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Abstract. In this paper we give two equivalent characterizations of the
Caucal hierarchy, a hierarchy of infinite graphs with a decidable monadic
second-order (MSO) theory. It is obtained by iterating the graph trans-
formations of unfolding and inverse rational mapping. The first charac-
terization sticks to this hierarchical approach, replacing the language-
theoretic operation of a rational mapping by an MSO-transduction and
the unfolding by the treegraph operation. The second characterization
is non-iterative. We show that the family of graphs of the Caucal hier-
archy coincides with the family of graphs obtained as the ε-closure of
configuration graphs of higher-order pushdown automata.
While the different characterizations of the graph family show their ro-
bustness and thus also their importance, the characterization in terms
of higher-order pushdown automata additionally yields that the graph
hierarchy is indeed strict.

1 Introduction

Classes of finitely generated infinite graphs enjoying a decidable theory are a
strong subject of current research. Interest arises from applications in model
checking of infinite structures (e.g. transition systems, unfoldings of Kripke struc-
tures) as well as from a theoretical point of view since the border to undecid-
ability is very close and even for very regular structures many properties become
undecidable.

We are interested in a hierarchy of infinite graphs with a decidable monadic
second-order (MSO) theory which was introduced by D. Caucal in [7]. Starting
from the class of finite graphs two operations preserving the decidability of the
MSO-theory are applied, the unfolding [9] and inverse rational mappings [6]. It-
erating these operations we obtain the hierarchy (Graph(n))n∈N where Graph(n)
is the class of all graphs which can be obtained from some finite graph by an
n-fold iteration of unfolding followed by an inverse rational mapping. This hi-
erarchy of infinite graphs contains several interesting families of graphs (see [7,
17]) and has already been subject to further studies [2].



The first level contains exactly the prefix-recognizable graphs [6], which can
in turn be characterized as the graphs definable in ∆2 (the infinite binary tree) by
an MSO-transduction [1], or as the ε-closure of configuration graphs of pushdown
automata [16] (see [1] for an overview). We extend these characterizations to
higher levels.

In Sect. 3 we show that the iteration of the treegraph operation, a variant
of the tree-iteration [18], and MSO-transductions generates exactly the Cau-
cal hierarchy. These two operations are to our knowledge the strongest graph
transformations which preserve the decidability of the MSO-theory. In [17] the
hierarchy was defined starting from the infinite binary tree by iterating MSO-
interpretations (particular MSO-transductions) and unfolding. Since the unfold-
ing is definable inside the graph obtained by the treegraph operation, it follows
from our result these definitions are indeed equivalent.

Pushdown automata can also be seen as the first level of a hierarchy of higher-
order pushdown automata, whose stack entries are not only single letters (as for
level 1), but words (level 2), words of words (level 3) . . . . Similar hierarchies
have already been considered in [14, 11, 15].

In Sect. 4 we show that a graph is on level n of the Caucal hierarchy iff it is the
ε-closure of a configuration graph of a higher-order pushdown automaton of level
n. This result is incorrectly attributed to [2, 7] in [17]. In [2], in the context of
game simulation, only the easier direction from higher-order pushdown graphs to
graphs in the hierarchy is shown. All the proofs in Sections 3 and 4 are effective.

In Sect. 5 we use the characterization of the hierarchy in terms of higher-order
pushdown automata to show that it is strict. Moreover we exhibit a generator
for every level, i.e. every graph on this level can be obtained from the generator
by applying a rational marking and an inverse rational mapping, or an MSO-
interpretation. Finally we give an example of graph with a decidable MSO-theory
which is not in the hierarchy.

2 Preliminaries

2.1 Operations on Graphs and the Caucal Hierarchy

We fix a countable set A, also called alphabet. Let Σ ⊆ A be a finite subset of
edge labels. A Σ-labeled graph G is a tuple (V G, (EG

a )a∈Σ) where V G is a set of
vertices and for a ∈ Σ we denote by EG

a ⊆ V G × V G the set of a-labeled edges
of G. We assume that V G is at most countable, and that there are no isolated
vertices in G, i.e. for every v ∈ V G there exists an w ∈ V G such that (v, w) ∈ EG

a

or (w, v) ∈ EG
a for some a ∈ Σ. If the graph G and the set of edge labels Σ

is clear from the context we drop the superscript G and speak just of a labeled
graph. A graph is called deterministic if (v, w) ∈ Ea and (v, w′) ∈ Ea implies
w = w′ for all v, w,w′ ∈ V and a ∈ Σ.

A path from a vertex u to a vertex v labeled by w = a1 . . . an−1 is a sequence
v1a1 . . . an−1vn ∈ V (ΣV )∗ such that v1 = u, vn = v and (vi, vi+1) ∈ Eai for
every i ∈ {1, . . . , n − 1}. In this case we will also write u

w→ v. A tree T is a



graph containing a vertex r called the root such that for any vertex v ∈ V T there
exists a unique path from r to v.

The unfolding Unf(G, r) of a graph G = (V G, (EG
a )a∈Σ) from a node r ∈ V G

is the tree T = (V T , (ET
a )a∈Σ) where V T is the set of all paths starting from r

in G and for all a ∈ Σ, (w,w′) ∈ ET
a iff w′ = w · a · v for some v ∈ V G.

The treegraph Treegraph(G, ]) of a graph G = (V, (Ea)a∈Σ) by a symbol ] 6∈
Σ is the graph G′ = (V +, (E′

a)a∈Σ∪{]}) where V + designates the set of all finite
non-empty sequences of elements of V , for all a ∈ Σ and all w ∈ V ∗, (wu, wv) ∈
E′

a iff (u, v) ∈ Ea, and E′
] = {(wu, wuu) | w ∈ V ∗, u ∈ V }. The tree-iteration as

defined in [18] also contains a son-relation given by {(w, wu) | w ∈ V ∗ and u ∈ V }.
If G is connected then the son-relation can be defined in the treegraph.

Let Σ̄ be a set of symbols disjoint from but in bijection with Σ. We extend
every Σ-labeled graph G to a (Σ ∪ Σ̄)-labeled graph Ḡ by adding reverse edges
Eā := {(u, v) | (v, u) ∈ Ea}. Let Γ ⊆ A be a set of edge labels. A rational
mapping is a mapping h : Γ → P(Σ ∪ Σ̄)∗ which associates to every symbol
from Γ a regular subset of (Σ ∪ Σ̄)∗. If h(a) is finite for every a ∈ Γ we also
speak of a finite mapping. We apply a rational mapping h to a Σ-labeled graph
G by the inverse to obtain a Γ -labeled graph h−1(G) with (u, v) ∈ Eb iff there is
a path from u to v in Ḡ labeled by a word in h(b). The set of vertices of h−1(G)
is given implicitly by the edge relations. We also speak of h−1(G) as the graph
obtained from G by the inverse rational mapping h−1.

The marking M](G,X) of a graph G = (V, (Ea)a∈Σ) on a set of vertices
X ⊆ V by a symbol ] 6∈ Σ is the graph G′ = (V ′, (E′

a)a∈Σ∪{]}) where V ′ =
{(x, 0) | x ∈ V } ∪ {(x, 1) | x ∈ X}, E′

a = {((x, 0), (y, 0)) | (x, y) ∈ Ea} for
a ∈ Σ, and E] = {((x, 0), (x, 1)) | x ∈ X}. A rational marking of a graph
G = (V, (Ea)a∈Σ) by a symbol ] 6∈ Σ with a rational subset R over Σ ∪ Σ̄ from
a vertex r ∈ V is the graph M]

(
G, {x ∈ V | r

w→Ḡ x, w ∈ R}). An MSO-
marking of a graph G by a symbol ] with an MSO-formula ϕ(x) is the graph
M]

(
G, {v ∈ V G | G |= ϕ(v)}).

Following [7], we define Graph(0) to be the class containing for every finite
subset Σ ⊆ A all finite Σ-labeled graphs, and for all n ≥ 0

Tree(n + 1) :=
{
Unf(G, r) | G ∈ Graph(n), r ∈ V G

}
,

Graph(n + 1) :=
{
h−1(T ) | T ∈ Tree(n + 1), h−1 an inverse rational mapping

}
,

where we do not distinguish between isomorphic graphs.

2.2 Monadic Second-order Logic and Transductions

We define the monadic second-order logic over Σ-labeled graphs as usual, (see
e.g. [13]), i.e. we view a graph as a relational structure over the signature con-
sisting of the binary relation symbols (Ea)a∈Σ .

A formula ϕ(X1, . . . , Xk) containing at most the free variables X1, . . . , Xk

is evaluated in (G,V) where G = (V, (Ea)a∈Σ) is a Σ-labeled graph and V :
V → P({1, . . . , k}) is a function which assigns to every vertex v of G a set V(v)
such that v ∈ Xi iff i ∈ V(v). We write (G,V) |= ϕ(X1, . . . , Xk), or equivalently



G |= ϕ[V1, . . . , Vk] where Vi := {v ∈ V | i ∈ V(v)}, if ϕ holds in G under the
given valuation V.

An MSO-interpretation of Γ in Σ is a family I = (ϕa(x, y))a∈Γ of MSO-
formulas over Σ. Applying an MSO-interpretation I = (ϕa(x, y))a∈Γ of Γ in
Σ to a Σ-labeled graph G we obtain a Γ -labeled graph I(G) where the edge
relation E

I(G)
a is given by the pairs of vertices for which ϕa(x, y) is satisfied in G,

and V I(G) is given implicitly as the set of all vertices occurring in the relations
E
I(G)
b . Note that the addition of an MSO-formula δ(x) to I defining the vertex

set explicitly does not increase the power of an interpretation if we require that
there are no isolated vertices in the resulting graph.

Interpretations cannot increase the size of a structure. To overcome this weak-
ness the notion of a transduction was introduced, cf. [8]. Let G = (V, (Ea)a∈Σ)
be a Σ-labeled graph and K be a finite subset of A disjoint from Σ. A K-copying
operation for Σ associates to G a (Σ ∪K)-labeled graph G′ = (V ′, (E′

a)a∈Σ∪K)
where V ′ = V ∪ (V ×K), E′

a := Ea for a ∈ Σ, and E′
b := {(v, (v, b)) | v ∈ V } for

b ∈ K. An MSO-transduction T = (K, I) from Σ to Γ is a K-copying operation
for Σ followed by an MSO-interpretation I of Γ in Σ ∪K.

Note that an inverse rational mapping is a special case of an MSO-interpre-
tation and an MSO-marking is a special case of an MSO-transduction.

2.3 Higher-order Pushdown Automata

We follow the definition of [15]. Let Γ be a finite set of stack symbols. A level 1
pushdown stack over Γ is a word w ∈ Γ ∗ in reversed order, i.e. if w = a1 . . . am

the corresponding stack is denoted by [am, . . . , a1]. For n ≥ 2 a level n push-
down stack over Γ is inductively defined as a sequence [sr, . . . , s1] of level n− 1
pushdown stacks si for 1 ≤ i ≤ r. [ε] denotes the empty level 1 stack, the empty
level n stack, denoted by [ε]n, is a stack which contains for 1 ≤ i < n only a
single empty level i stack.

The following instructions can be executed on a level 1 stack [am, . . . , a1]:

pusha
1([am, . . . , a1]) := [a, am, . . . , a1] for every a ∈ Γ

pop1([am, am−1 . . . , a1]) := [am−1, . . . , a1]

Furthermore we define the following function which does not change the content
of a stack:

top([ε]) := ε and top([am, . . . , a1]) := am for m ≥ 1.

For a stack [sr, . . . , s1] of level n ≥ 2 we define the following instructions

pusha
1([sr, . . . , s1]) := [pusha

1(sr), sr−1, . . . s1] for every a ∈ Γ

pushn([sr, . . . , s1]) := [sr, sr, . . . , s1]
pushk([sr, . . . , s1]) := [pushk(sr), sr−1, . . . , s1] for 2 ≤ k < n

popn([sr, . . . , s1]) := [sr−1, . . . , s1]
popk([sr, . . . , s1]) := [popk(sr), sr−1, . . . , s1] for 1 ≤ k < n



and extend top to a level n stack by setting top([sr, . . . , s1]) := top(sr).
We denote by Instrn the set of instructions that can be applied to a level n

stack (without the top function). For the sake of easiness we also add an identity
function denoted by − which does not change the stack at all.

The instruction pusha
1 adds the symbol a to the topmost level 1 stack, while

pushk duplicates the topmost level k−1 stack completely. Similarly pop1 removes
the top symbol of the topmost level 1 stack, while popk for 1 < k ≤ n removes
the corresponding level k − 1 stack completely. Note that the instruction popk

for 2 ≤ k ≤ n can only be applied if the resulting stack is again a level n stack,
i.e. it does not remove a bottom level k − 1 stack.

A higher-order pushdown automaton of level n is a tuple A = (Q, Σ, Γ, q0,∆)
where Q is a finite set of states, Σ is an input alphabet, Γ is a stack alphabet,
q0 ∈ Q is an initial state, and ∆ ⊆ Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) × Q × Instrn is
a transition relation. A configuration of A is a pair (q, [sr, . . . , s1]) where q is a
state of A and [sr, . . . , s1] is a stack of level n. The initial configuration (q0, [ε]n)
consists of the initial state q0 and the empty level n stack [ε]n. A can reach
a configuration (q′, [s′r′ , . . . , s

′
1]) from (q, [sr, . . . , s1]) by reading a ∈ Σ ∪ {ε} if

there is a transition (q, a, top([sr, . . . , s1]), q′, i) ∈ ∆ such that i([sr, . . . , s1]) =
[s′r′ , . . . , s

′
1]. The automaton A accepts a word w ∈ Σ∗ if A reaches from the

initial configuration the empty level n stack after reading w. We denote by
HOPDA(n) the class of all higher-order pushdown automata of level n.

3 Closure Properties

In this part, we prove that the hierarchy is closed under MSO-transductions and
the treegraph operation. We first consider the case of deterministic trees.

3.1 The Deterministic Case

We consider a sub-hierarchy obtained by unfolding only deterministic graphs.
Graphd(0) is equal to Graph(0). Treed(n + 1) contains the unfoldings of every
deterministic graph G ∈ Graphd(n) from a vertex in V G. Graphd(n) is defined in
the same way as Graph(n). Note that Graphd(n) also contains non-deterministic
graphs.

Closure under MSO-transductions Using results from [3], we prove that
for all n ∈ N, Graphd(n) is closed under MSO-transductions. This result was
obtained for the first level by A. Blumensath in [1]. Obviously, Treed(n) is not
closed under MSO-transductions but if we consider only MSO-markings, we
obtain also a closure property for Treed(n).

Proposition 1. For all n ≥ 0, all tree T ∈ Treed(n) and all graph G ∈
Graphd(n), we have that:

1. M(T ) also belongs to Treed(n), for any MSO-marking M,



2. T (G) also belongs to Graphd(n), for any MSO-transduction T .

Proof (sketch): These results are proved by induction on the level using partial
commutation results of MSO-transductions and unfolding obtained in [3].

1. For every deterministic graph G and every MSO-marking M, there ex-
ists an MSO-transduction T ′ and a vertex r′ such that M(Unf(G, r)) ≈
Unf(T ′(G), r′).

2. For every deterministic graph G and every MSO-transduction T , there exists
an MSO-transduction T ′, a rational mapping h and a vertex r′ such that
T (Unf(G, r)) ≈ h−1(Unf(T ′(G), r′)).

Note that in both cases T ′ preserves determinism. ¤

Closure Under the Treegraph Operation The unfolding is a particular case
of the treegraph operation in the sense that for any graph G the unfolding from
a definable vertex r, Unf(G, r), can be obtained by an MSO-interpretation from
Treegraph(G, ]) (see [9]). In the case of deterministic trees, we show a converse
result: how to obtain treegraph using MSO-interpretations and unfolding. This
construction is due to T. Colcombet.

Lemma 1. For any finite set of labels Σ, there exist two finite mappings h1,h2

and a rational marking M such that for any deterministic tree T with root r:

Treegraph(T, ]) ≈ h−1
2

(M (
Unf

(
h−1

1 (T ), r
)))

.

Proof (sketch): The finite mapping h1 adds backward edges labeled by elements
of Σ̃ and a loop labeled by ] to every vertex. Thus, for all a ∈ Σ, h1 is defined
by h1(a) = {a}, h1(ã) = {ā} and h1(]) = {ε}.

Let H be the deterministic tree equal to Unf
(
h−1

1 (T ), r
)
, every node x of

H is uniquely characterized by a word in (Σ ∪ Σ̃ ∪ {]})∗. The rational marking
M$ marks all the vertices corresponding to a word which does not contain
xx̃ or x̃x for x ∈ Σ. Finally, h2 is used to erase unmarked vertices and to
reverse the remaining edges with labels in Σ̃. h2 is given by h2(]) = {]} and
h2(a) =

{
$$̄a$$̄, $$̄¯̃a$$̄

}
for a ∈ Σ. ¤

Figure 1 illustrates the construction above on the semi-infinite line. The filled
dots represent the vertices marked by M$. The closure of the deterministic
hierarchy under the treegraph operation is obtained from Lem. 1 and Prop. 1,
using the fact that for all trees T and all rational mappings h which do not
contain ], Treegraph(h−1(T ), ]) = h−1

] (Treegraph(T, ])) where h] designates the
rational mapping that extends h with h](]) = {]}.

Proposition 2. For all n ≥ 0, if G ∈ Graphd(n) then Treegraph(G, ]) ∈
Graphd(n + 1).
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Fig. 1. The semi-infinite line after applying h1 and its unfolding

3.2 Deterministic Trees are Enough

We now prove that for all n, Graph(n) is equal to Graphd(n). From the technical
point of view, this means that even if the hierarchy contains non-deterministic
graphs and even graphs of infinite out-degree, we can always work with an ”un-
derlying” deterministic tree.

Lemma 2. For all n > 0, if G ∈ Graph(n), then there exists a deterministic
tree T ∈ Treed(n) and a rational mapping h such that G = h−1(T ).

Proof (sketch): The proof proceeds by induction on the level n. Let T ∈ Tree(n+
1), we want to prove that T belongs to Graphd(n+1). By definition of Tree(n+
1) and by induction hypothesis, we have T ≈ Unf(h−1(Td), s) for some de-
terministic tree Td ∈ Treed(n) and some rational mapping h. Using the fact
that the unfolding can be defined in the treegraph operation (see [9]), we have
T ≈ T (Treegraph(h−1(Td), ])) for some MSO-transduction T . If h] denotes the
rational mapping obtained by extending h with h](]) = {]}, we have T =
T (h−1

] (Treegraph(Td, ])). Applying Lem. 1, we have T = T ′(Unf(h−1
1 (Td), r))

where T ′ = M◦ h−1
2 ◦ h−1

# ◦ T . It is easy to check that Unf
(
h−1

1 (Td), r
)

belongs
to Treed(n + 1). Using Prop. 1, we prove that T belongs to Graphd(n + 1). The
case of G ∈ Graph(n + 1) is easily derived from this. ¤

We can now prove that every graph of the hierarchy has a decidable MSO-
theory. Note that this does not follow directly from the definition because un-
folding from an arbitrary (i.e. not necessarily MSO-definable) vertex does not
preserve the decidability of MSO-logic. However, using Lem. 2 we can always



come back to the case where we unfold from a MSO-definable vertex (see [4] for
more details).

Theorem 1. Each graph of the hierarchy has decidable MSO-theory and this
remains true if we add to MSO-logic the predicates |X| < ∞ , |X| = k mod p
for all k and p ∈ N which are interpreted as X is finite respectively X has size
equal to k modulo p for k, p ∈ N.

Combining Prop. 1, Prop. 2 and Lem. 2, we now have two equivalent char-
acterizations of the hierarchy: one “minimal” in terms of unfolding and inverse
rational mappings and one “maximal” in terms of the treegraph operation and
MSO-transductions. The maximal characterization shows the robustness of the
hierarchy and its interest because it combines the two, to our knowledge, most
powerful MSO-preserving operations. On the other side, the minimal charac-
terization allows us to make the link between the hierarchy and the graphs of
higher-order pushdown automata.

Theorem 2. The Caucal hierarchy is equal to the hierarchy obtained by iterating
the treegraph operation and MSO-transductions.

4 Higher-order Pushdown Graphs vs. Caucal Graphs

In this section we give an automata-theoretic characterization of the classes of
the Caucal hierarchy. This characterization provides us with a “flat” model for
describing a graph of any level, i.e. we do not have to refer to a sequence of
operations. Furthermore it extends the characterization of the first level of the
hierarchy as the ε-closure of configuration graphs of pushdown automata given
in [16] to any level. We recall some definitions.

The configuration graph C(A) of A ∈ HOPDA(n) is the graph of all config-
urations of A reachable from the initial configuration, with an edge labeled by
a ∈ Σ ∪ {ε} from (q, s) to (q′, s′) iff there is a transition (q, a, top(s), q′, i) ∈ ∆
such that i(s) = s′.

Let C(A) be the configuration graph of A ∈ HOPDA(n). We will assume for
the remainder of the paper that for every pair (q, α) of state q and top stack
symbol α only ε-transitions or only non-ε-transitions are possible. The ε-closure
of C(A) is the graph G obtained from C(A) by removing all vertices with only
outgoing ε-transitions and adding an a-labeled edge between v and w if there is
an a-labeled path from v to w in C(A).

A higher-order pushdown graph G of level n is the ε-closure of the configu-
ration graph of some A ∈ HOPDA(n). We call G the higher-order pushdown
graph generated by A and denote by HOPDG(n) the class of all higher-order
pushdown graphs of level n (up to isomorphism).

This notion of ε-closure was used in [16] to show that the class HOPDG(1)
coincides with the class of prefix recognizable graphs, i.e. with the the graphs
on the first level of the hierarchy. We extend this result to every level of the
hierarchy.



The easier part of the equivalence is to show that every HOPDG of level
n is a graph on the same level of the hierarchy. The main idea is to find a
graph in Graph(n) such that every node of this graph can be identified with
a configuration of a higher-order pushdown automaton, and to construct an
inverse rational mapping which generates the edges of the configuration graph
of the automaton. Such a construction is already contained in [2] in a slightly
different setting. We propose here to use the family ∆n

m of graphs obtained by
an (n− 1)-fold application of the treegraph operation to the infinite m-ary tree
∆m. This has the advantage that there is almost a one-to-one correspondence
between configurations of the higher-order pushdown automaton and the vertices
of the graph. Using the fact that ∆n

m ∈ Graph(n) we obtain:

Lemma 3. If G ∈ HOPDG(n) then G ∈ Graph(n).

We now turn to the converse direction: every graph G on level n of the hier-
archy is indeed the ε-closure of a configuration graph of a higher-order pushdown
automaton of level n. We show this using the following two Lemmas.

Lemma 4. If G ∈ HOPDG(n) and r ∈ V G, then Unf(G, r) ∈ HOPDG(n + 1).

Lemma 5. If G ∈ HOPDG(n), r ∈ V G and h is a rational mapping, then
h−1(Unf(G, r)) ∈ HOPDG(n + 1).

While the proof of Lem. 4 consists of a straightforward modification of the
HOPDA for G, the proof of Lem. 5 requires some technical preparation. We
need to show that for an automaton as constructed in the proof of Lem. 4 there
exists a higher-order pushdown automaton which generates exactly the graph
Unf(G, r) extended by reverse edges, i.e. for all v, w ∈ Unf(G, r), v

a−→ w in
Unf(G, r) iff w

ā−→ v in the extended graph.
To show that such an automaton exists we introduce the notion of a weak

popping higher-order pushdown automaton. A weak popping automaton is only
allowed to execute a pop instruction of level j ≥ 2 if the two top level j stacks
coincide. We skip a formal definition of a weak popping higher-order pushdown
automaton and just mention that even though this automaton model is equipped
with a built-in test on the equality of two stacks of the same level, it is equivalent
to the usual model. All proofs are given in the full version of this article [4].

Theorem 3. For every n ∈ N, G ∈ HOPDG(n) iff G ∈ Graph(n).

5 More Properties of the Caucal Hierarchy

We give a generator for each level of the hierarchy. Then we use the traces of
the graphs of the hierarchy to prove its strictness and to exhibit a graph having
a decidable MSO-theory which is not in the hierarchy.



5.1 Generators

For the first level of the hierarchy, the infinite binary tree ∆2 is a generator for
rational markings (without backward edges) from the root and inverse rational
mappings. As hinted by the proof of Lem. 3, a similar result can be obtained
at any level. Recall that ∆n

2 is the graph obtained from ∆2 by an (n − 1)-fold
application of the treegraph operation.

Proposition 3. Every graph G ∈ Graph(n) can be obtained from ∆n
2 by ap-

plying a rational marking (with backward edges) from its source and an inverse
rational mapping.

5.2 On Traces — The Strictness of the Hierarchy

A direct consequence of Theo. 3 is that the traces of the graphs of level n are
recognized by a higher-order pushdown automaton of level n. These families of
languages have been studied by W. Damm and form the OI-hierarchy [11]. The
equivalence between the OI-hierarchy and the traces of higher-order pushdown
automata is proved in [12]. In [10, 14], this hierarchy is proved to be strict at
each level.

Theorem 4. For all n ≥ 1,

(a) for all T ∈ Tree(n) the branch language of T (i.e. the set of all words labeling
a path from the root to a leaf) is recognized by a HOPDA of level n− 1.

(b) for all G ∈ Graph(n) and u, v ∈ VG, L(u, v, G) = {w ∈ Γ ∗ | u
w→ v} is

recognized by a HOPDA of level n.

According to Theo. 4, the strictness level-by-level of the OI-hierarchy implies
the strictness of the Caucal hierarchy. An obvious example of a graph which is at
level n but not at level n−1 is the generator ∆n

2 . To obtain more natural graphs
that separate the hierarchy, we consider the trees associated to monotonically
increasing mappings f : N → N. The tree Tf associated to f is defined by the
following set of edges: Ea = {((i, 0), (i + 1, 0)) | i ∈ N} and Eb = {((i, j), (i, j +
1)) | i ∈ N and j + 1 ≤ f(i)}. The branch language of Tf is {anbf(n) | n ≥ 0}.

Using a property of rational indexes of k-OI languages (see [10]), we obtain
the following proposition.

Proposition 4. If {anbf(n)|n ∈ N} is recognized by a higher-order pushdown
automaton of level k then f ∈ O(2↑k−1 (p(n))) for some polynomial p where
2↑0(n) = n and 2 ↑k+1 (n) = 22↑k(n).

Let us consider the mapping expk(n) = 2↑k(n). It has been proved in [7]
that Texpk

belongs to Graph(k + 1). Note that using Theo. 3 the construction
given in [7] can be avoided by providing a deterministic higher-order pushdown
automaton of level k + 1 that recognizes {anbexpk(n)|n ∈ N}.

It is natural to consider the “diagonal” mapping expω(n) = expn(1). Figure 2
shows an initial segment of the tree associated to expω. By Prop. 4, the associated
tree Texpω is not in the hierarchy. However, using techniques from [5], we can
prove that Texpω has a decidable MSO-theory.
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Fig. 2. The graph Texpω of the function expω

Proposition 5. There exists a graph with a decidable MSO-theory which is not
in the Caucal hierarchy.

6 Conclusion

We have given two characterizations of the Caucal hierarchy. We have shown that
it coincides with the hierarchy obtained by alternating the treegraph operation
and MSO-transductions, and thus have partly answered a question posed in
[17]. It remains open whether one can extend this result to structures other than
graphs, i.e. with symbols of higher arity.

We have also characterized the Caucal hierarchy as the ε-closure of configu-
ration graphs of higher-order pushdown automata and have used this result to
obtain that the hierarchy is indeed strict, but does not contain all graphs with
a decidable MSO-theory.

Despite these characterization results we know surprisingly few about the
graphs obtained on level n ≥ 2. This deserves further study. Also a thorough
comparison with other methods to generate infinite graphs with a decidable
theory misses (see [17] for a more precise account on this).

Futhermore we like to mention that neither the constructions used to build
the hierarchy nor Proposition 5 contradicts Seese’s conjecture that every infinite
graph (or every set of finite graphs) having a decidable MSO-theory is the image
of a tree (or a set of trees) under an MSO-transduction.

Finally, many of the questions posed in [7] on the corresponding hierarchy of
trees remained unsolved so far.
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