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A PIPELINE ARCHITECTURE FOR FACTORING LARGE INTEGERS
WITH THE QUADRATIC SIEVE ALGORITHM*

CARL POMERANCET, J. W. SMITHf AND RANDY TULER#

Abstract. We describe the quadratic sieve factoring algorithm and a pipeline architecture on which it
could be efficiently implemented. Such a device would be of moderate cost to build and would be able to
factor 100-digit numbers in less than a month. This represents an order of magnitude speed-up over current
implementations on supercomputers. Using a distributed network of many such devices, it is predicted much
larger numbers could be practically factored.
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1. Introduction. The problem of efficiently factoring large composite numbers has
been of interest for centuries. It shares with many other basic problems in the sciences
the twin attributes of being easy to state, yet (so far) difficult to solve. In recent years,
it has also become an applied science. In fact, several new public-key cryptosystems
and signature schemes, including the RSA public-key cryptosystem [10], base their
security on the supposed intractability of the factoring problem.

Although there is no known polynomial time algorithm for factoring, we do have
subexponential algorithms. Over the last few years there has developed a remarkable
six-way tie for the asymptotically fastest factoring algorithms. These methods all have
the common running time

(1) L(N)=exp{(1+0(1))VIn NInIn N}

to factor N. It might be tempting to conjecture that L(N) is in fact the true complexity
of factoring, but no one seems to have any idea how to obtain even heuristic lower
bounds for factoring. The six methods are as follows:

(i) The elliptic curve algorithm of Lenstra [6];

(ii) The class-group algorithm of Schnorr-Lenstra [11];

(iii) The linear sieve algorithm of Schroeppel (see [1] and [8]);

(iv) The quadratic sieve algorithm of Pomerance [8], [9];

(v) The residue list sieve algorithm of Coppersmith, Odlyzko and Schroeppel [1];

(vi) The continued fraction algorithm of Morrison-Brillhart [7].

It might be pointed out that none of these methods have actually been proved to
have the running time L(N), but rather there are heuristic arguments that give this
function as the common running time. The heuristic analyses of the latter four
algorithms use a new (rigorous) elimination algorithm of Wiedemann [13] for sparse
matrices over finite fields. (This method may in fact be a practical tool; this is discussed
further below.)

It should also be pointed out that to achieve the running time L(N), method (vi)
uses a weak form of the elliptic curve method as a subroutine.

As a last comment, the elliptic curve method has L(N) as a worst-case running
time, while the other five methods have L(N) as a typical running time. The worst
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case for the elliptic curve method is when N is the product of two primes of about
the same length. Of course, this is precisely the case of interest for cryptography.

A proof that L(N) is the correct asymptotic complexity for factoring would of
course be sensational. One corollary would be that P # NP. It seems to us, however,
that of equal importance to practicing cryptographers is a complexity bound valid for
finite values of N. Of course, such a bound necessarily enters into the amount of
resources one is willing to invest in the problem.

To be specific, what is the largest number of decimal digits such that any number
with this many or fewer digits can be factored in a year using equipment that would
cost $10,000,000 to replace? The dollar amount is not completely arbitrary; it is the
order of magnitude of the cost of a new supercomputer. An answer to this question
is not a fundamental and frozen constant, but rather a dynamic figure that reflects the
state of the art at a given point in time. Nevertheless, it is an answer to precisely this
kind of question that practicing cryptographers need.

Given an actual experiment where the running time is less than a year, performance
for a full year can be extrapolated using the expression (1) (but ignoring the “o0(1)”).
The factoring algorithms listed above are all “divide and conquer,” that is, with k
identical computers assigned to the problem, the number will be factored about k
times as fast. Thus if an actual experiment involves equipment costing less than
$10,000,000, again one can extrapolate.

Here are two examples. In 1984, the Sandia National Laboratories team of Davis,
Holdridge and Simmons [3] factored a 71-digit number in 9.5 hours on a Cray XMP
computer. Moreover, the algorithm they used, the quadratic sieve, has running time
L(N). Since

lyear  L(10'")
9.5hours L(107")’

we thus predict that the Sandia group could factor any 101-digit number in a year-long
run on a Cray XMP.

The other example comes from some recent work of Silverman who has imple-
mented the quadratic sieve algorithm on a distributed network of 9 SUN 3 workstations.
Although at retail a SUN 3 is fairly expensive, it may be fairer for these purposes to
use a wholesale price for a stripped down version, say $5000 each. With this system,
which we value at $45,000, Silverman was able to factor an 81-digit number in one
week. Since

1year 10,000,000 L(10")

1week 45000  L(10%")’
we predict that he would be able to factor any 126-digit number in a year-long run
with 2000 SUN 3’s.

In this paper we shall describe a machine which should cost about $50,000 to
build and which should be able to factor 100-digit numbers in two weeks. This
custom-designed processor will implement the quadratic sieve algorithm. Since

1year 10,000,000 L(10'*)
2weeks 50,000  L(10'%)’
we predict that with $10,000,000 any 144-digit number could be factored in a year.
The cost to factor a 200-digit number in a year with this strategy would be about 10'"
dollars—or only 5 percent of the current U.S. national debt!

2. Combination of congruences factorization algorithms. To properly describe the
factoring project, it is necessary to begin with a description of the quadratic sieve (qs)
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as it will be implemented. This is in fact a fairly complex algorithm with many stages.
Some of these stages are common to other factoring algorithms, other stages are specific
to gs.

The gs algorithm belongs to a family of factoring algorithms known as combination
of congruences. With these, the basic goal in factoring N is to find two squares X7,
Y? with X*>= Y*mod N. If these squares are found in a random or pseudorandom
fashion and if N is composite, then with probability at least 3, the greatest common
factor (X — Y, N) will give a nontrivial factorization of N. This greatest common factor
can be computed very rapidly using Euclid’s algorithm.

The two congruent squares X~ and Y? are constructed from auxiliary congruences
of the form

2 u?=v?w, mod N, u?# v’w,.

If some nonempty set of indices I can be found such that [,_, w; is a square, we can
let

X =[] u;mod N,

iel

YE(H v,~)<H w,~>1/2 mod N.

iel iel

This special set of indices I can be found using the techniques of linear algebra.
In fact, if the number w; appearing in (2) has the prime factorization

w; = (=1)% ] pju,
j=1

where p; denotes the jth prime and there are only finitely many j for which «;;>0,
then let & denote the vector (aq;, a,;, - * ). Then the following two statements are
equivalent for finite sets of indices I:

(i) TI,.; w: is a square;

(i) ¥,., @&=0mod 2.

Thus the algorithmic problem of finding I (when given a collection of integers w; and
their prime factorizations) is reduced to the problem of finding a nontrivial linear
dependency among the vectors &; over the finite field with two elements.

For this method to work, we need the prime factorizations of the numbers w;
appearing in (2). It is the difficulty in finding enough completely factored w; so that
a linear dependency may be found among the &; that is the major bottleneck in the
combination of congruences family of algorithms.

This bottleneck is ameliorated by discarding those w; that do not completely factor
with small primes. This is a good plan for two reasons. First, those¢ w; with a large
prime factor probably will not be involved in a dependency. Second, those w; that can
be factored completely over the small primes can be seen as having this property with
a not unreasonable amount of work. The set of small primes used is fixed beforehand
and is called the “factor base.”

3. The quadratic sieve algorithm. To make the above factoring scheme into an
algorithm, we need a systematic method of generating congruences of the shape (2)
and a systematic method of recognizing which w; can be factored completely over the
factor base. In the gs algorithm, we use parametric solutions of (2). That is, we exhibit
three polynomials u(x), v(x), w(x) such that for each integral x we obtain a solution
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of (2) with u(x) = u;, v(x) = v;, w(x) = w;. Moreover, those x for which w(x) completely
factors over the factor base can be quickly found by a sieve procedure described below.

In the original description of the gs algorithm [8], only one triple of polynomials
u(x), v(x), w(x) was used, namely

u(x)=[vVN]+x, v(x)=1, w(x)=([VN]+x)*—N.
It was later found more advantageous to work with a family of triples of polynomials.

The Sandia implementation of gs used a scheme of Davis and Holdridge [2]: If p is
a large prime and w(x,)=0 mod p, 0= x, < p, then let

u,(x) = u(xo+xp), v,(x)=1, w,(x) = w(x,+xp).

A further refinement of this idea in [9] that has never been implemented is to choose
x; with w(x,)=0mod p°, 0=x, <p?, and

1
up(x)=u(x,+xp’),  vAx)=p,  wp(x)= 7 w(x; +xp?).

A different and somewhat better scheme for choosing multiple polynomials was
suggested by Peter Montgomery (see [9] and [12]). This method has been implemented
by Silverman and is the method that we too shall use. Suppose we know beforehand
that we will only be dealing with a polynomial w(x) for values of x in [-M, M),
where M is some large, but fixed integer. Then we choose quadratic polynomials w(x)
that “fit” this interval well. That is, w(M) = w(—M) = —w(0) and these approximately
common values are as small as possible.

This task is done as follows. First choose an integer a with

(3) a’*~V2N/M

and such that b>= N mod a” is solvable. Let b, ¢ be integers with

(4) b>— N =d’c, |b| < a?/2.

Then we let

(5) u(x)=a’x+b, v(x)=a, w(x) = a’x*+2bx+c.

How do we determine which values of x in [—M, M) give a number w(x) that
completely factors over the factor base? Fix the factor base as the primes p = B for which

(6) t*= N mod p

is solvable. The parameter B is fixed at the beginning of the program. We shall only
recognize those values of w(x) not divisible by any prime power greater than B.
Presumably, if B is large enough compared with typical values of |w(x)| (typical values
are about vN M), most values that factor completely with the primes up to B will,
in fact, not be divisible by any prime power greater than B.

For each prime power g = p“ = B where p is in the factor base, solve the congruence
(7) w(x)=0mod q
and list the solutions A}, A}, -, A’;(‘“. The number of solutions k(q) is either 1, 2
or 4. (Almost always we have k(q)=2.)

Next we compute integral approximations to the numbers log|w(x)| for xe
[—M, M). Because of the relationships of a, b, ¢, M, N to each other given by (3) and
(4), the values of [log |w(x)|] tend to stay constant on long subintervals of [—M, M).
For example, it is about [log (Mv'N/2)] for |x| <+v1/4 M and v3/4 M <|x|< M. It is
about [log (MVN/2)]—1 for v1/4 M <|x|<+/3/8 M and v5/8 M <|x|<+v3/4 M, etc.
Thus not only is this an easy computation for one choice of polynomial, but the results
are virtually the same for each polynomial.



A PIPELINE ARCHITECTURE FOR FACTORING 391

If g =p* = B where p is a prime in the factor base, let A(g) =log p. We compute
single precision values for the A(q). This computation can be done once; it is indepen-
dent of the polynomial used. For other integers m let A(m)=0. Then every prime
power factor of w(x) is at most B if and only if log [w(x)| =X, A(m).

We are now ready to sieve. A memory addressed by integers x in [—M, M) is
initialized to zero. For each power g = B of a prime in the factor base and each j = k(q),
we retrieve the numbers in those memory locations addressed by integers x = A’ mod g,
add A(q) to the number there, and put this result back in the same place. This is what
we call sieving and it is of central importance to the gs algorithm. In pseudocode it
may be described as follows:

For each power g = B of a prime in the factor base and
jef{l, -, k(q)} do: '
Let A=A+ [(—=M —A})/q]q (thus Ais the first numberin [~ M, M) which
is =A/, mod q)
While A<M do:
D < S(A)
S(A)«D+A(q); A« A+q.

After sieving, we scan the 2M memory locations for values near log |w(x)|. Such
a location x most likely corresponds to a value of w(x), all of whose prime power
factors are at most B. It is possible that there could be some false reports or some
locations that should have been reported that are missed. This error, which is introduced
from our approximate logarithms, should be negligible in practice.

4. Fine points. In §§ 2 and 3 we described the basic gs algorithm using Mont-
gomery’s polynomials. In this section we shall give some adornments to the basic
algorithm which should speed things up.

Use of a multiplier. We may wish to replace N in (3), (4) and (6) with kN where
k is some small, fixed, positive, square-free integer. This trick, which goes back to
Kraitchik [5, p. 208], can sometimes speed up implementation by a factor of 2 or 3.
The idea is to skew the factor base towards smaller primes. However, there is a penalty
in that the values |w(x)| are larger by a factor of vk. We balance these opposing forces
with the function

1
f(k, N)=~510g k+ Y E%,

P=B

where the sum is over primes p= B, E\"” =0 if "= kN mod p is not solvable, and

(21

__og_p, p odd and pfk,
p—1

1

%), p odd and p|k,

B =
1
ElogZ, p=2and kN =2 or 3 mod 4,

log 2, p=2and kN =5mod 8,
\ 2 log 2, p=2 and kN =1mod 8,
if *=kN mod p is solvable (see [9]).
When presented with a number N to factor, we first find the value of k which

maximizes f(k, N). In practice one can assume k<100. Also in practice, we may
replace B in the definition of f(k, N) with a smaller number, say 1000.
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Small prime variation. If g = B is a power of a prime in the factor base, then the
time it takes to sieve with one A/, is proportional to M/gq. Thus we spend more time
with a smaller g, less with a larger g. However, small g’s do not contribute very much.
For example,

L Alg) <42,
q<30

which is usually small compared to log |w(x)|. In addition, it is usually not the case
that every prime less than 30 is in the factor base and it usually is the case that a
number which factors over the factor base is not divisible by all the factor base primes
below 30. Thus only a small error is introduced by forgetting to sieve with the prime
powers below 30. By lowering the threshold which causes a value w(x) to be reported,
no fully factored values need be lost. The only penalty is possibly a few more false
reports. In fact, even this should not occur (see [9]). The small prime variation might
save 20 percent of the running time.

Large prime variation. If x is such that

log|w(x)|— ¥ A(m)<2logB,
m|w(x)

then either w(x) completely factors with the primes in the factor base, or there is some

large prime p,

B<p<B?

such that w(x)/p completely factors with the primes in the factor base. Thus, by again
lowering the threshold for reports, we can catch these values of w(x) as well. For such
a value to be eventually part of a linear dependency (see § 2), there must be at least
one other report w;(x,;) using the same large prime p. The birthday paradox suggests
that duplication of large primes p should not be so uncommon. In practice we shall
probably only try to use those w(x) which factor with a large prime p <100 B. The
large prime variation (also used by Silverman [12]) speeds up the algorithm by about
a factor of 2 or 3. However, the larger we take B, for a fixed N, the less useful will be
this variation. It should also be noted that the large prime variation has been imple-
mented in other combinations of congruences algorithms as well.

Generation of polynomials and sieve initialization data. Both experience [3], [12]
and theory [9] suggest that it is advantageous to change polynomials fairly often. The
reason for this is as follows. On [—-M, M), the largest values of |w(x)| are about
M+ N /2. Moreover, more than half of the values are at least half this big. However,
the larger is w|(x)|, the less likely it will factor completely over the factor base. Thus
it would be advantageous to choose a rather small M. But M is directly proportional
to the time spent sieving w(x), so a smaller M translates to less time spent per
polynomial.

Since we will want to change polynomials often, we should learn to do this
efficiently. For each polynomial w(x)=a’x*>+2bx+ c given by (5) we shall need to
find a, b, ¢ satisfying (3) and (4) and we shall need to solve all of the congruences (7).
One last criterion is that a should be divisible either by a prime greater than the large
prime bound or by two primes greater than B so that we do not get duplicate solutions
of (2) from different polynomials.

One possibility, suggested in [9] and implemented in [12], is to choose a as a
prime =~(v2N/M)"? with t*= N mod a” solvable. Then we may let the solution for
t least in absolute value be b and choose c¢=(b>*— N)/a’. Since a is a prime, the
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quadratic congruence is easily solved. This then gives a legal polynomial w(x) and it
remains to solve the congruences (7) for all the powers q = B of a prime in the factor
base. By the quadratic formula, these roots (for g coprime to 2a) are given by the
expression

(8) (—b+vN)a~>mod g,

where v/N is interpreted as a residue t, mod g with tf‘,E N mod g and where a > is
the multiplicative inverse of a’ mod g. The numbers ¢, may be stored of course, since
they are used in each polynomial. However, since each polynomial uses a new value
of a in this scheme, it appears that an inversion mod q (using the extended g.c.d.
algorithm) is necessary for each g and for each polynomial.

Thanks to a suggestion from Peter Montgomery, sieve initialization can in fact be
accomplished with much less computation. The idea is to choose a as a product of /
primes g~ (vV2N/M)"?" with t*= N mod g* solvable. (The value of I here is quite
small, we plan to use /=3 or 4.) Say a=g, - - - g. Using known solutions *b; of the
congruences t>= N mod g; fori=1, - - -, |, we may assemble via the Chinese Remain-
der Theorem 2' different values of b mod a® which satisfy b>= N mod a’. Since b and
—b will give essentially the same polynomial w(x), we will get 2' ! different polynomials
for the one value of a.

Suppose now we use r primes g, -, g, and we form different values of a by
choosing ! of these primes. Thus there are (}) values of a and thus 2'7'(}) different
polynomials. If a=g; - - - g, then

9) a”’modg=g;’ - g; mod q.

Thus if the numbers g;> mod g are precomputed and stored for each i=1,- - -, r and
for each g, the computation of a > mod g need not require any more inversions. It
appears as if /—1 multiplications mod g are necessary when (9) is used to compute
a > mod gq. But if we form a new I-tuple of g’s by trading just one g for a new one
and saving an intermediate calculation, it takes only one multiplication mod q.

Here is another idea for sieve initialization that might be practical. Let p,, - - -, p;
be a set of factor base primes with each p; = 500 and with [ as large as possible so that
K =p, - - p, is still small compared with v N/M. Let f(x) = ax*+2bx+ c be a poly-
nomial with b>—ac= N, |b|<a/2, a=~+2N/KM. Consider the solutions u of f(x)=
0 mod K. For each solution u, let

() = flu+ xK).

There are 2' choices of u and for each choice we obtain a polynomial g,(x) which
may be sieved for x in [—M, M). Suppressing the details, it turns out that with a small
amount of precomputation, the sieve initialization data for each polynomial g, may
be computed with 2 additions mod q for each g. For N ~=10'", we may be able to
take I as large as 14 or 15, so that 2'* or 2'° different polynomials may be generated
in this way for the one value of K.

5. Implementation. Our implementation of the gs algorithm will have 5 stages:
(1) preprocessing, (2) sieve initialization, (3) pipe i/0, (4) pipe, (5) postprocessing.
Stages (2), (3), (4) occur simultaneously on three different devices that interact
frequently. As their names suggest, stage (1) is completed before the other stages are
begun and stage (5) is done only after all other stages have ended their work.
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Stage (1): Preprocessing. This relatively minor stage involves the creation of
various constants that are used in later stages of the algorithm. These include (i) choice
of a multiplier, (ii) creation of the factor base, (iii) solution of the congruences
t*= N mod g for each power g = B of a prime in the factor base, (iv) construction of
a list of primes g, , - - -, g, and solutions of the congruences t*= N mod g7 as discussed
in § 4, (v) computation of g;>mod q for each i=1, - - -, r and each power g = B of a
prime in the factor base.

The necessary inputs from which all of these numbers are created are N (the
number to be factored), B (the bound on the factor base), M (half the length of the
interval on which a polynomial is sieved), and r (where 4(3) is a sufficient number of
polynomials to complete the factorization of N).

Preprocessing can be completed on virtually any computer with a large memory.
For example, a SUN 3 workstation would be sufficient, even for very large numbers.

Stage (2): Sieve initialization. In this stage a three-element subset i, j, k is selected
from {1, - - -, r} and from this triple a polynomial w(x) is constructed together with
sieve initialization data. Indeed, from the preprocessed data, the sieve initializer lets
a=ggg:. and chooses b, c to satisfy (4). This then defines a polynomial w(x)=
a’x”+2bx + c. Next the sieve initializer computes A/, for each power g = B of a prime
in the factor base via the formulas (8) and (9).

The actual sieving of w(x) is performed in the next two stages. The sieve initializer
has a direct link to the pipe i/o which controls the sieving. As soon as the sieve
initialization data has been prepared, the pipe i/o and pipe cease their work on the
previous polynomial and the pipe i/o receives the data for the next polynomial.

This configuration of tasks shows how the parameters B and M are related. The
time for the sieve initializer to prepare a polynomial and sieve initialization data
depends only on B, while the time for the sieving units to sieve the polynomial on
[—M, M) with the powers g = B of the primes in the factor base depends on both M
and B. We choose the parameters B, M so that these two times are equal. In practice,
we shall choose B first and then determine empirically the value of M that works.

Since the sieve initializer will be working as long as we are sieving, it would be
desirable for it to be a dedicated piece of hardware. It is also desirable, but not crucial
for the sieve initializer to be fast. A 50 percent speed-up of the sieve initializer may
yield only a 15 percent speed-up in the total factorization time for a 100-digit number.
While not negligible, this shows that resources might be more profitably allocated
elsewhere. We are planning on dedicating a SUN 3 workstation to sieve initialization.
It is likely we could build a custom processor for sieve initialization with the same
performance as the SUN for less than $5000. Although we currently do not anticipate
building this custom processor, we nevertheless use the figure $5000 for the cost of a
sieve initializer in our estimate of the cost of the entire project.

Stages (3) and (4): Pipe i/o and pipe. It makes the best sense to give a joint
overview of these two stages since the two units work in tandem to sieve a polynomial
w(x) on the interval [—M, M) with the powers g = B of the primes in the factor base.
These units form the heart of our factorization project and will be described in detail
in §§ 5 and 6.

Since the number M will be relatively large in our implementation (for example,
we may choose M =~10°) it would take a large memory to sieve these 2M values all
at once. It would be a more efficient use of resources to use a somewhat smaller
memory; denote its length by I (In one configuration of our machine we have chosen
I=2%.) After the first I values are sieved, we then sieve the next I values and so on.
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Thus the “polynomial interval” [—~M, M) is broken into a number of subintervals of
length L

The pipe then is a unit that can sieve I consecutive values of a polynomial w(x).
The pipe i/0 is a unit that (i) receives from the sieve initializer the sieving data for a
polynomial, (ii) initializes the pipe, (iii) sends out the sieving data (A mod g, A(q))
one arithmetic progression at a time into one end of the pipe, (iv) receives processed
sieving data from the other end of the pipe and readies it for the next subinterval, (v)
receives reported ‘“‘successes” (locations x where w(x) has been completely factored)
from the pipe and sends them out to a host computer, probably the sieve initializer.

We will custom build the pipe i/o and pipe units. It is with these units, which
will be specifically designed to sieve quickly, that we hope to achieve gains over
previous implementations of the gs algorithm. The pipeline architecture is particularly
well suited to sieving with “‘adjustable stride” which the gs algorithm demands. The
usual problem of pipeline architectures, that of having software that keeps the pipe
filled, is met here by custom tailoring of the hardware and software in the same project.

The pipe i/o and pipe will not need any diagnostic circuitry. Errors caused by
hardware fault will either be detected during reporting of successes (either too few or
too many reports will signal an error) or during post processing (a false report is
detected here). It also should be noted that it is not necessary to design special
checkpoint/restart capability since the operation of the algorithm involves sieving a
new polynomial every five to ten seconds. Unlike primality testing where one glitch
can throw out an entire primality proof, the quadratic sieve is a robust algorithm where
local errors will not propagate.

Stage (5): Post-processing. Each reported success consists of four integers a, b, ¢, x
such that

(a*x+b)*=da’*(a*x*+2bx+c) mod N

and such that w(x)=a’x’+2bx+c completely factors over the factor base except
possibly for one larger prime (see § 4 for a description of the large prime variation).
The first step in post-processing is to compute the actual prime factorizations of the
various successful numbers w(x). This can be found by trial division. However, it is
possible for the pipe i/o and pipe to immediately resieve in a special mode any
subinterval in which a success is found. This special mode reports the prime powers
which “hit,” that is, divide, the number w(x). If this is done then the prime factorization
of w(x) will be nearly complete and the postprocessor will have little work for this
step. (Thanks are due to R. Schroeppel and S. S. Wagstaff, Jr. for this idea.) Without
this resieving mode, as many as 10'' multiprecision divides would be necessary in
post-processing (assuming a factor base of 10° and 10° reports). By resieving, we would
have instead about the same number of low precision additions performed on specially
tailored hardware.

Corresponding to each factorization of a w(x) we have a (sparse) 0, 1 vector of
exponents on the primes in the factor base reduced mod 2 (see § 2). The second step
in post-processing is to find several linear dependencies mod 2 among these vectors.
The third step in post-processing is to use a dependency to assemble two integers X,
Y with X*= Y?>mod N, as discussed in § 2. The fourth and final step in post-processing
is to compute (X — Y, N) by Euclid’s algorithm. If this gives only a trivial divisor of
N, another dependency is used to assemble another pair X', Y’, etc.

The most complex of these steps is the linear algebra required to find the dependen-
cies. The length of the vectors depends on how large a value of B is chosen. The
optimal choice of B for sieving may well be larger than 10°. This would lead to vectors



396 C. POMERANCE, J. W. SMITH AND R. TULER

of length about 39,000 or more (even ignoring the problem of encoding a large prime
involved in a factorization in the same 0, 1 format). To factor very large numbers we
may even wish to use vectors of length 100,000. Note that we need about as many
vectors as their length. A 10° square matrix is probably too big to store in virtual
memory on any commercially available computer (with the possible exception of a
Cray 2), even given that each matrix entry is and will remain a single bit.

Here are several options that are available for the storage and processing of such
a huge matrix. The problem of the large primes, ignored above, can be very easily
solved using a sparse encoding of the vectors and quickly eliminating large primes by
Gaussian elimination. This is quick and there is little fill-in since any factored w(x)
has at most one large prime in the interval (B, B?).

This Gaussian elimination might be continued further, but now fill-in will begin
to occur. It may be possible to then switch to the 0,1 encoding and continue with
Gaussian elimination on this smaller, but no longer sparse, problem.

A promising option is to use a sparse encoding and Wiedemann’s elimination
algorithm [13] for sparse matrices over a finite field (after the large primes have been
eliminated as described above).

An unimaginative but possible plan is to use Gaussian elimination and the 0, 1
encoding (after the large primes are eliminated), but process only two slim slices of
the matrix at any given time. This would involve a certain amount of i/o between the
central memory and disc storage.

The matrix portion of post-processing will be performed on a large mainframe
computer, perhaps the Cyber 205 at the University of Georgia. The other stages of
post-processing will be performed on the same computer or perhaps on our SUN 3.
In all, post-processing should not be time-critical for factoring; its difficulties will be
solved in software on conventional computers.

6. The pipe. As mentioned above, the pipe is a unit capable of sieving I consecutive
values of a polynomial w(x) with the powers ¢ = B of the primes in the factor base.
We now describe details of its organization.

Block processors. The pipe is segmented with each segment consisting of a section
of store and some arithmetic capability used in sieving. We call the section of store a
block, and the arithmetic capability together with the store a block processor (BP). The
size of the storage on each BP is denoted |BP|. It is necessary to choose |BP| a power
of 2; our working figure is |BP|=2"'¢ which we shall assume in the following. The word
length of this store is nominally eight bits, since this will provide the resolution required
for the approximate logarithms in the sieving process. The number of BP’s in the pipe
(#BP) is also a power of 2; our working figure is 16. The total store in the pipe is
#BPx|BP| =2 = I, the length of a subinterval that we sieve at a given time.

Subinterval processing. First, the pipe must be initialized for the subinterval. This
involves setting the contents of the BP store to a constant (we use 0), and setting the
threshold value T at which each BP will detect a result. The pipe i/o0 will direct these
operations.

Next, the sieve must be run. The pipe i/o will send out the progression records.
These are entered into the pipe as rapidly as possible. Then when they exit the pipe
they are stored in the pipe i/o for use in successive subintervals. During sieving, the
BP will add A(q) to each location at which the progression A mod g hits. Some locations
may then reach the threshold level T.
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Reports. If a BP detects that a location has exceeded the threshold value, it will
immediately report this to the pipe i/0. At the end of sieving, the address(es) that
exceeded the value is (are) reported for use in post-processing.

One refinement which increases the utility of the reports is to report not only the
address, but each of the prime powers that hit at that location. This will reduce the
work required in post-processing. We can accomplish this goal by running the sieve
“backwards” from the new set of A’s we have calculated, observing those that hit the
marked location. (There is no special need to “mark” locations, however. By setting
each A(q) =0 for the re-sieving, only locations already exceeding the report tolerance
from before cause a report to be made.) The pipe is wired so that information “‘flows”
only in one direction, so sieving ‘“backwards” must be simulated by reversing the order
of the store in the pipe.

When a reportable result is found, the BP will raise a flag called “‘report request,”
which activates a daisy chain protocol. This signal will stop all the BP’s simultaneously
in the middle of the next cycle. If the pipe i/0 has been in sieve mode, it reads from
the BP the address that caused the threshold to be surpassed and then continues to
sieve normally the rest of the subinterval. The pipe i/o then enters the re-sieve mode.
This begins with reversing the order of the store in the pipe. (In fact, it is only necessary
to reverse the order of the store of the reported address or addresses. In practice it
may be simpler to just re-initialize the key location(s) with some preset value that we
know will be above the threshold.) Next each BP is set to the re-sieve mode; this
entails subtracting, rather than adding in the address register. Recall that each A(q)
has been set to 0. Thus there will be report requests at only those marked locations
that have been preset with above threshold values. Now when there is a report request,
the pipe i/o transfers the prime power from the BP, not the address. When the
subinterval has been completely re-sieved the pipe i/o returns to sieve mode. When
the polynomial has been completely sieved, the reports are transferred to the host.

Pipe arithmetic. The arithmetic capability which is on the BP is concentrated into
address and data arithmetic units which do the following operations:

A<A+g,
D < S(A),
S(A)< D+ A(q).

Since there are two separate arithmetic units for address and data arithmetic, these
arithmetic operations can proceed in parallel. This is an important consideration in
the performance of the BP.

This arithmetic capability, while simple, allows a BP to perform several different
functions:

Initializing: While (A <|BP|){
S(A) <« 0;
A< A+1;
}

Sieving: While (A <|BP|){
S(A) < S(A)+A(q);
If (S(A)> T) {report A}
A« A+q;
}
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Reporting:  While (A > 0){
S(A)« S(A)+0;
If (S(A)>T) {report q}
A< A-gq;
}

Interconnects. Each BP is connected to both of its neighbor BP’s (predecessor
and successor). The predecessor of the first BP and successor of the last BP is the pipe
i/o unit. In addition, each BP has a bus connection to the pipe i/o unit. From the
predecessor, each BP receives the data items A, g, A(q) which are the progression
record for sieving and sends the signal “BUSY,” which while on tells the predecessor
not to send anything. To the successor, each BP sends the data items A, g, A(q) and
receives the signal “BUSY.”

From the pipe i/o bus, the BP receives initialization instructions and a report
tolerance T (valid for this BP in this subinterval run). To the pipe i/o bus, the BP
sends the signal “SUCCESS” if some S(A)> T. In this case, the A and q report values
are sent to the pipe i/o unit over this bus. The BP control modes are broadcast to the
pipe from the pipe i/0 unit over this bus as well.

Performance. The fundamental performance parameter of the BP is the cycle time
of the BP store, C. All the other performance values can be stated in terms of this value.

The time of a prime power g in a BP is at most [|BP|/q]x2C. That is, each sieve
step is accomplished in two cycles. To see how this can be done we consider the worst
possible case, namely when several arithmetic progressions each successively hit exactly
once in a particular BP. Thus in two cycles, the BP needs to receive the sieving data,
recognize that there is a hit in this BP, do the sieving, see if there is a SUCCESS,
recognize that the arithmetic progression does not hit a second time, and send out the
altered sieving data. Also we shall see in the next section that the sieving data is not
sent all in one cycle, but the A value is sent in one cycle and the g, A(g) values are
sent in the next cycle. This worst case is outlined in Table 1 which shows what happens
to two consecutive sieving records A;, q;, A(q;) for i=0, 1.

Thus during an even-numbered cycle in this worst-case scenario, the BP performs
the five operations listed for cycle 2 above. During an odd-numbered cycle, the BP

TABLE 1
Cycle Progression 0 Progression 1
0 In[A,]: BPID[=]
A<IN[A,]
1 D< S(A)

Ain < A+ qin; Ain: BPID [#]
g, A(q) < IN[q,, A(qo)]

2 OUT [A¢] < Ain IN[A,]: BPID[=]
S(A)« D+A(q); S(A): T[<] A<IN[A,]
3 OUT [q4, A(90)]< g, A(q) D < S(A)

Ain < A+ gin; Ain: BPID [#]
9, A(q) <« IN[q,, A(q,)]
4 OUT[A][] « Ain
S(A)<D+A(q); S(A): T[<]
5 OUT [q,, A(q,)]1< g, A(q)
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performs the five operations listed in cycle 3. Although an arithmetic progression
involves the BP for 4 cycles, it can travel down the pipe spending 2 cycles in each BP.

If the first compare with BPID is [#], this means the arithmetic progression does
not hit in this BP and it can be sent on through to the next BP. If there is a hit (as
shown in the pseudocode above) and the second compare with BPID is [ =], then this
means that the arithmetic progression hits a second time in this BP in which case it
is, of course, not sent out right away.

Collision avoidance. To avoid collisions a BP will register “BUSY” during the
time a prime power occupies the BP. We classify prime powers g in three categories.
A value g is “small” if g <|BP|, so that g has the potential to hit more than one
location in a BP. It is “‘moderate” if |BP|=gq =1, so that g hits at most once in any
BP, but will definitely hit at least one BP in the subinterval. Finally, q is “big” if
I < q = B. Big prime powers hit at most one BP in a subinterval. The progressions are
sent through a subinterval in the following order: (i) big prime powers that actually
hit some BP in the subinterval; (ii) moderate prime powers ordered by decreasing size;
(iii) small prime powers ordered by decreasing size. This organization of the pro-
gressions keeps delays in the sieve caused by “BUSY” signals to a minimum. In fact
there are no delays at all with big and moderate prime powers.

7. The pipe i/o unit. The pipe i/o unit is an interface, storage, and control
mechanism for the sieving process. The pipe i/0 unit interfaces to the sieve initializer
to receive progression records for each polynomial, and to send reports of the sieve’s
successes. It stores the progression records, since the length I of the subinterval that
is sieved at one time is considerably less than the length 2 M of the polynomial interval.
The pipe i/o sends the progression records in a proper order to the pipe, then receives
the modified records from the pipe and stores them for the next subinterval. The pipe
i/o contains the control and sequencing logic that controls the pipe and its modes of
operation.

Interfaces. The pipe i/0 unit has a data path to the sieve initializer (SI). When a
polynomial change is to occur (determined by the SI), the operation of the pipe is
halted. The storage on the pipe i/0 unit is then loaded with the progression records
for the next polynomial interval. When this operation is completed, the pipe i/ o begins
the sieving sequence for the new polynomial by sending out the progressions in order.
The time required to load the pipe i/o store is a function of the amount of data to be
transferred, the width of the data path between the sieve initializer and the pipe i/o,
and the bandwidth of the respective memories. (We assume that the loading will be a
direct memory-to-memory transfer.)

The other operational use of the data path from SI to pipe i/o is for the reporting
of results. When the sieve has a result to report, it will send polynomial coefficients,
a polynomial argument, and a list of powers of primes from the factor base that divide
the polynomial at the argument. The sieve initializer will receive these reports and
retain them for the post-processing step.

Store. The storage of the pipe i/o must be large enough to accommodate usually
two progression records for each power g = B of a prime in the factor base. At the
same time, it must be fast enough to feed the pipe at “full guzzle” while sieving by
moderate and big prime powers. This storage unit is one of the major challenges of
the gs processor.
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Each progression record consists of A, g, A(q) for the sieving, and a link field
which is used by the pipe i/o to send out only those progressions which will hit in at
least one BP in the subinterval. The length of a progression record is

max |A|+ max |g|+max |A(q)|+max |L|=32+24+8+20 =84 bits,

nominally. Since the g, A(q) are identical for usually two progressions, these fields
may be shared between the two progressions, reducing the nominal size to 68 bits.
There must be a progression record for every solution of (7) for each power g = B of
a prime in the factor base. If we choose B =2,750,000, say, there will be about 200,000
progressions requiring 200,000 X 68 bits = 1.7MB store.

Speed. The pipe i/o store must be able to keep up with the pipe. For this reason,
we wish to be able to feed out a progression record in time 2C, since that is the rate
at which the pipe can accept progressions with modulus a moderate or big prime
power. We intend to fetch the progression record in parallel (all 84 bits) from the pipe
i/ o store, store it in a buffer register, then send out the A in one cycle, g, A(q) in the
next (recall that the L field is for the use of the pipe i/0 only).

This makes it appear that the cycle time of the pipe i/o store can be double that
of the pipe’s store. However, this is not the case. Once the transaction record has made
it through the pipe, it will be received by the pipe i/o and must be stored for use in
the next subinterval. This means that it must be stored in the pipe i/o store. Since
receive transactions are occurring while send transactions are still going on, we must
be able to WRITE the pipe i/o store once and READ it once in the time 2C. This
means that the cycle time of the pipe i/o store must be the same as that of the pipe.

Partitioning. The pipe i/0 requires a large, fast store. More than this, since the
pipe i/o store is about twice the size of the factor base, we must partition the store
horizontally if at all possible so that the factor base size is not a hard, ‘“designed in”
limit on the system.

Operation. Once the pipe i/o store is filled with progression records, operation
of the sieve begins. The pipe i/o controls the sieving operation, which consists of a
cycle in which the events:

initialize the pipe
sieve by progressions which hit in subinterval i
report any successes in subinterval i
i<i+l1
are repeated until the sieve initializer has the next polynomial ready.

Sending progressions. Since a big prime power may not hit in subinterval i, we
keep a linked list of those we know will hit in the subinterval. Thus we only dispatch
those big prime powers that will hit in the subinterval. The pipe i/o manages the linked
lists on a per-subinterval basis, so that each subinterval has a list of the prime powers
that will hit in that subinterval. This list might have the big prime powers out of
numerical order, but since they hit only once it i anyway, it will not result in a pipe
collision. As mentioned before, progressions corresponding to moderate and small
prime powers are sent out in reverse numerical order of modulus. Thus the linked list
mechanism is not necessary for these progressions.

Receiving progressions. When a progression record A, g, A(q) is sent into the pipe,
it is processed there to generate the next progression record by modification of the A
value. The pipe will add g to the A value until the new A no longer falls in the
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subinterval. Then the progression record will exit from the pipe. At the exit from the
pipe is the pipe i/0 receiver which will store the record for use in the progression’s
next subinterval.

Recall that |BP| and I are both powers of 2. This means that one field of A can
be regarded as the subinterval number i. This field of A is important in the processing
of the received record upon exit from the pipe; the value of i will indicate the next
subinterval in which the progression will fall. For moderate and small prime powers
this is always the next subinterval. For big prime powers, up to n —1 subintervals can
be skipped over where n = [B/I]. There are n linked lists maintained in the pipe i/o,
and the progression will be added to the appropriate list upon exit from the pipe.

Each progression has a home location in pipe i/o store where it resides. When
the progression is sent into the pipe, its home address is entered into a FIFO store.
Since the pipe preserves the time order of progressions, the home address can be
retrieved from this store when the progression is received. The new A will then be
stored at the home address location. Additionally, the progression is added to the
proper interval list by the simple procedure of placing the list pointer in the link field
of the progression, then placing the progression address in the list pointer.

Receiving this progression information must compete for pipe i/o store with the
sending process. Only A and L must be stored, and this will require one cycle of store.
Since the A and L are buffered and since the sending process uses only one cycle from
every two, storing the progression uses the other cycle.

8. Performance on 100 digit numbers. In this section we give some indication how
performance on 100 digit numbers can be estimated. In the sequel, we assume N ~10'%,
where N is the number to be factored.

Factor base. We shall assume the multiplier is one (see § 4). We shall consider a
factor base of 100,000 primes so that B, the bound for the largest prime in the factor
base, is about 2,750,000. We estimate that sieve initialization for this choice of B will
take five seconds. The pipe i/0 unit will require about 1.7MB of store.

Time to sieve a subinterval. We shall assume that each BP has size 2'¢ and that
the pipe consists of 2* BP’s. This gives the value 2°° to I, the subinterval length. We
assume the cycle time in the pipe i/o and pipe is 70 nanoseconds. The time to sieve
a subinterval has several components (measured in milliseconds):

(i) Initialize the pipe—4.59;

(ii) Small prime powers—11.30;

(iii) Moderate prime powers—10.51;

(iv) Big prime powers—9.87;

(v) Empty the pipe with least progression—1.47.
We shall account for reporting time later. Thus the total time to sieve a subinterval of
length I =2 is 37.74 milliseconds.

With one polynomial, we sieve for 5 seconds, the sieve initialization time. Thus
in this time we shall sieve about 1.38 x 10® values, so that 2M ~1.38 x 10°,

Success rate. The largest values of a polynomial will have size M+ N /2. However,
the smaller values will give a disproportionately high success rate. Thus we shall assume
the “typical” valuecis

IMVN/2=1.63%x10".

The probability that a random number of this size completely factors with the primes
up to 2x 10° can be estimated from the table for “p,(a)” given in Knuth and Trabb
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Pardo [4]. We take

_log (1.63x10%)

= —8.8848.
“~ Tog (2750000)

We geometrically interpolate in the table to get
pi(a)=1.513x107°.

This means that we have to sieve about 1/p,(a)=6.61x10° numbers to find one
success. That is, we have one success every 23.9 seconds on average.

Large prime variation. Multiplying 23.9 seconds by 100,000, the nominal number
of successes we shall need, we obtain a sieving time of 27.7 days. However, by also
reporting polynomial values which factor completely over the factor base except for
one large prime in the interval (B, 100 B), we estimate a speed-up factor of 0.415. This
estimate is obtained by splitting (B, 100 B) into smaller intervals, using the Knuth-
Trabb Pardo table to estimate success rates for large primes in the smaller intervals,
and then using a “birthday paradox” analysis to estimate the usefulness of these large
prime factorizations. Thus the 27.7 day sieving time is reduced to 11.5 days.

Enforced sieve down time. The sieve must be down when the pipe i/o is being
loaded from the sieve initializer and when it is in the reporting mode. We assume that
loading time per polynomial is 0.2 seconds. This must be done for every five-second
polynomial run, or for a total of 0.5 days during the factorization.

With the large prime variation, there will be about 700,000 reports during the run.
We shall assume, however, there are 10° reports since some of these will be “false.”
We also assume that a report takes 75 milliseconds (about twice the time to sieve a
subinterval) for recall that reporting involves re-sieving a subinterval in a new mode.
Thus total reporting time is about 0.9 days.

Total running time. We shall assume that preprocessing and post-processing
together take at most 0.5 days of computing time. Thus our total running time can
now be estimated from the following:

(i) Sieving time—11.5 days;

(ii) Loading time—0.5 days;

(iii) Reporting time—~0.9 days;

(iv) Pre- and post-processing—0.5 days;
or 13.4 days.

Estimated cost of processor. Pre- and post-processing are performed on conven-
tional hardware. The most critical step is the matrix processing discussed in § 5. It is
assumed that this will not be an important bottleneck. We do not include the cost of
buying computer time for these stages since we are considering here only a relatively
insignificant portion of the factoring project. In extrapolations to very large numbers,
it might be fair to set aside 5-10 percent of monetary resources for pre- and post-
processing.

Sieve initialization will be performed on a dedicated SUN 3. It would be possible
to build a dedicated processor with equal performance for sieve initialization tasks for
$5,000. Even though a SUN 3 costs about ten times as much, we nevertheless use the
figure $5,000 for the cost of a sieve initializer.

We estimate the cost of parts for a pipe i/0 unit with 1.7MB of store at $10,000.
Finally we estimate the cost of a pipe consisting of 16 BP’s, each of size 64k x 8 = 64kb,
together with a power supply, at $10,000.
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Thus we estimate a total cost of $25,000 for parts. To figure in development costs,

overhead, and a margin for error, we use a multiplier of 2, thus bringing our estimate
to $50,000.

9. Summary. We have described the quadratic sieve factorization algorithm and
an inexpensive processor on which it can be efficiently run. If it runs as quickly and

is as inexpensive as we think, then 144-digit numbers can be factored in a year with
a budget of $10,000,000.
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