

4.2. Querying the Model

In the interaction with music discovery and search engines, a user can generally sub-
mit a query in two alternative ways: by providing tags (query-by-description) or a seed
song (query-by-example). The proposed framework can easily handle both scenarios;
however, according to the topology of the query, some parameters need to be set differ-
ently, as also highlighted in step 4 of Algorithm 1.

In the query-by-description scenario, the model has to rank the songs according to
their relevance with the provided tags. The query may be composed of a single tag
(e.g., “rock”) or a combination of tags (e.g., “mellow”, “acoustic guitar”, “female lead
vocals”). In this case, the observation at iteration t, with t = 1, ...,T, is the vector
ot = {o1

t , · · · , ok
t }, where each entry is a tag of the vocabulary and k is the number of

tags in the query. We consider the tags in the query having the same importance;
however, tags may be also weighted in relation to the query string. For example, it is
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possible to give more weight to the words that appear earlier in the query string as
is commonly done by Web search engines. The probability of starting a path from a
given state depends only on the probability of emitting the observation. Therefore, the
function OBSi(t) of Algorithm 1 is defined as

OBSi(t) = bi(o1
t ) · bi(o2

t ) · ... · bi(ok
t ) , (2)

for each state Si and all t> 0. It can be noted that observations may be composed of the
same tags for all the time steps, or they may also change over time (e.g., starting with
{“rock”} for the first iterations, going on with {“pop”, “tender”} in the following steps,
and so on)7.

In the query-by-example scenario, the system is required to provide the user with
a list of songs similar to a seed song q. In this case all the paths are forced to start
from the seed song, that is OBSi(1) = 1 when i = q, while OBSi(1) = 0 elsewhere8.
The observation sequence to be decoded is modeled as the tags of the seed song, that
is bq(·); so, in this case OBSi(t) is defined as the inverse of the KL divergence between
the semantic description of a chosen state and bq(·) [Kullback and Leibler 1951]. The
choice of the KL divergence aims at generalizing the terms used for the tags, because
it is related to the similarity of concepts associated with the tags rather than the pure
distance between lists of tags. We consider the inverse because the goal is to have sim-
ilarity relationships (i.e., to maximize the probability when the divergence is small).
Therefore,

OBSi(t) =
1

DKL(bi(·) ‖ bq(·)) , where DKL(bi(·) ‖ bq(·)) =
|V |∑
k=1

bk
i · log

bk
i

bk
q

, (3)

for the generic state i, a seed q, and all t > 1. In preliminary experiments we also
attempted to compute the similarity between two songs as the negative exponentia-
tion of their KL divergence; however, this solution led to consistently worse empirical
results.

5. MUSIC REPRESENTATION

This section overviews the methodologies used to represent the songs in the evaluation
process reported in Sections 6 and 7; more details can be found in the corresponding
references. It is important to note that the proposed model can be used with any of the
approaches reviewed in Sections 2.1 and 2.2 for computing content-based acoustic sim-
ilarity and autotags. The approaches here described represent only the experimental
setup we built to validate the proposed model.

5.1. Audio Features

Available music datasets are released either as a set of audio clips or as a list of songs
(title and artist) to tackle copyright issues. According to the case, we use different
music content features. However, as mentioned in Section 2.1 we mostly relied on
timbral descriptors.

When we have access to the audio clips, we represent the songs by vectors of Mel
Frequency Cepstral Coefficients (MFCCs) and Fluctuation Patterns (FPs). MFCCs are

7In this work we only treat queries composed by the same tags for all the time steps. We mention the
possibility of queries which dynamically change over time just to highlight that the formulation of the model
can naturally handle this applicative scenario as well. However, there are currently no standard datasets to
test such a task; therefore, we consider the use of queries dynamic over time as a possible future application.
8We assume that the seed song q is stored in the collection. Possible extensions to scenarios where q does
not belong to the collection are not taken into account in this work.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.



A Probabilistic Model to Combine Tags and Acoustic Similarity for Music Retrieval 8:13

a popular feature for content-based music analysis for representing the timbre of the
audio signal [Logan 2000]. They summarize the spectral content of a short-time win-
dow of an acoustic waveform by using the discrete cosine transform to decorrelate the
bins of a Mel Frequency spectral histogram. We represent each song by a bag of 13-
dimensional MFCC vectors computed on half-overlapping windows of 23 ms. MFCCs
are computed on at most 4 minutes of music taken from the middle of the song; at
the end, we randomly subsample 15,000 feature vectors to generally obtain a same-
size representation of each song. Additionally, we also include the first and second
instantaneous derivatives of MFCCs, achieving a final 39-dimensional representation
(delta-MFCC vectors). In contrast, FPs highlight characteristics of the audio signal
which are not captured by the spectral representation (e.g., the periodicity of the mu-
sic signal) by describing the amplitude modulation of the loudness per-frequency band.
The combined use of MFCCs and FPs is common in MIR, for instance, for hubness
reduction [Flexer et al. 2010]. We compute an FP by: (i) cutting a 20-band spectro-
gram into 3-second half-overlapped segments, (ii) using an FFT to compute amplitude
modulation frequencies of loudness (range 0–10 Hz) for each segment and frequency
band, (iii) weighting the modulation frequencies based on a model of perceived fluc-
tuation strength, (iv) applying filters to emphasize certain patterns and smooth the
result [Pampalk 2006]. The resulting FP is a 12 (frequency bands according to 12 crit-
ical bands of the Bark scale) times 30 (modulation frequencies, ranging from 0–10 Hz)
matrix for each song.

When copyright issues prevent the owner from releasing the audio clips, a dataset
can still be published as a list of songs specifying title, artist, and unique identification
parameters (ID) that can be used for content access. In this scenario, descriptors can
be obtained using public Web-based repositories, such as The Echo Nest Web service9.
The latter provides a free music analysis API that users can exploit to collect informa-
tion about songs and artists. In particular, a user uploads an audio clip for analysis;
once the track has been uploaded and automatically processed, the Echo Nest provides
this user with a unique song ID that can be exploited to access the information about
that song (i.e., content-based features as well as metadata). Releasing the unique song
IDs makes it possible for everyone to access the same audio descriptions of a given
song. Among the different content descriptors available, the Echo Nest Timbre (ENT)
features provide the timbral descriptors. ENTs are derived from slightly longer win-
dows than MFCCs (generally between 100 and 500 ms), where, for each window, the
service calculates 12 “timbre” features10. Each song is then represented by a bag of
12-dimensional vectors; computing the first and second instantaneous derivatives of
these vectors leads to the final 36-dimensional delta-ENT vectors. ENT features have
been already successfully used in different applications related to music similarity and
access (e.g., see Tingle et al. [2010], Tomasik et al. [2010], and Bertin-Mahieux et al.
[2010]).

5.2. Acoustic Similarity

We collect acoustic similarity relationships by using two distances computed over dif-
ferent audio features and, when possible, by deriving a single similarity measure
through a weighted combination between them. Both approaches are fast in compu-
tation and easy to implement. Since we aim at showing the general performances of
the model and not a particular configuration, we prefer such aspects to the greater
precision that could be achieved using some of the alternative models reviewed in

9http://developer.echonest.com/
10The 12 timbre coefficients highly abstract the spectral surface of the audio signal; however, we do not have
access to the details of the exact calculation of the ENTs because they are a trade secret of the company.
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Section 2.1, which, however, require a more sophisticated parameter estimation, and
whose implementation could be more error-prone.

Timbral similarity is computed following the approach described in Mandel and
Ellis [2005], that is, representing the timbre descriptors of each song (i.e., delta-
MFCCs or delta-ENTs) as the single Gaussian (full covariance) with the maximum
likelihood of fitting the song’s features. The distance between two Gaussians is
computed as the KL divergence, that is, DKL(x ‖ y), for each general pair of songs
x and y, rescaled to turn into a similarity value (i.e., negative exponentiation of
each divergence). Since the standard KL divergence is asymmetric, we have that
DKL(x ‖ y) �= DKL(y ‖ x), which generally fits our applicative scenario of nonsymmetric
music similarity relationships.

In contrast, similarity of FPs is computed as the rescaled Euclidean distance be-
tween two FPs [Pampalk 2006].

To obtain an overall acoustic similarity measure sim(x, y) between the two songs
x and y, all the described similarity values are combined by a simple arithmetic
weighting

sim(x, y) = 0.7 · zG(x, y) + 0.3 · zFP(x, y) , (4)

where zG(x, y) and zFP(x, y) are the value of the timbre-based and FP-based similarity
after z-normalization. We set the weighting coefficients after some preliminary tuning
experiments.

Lastly, we used the combination shown in Eq. (4) only when we had access to the
audio clips of a dataset. Conversely, in cases where we had the ENT features only, the
similarity computation refers to the single Gaussian-based timbral similarity alone.
In any case, all the similarity values related to each experiment are collected together
to form the transition matrix of the graph-based retrieval model.

5.3. Tags

We use two different automatic strategies to collect tags: content-based autotaggers
and social tags. We separately address these two different representations in order to
validate the model with different semantic sources; however, they could be combined
into a single richer one as described by Turnbull et al. [2009]. For both approaches,
we consider a vocabulary V of |V | distinct tags wi, for i = 1, ..., |V |. As mentioned
in Section 2.2, at the end, each song is described by an SMN, which is used as the
emission probability distribution in the corresponding state of the model.

5.3.1. Content-Based Autotaggers. The problem of content-based automatic music tag-
ging is widely tackled as a supervised multiclass labeling problem [Carneiro et al.
2007], where each class corresponds to a tag wi of the vocabulary V . Among all
the different approaches of the literature, we used the Gaussian Mixture Model
(GMM) [Turnbull et al. 2008b], leveraged by a contextual model based on the Dirichlet
Mixture Model (DMM) [Miotto and Lanckriet 2012].

In particular, Turnbull et al. [2008b] proposed modeling the acoustic features asso-
ciated with each tag wi in V with a probability distribution p(x|wi) over the space of
audio features x as a GMM

p(x|wi) =
R∑

r=1

awi
r N (x|μwi

r ,�
wi
r ) , (5)

where R is the number of mixture components, N (·|μ,�) a multivariate Gaussian dis-
tribution with mean μ and covariance matrix �, and awi

r the mixing weights. The
parameters {awi

r ,μ
wi
r ,�

wi
r }R

r=1 of each tag model p(x|wi) are estimated from the audio
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features extracted from the songs that are positively associated with wi in an an-
notated database, using the hierarchical Expectation Maximization (EM) algorithm
[Vasconcelos and Lippman 1998].

Given the audio content of a new song X = {x1, ..., xT}, the relevance of each tag wi
is computed using the Bayes’ rule

πi = P(wi|X ) =
p(X |wi) P(wi)

p(X )
, (6)

where P(wi) is the tag prior (assumed uniform) and p(X ) the song prior, that is, p(X ) =∑|V |
j=1 p(X |w j)P(w j). Collecting all the posterior probability πi leads to the song SMN,

that is, π = (π1, ..., π|V |), which is intended normalized to one.
The GMM alone models each tag independently, without taking into account the

latent correlation between them (e.g., “rock” may often co-occur with “guitar”). For
this reason, we also process the SMNs’ output by the GMM through a second model-
ing layer which captures the tag context and leads to improved semantic descriptions.
With this aim in mind we use the DMM [Miotto and Lanckriet 2012], which is a gen-
erative model that assumes the SMNs π of the songs positively associated to a tag wi
being distributed accordingly to a mixture of Dirichlet distributions, that is

p(π |wi;�w) =
R∑

r=1

βwiDir(π |αwi
r ) , (7)

where R is the number of mixtures, βwi
k are the mixing weights, and Dir(·|α) is a

Dirichelet distribution of parameters α = (α1, ..., α|V |). Each DMM is estimated from
the SMNs of the songs positively associated with wi in an annotated database, via the
generalized EM algorithm [Dempster et al. 1977].

Given the SMN π of a new song, the final relevance value of each tag wi, that is,
P(wi|π), is computed as posterior probability using Bayes’ rule (as in Eq. (6), with π in
place of X ). The vector of the relevance values output by the DMM for each tag, after
normalization to one, is the final semantic representation of the song which is used as
emission distribution in the corresponding state of the model.

With regard to the implementation, we obtained the code of both Turnbull et al.
[2008b] and Miotto and Lanckriet [2012]; the songs have been represented by using
timbral content only (as in Turnbull et al. [2008b]), then delta-MFCCs or delta-ENTs.

5.3.2. Social Tags. Social tags were gathered from Last.fm, as available in November
2010. The users of this service can assign tags to the songs they are listening to,
so these tags provide a valuable source of information on how people perceive and
describe music. However, the data collection process is noisy since it involves a large
community of nonexpert fans annotating music with an unconstrained vocabulary of
free-text tags. Therefore, many tags may be redundant and inconsistent. Additionally,
the vocabulary of tags that emerges from the community tends to be very simple and
focused on social rather than acoustic aspects of the music.

For each song of the collection, we gathered two lists of social tags using the Last.fm
public data sharing AudioScrobbler Web site11. We gathered both the list of tags
related to a song and the list of tags related to an artist. The overall list of scores is
given by summing the scores in both lists.

Since we are working using an experimental and of limited size vocabulary, the
gathered social tags have to be mapped into the equivalent classes in V . In order to

11http://ws.audioscrobbler.com/2.0/
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match the largest part of the classes, we preprocess the social tags through stemming
(e.g., joining “rock”, “rockers”, “rocking”), noise reduction (i.e., joining “r&b”, “rhythm
and blues”, “r & b”), and synonyms detection (e.g., annotating with “down tempo” if
the social tag is “slow beat”). When annotating a song, a tag in the vocabulary that
correctly matches a social tag takes the corresponding Last.fm-based score; otherwise,
it takes a zero value. Therefore, if no social tags of a song match any tags in the
vocabulary, that song is represented by a uniform description where all the tags share
the same relevance.

6. EXPERIMENTAL SETUP

One of the challenges of designing a music search engine is how to evaluate the novel
methodology. Although several efforts have been made within the MIREX campaigns,
data of past contests are not always freely available to test new approaches, because
of well-known copyright issues. Ideally, the recommended songs should be evaluated
by humans, in order to consider the subjective nature of the music similarity concept.
Since human evaluation is a time-consuming task, we use an automatic approach by
considering that reliable annotations on songs can be exploited to measure the quality
of a ranking list. In particular, we use human-based annotated datasets, considering
these annotations as ground truth for retrieval evaluation purposes. In this section
we present these datasets, and we discuss the evaluation tasks, the metrics used to
evaluate the results, as well as the models included in the comparison.

6.1. Music Datasets

We use two different annotated music collections: CAL500 and CAL10k.

6.1.1. CAL500 Database. This dataset consists of 502 popular songs of Western music
by as many different artists [Turnbull et al. 2007]. Through a controlled survey, each
song has been tagged by at least 3 human annotators using a semantic vocabulary of
149 tags. The vocabulary is diverse and spans genres, instruments, vocal and acoustic
characteristics, emotions, and song usages. The CAL500 dataset provides binary an-
notations, which are 1 when a tag applies to the song (i.e., at least 2 subjects voted for
the tag) and 0 otherwise.

Since we have full access to all the audio clips of this collection, we could extract
both MFCCs and FPs. Therefore, the acoustic similarity is computed considering the
combined similarity defined in Eq. (4).

6.1.2. CAL10k Database. CAL10k is a collection of 10,870 songs from 4,597 different
artists, labeled from a vocabulary composed of 137 “genre” tags and 416 “acoustic”
tags. Each song is labeled with 2–25 tags. The song-tag associations for this dataset
have been mined from the Pandora Web site; since Pandora claims that their musi-
cologists maintain a high level of agreement, these annotations are considered highly
objective [Tingle et al. 2010].

As copyright issues prevent us from obtaining all CAL10k songs, we represent the
audio content using the ENT features described in Section 5.1. Therefore, in this case,
acoustic similarity relies on the single Gaussian-based timbral similarity alone.

6.2. Retrieval Tasks

The proposed framework is evaluated in the retrieval tasks introduced in Section 4.2,
that is query-by-description and query-by-example.

In the query-by-description task, a combination of k distinct tags is provided as
query and the songs are ranked by their relevance to them. The tags are taken from
the finite size vocabulary V ; we consider queries composed by k = 1,2,3 tags. We
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believe that a real applicative scenario is very unlikely to have queries with more than
three tags. The retrieval performances are measured by scrolling down the list and
searching the rank of the songs that have been human-annotated with the query-tags
in the ground truth; metrics are averaged through all the queries considered.

In the query-by-example task, the query is a song and the retrieval function ranks
the songs according to their similarity with it. The quality of the ranking list is mea-
sured with respect to the songs having the most similar semantic description with the
seed in the human-based ground truth. This set is built by computing the KL diver-
gence between the semantic descriptions of the query and of all the other items in
the collection, and by retaining the items showing the least divergence. In particular,
for each song, we generally consider 30 and 50 relevant documents for CAL500 and
CAL10k, respectively (we assume that a larger collection may imply a larger number
of relevant songs). Additionally, Section 7.2.2 shows the results achieved using a differ-
ent number of relevant documents in CAL500. Hence, the purpose of the evaluation is
to search the rank of the relevant songs in the ranking list, and to average the metrics
over the size of the query set.

6.3. Evaluation Metrics for Retrieval

For both tasks, we evaluate the ranking lists using standard information retrieval
metrics [Manning et al. 2008]. We mostly focus on the top of the list, because it is the
most interesting part for the user of a semantic music discovery engine. In fact, unlike
other media where evaluation is almost immediate (e.g., many retrieved images can be
presented at the same time, and it takes less than one second to address the relevance
of an image), evaluating song relevance is a more time-consuming task. In fact, the
user has to select and play the songs in the retrieved list and listen to at least several
seconds of each song. Therefore, it is unlikely that a user would listen to more than
the first 20–25 songs (i.e., which may correspond to about 2 hours of music).

In particular, we report the following metrics.

— Precision at k (Pk), which measures how many good results there are at the begin-
ning of the list, reporting the fraction of relevant documents in the top-k positions.
The values of k used in the experiments are 1, 3, 5, 10, and 20.

— Mean Reciprocal Rank (MRR), which averages the inverse of the rank of the first
correct answer for each single query. MRR is a measure of the level of the ranking
list at which the information need of the user is first fulfilled.

— Mean Average Precision (MAP), which averages the precision at each point in the
ranking list where a song is correctly retrieved. Precision is defined as the fraction
of retrieved documents which is relevant. MAP is a measure of the quality of the
whole ranking list.

6.4. Compared Models

We compare the proposed model with some alternative approaches, which use either
tags or acoustic similarity alone, as well as their combinations. We implemented these
strategies in order to have a number-based comparison using the same music represen-
tations. A more general comparison with another state-of-the-art approach is provided
in Section 8. In the experiments, we consider the following approaches.

— TAG-Based (TAG). This carries out retrieval using the semantic descriptions alone
[Turnbull et al. 2007, 2008b]. This model ranks the songs according to their KL
divergence with the query-tags. In the query-by-description scenario, a k-tag query
is mapped into a query multinomial q = {q1, ...,q|V |}, where qi = 1 if tag wi of V is
in the query, and qi = ε where 1 >> ε > 0 otherwise. This multinomial is then
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normalized to one. In the query-by-example scenario q is the semantic multinomial
of the seed song. Once we have a query multinomial q, we rank all the songs in the
database by their KL divergence with it.

— Acoustic-Based (AB). This ranks the songs by their direct acoustic similarity with
the query [Mandel and Ellis 2005]. This model easily fits the query-by-example
paradigm; conversely, it needs an extra effort to be adapted to the query-by-
description scenario. In fact, we need to define a song to be used as starting point
for the acoustic similarity (i.e., we rank songs according to their similarity with this
song). In these experiments, for each query-tag we consider as seed the song ranked
first by the TAG model, and we rank the other songs by the acoustic similarity with
it (note that the ranking lists resulting with the TAG and AB models achieve the
same P1).

— Weighted Linear Combination (WLC). This combines acoustic and semantic simi-
larities in a single measure through a weighted linear combination12. In particu-
lar, if TAG(x, y) and AB(x, y) are the similarity values between the general songs
x and y in the corresponding models, the WLC-based similarity is WLC(x, y) =
0.6 · TAG(x, y) + 0.4 · AB(x, y). We chose the weighting coefficients that maximized
the retrieval results. Retrieval is carried out in the same way as the AB model, lead-
ing to the same considerations. Simple linear combination may also be performed on
the ranks of TAG and AB models (i.e., use independently the two models to rank the
songs and then combine the ranking lists). However, in preliminary experiments,
we did not obtain good results and we prefer to discard this option.

— Post-Hoc Audio-Based Reranking (PAR). This incorporates audio similarity into an
already existing ranking [Knees et al. 2009]. It was originally proposed to improve
a text-based music search engine that indexes songs based on related Web docu-
ments13. In our case, the algorithm modifies the ranking achieved by the TAG model
by also including the acoustic similarity. Briefly, for each song x the PAR approach
computes a new score that combines the tag-based rank of x, the tag-based rank
of all the songs having x in their acoustic neighborhood, and the rank of x in all
these neighborhoods. The songs are then sorted according to this new score. In the
implementation, we followed the details reported in the referred paper.

Additionally, each experiment includes as baseline a random model (Rand). The lat-
ter annotates songs by sampling ten tags from the vocabulary according to their prior
distribution (i.e., it stochastically generates tags from a pool including the most fre-
quently used annotations in the ground truth). These random semantic descriptions
are then used to retrieve songs in the same way as the TAG model.

7. RESULTS

After discussing some preliminary results, this section provides the retrieval results
on the CAL500 and CAL10k datasets. In all the tables reported, the symbol (∗) after
a numeric value means that the difference with the corresponding second best mea-
surement in that experiment is statistically significant (p < 0.05, sign-test). The same
statistical assumption is also implied when we talk about “significant improvements”

12In preliminary experiments we tested other different simple ways of combining acoustic and semantic
similarities, including max, min, median, and geometric mean. For the sake of brevity we do not report
these preliminary experiments; however, the weighted sum was the approach that achieved the best results.
13 Knees et al. [2009] also propose a mechanism that incorporates the acoustic similarity directly in the tag-
based scoring scheme. However, this approach is less general and relies on information about the number of
Web pages mined when associating a tag to a song. Additionally the results described in that paper for this
methodology are not significantly different to the PAR ones. For these reasons, we did not include it in this
study.
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Fig. 3. The effects of R, that is, the number of edges outgoing from each state, on retrieval performances
in terms of P10 (CAL500 dataset, social tags). (a) 1-tag query-by-description (149 tags) and (b) query-by-
example (502 songs). The dashed line represents the performances of the TAG model, which is considered
as baseline.

in the text without providing any supporting number. Along this section, for brevity,
we will refer to our model as “nGBR” (novel Graph-Based Ranking).

7.1. Preliminary Experiment

Although the proposed framework is a general model, it is expected that some choices
on the parameters affect the quality of the delivered ranking lists. In particular, as
introduced in Section 3.1, one possible tuning option regards the connectivity of the
model, that is the possibility of limiting the number of edges in the graph in order
to improve scalability. In particular, the idea is to include in the model (i.e., in the
transition matrix) for each state Si only a subset R(Si) of its outgoing transitions, that
is, the ones towards the |R(Si)| states which represent the most acoustically similar
songs to song i.

In this experiment, we consider each state in the model having the same number
of outgoing edges (i.e., R = |R(Si)| = |R(Sj)| for each generic states Si and Sj), we
range this value from 5% to 100% of the collection size, and we measure the P10 on
the obtained ranking lists14. Results are reported in Figure 3(a) for 1-tag query-by-
description (149 queries, i.e., all the tags in the vocabulary) and Figure 3(b) for query-
by-example (502 query-songs, i.e., all the songs in the collection). In this preliminary
experiment we use only the social tags (i.e., the Last.fm tags); the dashed line shows
the performances of the TAG model which is considered as baseline.

As can be seen, the value of R strongly affects the retrieval performances. In the
query-by-description, the model works better when R is small (between 5%–20% of the
collection size), meaning that a little connected model gives higher-quality results. We
believe this may depend on the fact that a few connections produce more discriminative
similarity transitions which better combine with the observations. Conversely, in the
query-by-example task, the graph needs to be more connected to obtain satisfactory
ranking lists (i.e., R greater than 40% of the collection size).

14We consider each state having the same number of outgoing edges. Nevertheless, more sophisticated tech-
niques could be exploited to set this number differently according to the characteristics of the song mapped
in each state.
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Table I. The Retrieval Results for 1-Tag Query-by-Description with CAL500

1-tag query-by-description - 149 cases
Semantic Model P1 P3 P5 P10 P20 MRR MAP

Rand 0.214 0.185 0.186 0.174 0.161 0.358 0.179

cb-auto-tag

TAG 0.295 0.315 0.334 0.340 0.336 0.463 0.304
AB 0.295 0.352 0.347 0.331 0.300 0.481 0.272

WLC 0.295 0.341 0.360 0.340 0.319 0.471 0.279
PAR 0.369 0.395 0.373 0.359 0.341 0.519 0.306

nGBR 0.405∗ 0.420∗ 0.405∗ 0.380 0.355 0.561∗ 0.331

Last.fm

TAG 0.375 0.396 0.390 0.365 0.340 0.537 0.270
AB 0.375 0.331 0.311 0.301 0.269 0.532 0.251

WLC 0.375 0.341 0.319 0.313 0.282 0.536 0.255
PAR 0.411 0.399 0.389 0.370 0.345 0.569 0.276

nGBR 0.461∗ 0.440∗ 0.431∗ 0.400∗ 0.347 0.629∗ 0.275

We consider 149 queries, that is all the distinct tags in the vocabulary.

Following these results and considerations, from now on, we generally set R = 0.1·N
for query-by-description, and R = 0.6 · N for query-by-example, where N is the number
of states in the model.

7.2. Results on CAL500

This section presents the retrieval results for the CAL500 dataset; the nGBR model
refers to the parameters setting discussed in the previous section. In this experiment,
we computed the content-based autotags independently using a 5-fold cross-validation
process (i.e., 100 different songs to be tagged in each fold), though we evaluate the
retrieval algorithms over the entire dataset. It could be argued that applying the
retrieval algorithms to each annotating set and then averaging the results over the
folds would be a more appropriate procedure in order to keep train and test sets com-
pletely separate (as we do in Section 7.3 for the larger CAL10k dataset). Nevertheless,
the challenging nature of multilabel classification makes overfitting an unlikely side-
effect [Ness et al. 2009] that should not particularly affect the retrieval experiments.
Therefore, considering the limited size of the collection, we prefer to run the experi-
ments using all the songs. In fact, we believe that a retrieval experiment over the only
100 songs composing an annotation set may not be particularly relevant. At the same
time, reducing the number of folds by using less examples for training could lead to
not reliable autotags. Yet, in this way we can also provide a more relevant numerical
comparison with the performances achieved by the models using the social tags15.

7.2.1. Query-by-Description. Retrieval results for query-by-description are reported in
Tables I, IIa, and IIb, for queries composed of 1, 2, and 3 tags, respectively. While the
1-tag task is performed over all the 149 tags of the vocabulary, in the other two cases
we prefilter the query sets by considering all the tag combinations having at least 10
relevant songs in the ground truth. This is mainly done for discarding combinations
that associate contradictory descriptions (e.g., “bitter” - “sweet”, “rock” - “classical
music”). This leads to 3,684 distinct queries composed of 2 tags, and about 11,000 of

15For the sake of completeness, in a preliminary experiment we tested all the retrieval algorithms over the
5-fold annotation sets in the 1-tag query-by-description task, and we found that the results are comparable
to those achieved when using the whole collection. Indeed, for example, nGBR achieves a MAP of 0.38, while
TAG and PAR (which generally are the other best working models) achieve 0.33 and 0.34, respectively. In
a similar way, the MRR achieved by nGBR improves by about 0.08 and 0.12 the performances of PAR and
TAG, respectively.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.



A Probabilistic Model to Combine Tags and Acoustic Similarity for Music Retrieval 8:21

Table II. The Retrieval Results for Query-by-Description Using a Combination of 2 (a) and 3 (b) Tags over
All the 149 Tags of the CAL500 Dataset

2-tag query-by-description - 3,684 cases

Semantic Model P5 P10 MRR

Rand 0.074 0.074 0.190

cb-auto-tag

TAG 0.185 0.190 0.335
AB 0.195 0.183 0.344

WLC 0.196 0.188 0.341
PAR 0.199 0.201 0.361

nGBR 0.234∗ 0.233∗ 0.401∗

Last.fm

TAG 0.148 0.140 0.309
AB 0.149 0.151 0.316

WLC 0.166 0.159 0.327
PAR 0.152 0.144 0.319

nGBR 0.201∗ 0.190∗ 0.384∗

3-tag query-by-description - 3,000 cases

Semantic Model P5 P10 MRR

Rand 0.047 0.048 0.140

cb-auto-tag

TAG 0.106 0.101 0.238
AB 0.151 0.124 0.261

WLC 0.134 0.136 0.261
PAR 0.139 0.126 0.298

nGBR 0.169∗ 0.178∗ 0.341∗

Last.fm

TAG 0.081 0.085 0.233
AB 0.091 0.096 0.222

WLC 0.101 0.099 0.233
PAR 0.099 0.096 0.241

nGBR 0.129∗ 0.119∗ 0.296∗

Each query has at least 10 relevant songs. For the 3-tag scenario, we sample a random subset of 3,000 queries.

3 tags; in this last case, we retain a random sample of 3,000 queries, assuming them
generally enough to evaluate the task.

As can be seen, the proposed model generally outperforms all the other algorithms
over all the experiments, both with content-based autotags and Last.fm tags. The
major benefits are at the top of the ranking list; in particular, the improvements in P1,
P3, P5, and MRR are statistically significant compared to the PAR algorithm (which
generally is the second best model), as well as to the TAG model. Conversely, retrieval
along the full ranking list tends to decrease the effectiveness, as can be inferred in
Table I by the minor improvement of the MAP. Nevertheless, we argue again that the
most important aspect of a music ranking list is the quality at its top. For this reason
Tables IIa and IIb report top-ranking measures only; in these scenarios, nGBR works
even better with significant improvements also for P10, showing a good robustness to
multitag queries.

Note that most of the results based on Last.fm tags tend to show competitive preci-
sion at the top and worse along the whole list with respect to the results obtained with
the content-based autotags. This depends on the fact that the Last.fm representation
is rather sparse and noisy, since tags may also not have been assigned. When a tag is
not assigned to a song, the retrieval algorithms rank that song randomly or just solely
on the basis of acoustic similarity. This leads to a less precise bottom part of the list,
which affects the measurements. Conversely, tags generated through the autotaggers
are more stable since each song has a relevance value for each tag, and no song is
retrieved randomly or according to acoustic similarity alone.

A deeper analysis of the results in the 1-tag query-by-description showed that the
improvement in P10 with respect to the TAG model involves 123 and 120 tags for the
content-based autotags and the Last.fm tags, respectively (about 80% of the queries);
conversely, the PAR algorithm improves only about 70% of the queries. The improve-
ment generally happens in all the tag categories, meaning that there are no types
of tags that gain a major benefit (CAL500 spans different categories of tags, such as
genre, emotion, usage, etc.). A similar result is achieved with 2-tag queries, while
the improvement in the 3-tag scenario is even greater with about 88% of the queries
outperforming the TAG model in terms of P10.

Lastly, Table III compares the top five positions in the ranking list achieved by
nGBR and TAG for 5 representative 1-tag queries (content-based autotags). This table
shows some examples of the results delivered to a user of a semantic music discovery
engine, especially highlighting the benefits introduced by the proposed framework. For
example, in response to the query “emotional”, nGBR ranks five relevant songs at the
top, compared with only one ranked by the TAG model.
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Table III. The Top 5 Songs in the Ranking Lists Obtained by the nGBR and TAG Models for 5 Representative
1-Tag Queries from the CAL500 Vocabulary

Rank nGBR TAG

classic rock
1 The Cure - Just like heaven (*) Electric Frankenstein - Teenage shut down
2 Bruce Springsteen - Badlands (*) The Cure - Just like heaven (*)
3 The Adverts - Gary Gilmore’s eyes (*) Joy Division - Love will tear us apart
4 The Metallica - One (*) The Adverts - Gary Gilmore’s eyes (*)
5 Electric Frankenstein - Teenage shut down Boston - More than a feeling (*)

trumpet

1 B.B. King - Sweet little angel (*) Paul McCartney - Ebony and ivory
2 Paul McCartney - Ebony and ivory Carl Perkins - Matchbox
3 Beach Boys - I get around B.B. King - Sweet little angel (*)
4 The Doors - Touch me (*) Captain Beefheart - Safe as milk
5 Carl Perkins - Matchbox The Jefferson Airplane - Somebody to love

driving
1 Buzzcocks - Everybody’s happy nowadays Radiohead - Karma police
2 Weezer - Buddy Holly (*) Tom Waits - Time
3 Big Star - In the street (*) Drevo - Our watcher, show us the way
4 Pearl Jam - Yellow Ledbetter (*) Buzzcocks - Everybody’s happy nowadays
5 Radiohead - Karma police The Napoleon Blown Aparts - Higher education

happy

1 Jerry Lee Lewis - Great balls of fire (*) Creedence CR - Travelin’ band (*)
2 Creedence CR - Travelin’ band (*) Jackson 5 - ABC (*)
3 Louis Armstrong - Hotter than that Ray Charles - Hit the road Jack
4 Rolling Stones - Little by little Louis Armstrong - Hotter than that
5 Stevie Wonder - For once in my life (*) ABC - Poison Arrow

emotional
1 Alicia Keys - Fallin’ (*) Van Morrison - And it stoned me
2 Shakira - The one (*) Clarence Ashley - The house carpenter
3 Chantal Kreviazuk - Surrounded (*) Booker T and the MGS - Time is tight
4 Evanescence - My immortal (*) Stooges - Dirt
5 Carpenters - Rainy days and Mondays (*) Alicia Keys - Fallin’ (*)

We refer to the content-based autotags experiments; relevant songs are listed in bold and marked as
“significant” (i.e., (*)).

7.2.2. Query-by-Example. The query-by-example results for CAL500 are presented in
Table IV. We use all the songs of the dataset as query; therefore the results are aver-
aged over 502 results. We consider 30 relevant songs for each query, which have been
gathered as described in Section 6.2.

As can be seen, also in this scenario nGBR generally outperforms all the other al-
gorithms. Major improvements are achieved with the Last.fm tags (significant for P1,
P3, P10, and MRR). These results show that using the proposed model to combine
completely different sources of information (in this case social tags and music content)
is a competitive strategy. The improvement of P5 is not significant at the 5% level;
however, the sign-test obtains p = 0.056, that is, very close to being significant. Con-
versely, results with the content-based autotags show significant improvement for the
P3, P10, and MRR only.

It should be noted that this evaluation may be slightly affected by the algorithm
used to choose the relevant documents. In fact, for each query we automatically
choose in a heuristic way the first 30 most similar songs according to the human-based
annotations. Nevertheless, some queries could not have 30 “true” similar songs.
For example, the tag “swing” has only 5 human-annotated examples in the ground
truth; this means that these songs could not have up to 30 songs which can be truly
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Table IV. The Retrieval Results in Query-by-Example with 502 Queries over the
CAL500 Dataset

query-by-example - 502 cases
Semantic Model P1 P3 P5 P10 P20 MRR MAP

Rand 0.065 0.071 0.073 0.071 0.066 0.205 0.074
AB 0.178 0.163 0.161 0.141 0.129 0.341 0.119

cb-auto-tag

TAG 0.260 0.217 0.187 0.141 0.133 0.410 0.133
WLC 0.254 0.208 0.184 0.143 0.139 0.406 0.134
PAR 0.265 0.210 0.189 0.146 0.138 0.407 0.136

nGBR 0.286 0.230∗ 0.201 0.176∗ 0.152 0.458∗ 0.145

Last.fm

TAG 0.197 0.177 0.163 0.153 0.139 0.359 0.131
WLC 0.204 0.184 0.179 0.159 0.146 0.370 0.132
PAR 0.201 0.176 0.171 0.158 0.146 0.359 0.126

nGBR 0.281∗ 0.222∗ 0.197 0.187∗ 0.161 0.443∗ 0.145

considered similar in the dataset (“swing” is quite a strong discriminative music
genre). Therefore, the evaluation could have also been done by searching songs that
are not truly relevant (i.e., these songs are in the top-30 only because less dissimilar
to the query than the others).

For this reason we also provide Figure 4, which depicts the performances of the dif-
ferent models in terms of P10 and MRR by ranging the automatic number of relevant
songs from 5–100. As can be seen, nGBR generally outperforms all the other models in
any case. Note that when the number of relevant documents is higher, all the models
tend to converge to similar performances.

7.3. Results on CAL10k

This section presents the results with the CAL10k database. The purpose of the fol-
lowing experiment is two-fold. On the one hand, we aim at testing the framework with
a larger collection, both in terms of tags and songs. On the other hand, the test also in-
volves the music content descriptors; in fact, as mentioned in Section 5.1, the CAL10k
songs must be represented using delta-ENTs to accommodate copyright issues.

From the original semantic vocabulary we retain only the tags with at least 10
examples in the ground truth in order to have a reasonable minimum number of
songs to search during the evaluation. The final vocabulary is then composed of 485
distinct tags (119 “genre” and 366 “acoustic” tags). Note that no subjective tags such
as emotions or usages are included in this database. With this dataset, we use only
the content-based autotags for semantically describing each song in order to have
more dense descriptions. In fact, the Pandora-based CAL10k tags are assigned to
songs by experts and musicologists, and sometimes prove too specific and technical to
be also given by normal Last.fm users (e.g., “slide/pedal steel guitars”, “electric guitar
wall-o-sound”, “dominant melodic hooks”). Therefore, the resulting Last.fm-based
descriptions would be too sparse to deliver reliable ranking lists (i.e., where a few
random-based sorts are involved) for evaluation purposes.

In this case, the size of the collection makes it possible to perform a proper cross-
validation experiment, thus keeping the training songs used to estimate the tag models
completely separate from the songs used in the retrieval experiments. With this aim in
mind we run a 5-fold cross-validation process, using about 2,000 songs in each training
set and the remaining 8,000 in the test set (i.e., we assign the content-based autotags
using the estimated tag models to the songs in the test set and we apply the retrieval
algorithms on this set only). The split is done by considering each song being in the
training set exactly once, and additionally by applying an artist-filter which prevents
having the same artist on both training and test sets.
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Fig. 4. Retrieval results in query-by-example for different numbers of relevant songs in terms of P10 and
MRR; (a),(b) content-based autotags, (c),(d) Last.fm tags.

During preliminary experiments, not reported here for brevity, we saw that the
framework built using all the songs of the database leads to low retrieval results. We
believe this may depend on the normalization performed on the transition probabilities
to satisfy the stochastic requirement that help to reduce the numerical sparsity of the
relationships. In fact, with many edges outgoing from each state (e.g., about 4,800
for query-by-example), the normalization leads to similar transition values which do
not discriminate well the paths across the model.

Nevertheless, we argue that in the real scenario of commercial search engines, it
would be computationally complex to build the graph with all the millions of songs
indexed as well. For this reason, we propose using the nGBR model to refine the
retrieval on a reliable subset of the collection (i.e., reliable in the sense that ideally
all the relevant songs are in this subset). One method to extract this subset is to
precluster the songs using metadata such as title, artist, year, user preferences, etc.
Since we search by tags and we do not have many other additional pieces of infor-
mation to exploit in this scenario (e.g., artists similarity), we use the TAG model as
clustering algorithm. In particular, for each query, we consider the top 3,000 results
achieved by the TAG ranking and we use nGBR to rerank this subset. We measured
that the recall-at-3,000 (i.e., the number of relevant documents retrieved over the total
number of relevant documents) achieved by the TAG model is about 85% for both tasks;
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Table V. The Retrieval Results for the 1-Tag Query-by-Description with the 485 Tags of
the CAL10k Dataset

1-tag query-by-description - 485 cases
Semantic Model P1 P3 P5 P10 P20 MRR MAP

Rand 0.031 0.030 0.025 0.024 0.022 0.079 0.024

cb-auto-tag

TAG 0.219 0.212 0.218 0.228 0.226 0.364 0.148
AB 0.219 0.256 0.251 0.211 0.193 0.392 0.089

WLC 0.219 0.249 0.253 0.221 0.195 0.378 0.119
PAR 0.277 0.259 0.258 0.236 0.235 0.436 0.108

nGBR 0.321∗ 0.296∗ 0.278 0.251 0.248 0.473∗ 0.165

Table VI. The Retrieval Results in Query-by-Example with 5,000 Random Queries in the
CAL10k Dataset

query-by-example - 5,000 cases
Semantic Model P1 P3 P5 P10 P20 MRR MAP

Rand 0.006 0.006 0.006 0.007 0.005 0.028 0.007

cb-auto-tag

TAG 0.125 0.112 0.109 0.099 0.081 0.239 0.041
AB 0.119 0.102 0.099 0.088 0.074 0.225 0.049

WLC 0.166 0.136 0.121 0.102 0.091 0.283 0.055
PAR 0.171 0.141 0.125 0.103 0.093 0.287 0.057

nGBR 0.219∗ 0.172∗ 0.150∗ 0.125∗ 0.090 0.371∗ 0.058

therefore the resulting clusters can be considered reliable enough to be used as input
for the proposed algorithm.

We use nGBR with the same parameters guideline defined in Section 7.1. The query-
by-description task is performed over 485 1-tag queries (i.e., all the tags of the vocab-
ulary); results are reported in Table V. We did not investigate the 2-tag and 3-tag
queries scenario with this dataset. As can be seen, the proposed model generally leads
to the best results again. First, we obtained a significant improvement with respect
to TAG and AB in most of the metrics; additionally, results are significantly better on
P1, P3, and MRR, and never worse than the PAR model (which generally is the second
best model at the top of the ranking lists). It can also be noted that AB works better
than with CAL500; this is due to the more qualitative timbre descriptions provided by
the delta-ENT features.

Lastly, Table VI shows results for query-by-example; in this experiment we pseudo-
randomly sampled 1,000 songs from each test set to use as seed queries (i.e., globally
we evaluate the system over 5,000 different queries)16. Again, nGBR outperforms the
other models with significant improvements at the top of the ranking list.

8. DISCUSSION AND FUTURE WORKS

This article presents a novel approach for music retrieval based on a graph-based rep-
resentation of a music collection that combines acoustic similarity and tags in a single
probabilistic framework. Each state of the model represents a song of the music collec-
tion, where the weight of the edges is ruled by acoustic similarity between the songs,
while tags define the state emissions. A decoding algorithm is used to retrieve the list
of songs that best responds to a user query, which is expressed either as a combination
of tags or as a seed song. In the presence of tagged music library, the framework does
not require any additional preprocessing steps (e.g., training); additionally, efficiency

16With the term pseudo-random we mean that choosing the query songs for each test set was actually based
on a random process, but then a picked song that was discarded and replaced (with the same process) if
already used as a query in a previous fold.

ACM Transactions on Information Systems, Vol. 30, No. 2, Article 8, Publication date: May 2012.



8:26 R. Miotto and N. Orio

is guaranteed by subretrieval steps which reduce the waiting time of the user. This ap-
proach aims at integrating and improving state-of-the-art systems for semantic music
search and discovery engines, recommendation, and playlist generation.

Experimental evaluation shows that the proposed model generally outperforms
other state-of-the-art approaches that rank songs by a single source of information
alone, or by a combination of them. Improvements are more significant at the top of
the ranking lists and when the size of the collection is smaller. In contrast, a larger
collection brought up some performance issues; however, the model is particularly suit-
able for reranking a cluster of relevant candidates efficiently retrieved from a collec-
tion. An interesting consideration that may be inferred from the experimental results
regards the significant improvement achieved with respect to the tag-based retrieval.
In fact, Barrington et al. [2009] show that a recommender system built on content-
based autotags (i.e., GMM model) alone can expect to perform similarly or even better
than Apple iTunes Genius when exploring the long tail. Genius is based on collabo-
rative filtering of huge amounts of user data; however, in the case of less well-known
music this massive quantity of data is missing and Genius is unable to make good
recommendations. In the content-based autotags scenario, our system improves the
tag-based retrieval alone and it is therefore expected to improve the state-of-the-art
for music discovery of the long tail also with respect to commercial systems built over
collaborative filtering techniques.

To the best of our knowledge, the models included in the comparison represent the
state-of-the-art concerning systems that combine acoustic similarity and tags for mu-
sic search and discovery. Alternative approaches in the literature use other sources
of information, such as artist- and user-related data, or Web documents, and combine
them for other retrieval tasks (e.g., artist clustering and recommendation, classifica-
tion). However, a comparison with these methodologies goes beyond the scope of this
article. We believe that the high generality of the model makes it possible to integrate
such different descriptions as well.

Nevertheless, one additional approach that should be mentioned is Turnbull et al.
[2009]; in this work, the authors combine semantic descriptions (i.e., SMNs) for a mu-
sic discovery task. In particular, they consider content-based autotags, social tags,
and tags mined from Web pages, while the combination is carried out through three
different machine learning approaches. Experiments on 72 tags of CAL500, one of
the collections used in our experiments, show that the combination approach called
Calibrated Score Averaging (CSA) outperforms the others (including the use of single
descriptors) in terms of MAP (1-tag query-by-description). When examining each tag
individually, they report that the percentage of tags that are improved by each com-
bined model with respect to the best retrieval achieved using individual descriptors
ranged from 15%–27%; in particular, CSA improves 22% of the tags. While a global
direct comparison based on the absolute value of the measures cannot be done because
of the smaller vocabulary and of the shorter ranking lists due to the cross-validation
procedure, we can compare improvements when tags are taken individually. To this
end, we detect that for experiments in query-by-description using a single tag, the pro-
posed model improves MAP for 67% of the content-based autotags and 54% for Last.fm.
This higher improvement may be due to the fact that our approach exploits the graph
structure induced by the acoustic similarity between all the songs in the collection.

Future work can be carried out in different directions. First, the integration with
collaborative filtering techniques can lead to a more powerful hybrid discovery system
which could provide better recommendations for all music. For instance, this can be
done by exploiting user-related data in the definition of transition probabilities to take
into account the subjectivity of music similarity, thus without modifying the retrieval
algorithm. Second, it is possible to study the application of the retrieval framework
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when dealing with query tags which dynamically change over time; however, this
would first require the definition of an appropriate ground-truth dataset for the task.

Another possible future direction concerns the inversion of the roles played by
acoustic descriptors and tags. That is, emissions can be related to the acoustic con-
tent, whereas transitions probabilities can be based on semantic similarity. In the
formulation proposed in this article, we use tags as state emissions because this is
more naturally related to the way humans describe music (which is by textual seman-
tic labels), and because in this way we can query the model using both tags and seed
songs. Conversely, the reversed formulation allows for querying the model using only
seed songs, because the sequence of observations can be defined by audio feature vec-
tors only. Nevertheless, using the acoustic content as state emissions, and therefore as
means to query the model, could be exploited in other audio-related search operations.

Lastly, the high generality of the model makes it suitable for other media, such as
images and videos. In particular, we intend to explore its applicability to image re-
trieval tasks, where both textual descriptors and content-based features are available.
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