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Studies have shown that supplementary articulatory information can help to improve the recogni-

tion rate of automatic speech recognition systems. Unfortunately, articulatory information is not

directly observable, necessitating its estimation from the speech signal. This study describes a sys-

tem that recognizes articulatory gestures from speech, and uses the recognized gestures in a speech

recognition system. Recognizing gestures for a given utterance involves recovering the set of

underlying gestural activations and their associated dynamic parameters. This paper proposes a

neural network architecture for recognizing articulatory gestures from speech and presents ways to

incorporate articulatory gestures for a digit recognition task. The lack of natural speech database

containing gestural information prompted us to use three stages of evaluation. First, the proposed

gestural annotation architecture was tested on a synthetic speech dataset, which showed that the use

of estimated tract-variable-time-functions improved gesture recognition performance. In the second

stage, gesture-recognition models were applied to natural speech waveforms and word recognition

experiments revealed that the recognized gestures can improve the noise-robustness of a word rec-

ognition system. In the final stage, a gesture-based Dynamic Bayesian Network was trained and the

results indicate that incorporating gestural information can improve word recognition performance

compared to acoustic-only systems. VC 2012 Acoustical Society of America.

[DOI: 10.1121/1.3682038]

PACS number(s): 43.72.Ar, 43.72.Bs, 43.70.Bk, 43.72.Ne [ADP] Pages: 2270–2287

I. INTRODUCTION

Current state-of-the-art automatic speech recognition

(ASR) systems represent speech as a sequence of non-

overlapping phone units. Although such systems perform

fairly well for clearly articulated speech under “controlled”

conditions, their performance degrades for spontaneous

speech, which contains acoustic variations shaped by lin-

guistic and speaker-specific properties (segmental and proso-

dic structure, speaking style, speaker-identity, etc.) and by

physical properties of the environment (noise, channel dif-

ferences etc.). Studies have shown that human speech recog-

nition performance is considerably more robust against such

contextual variation (Lippman, 1997) and environmental

noise (Cooke et al., 2006). These differences indicate the

need for more robustness in ASR systems.

Performance degradation of current phone-based ASR

systems for spontaneous speech can partly be attributed to

the non-overlapping phone-based modeling assumption

(Ostendorf, 1999), that limits the acoustic model’s ability to

properly learn the underlying variations in natural speech. A

part of this variation is due to coarticulation that arises due

to the overlapping, asynchronous nature of speech articulator

movements. Current ASR systems model coarticulation

using tri- or quin-phone based acoustic models, where differ-

ent models are created for each phone in all possible phone-

contexts. Unfortunately, such tri- or quin-phone models limit

the contextual influence only to immediately close neighbors

which may fail to account for the full extent of coarticulation

effects [e.g., syllable deletions (Jurafsky et al., 2001)] and

can suffer from data-sparsity due to the relative rarity of

some tri- or quin-phone units.

To address the problem posed by variability in speech

for ASR, Stevens (1960) suggested incorporating speech

production knowledge into ASR architectures. Incorporating

such knowledge is challenging, since acoustic waveforms
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are usually the only inputs to ASR systems and no speech

production related data (such as vocal tract shapes, articula-

tory configurations, their trajectories over time, etc.) are

used. Hence, the first logical step in order to introduce

speech production knowledge into ASR is to estimate such

information from the acoustic signal.

Several approaches have been used to incorporate dif-

ferent types of speech production knowledge into ASR sys-

tems; a detailed description of such approaches is given in

King et al. (2007) and we briefly discuss some of those

approaches below.

A. Articulatory features (AF) in ASR

Distinctive features were first developed and further ela-

borated by linguists to distinguish and classify segments or

sounds (Jakobson et al., 1952; Chomsky and Halle 1968).

Features are discrete or categorical (typically binary), and

may be defined either acoustically or articulatorily. ASR

studies have incorporated articulator-bound features (AFs)

of the acoustic signal that reflect actions of particular articu-

lators (e.g., þ/� voicing for larynx; þ/� rounding for lips).

ASR studies using AFs fall into two broad categories accord-

ing to the roles played by the AFs in the recognition model.

One type of ASR system uses local classifiers (e.g., artificial

neural networks [ANNs]) to identify features which are then

treated as observations to be processed by, for example, a

Hidden Markov Model (HMM); the second, more recent

type of system treats AFs as hidden variables within an

HMM or Dynamic Bayesian Network (DBN; e.g., Bilmes

and Zweig, 2002). An example of the former type of model

was presented by Schmidbauer (1989), who used a probabil-

istic model to obtain 19 AFs (describing the manner and

place of articulation) from speech, and showed that the

resulting AF-HMM system provided an improvement of 4%

over a baseline HMM phoneme recognizer using Mel-

frequency cepstral coefficients (MFCCs) as acoustic obser-

vations for a small German speech database. Relatedly,

Deng and Sun (1994) used 5 multi-valued features represent-

ing the lips, tongue blade, tongue dorsum, velum and larynx,

and mapped the overlapping patterns of features to HMM

state transition graphs. Their method resulted in a relative

phone recognition improvement of 9% over a baseline

MFCC-HMM for the TIMIT database. Finally, Kirchhoff

(1999) used quantized (rather than binary) AFs that were

estimated using a multi-layered perceptron (MLP), and

showed that using AFs in addition to MFCCs for ASR

helped to improve word error rate (WER) and increased rec-

ognition robustness against background noise.1

The more recent use of DBNs in ASR systems allows

the AFs to be treated as hidden variables while explicitly

taking into account inter-dependencies among these varia-

bles during word recognition. For example, Frankel et al.
(2004) showed that the average AF recognition accuracy can

be improved from 80.8% to 81.5% by using a DBN to model

inter-feature dependencies. In a different study Frankel and

King (2005) described a hybrid artificial neural network

(ANN) - DBN architecture that combined the discriminative

training capability of ANNs with the inter-feature depend-

ency modeling capability of DBNs and reported a feature

recognition accuracy of 87.8% for the OGI Number corpus.

Richardson et al. (2003) proposed the Hidden Articulatory

Markov Model (HAMM), in which each HMM state repre-

sents an articulatory configuration for each di-phone context,

allowing asynchrony among the articulatory features. When

used in tandem with a traditional HMM (4-state MFCC-

HMM speech recognizer), HAMM helped to reduce the

absolute WER by an average of approximately 1.07% com-

pared to the MFCC-HMM system.

B. Continuous articulatory trajectories in ASR

A different line of research has focused on testing the

degree to which the use of (either directly measured or esti-

mated) continuous articulatory trajectory information can

improve the erformance of ASR systems. Typically, articula-

tory trajectories are measured from the positions of trans-

ducers (or pellets) attached to flesh-points on the different

articulators in the mid-sagittal plane of the vocal tract

(Wrench and Hardcastle, 2000). In a typical ASR scenario,

however, such trajectory information is not available and

must be estimated from acoustic observations using an

inverse mapping procedure, commonly known as “speech

inversion” or “acoustic-to-articulatory inversion.” Since the

reliability of speech inversion is known to suffer from the in-

herent non-linearity and non-uniqueness of the acoustic-to-

articulatory map (Richmond, 2001), there are few ASR

results in the literature using estimated articulatory trajecto-

ries. Rather, several studies have focused on the utility for

ASR of using veridical, measured articulatory trajectories as

inputs to ASR models. Frankel and King (2001) built a

phone recognition system that used a combination of acous-

tic features (MFCCs) and articulatory data (flesh-point artic-

ulatory information modeled as linear dynamic model

(LDM) parameters at each phone-segment) as inputs, and

demonstrated a 9% improvement in phone recognition over

a system using only the MFCCs. However the phone recog-

nition accuracies based on estimated articulatory data in con-

junction with the MFCCs did not show any improvement

over the system using only the MFCCs, indicating the need

for more accurate and reliable speech inversion architec-

tures. Markov et al. (2006) described a hybrid HMM and

Bayesian network (BN) model, where the BN described the

dependence of acoustics on quantized EMA articulations,

and of quantized EMA articulations on phones; and the

HMM modeled phone transitions. Probabilistic dependencies

between EMA and acoustics were learned during training,

but during recognition, only the acoustic observations were

input and the articulatory variables were hidden states. They

reported that the HMM-BN trained using articulatory infor-

mation always performed better than the baseline HMM sys-

tem trained only with the acoustic features.

C. Articulatory gestures in ASR

Acoustic variations in the speech signal due to coarticu-

lation can be simply and elegantly described with reference

to the spatiotemporal behavior of discrete constricting

actions in the vocal tract called gestures. In Articulatory
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Phonology (Browman and Goldstein, 1989, 1992), a phono-

logical theory that views an utterance as a constellation of

gestures that may overlap in time, gestures are defined as

discrete action units whose activation results in constriction

formation or release by five distinct constrictors (lips, tongue

tip, tongue body, velum and glottis) along the vocal tract.

The kinematic state of each constrictor is defined by its cor-

responding constriction degree and location coordinates,

which are called vocal tract constriction variables (hence-

forth, tract-variables or TVs) (see Table I and Fig. 1; note

that a constriction-location TV is not needed for the glottis

and velum constrictors since they are fixed in location).

Table II presents the dynamic range and the measuring units

for each TV. All constriction-degree TVs are defined in mm.

For the constriction location TVs, TBCL and TTCL are po-

lar angular distance measures for the tongue body and

tongue tip constrictors with respect to a reference line origi-

nating at the floor of the mouth (F, in Fig. 1), and LP is a

measure of horizontal protrusion of the lip constrictor rela-

tive to a reference position. Figure 1 shows a vocal tract con-

figuration with a TBCL of 90� and TTCL of 45�.
Each gesture is associated with a given constrictor and

is specified by an activation onset and offset time and by a

set of dynamic parameters (target, stiffness, and damping);

when a given gesture is activated, its parameters are inserted

into the associated constrictor’s TV equations of motion.

These equations are defined as critically damped second

order systems (Saltzman and Munhall, 1989), as shown

in (1):

M€zþ B _zþ Kðz� z0Þ ¼ 0; (1)

where M, B, and K are the mass, damping, and stiffness pa-

rameters of each TV (represented by z), and z0 is the TV’s tar-

get position; every parameter except M is a time-varying

function of the corresponding parameters of the currently

active set of gestures; and, due to the assumption of constant

mass and critical damping, the damping coefficients are con-

strained to be simple functions of the ongoing stiffness values.

The gestural structure of an utterance is represented by its ges-
tural score, which includes the set of gestural activation inter-

vals for the utterance, the pattern of relative timing among

these intervals, and the associated sets of gestural dynamic pa-

rameters. The gestural score and set of tract variable trajecto-

ries or time functions (TVts) for an arbitrary utterance are

generated using the Haskins Laboratories Task Dynamics

Application [TaDA, (Nam et al., 2004)]. In this model, gestu-

ral scores are generated from orthographic or ARPABET tran-

scription inputs, according to the principles of Browman and

Goldstein’s Articulatory Phonology; TVts and articulator tra-

jectories are computed using Saltzman and Munhall’s (1989)

Task Dynamic model of gestural pattern dynamics; and vocal

tract shapes, area functions, and formants are calculated by an

articulatory synthesis model (Rubin et al., 1981). Finally, the

outputs of TaDA are used in conjunction with HLsyn [a para-

metric quasi-articulatory synthesizer developed by Sensimet-

rics Inc. (Hanson and Stevens, 2002)] to generate the resulting

audio signal. Figure 2 shows a gestural score for the utterance

“miss you,” and the corresponding TVts, acoustic signal, and

formant structure. Note that gestural onsets and offsets are not

always aligned to acoustic landmarks, e.g., the beginning of

the frication for /s/ is delayed with respect to the onset of the

tongue tip constriction gesture (TTCD) for /s/, due to the time

it takes for the tongue tip to attain a position close enough to

the palate to generate turbulence; such asynchronies highlight

the distinction between gestures and AFs.

However, like other articulatory information (e.g., artic-

ulator flesh-point trajectories), gestures are not readily

obtainable in a typical ASR situation; rather, they need to be

estimated from the speech signal. Sun and Deng (2002)

described an automated gestural score annotation model that

was trained with manually annotated overlapping gestures,

and reported an improvement in ASR performance. Gestural

activation recovery from multi-channel articulatory record-

ings was performed by Jung et al. (1996) using a temporal

TABLE I. Constrictors and their vocal tract variables.

Constrictors Vocal tract variables

Lip Lip Aperture (LA)

Lip Protrusion (LP)

Tongue Tip Tongue tip constriction degree (TTCD)

Tongue tip constriction location (TTCL)

Tongue Body Tongue body constriction degree (TBCD)

Tongue body constriction location (TBCL)

Velum Velum (VEL)

Glottis Glottis (GLO)

FIG. 1. Vocal tract variables at 5 distinct constriction organs.

TABLE II. Units of measurement and dynamic range of each TV.

Dynamic range

TVs Unit Max Min

GLO – 0.74 0.00

VEL – 0.20 �0.20

LP mm 12.00 8.08

LA mm 27.00 �4.00

TTCD mm 31.07 �4.00

TBCD mm 12.50 �2.00

TTCL degree 80.00 0.00

TBCL degree 180.00 87.00
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decomposition (TD) method (Atal, 1983) that was applied to

various CVC syllables embedded in frame sentences.

Although gestural activations were estimated in their work,

the associated sets of gestural dynamic parameters such as

stiffnesses and targets were not recovered. Such parameters

are crucial, however, to distinguish utterances in a gesture-

based lexicon (Browman and Goldstein, 1992). The stiffness

helps to distinguish consonants from vowels: the motion for

consonants, which is parameterized as a gesture with higher

stiffness, is faster than that of vowels. Similarly, gestural tar-

gets provide spatial information about the location and

degree of a constriction. For example, in the case of/s/as in

“miss” (shown in Fig. 2), the tongue-tip gesture will have a

“critical” (very narrow) constriction degree target (TTCD)

whose location target (TTCL) is the alveolar ridge. Hence,

estimating only gestural activations is not sufficient for lexi-

cal access.

Ghosh et al. (2009) trained a system using dynamic pro-

gramming to estimate gestural targets (but not activations or

stiffnesses) for a corpus of 213 natural and phonetically bal-

anced sentences from the Harvard IEEE Corpus. They

obtained word identification accuracies of 66.67% for recog-

nition from these gesture target vectors. Zhuang et al. (2009)

proposed the use of gestural pattern vectors (GPVs) (which

represent gestural activations and their corresponding

dynamic parameters for each time frame) as recognition units.

They proposed a tandem ANN-GMM model that predicts the

GPVs from a priori knowledge of TVts (groundtruth TVts
2)

using a synthetically generated speech corpus which con-

tained 380 unique GPVs. They performed recognition based

on 181 out of the 380 GPVs, because the remaining 199

GPVs were rare in terms of frequency and, hence, the model

could not learn them sufficiently. The GPVs were correctly

recognized 80% of the time, which was later improved to

90% by pronunciation modeling with finite state machines

(FSM) (Hu et al., 2010). However, since the number of possi-

ble GPVs is potentially huge when there is large variability in

gestural overlap in natural, spontaneous speech, using GPVs

as hidden variables in a full-blown ASR system might intro-

duce data-sparsity issues similar to those encountered with tri-

phone models. In addition, the GPV recognizer in Zhuang

et al. (2009) employed the groundtruth TVts, which are gener-

ally not available true in typical ASR situations.

D. Overview of the present study

The goal of this study is to develop a methodology to

recognize Articulatory Phonology-based gestures from the

acoustic waveform. We first show that gestures can be accu-

rately inferred from synthetic, TaDA-generated speech for

which the underlying gestures (activations and dynamic pa-

rameters) and TVts are known a priori. Gesture recognition

is performed using a two-stage cascaded architecture that (a)

recognizes gestural activation intervals in the first stage and

(b) estimates the dynamic parameters associated with these

activation intervals in the second stage. We then demonstrate

that the model, trained to infer gestures using synthetic

speech, can be successfully applied to real-speech inputs,

and that doing so improves the noise-robustness of word rec-

ognition, consistent with the demonstration of Kirchhoff

et al. (1999) that articulatory information is especially useful

for ASR in noise. We demonstrate additionally that the TVts,

when combined with acoustic information, provide a particu-

larly rich source of constraint for the gestural recovery pro-

cess during ASR.

The outline of the paper is as follows. First, we describe

in detail the construction of two synthetic databases

(XRMB-SYN and AUR-SYN) that were used for training

and testing our gesture-recognition models. Second, we

describe the structural optimization, training and evaluation

of the TV estimator and gesture recognition models using

these databases, and also describe an alternative gesture-

FIG. 2. (Color online) Gestural

score for the utterance “miss you.”

Active gesture regions are marked

by rectangular solid blocks. Smooth

curves in the background represent

the corresponding TVs.
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based Dynamic Bayesian Network (DBN) ASR architecture

that treats articulatory gestures as hidden variables. Third,

we present the results of experiments using the (clear and

noisy) real speech of the Aurora-2 corpus: (a) TVts and ges-

tures are estimated using the synthetically trained models,

and these are added as additional inputs to an HMM- based

word recognition system; (b) estimated TVs are added as

inputs to the gesture-based DBN ASR architecture. Finally

we conclude with a discussion of the implications of our

findings for guiding future research within this framework.

II. DATABASES AND METHODOLOGIES

A. Databases

1. Synthetic databases

To obtain gestural score and TVt specifications for a

large set of training utterances, we used TaDA (Nam et al.,
2004); corresponding acoustic signals were synthesized

using HLsyn (Hanson and Stevens, 2002) in conjunction

with TaDA (both models were described previously in

section I C.). Two types of synthetic dataset were prepared

using TaDA-HLsyn, where the sampling rate for the acoustic

signal was 10 kHz and that for TVts and gestural scores was

200 Hz. First, we created a synthetic speech corpus contain-

ing gestures and TVts to develop and obtain the model pa-

rameters for the gesture-recognizer. The dataset consists of

4203 distinct words found in the X-Ray MicroBeam

(XRMB) database (Westbury, 1994) and we refer to it as

XRMB-SYN. Seventy five percent of the XRMB-SYN data

was used for training, and 10% for validation and the rest

was used for testing. Second, to ensure that the acoustic por-

tion of the synthetic corpus used for training was phoneti-

cally similar to the natural dataset to be used for the ASR

experiments, we created another TaDA-generated dataset

using 960 utterances randomly selected from the Aurora-2

(Pearce and Hirsch, 2000) clean training corpus. For each

utterance, their ARPABET specification, mean pitch and

gender information were input to TaDA-HLsyn and the

resulting corpus was named as AUR-SYN. The generation

and function of these two synthetic datasets is illustrated in

Fig. 3.

2. Natural speech database

The digit-corpus of Aurora-2 was selected to perform

gesture and word recognition on natural speech. Aurora-2 is

created from the TIdigits corpus and consists of connected

digits spoken by American English speakers. The speech

data in Aurora-2 are sampled at 8 kHz and have three test

sections: A, B and C. Set A and B each has four subparts

representing four different noise types; hence A and B alto-

gether contain eight different noise types. Section C involves

channel-effects, which we did not use in our experiments.

All of our experiments involved training with clean and test-

ing with noisy data.

B. Acoustic parameterization

The acoustic features used in both the TVt-estimator and

the gesture recognizer were Mel-frequency cepstral coeffi-

cients (MFCCs) and Acoustic-Phonetic parameters (APs)

(Juneja, 2004). The APs are measures that meant to capture

the acoustic correlates of acoustic-phonetic features. Exam-

ples include periodic and aperiodic energy in different fre-

quency bands which are relevant for the phonetic feature

voiced/unvoiced and normalized energy-based measures

which are relevant for the phonetic feature syllabic/non-syl-
labic. Finally, for the word recognition experiments dis-

cussed in Sec. III below, we also used the RASTA-PLPs

(Hermansky and Morgan, 1994) since they have been shown

to be robust to noise. For all parameterizations, we used an

analysis window of 10 ms with a frame advance of 5 ms. The

dimensionality of the APs was higher than that of the

MFCCs and the RASTA-PLPs; 40 different APs were used

for the TVt estimation process and their selection is

explained in Mitra et al. (2009). All of the acoustic features

and the target groundtruth TVts were mean subtracted,

variance-normalized (with std. dev.¼ 0.25) and scaled such

that their dynamic range was confined within [�0.95, þ0.95].

The acoustic features (MFCCs and APs) were tempo-

rally contextualized by stacking multiple frames before

being sent to the TVt-estimator and gesture recognizer. The

contextualized features for a given frame at t ms, are created

from a context-window of duration d ms (d>10 ms), where

every second feature vector (time-shift of 10 ms) evaluated

FIG. 3. Flow diagram for generating

synthetic speech and the associated

articulatory information using TaDA

and HLsyn.
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in the range t� d=2; tþ d=2½ � ms is stacked with the feature

vector at t ms to form a contextualized super-vector. From

our prior research (Mitra et al., 2010) we know that the opti-

mal4 TVt estimation context windows for MFCCs and APs

are 170 ms and 190 ms, respectively, and their dimension af-

ter contextualization is 221 and 760, respectively.

C. Gestural scores and their use in ASR

1. The TVt estimator

During speech production, the articulators in the human

vocal tract shape the acoustic resonator, resulting in an

acoustic signal y that is a nonlinear function f of articulator

configuration x:

y ¼ f ðxÞ: (2)

In recognition tasks, although the speech acoustic signal is

available directly, articulatory data is typically available

only indirectly from the speech signal via an estimation pro-

cess called speech inversion that seeks to find a function g
that provides an optimal estimate of x (according to some

quantitative quality metric):

x̂ ¼ gðyÞ: (3)

Typically speech inversion problems suffer from non-

linearity and non-uniqueness (Richmond, 2001). However,

recent separate studies by Qin et al. (2007) and Neiberg

et al. (2008) showed that much of normal speech is produced

with unique vocal tract shapes, and that non-unique instances

are few. Their findings also suggested that non-linearity is

more critical than non-uniqueness for speech-inversion.

In our past work (Mitra et al., 2010, 2011) and current

work on gestural estimation, we first estimate TVts from the

speech signal and use this articulatory information to guide

and constrain subsequent stages of gestural recovery. McGo-

wan (1994) pointed out that TVts specify the salient features

of the vocal tract area functions more directly than the abso-

lute spatial trajectories of articulatory flesh-points. Similarly,

we have shown (Mitra et al., 2011) that speech inversion

using TVts suffers less from non-uniqueness problems com-

pared to approaches that rely on traditional flesh-point (pel-

let) trajectory information.

From our prior analysis (Mitra et al., 2010) we observed

that a 3-hidden layer feed- forward (FF) ANN offers reason-

ably accurate TVt estimates compared to other machine-

learning approaches [Support Vector Regression (Toutios and

Margaritis, 2005), Trajectory Mixture Density Networks

(Richmond, 2007), Distal Supervised Learning (Jordan and

Rumelhart, 1992) etc.] that have either been successfully used

for flesh-point based speech-inversion or are well known for

inverse problems. This section reviews the FF-ANN based

TVt-estimator model trained with XRMB-SYN, which esti-

mates TVts given acoustic features (MFCCs or APs) as input.

In ANN- based speech-inversion models, instantaneous non-

uniqueness has been addressed by using a temporal context

window (Richmond, 2001) to exploit dynamic information in

the input space, as specified in Sec. II B.

FF-ANNs with a minimum of 2 hidden layers (Lapedes

and Farber, 1988) have the capability to learn arbitrary com-

plex non-linear mappings of an M-dimensional input space

(RM) to an N-dimensional output space (RN). Such ANNs are

implicitly capable of exploiting any existing cross-

correlations between components of the output (e.g., TVt in-

formation in our case) (Mitra et al., 2010). A single 3-hidden

layer FF-ANN with eight output nodes (one for each TVt)

and tan-sigmoid activation function was trained (using the

scaled conjugate gradient [SCG] algorithm), for each of the

input acoustic feature sets AP and MFCC, respectively. The

number of neurons in each hidden layer was optimized by

analyzing the root mean squared error (RMSE) from the val-

idation set. During this optimization stage we observed that

the performance of the TVt estimation improved as the num-

ber of hidden layers was increased. It may be the case that

additional hidden layers incorporated additional non-linear

activation functions into the system, which in turn increased

the architecture’s potential to cope with the high non-

linearity inherent in a speech-inversion process [a detailed

discussion on this is provided by Bengio and Le Cun

(2007)]. However, the number of hidden layer was confined

to three because (a) the error surface becomes more complex

(with many spurious minima) as the number of hidden layer

was increased, which increases the probability that the opti-

mization process finds a local minimum and (b) increasing

the number of hidden layers increases the training time and

the network complexity. The optimal architectures for our

networks using MFCC and AP inputs were found to be

(221)-150-100-150 -(8) and (760)-250-300-250 -(8), where

the first value within parenthesis represent the dimensional-

ity of the contextualized input feature vector, the last value

in parenthesis denotes the total number of output TVts and

the three values in between represent the number of neurons

in each of the three hidden layers.

The estimated TVts from the FF-ANN models were

found to be noisy due to estimation error. TVts by definition

are smooth5 trajectories due to neuro-biomechanical con-

straints; hence to ensure smoothness of the estimated TVts a

Kalman-smoother was used as a post-processor. The perform-

ance of the TVt estimator used in our experiments reported in

this paper has already been reported in Mitra et al. (2010)

and, hence, we will not be presenting those results here.

2. The gesture recognizer

Recognizing an utterance’s gestural structure entails

recovering the utterance’s gestural score, i.e., gestural acti-

vation intervals, their pattern of relative timing, and the asso-

ciated sets of gestural dynamic parameters (targets and

stiffnesses). Note that the activation value of a gesture for a

given TV at a given instant of time is treated as a discrete bi-

nary variable: activation values are 1 for active gestures and

0 for non-active gestures. If a gesture is active, its parameter

set will influence the ongoing spatiotemporal shape of the

associated TV. Due to the assumption of critical damping,

note that the damping parameter, B, in (1) is constrained to

be a simple function of stiffness and does not need to be esti-

mated independently.6

J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Mitra et al.: Recognizing articulatory gestures from speech 2275

Downloaded 31 Jul 2013 to 129.2.129.155. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



We compared the performance of four types of gesture

recognition models that differed in terms of the types of

inputs used (see Fig. 4). Gesture model 1 (GM-1) used the

acoustic features only (i.e., the MFCCs or the APs); Gesture

model 2 (GM-2) used only the TVts estimated from the

acoustic features (using the model presented in last section);

Gesture models 3 (GM-3) and 4 (GM-4) both used TVts

along with the acoustic features, with the former using esti-

mated TVts and the latter using groundtruth TVts. A 2-stage

cascade ANN architecture (shown in Fig. 5) was adopted for

all four models, in which gestural activation (onset and off-

set) information was obtained in the first stage using a non-

linear autoregressive (AR) ANN, and gestural parameter

estimation (target and stiffness values) was performed in the

second stage using an FF-ANN.

We considered 10 different TVs for these models: LP,

LA, TTCL, TTCD, TBCL_C, TBCL_V, TBCD_C,

TBCD_V, VEL and GLO. Note that, since tongue body ges-

tures are shared by velar consonants and vowels with distinct

timescales (fast for consonants and slow for vowels), the

original TBCL and TBCD TVs used in TaDA were differen-

tiated into consonant (TBCL_C and TBCD_C) and vowel

(TBCL_V and TBCD_V) sub-TVs. Separate cascaded

gesture-recognition models were trained for each TV and

sub-TV using each of the four input combinations shown in

Fig. 4; thus, 4 cascade models were trained for each TV/sub-

TV, except for GLO and VEL.7 The best architecture would

probably have gestures for TVs recognized conjointly based

on all TVs, because shared articulators between TVs can

cause passive movement in a TV that is not being controlled

by an active gesture. For example, a TT constriction gesture

will typically engage jaw-raising, which will, everything

else being equal, cause a passive decrease in LA. That LA

change should not count as evidence of a LA gesture, but

when gestures are recognized independently, based on their

respective TVs, a LA gesture could incorrectly be recog-

nized. However, we chose to perform gesture recognition

separately for each TV in order to keep the model simple

and easier to train.

In the gestural estimation process, gestural activation is

treated as a discrete binary random variable that, at any

given instant of time i, can only be in one of the two possible

states: Si [ {0,1}, with Si¼ 1 when active, or Si¼ 0 when

inactive. Once a gesture is active or inactive it maintains that

state for a certain interval of time (from 50 ms to 300 ms).

We model this state duration property by incorporating mem-
ory into the gestural activation detection process, using the

recurrent feedback loop of an AR-ANN (Demuth et al.,
2008). Memory is used to remember the sequence of prior

activation states (St�1, St�2,…, St�D) and that information

along with the current acoustic observation u(t) is used to

predict the activation state St for the tth time instant. As

shown by Eq. (4)

St ¼ fAR�ANNðSt�1; St�2;…; St�D; uðtÞÞ; (4)

where fAR-ANN represents the nonlinear AR-ANN network.

Note that the autoregressive memory serves to effectively

prevent instantaneous switching between the binary states.

The second stage of the gesture recognition model uses

an FF-ANN to estimate gestural dynamic parameter values

(targets and stiffnesses) during active gestural intervals.

Obtaining gestural dynamic parameters is essentially a

FIG. 4. (Color online) The Four

approaches for Gesture recognition.

FIG. 5. (Color online) The 2-stage cascaded ANN architecture for gesture

recognition.

2276 J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Mitra et al.: Recognizing articulatory gestures from speech

Downloaded 31 Jul 2013 to 129.2.129.155. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



function estimation problem where the parameters target and

stiffness can theoretically have any real value and FF-ANNs

can be trained to approximate any function (with a finite

number of discontinuities) (Lapedes and Farber, 1988).

The acoustic features (MFCCs or APs) used as inputs to

the cascaded ANNs were temporally contextualized in a sim-

ilar manner as was done for TVt estimation (see Secs. II B

and II C 1). The optimal context windows for each stage

were found to vary for different TVs, and the optimal values

are reported along with the results in Sec. III A.

D. Gesture-based Dynamic Bayesian Network
(G-DBN) for speech recognition

Using the observations gleaned from the ANN gestural

models discussed above, we present a fully deployable

Dynamic Bayesian Network (DBN) based ASR architecture,

where the gestural states are modeled as discrete random

variables. Instead of explicitly recognizing the gestures as

done by our ANN-based models, the DBN treats gestures as

discrete random variables (RVs) that are observed during

training and hidden during testing.

A DBN architecture can be seen as a generalization of

the HMM architecture (Ghahramani, 1998). We chose to use

a DBN instead of a HMM for two reasons. First, DBNs have

the flexibility to realize multiple hidden variables at a given

time. As a result, a DBN can model articulatory gestures as

individual state variables, one for each articulatory gesture.

Second, a DBN can explicitly model the interdependencies

amongst the gestures and can simultaneously perform ges-

ture recognition and word recognition, eliminating the need

to perform gesture recognition as a prior separate step before

word recognition. For our DBN implementation we used the

Graphical Models Tool-Kit (GMTK) (Bilmes and Zweig,

2002), where conditional probability tables (CPT) are used

to describe the probability distributions of the discrete RVs

given their parents, and GMMs are used to define the proba-

bility distributions of the continuous RVs.

In a typical HMM based ASR setup, word recognition is

performed using maximum a posteriori probability

w� argmaxiPðwi oj Þ � argmaxwi

PðwiÞPðojwiÞ
PðoÞ ; (5)

where o is the observation variable and P(wi) is the language

model that can be ignored for an isolated word recognition

task where all of the words w are equally probable. Hence

we are left with P(o|wi) which is given as

Pðo wj Þ ¼
X

s

Pðs; o wj Þ ¼
X

s

Pðs wj ÞPðo s;wj Þ

�
X

s

Pðs1 wj ÞPðo1 s1;wj ÞPn
i¼2Pðsi si�1;wj ÞPðoi si;wj Þ;

(6)

where s is the hidden state in the model. In this setup the

likelihood of the acoustic observation given the model is cal-

culated in terms of the emission probabilities P(oi|si) and the

transition probabilities P(si|si�1). Use of articulatory infor-

mation introduces another RV a, which alters (6) as

Pðo wj Þ �
X

s

Pðs1 wj ÞPðo1 s1; a1;wj Þ
Yn

i¼2

Pðsi si�1;wj Þ

� Pðai ai�1; sij ÞPðoi si; ai;wj Þ: (7)

DBNs can model both (a) the causal relationship between

the articulators and the acoustic observations P(o|s,a,w) and

(b) the dependency of articulators on the current phonetic

state and previous articulators P(ai|ai�1,si).

Tying each individual gestural state with a word state

can potentially result in large CPTs, which can significantly

slow down the DBN to the extent of not being able to test it.

To address this, we slightly modified Eq. (7) as follows

Pðo wj Þ ¼
X

s

Pðs1 wj ÞPða1 wj ÞPðo1;1 s1;wj ÞPðo2;1 a1;wj Þ

�
"Yn

i¼2

Pðsi si�1;wj ÞPðai ai�1;wj ÞPðo1;i si;wj Þ

�Pðo2;i ai;wj Þ
#
: (8)

Equation (8) is based upon the assumption that gestural

states and word states are individual entities tied directly to

the word RVs. This is represented by the graphical model

shown in Fig. 6.

1. Model architecture

In the G-DBN model of Fig. 6, square/circular nodes

represent discrete/continuous RVs, and shaded/unshaded

nodes represent observed/hidden RVs. As can be seen, the

DBN consists of four discrete hidden RVs (W, P, S and T),

two continuous observable RVs (O1 and O2) and N partly

observable and partly hidden gesture RVs (A1 to AN). The

prologue and the epilogue in Fig. 6 denote the initial and the

final frame(s) (where the frame specifications are same as

the observation) and the center represents the intermediate

frames, which are unrolled in time to match the duration of a

given utterance. For a word model, S represents the word

state, W represents the word RV, P represents the word posi-

tion RV (word position at a given time instant gives the posi-

tion in the whole word state for a given word at that time

instant) and T represents the word transition RV. As in our

explicit gesture recognition models (described in the previ-

ous section), we incorporated memory into the gesture RVs

(although for simplicity we have incorporated only a single-

step memory) where the gestural states at the current time

instant is tied to the gestural state at the previous time

instance (see Fig. 6). Note that there are no cross- gesture

dependencies among the gesture RVs, just as in the explicit

gesture recognizer. Thus, despite the potential noted above

that the DBN offers for modeling gestural dependencies, it

was not employee here, for reasons of model tractability.

We modeled six articulatory gesture activations (GLO,

VEL, LA, LP, TT and TB) as hidden RVs in the G-DBN

architecture, so N (the subscript of A) in Fig. 6 is six. The

gestural activations for TTCL and TTCD are identical. As a

result, they were replaced by a single RV, TT tongue tip)

and the same was true for TBCL and TBCD, which were
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replaced by TB (tongue body). Also note that the gesture

RVs represent the gestural activations; i.e., whether the ges-

ture is active or not, and hence are binary RVs. The gesture

RVs do not have degree/location of constriction information,

which was done deliberately to reduce the cardinality of the

RVs in the DBN in order to prevent very large CPTs. Models

with large CPTs were found to be intractable and very slow

to train. Even if such models were trained after getting a

good triangulation, they failed to generate any hypothesis

during the test runs due to the model complexity.

The G-DBN word model has 16 states/word, which (like

the default HMM based ASR models distributed with Aurora-

2) has 11 whole word models (zero to nine and oh). There are

2 additional models for “sil” and “sp”; where “sil” had 3

states and “sp” had one state, respectively. The maximum

number of mixtures allowed per state was four with vanishing

of mixture-coefficients allowed for weak mixtures.

2. Observation RVs

As will be discussed in Sec. III A, experiments with the

explicit gesture recognizer showed that (a) temporal contextu-

alization of acoustic features and (b) use of estimated TVts,

helped to improve the gesture recognition performance, we

used contextualized acoustic features and TVts as the observa-

tion set O2, which is used as the input to the gesture RVs.

Although results to be presented in Sec. III A showed that the

contextual window varied depending upon the TV, for the

sake of simplicity we have used a common temporal context

window of 190 ms for the observations tied to the gesture RVs

in G-DBN. (In essence, the observations from the explicit ges-

ture recognition experiment were used to help create the over-

all G-DBN architecture.) The remainder of the O2 vector

consists of the 13 cepstral coefficients in the form of MFCCs

of with time contextualization. The 13D cepstral coefficients

were mean subtracted and variance normalized and concaten-

ated with 8D estimated TVts, then contextualized (covering

190 ms of speech data) by stacking cepstral coefficients from

nine frames (selecting every 4th frame, 20 ms hop) where the

5th frame is centered at the current time instant. The resulting

contextualized feature vector had a dimensionality of 189 (¼
9� 21) which constitutes the second observation set O2. Note

that unlike the explicit gesture recognizer, all of the TV values

are input to every gesture RV.

The continuous observed RV O1 is input to the acoustic

state random variable, S, and consists of acoustic observa-

tion in the form of MFCCs, (39D: 13 cepstral coefficients

and their Ds and D2s). In all the experiments reported here,

the MFCCs were computed using an analysis window of

10 ms and a frame rate of 5 ms.

3. Training

Note that for the word recognition results reported in

Sec. III C, the Aurora-2 clean training dataset was annotated

with gestural scores using an iterative analysis-by-synthesis

time-warping procedure presented by Nam et al. (2010). In

this procedure, TaDA was used to create a prototype gestural

score given an utterance, which was then aligned to the target

utterance using a phone-landmark based iterative time-

warping procedure. Note that the gestural annotation was per-

formed only for the training set of Aurora-2, which in turn

was used to train the G-DBN model discussed in this section.

III. EXPERIMENTS AND RESULTS

The experiments performed and the results obtained are

reported in three sections. In Sec. A, we compare the per-

formances of the four types of gesture recognition models

FIG. 6. G-DBN graphical model for

a word (square/circular nodes repre-

sent discrete/continuous RVs, and

shaded/unshaded nodes represent

observed/hidden RVs).
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described in Sec. II C 2 (see Fig. 4), using the XRMB-SYN

database; we also compare these gesture recognition per-

formances to that obtained by Zhuang et al. (2009). In Sec.

III B, we present the word recognition results for Aurora-2,

obtained from using estimated TVts, recognized gestures

(from the proposed ANN models), and acoustic features in

an HMM-based word recognition system. Finally, in Sec. III C

we present the results of word recognition using the gesture-

based DBN architecture and compare its performance with

published state-of-the-art results.

A. The gesture recognizer

The XRMB-SYN data was used to train-test the gesture

models in Fig. 4, where 75% of the data was used for train-

ing, 10% for validation and the rest for testing. The network

configurations (i.e., input contextual information, number of

neurons and the delay chain in the feedback path of the AR-

ANN) were optimized separately for each TV using the de-

velopment set of XRMB-SYN. The networks in both stages

contained a single hidden layer with tan- sigmoid activation

functions, and were trained using the SCG algorithm up to a

maximum epoch of 2500 iterations. The performance of the

gesture recognizers was evaluated by first quantizing the

gestural parameters obtained from the second stage based on

a quantization code8 constructed from the training set, and

then computing a frame-wise gesture recognition accuracy

score using Eq. (9) as specified below:

Rec:Acc: ¼ N � S

N
� 100; (9)

where N is the total number of frames in all the utterances

and S is the number of frames having at least one of the three

gestural parameters (activation, target and stiffness) wrongly

recognized. Figure 7 presents the overall gesture recognition

accuracy (averaged across the eight different gestures ignor-

ing GLO and VEL) obtained from the four approaches using

MFCCs and APs as the acoustic features.

Several observations can be made from the results pre-

sented in Fig. 7:

(1) GM-4 offers the best recognition accuracy for both

MFCCs and APs. This is expected as it uses the ground-

truth or actual TVts. In practice we cannot assume a
priori knowledge of the actual TVts, which renders

GM-4 infeasible for ASR applications. Nevertheless,

GM-4 provides the accuracy ceiling that could be

expected in case of an absolutely accurate TVt-estima-

tor in GM-3.

(2) For GM-4, using the APs as the acoustic feature gives

higher recognition accuracy [at 1% significance level

using the significance-testing procedure described by

Gillick and Cox (1989)] than using MFCCs, which may

indicate that APs provide a better acoustic parameteriza-

tion than the MFCCs for gesture recognition.

(3) GM-1 uses only the APs or MFCCs for gesture recogni-

tion, and the APs show overall higher recognition accu-

racy (at 5% significance level) than the MFCCs,

confirming the statement made in (2).

(4) GM-2 uses only the estimated TVts and the results show

that the MFCCs offer better recognition accuracy than

the APs (at 5% significance level).

(5) For GM-3, the AP and the MFCC based system gave rec-

ognition accuracies that are not significantly different

from one another. From above observations we can see

that APs do better for GM-1 (which requires only acous-

tic observation but no TVt estimation for gesture recog-

nition), while MFCCs perform better for GM-2 (which

uses only estimated TVts but no acoustic observation for

gesture estimation) and based on our prior observations

(Mitra et al., 2010) we know that MFCCs perform better

TVt estimation compared to the APs. GM-3 uses both

acoustic observations and TVt estimation, hence the rela-

tive advantage of MFCCs and APs over one another in

each of these two conditions are compensated, resulting

in similar accuracies in this setup. Finally, no TVt

FIG. 7. (Color online) Average ges-

ture recognition accuracy (%)

obtained from the four gesture mod-

els (GM- 1 to GM-4) using AP and

MFCC as acoustic feature.
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estimation is required for GM-4, which is why the APs

do better again.

(6) GMs 1, 2, and 3 are more realistic gesture-recognition

architectures for ASR applications, as only the acoustic

features are considered as the observable and the TVts in

GMs 2 and 3 are estimated from the acoustic features.

Amongst these three approaches, GM-3 offered the best

recognition accuracy indicating that estimating TVts for

gesture recognition is indeed beneficial. GM-3 is analo-

gous to the use of tandem features used in ASR (Herman-

sky et al., 2000) where an ANN is used to perform a non-

linear transform of the acoustic parameters to yield the

estimated TVts, which in turn helps to improve the recog-

nition of gestural scores when used in conjunction with

the acoustic parameters. Note that the improvement

resulting from the TVts cannot be just due to the increased

number of input parameters. If that was the case, then the

APs would be far superior to the MFCCs in GM-1.

Given these observations, we can state that the cascaded

neural network gesture recognizer using acoustic features

and estimated TVts as input will recognize gestures rela-

tively more accurately than when only the acoustic features

or the estimated TVts are used as the input.

Figure 8 presents the recognition accuracies individually

for all gesture types, where GM-1 is only used for GLO and

VEL and GM-3 is used for all of the remaining gestures. Fig-

ure 8 shows that using GM-1 the GLO and VEL gestures

were recognized quite well (accuracy> 98%). This observa-

tion is encouraging as it indicates that it is relatively simple

to estimate parameters for these gestures from synthetic

speech. The APs offered better recognition accuracy for the

GLO, VEL, TBCL-V, TBCD-V and TBCD-C gestures; this

was expected as the APs have specific features for capturing

voicing [the periodic and aperiodic information using the

approach specified in Deshmukh et al. (2005)] and nasaliza-

tion information [using APs proposed in Pruthi (2007)],

whereas the MFCCs have none. However, some APs rely on

formant information and formant tracking for noisy speech

is prone to errors, rendering the AP-based models to be unre-

liable for recognizing gestures from noisy speech. Thus, in

our ASR experiment presented in Sec. III B we have selected

the MFCC-based model, as our aim was to obtain gestures

for performing word recognition experiments on natural

utterances, both in clean and noisy conditions.

Table III presents the optimal configuration for the 2-

stage cascaded gesture recognition model for each gestural

type. Note that in the two stages of the cascaded model, dif-

ferent optimal context window lengths were found for gestu-

ral activation and parameter detection. The D in Table III

represents the order of the delay chain in the feedback path

of the AR-ANN architecture used for gestural activation

detection.

Note that for a given gesture, the optimal input feature

context window for activation detection (i.e., for AR-ANN)

is smaller compared to that for gestural parameter estimation

(i.e., for FF-ANN). This difference might be because the rec-

ognizer could not effectively recognize a gesture’s specified

target until the corresponding TVt reaches its target (requir-

ing a larger window of observation) whereas activation can

be recognized by simply detecting a constricting motion of a

TVt (requiring a smaller observation window). Also, the

acoustic feature context windows for gesture-recognition are

different than those used for TVt estimation, where the opti-

mal context window for the MFCCs and the APs was found

to be 170 ms and 190 ms, respectively (Mitra et al., 2010).

Hence, there are three factors that may have contributed to

the superior performance of GM-3 relative to GMs 1 and 2:

(1) GM-3 has the benefit of using three context windows

(one each for TVt estimation, activation detection and

parameter estimation), and the associated power of the

multi-resolution analysis they provide.

(2) GM-3 uses two streams of input information, the acous-

tic features and the estimated TVts, whereas GMs 1 and

2 uses only one of those two.

FIG. 8. (Color online) Gesture rec-

ognition accuracy (%) obtained for

the individual gesture types using

the cascaded ANN architecture,

where the inputs for GLO and VEL

were acoustic features only (i.e., AP

or MFCC) while for the remainder,

the input was defined by the concat-

enation of estimated TVs and acous-

tic features.
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(3) Finally, as stated before, acoustic signals have higher

bandwidth whereas speech gestures are quasi-stationary

discrete units, having bandwidths close to zero. Hence

trying to create a direct mapping between them will be

prone to errors. TVts are smoothly varying trajectories

(with bandwidth lower than the acoustic waveform but

higher than gestures) that are not only coupled strongly

with gestures but are also coupled well with the acoustic

signal; hence using them as an intermediate representa-

tion turns out to be a better strategy.

To compare the performance of our system with an

existing gesture recognition model published in the litera-

ture, we selected the system reported by Zhuang et al.
(2009). Their system was selected for two reasons. First, it is

the only system reported in the literature that obtains the fine

grained gesture-level information that we are seeking (that

is, representing gestures not only by their activation func-

tions, but also with their target and stiffness parameters).

Second, their system uses the same XRMB-SYN data that

we have used in this study, except their train-test file sets are

different than ours. The train and test lists in Zhuang et al.
(2009) consists of 277 words for training and 139 words for

testing from the XRMB-SYN dataset, without any word

identity overlapping. Our gesture recognition models were

retrained using the same 277 word training set. The gestural

scores were transformed to an instantaneous gestural pattern

vector (GPV) as discussed in Zhuang et al. (2009) and illus-

trated in Fig. 9. In Table IV, we present the F-score of the

recovered gestural parameters (constriction targets and stiff-

ness) from our models and compared that with respect to the

reported results of Zhuang et al. Note that we have used

MFCC as the acoustic observations for the four different

approaches shown in Table IV below.

Table IV shows that the F-scores (%) reported by

Zhuang et al. (2009) for the same task matches closely with

that obtained from the gesture recognition models presented

in this study. Zhuang et al. (2009) used groundtruth TVts

which is also the case for our GM-4 model. However, the

GM 1-3 models are more practical because they used acous-

tic parameters derived from the speech signal as input (GM

2 and 3 estimated TVts from the acoustic parameters). It is

noteworthy that our GM-3 model, using estimated TVs per-

formed better than the Zhuang model for several gesture

types, despite using GM-3 using estimated TVs, compared

to the use of ground truth TV’s of Zhuang et al. Overall,

Table IV reiterates the observations in Fig. 7 and confirms

that use of TVts with acoustic observations result in better

gesture recognition performance than using either of them

alone. Since for both GLO and VEL, only the GM-1 model

was trained (i.e., no TVt information was used). Thus, their

entries for GM-2, GM-3 and GM-4 are empty. Finally, note

that the combined target and stiffness F-scores (first two

rows in Table IV) are lower than the individual entries, this

happened as the results from our models (GM-1 to GM-4)

showed lowering of precision and recall values when

TABLE III. Optimal configuration for gesture recognition (activation and parameter) using approach-1 for GLO and VEL and approach-3 for the rest.

AP MFCC

Activation detection Parameter estimation Activation detection Parameter estimation

Gesture D Context (ms) Context (ms) D Context (ms) Context (ms)

GLO 4 170 210 5 190 210

VEL 4 150 210 4 130 210

LA 3 90 210 10 90 210

LP 4 90 290 9 90 290

TTCL 4 90 210 4 90 210

TTCD 7 190 210 4 190 230

TBCLV 4 130 290 4 170 290

TBCDV 9 150 290 7 190 290

TBCLC 4 150 210 10 190 210

TBCDC 4 150 210 4 170 210

FIG. 9. Gestural score for the word

“span.” Constriction organs are

denoted on the left and the gray

boxes at the center represent corre-

sponding gestural activation inter-

vals. A GPV is defined to be the set

of gestures active at any given point

in time, as shown by the vertical

slice in the figure.
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combined (to generate the combined target and stiffness val-

ues), hence resulting in lowering of their F-scores.

For the word recognition experiments presented in the

next sub-section we used MFCCs as the acoustic feature, the

GM-1 gesture recognition models for GLO and VEL, and

the GM-3 models for the remaining eight gesture types.

B. Word recognition experiments using HMMs with
estimated TVs and recognized gestures

The TVt-estimator and gesture-recognition models were

re-initialized and retrained with the synthetic speech data-

base AUR-SYN. The trained TVt-estimator and gesture-

recognizer were applied to the training and testing sets (A

and B) of Aurora-2 to obtain the corresponding set of esti-

mated TVts and recognized gestures. We then performed

word recognition experiments on the Aurora-2 corpus using

the estimated TVts and recognized gestures along with the

acoustic features. The HTK-based speech recognizer distrib-

uted with the Aurora-2 corpus (Pearce and Hirsch, 2000)

was employed for the experiment. Training was performed

on clean data and testing on noisy utterances. The raw recog-

nized gestural scores were converted to vectors (GPVs)

before being fed to the word recognizer; unlike the GPVs

discussed above, these were not quantized and hence they

represent the raw ANN posteriors (one for each of the three

parameters [activation, target and stiffness] at a given tract

variable site) from the gesture models. The acoustic features

used as input to the Aurora-2 whole-word models were para-

meterized as MFCC or RASTA-PLP (Hermansky and Mor-

gan, 1994), and were obtained using a 25 ms window with a

10 ms frame-advance. The estimated TVts and GPVs

(sampled at 5 ms) were resampled for seamless concatena-

tion with the acoustic features. The 39-dimensional acoustic

features consisted of 13 feature coefficients, 13 velocity

coefficients and 13 acceleration coefficients. We tested dif-

ferent combinations of GPVs, TVts and acoustic features

(MFCC or RASTA-PLP), and also each of them singly as

possible inputs to the word recognition system. The HMM

used eleven whole word models (“zero” to “nine” and “oh”)

and two silence/pause models “sil” and “sp,” each with 16

states. The number of Gaussian mixtures was optimized for

each input feature set using a development set consisting of

200 files selected randomly from each noise type at clean

condition and removed from the test set of Aurora-2. The

remaining 801 files were used for testing. (Note: The

Aurora-2 test set for each noise type at each SNR contains

1001 files). It was observed that for the case when input fea-

tures were concatenations of acoustic features with the TVts

and GPVs (i.e., MFCCþTVtþGPV or RASTA-

PLPþTVtþGPV), the optimal number was five mixtures for

the word models, and eight mixtures for the “silence/speech-

pause” models. For all other input scenarios, the optimal

number of Gaussians/mixture was three for word models and

six for “silence/speech-pause” models.

Table V presents word recognition accuracies obtained

using MFCCs and RASTA-PLPs with and without the TVts

and the GPVs as inputs to the word recognizer. The two

rows above the last one show the recognition accuracy

when only TVts or GPVs were used as the input to the word

recognizer. The estimated TVts and GPVs helped to

improve the noise robustness of the word recognition

TABLE IV. F-scores (%) of the recovered discretized gestural parameters as reported by Zhuang et al. (2009) and obtained from the different gesture recogni-

tion approaches presented in this study.

Zhuang et al. (2009) Models reported in this article

Uniform ergodic GPB-bigram GM-4 GM-3 GM-2 GM-1

Targ. 73.51 79.07 78.08 75.12 63.6 54.86

Stif. 80.79 84.50 85.98 81.95 71.59 64.38

Target GLO 62.80 72.34 � � � 99.17

VEL 64.79 75.21 � � � 98.53

LA 69.44 77.28 98.90 96.54 95.01 94.75

LP 78.03 84.83 99.68 94.82 93.53 85.96

TTCL 64.14 69.14 97.93 94.57 92.76 91.36

TTCD 63.05 68.44 96.19 90.11 82.73 87.66

TBCL 78.56 82.90 84.22 82.71 72.46 72.98

TBCD 83.16 86.01 80.34 81.93 71.10 68.14

Stiffness LA 69.99 77.36 98.90 97.14 96.10 94.96

LP 78.46 85.24 99.68 94.82 93.53 85.96

TBCL 83.41 85.90 90.46 89.22 81.20 82.77

TBCD 83.43 85.91 89.70 91.14 85.30 84.99

TABLE V. Overall Word Recognition accuracy.

Clean 0–20 dB �5 dB

MFCC 99.12 58.02 6.99

MFCCþTV 98.82 70.37 10.82

MFCCþTVþGPV 98.56 73.49 16.36

RASTA-PLP 99.01 63.03 10.21

RASTA-PLPþTV 98.96 68.21 12.56

RASTA-PLPþTVþGPV 98.66 75.47 19.88

TV 72.47 42.07 10.06

GPV 82.80 47.50 9.48

ETSI-AFE (European Telecommunications

Standards Institute, 2007)

99.09 86.13 27.68
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system when used in addition to the acoustic features

(MFCC or RASTA-PLP). However, the estimated TVts and

GPVs by themselves were not sufficient for word recogni-

tion, which indicate that the acoustic features and the artic-

ulatory parameters (TVts and GPVs) are providing

complementary information; hence neither of them alone

offers results as good as when used together. Note also that

recognition accuracies of the GPVs were better than that of

the TVts, implying that the GPVs are more discriminative

than the TVts. The main factor behind the GPVs’ failure to

perform as well as the acoustic features for the clean condi-

tion is most likely the inaccuracy of the gesture-recognizers

and TVt estimator. These models were trained with only

960 synthetic utterances (AUR-SYN) which are roughly

11% of the size of the Aurora-2 training set (8440 utteran-

ces). Also note that the models were trained on synthetic

speech and deployed on natural speech, hence the recog-

nized gestures and the estimated TVts both suffer from

acoustic mismatch. However, the results in Table V are

encouraging in the sense that even with such inherent inac-

curacies, the estimated TVts and the GPVs, when used with

the acoustic features, provided improvement in word recog-

nition performance. The last row in Table V shows the

results from using the ETSI-AFE (European Telecommuni-

cations Standards Institute–Advanced Front End, 2007),

which is amongst the state-of-the-art results reported in the

literature for the Aurora-2 noisy digit recognition task. The

ETSI-AFE has been specifically designed for improving

noise-robustness of speech recognition systems and incor-

porates noise reduction in its front-end processing (Flynn

and Jones, 2008). In the TVt estimation or the gesture rec-

ognition steps, we have not incorporated any noise reduc-

tion or speech signal enhancement procedure. With the

design of the TVt estimator or gesture recognizer models

that use noise robust acoustic features as input, we can

expect to have performance better than the ETSI-AFE for

spontaneous speech.

Figure 10 presents the overall word recognition accu-

racy (averaged across all noise types at all SNRs) when the

MFCCs or RASTA-PLPs are used with and without TVts

and the GPVs.

Figure 11 breaks down the word recognition accuracy

(averaged across all noise types) for six different SNRs using

the MFCCs and RASTA-PLPs as the acoustic features with

and without the estimated TVts and GPVs. We have added

here the word recognition accuracy obtained from using gen-

eralized spectral subtraction (GSS) speech enhancement

(Virag, 1999), which shows better accuracy than that of

using MFCCs only. Use of estimated TVts and GPVs in

addition to the acoustic features (without any speech

enhancement) provided higher recognition accuracy than

that obtained from using GSS speech enhancement.

C. Word recognition experiments using the
gesture-based Dynamic Bayesian Network

The G-DBN architecture was tested on the Aurora-2 data-

base, using MFCC features and cepstral features from the

ETSI-AFE. The results are shown in Table VI, compared to

some state-of-the art results on Aurora-2 reported in the

literature.

The MFCCþTVtþGPV HMM system in Table VI is the

result from Sec. III B, which used a left-to-right HMM word

recognizer. Note that the gesture recognition models used in

Sec. III B were trained using a small synthetic speech corpus.

Consequently, the gesture recognition models may have inac-

curacies when deployed on natural speech. This mismatch in

conditions may be one of the reasons why the G-DBNs result

in better performance compared to the MFCCþTVtþGPV

HMM system. Alternatively, SME and SMEþMVN results

are borrowed from Xiao et al. (2010). The MVA frontend

processing was performed using the approach laid out in Chen

and Bilmes (2007) (with ARMA order of 3) and the ETSI-

AFE was obtained from the ETSI portal (European Telecom-

munications Standards Institute–Advanced Front End, 2007).

FIG. 10. (Color online) Overall

word recognition accuracy using

MFCC and RASTA-PLP with and

without the estimated TVs and

gestures.
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For both of them, the word recognition experiments were car-

ried out by us in house. The results from a maximum likeli-

hood linear regression (MLLR1 and MLLR2) and feature

compensation (FC) are borrowed from Cui and Alwan (2005).

Note that the work by Cui and Alwan (2005) does not report

results at �5 dB SNR. Table VI shows that for both noisy

conditions, the combination of ETSI-AFE with the GDBN

front end provided the best word recognition accuracy of all

the systems tested. The table also shows that using the G-

DBN improved performance over HMM for both the MFCCs

and the ETSI-AFE inputs, showed a relative performance

improvement of 37.76% and 0.63%, respectively, over the

ETSI-AFE using HMM acoustic model (in the two noise con-

ditions combined) So even with sophisticated enhancement,

the gestural information provided by the G- DBN was able to

show an improvement.

IV. DISCUSSION AND CONCLUSION

Representing the phonological structure of speech as a

pattern of discrete, temporally overlapping gestures is an alter-

native to traditional phone-based representations (Browman

and Goldstein, 1992). Here we tested the utility of using ges-

tures as intermediate representations between the acoustic sig-

nal and lexical items in a word recognition system. To do so, it

was necessary to develop a system to automatically extract dis-

crete gestural representations from the acoustic signal, and we

presented results from two different approaches for doing so.

In the first approach, we developed a cascaded neural

network architecture for recognizing gestures from the

acoustic waveform, trained on only synthetic speech gener-

ated by the TaDA model. Evaluation of the network’s per-

formance on gesture recognition using synthetic test

utterances revealed successful recognition of gestures’ acti-

vations and dynamical control parameters. This architecture

was then used to recognize gestures for the natural speech of

Aurora-2 corpus, and the recognized gestures were used in

tandem with the original acoustics to perform word recogni-

tion experiments. Our results showed that adding the gestural

representations to the baseline MFCC or RASTA-PLP fea-

tures improved the recognition rates for noisy speech.

Such improvements in recognition accuracy under noise

can be interpreted in the following way. The gestural repre-

sentations can be thought of as lower dimensional projections

of the acoustic signal. They can be computed from the acous-

tic signal but contain less information than a (rich) acoustic

signal. For example, the acoustic signal contains information

about talker identity, emotional state, physical environment,

etc., none of which is expressed in the gestural representa-

tions. But the lower dimensional gesture representations are

FIG. 11. (Color online) Word rec-

ognition accuracy (averaged across

all noise types) at various SNR in

using (a) the baseline MFCC, (b)

MFCCþTVþGPV, (c) RASTA-

PLP, (d) RASTA-PLPþTVþGPV,

and (e) MFCCs after GSS based

speech enhancement of the noisy

speech.

TABLE VI. Aurora-2 word recognition accuracies from G-DBN and other

state-of-the art systems reported in the literature.

Clean 0–20 dB �5 dB

HMM MFCCs 99.12 58.02 6.99

MFCCsþTVtsþGPVs 98.56 73.49 16.36

Soft Margin Estimation (SME)

(Xiao et al., 2010)

99.64 67.44 11.70

SMEþMean and Variance

Normalization (MVN)

(Xiao et al., 2010)

99.68 86.01 24.9

Mean, Variance Normalization

and ARMA filtering (MVA)

(Chen and Bilmes, 2007)

99.18 83.75 24.72

MLLR1 (Cui and Alwan, 2005) 97.35 77.95 �
MLLR2 (Cui and Alwan, 2005) 98.95 76.76 �
Feature Compensation (FC)

(Cui and Alwan, 2005)

99.00 83.50 �

ETSI-AFE 99.09 86.13 27.68

G-DBN MFCC 99.27 84.00 26.56

ETSI-AFE 99.19 86.41 29.64
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designed (Browman and Goldstein, 1992) precisely to repre-

sent how words are distinguished from one another, so that in

a situation in which the total amount of information is sharply

reduced (noisy conditions), projecting available information

into a form optimized for word discrimination is highly ad-

vantageous. The experiments showed that this gestural infor-

mation was robust enough to provide a significant

improvement to the recognition of natural speech data, despite

its limitations: it was trained only on synthetic data and ges-

tures were recognized independently of one another. When

these limitations are removed, the contribution of gestures to

recognition would be expected to increase.

In the second approach, we designed a gesture-based

DBN word recognition system, which was trained with auto-

matic gesture annotations of the Aurora-2 clean training cor-

pus. This architecture (G-DBN) models the gestural

activations as random variables with causal links to the acous-

tic observations that are learned during training. During recog-

nition, the gestural activations are hidden random variables,

so gestures do not need to be explicitly recognized, and multi-

ple gestural possibilities at any time are maintained with their

own probabilities. The G- DBN uses acoustic observations in

the form of MFCCs or the ETSI-AFE, as well as the estimated

TVts. The results show that the proposed architecture signifi-

cantly improves the recognition performance of the connected

digits in noise, both over a traditional MFCC-HMM system,

and also over our first approach that required discrete gesture

decisions before word recognition. Overall, G-DBN using

ETSI-AFE showed the best recognition accuracy of all the

systems we tested and its performance was found to be the

best among some of the state-of-the- art noise-robust techni-

ques, indicating that the G-DBN architecture has the potential

to push state-of-the art noise-robustness beyond what has

been previously published.

The results showing that gestural representations can aid

word recognition in noise echo some recent findings with

human listeners on the role of motor areas of the cortex in

speech perception. Meister et al. (2007) showed that subjects

were impaired in discriminating stop consonants in noise

when transcranial magnetic stimulation (TMS) was applied to

the premotor cortex, but were not impaired in a control task

that was matched in difficulty level and response characteris-

tics. D’Ausilio et al. (2009) found evidence for more specific

motor cortex effects on perception in noise. Low levels of

TMS applied to areas of the motor cortex controlling lips or

tongue had selective effects during speech perception in noise:

stimulating in lip areas enhanced recognition of labial stops

while stimulating in tongue areas enhanced recognition of

coronals. Thus, the kind of models developed here can be

seen as having additional rationale—they are mimicking

some aspects of how the human listener (who excels at this

task) performs recognition in noisy environments.

One major challenge to the gesture-recognition models

was that they were trained with limited “clean synthetic”

speech and executed on “clean and noisy natural” speech

from different speakers, which probably introduced severe

acoustic mismatch to the models. They also suffered from

limited amounts of training data. Future model experiments

that are designed without these limitations can expect to

achieve even better results. Also, the most powerful advan-

tages of gestural representations can be expected in more

natural connected speech materials with unstressed syllables,

in addition to the stressed ones in digit strings. In such utter-

ances, it has been shown that the same set of gestures are in

play in reduced forms as in more careful forms, but with

increased amounts of overlap, and decease in magnitude in

space and time (Browman and Goldstein, 1989, 1992).

Gestures, if properly recognized, can not only benefit

speech recognition tasks but can also have impacts on other

speech-technology areas, e.g., visual speech, speech activity

detection, speech enhancement, etc. Gestures along with

TVts can be used to obtain the dynamics of the vocal tract

shape and the movements of the different articulators, which

in turn can help to create a visual representation of speech

articulation. Such visual speech can have applications such

as assistance for the hearing impaired, speech based anima-

tions, second language teaching, correcting speech dysfluen-

cies etc. Gestures during pauses, for example, have been

shown to differ systematically, depending on whether the

pauses are grammatical or dysfluent (Ramanarayanan et al.,
2009). Finally gestures and TVts can be used in speech

enhancement algorithms, where it is increasingly difficult to

separate consonants overlapping with background noise.

Since gestures and TVts specify constriction locations and

degrees which indicate the consonantal place and manner in-

formation, it may be possible to employ them to extract the

voiceless consonants from background noise.
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