
Improving Design Patterns by Description Logics:
A Use Case with Abstract Factory and Strategy

Fernando Silva Parreiras∗, Steffen Staab
ISWeb — Information Systems and Semantic Web

Institute for Computer Science
University of Koblenz-Landau

Universitaetsstrasse 1
56070 Koblenz, Germany

(parreiras|staab)@uni-koblenz.de

Andreas Winter
Institute for Computer Science
Johannes-Gutenberg-University

Mainz
Staudingerweg 9

55128 Mainz, Germany
winter@uni-mainz.de

Abstract: This paper deals with problems in common design patterns and proposes
description-logics-based modeling to remedy these issues. We exploit the TwoUse
approach, which integrates OWL-DL, a W3C standard for description logics on the
web, and UML-based modeling, to overcome drawbacks of the Strategy Pattern, that
are also extensible to the Abstract Factory Pattern in a Model Driven Approach. The
result is an OWL-based pattern to be used with design patterns: the Selector Pattern.

1 Introduction

Design patterns [GHJV95] provide elaborated, best practice solutions for commonly oc-
curring problems in software development. During the last years, design patterns were
established as general means to ensure quality of software systems by applying reference
templates containing software models and their appropriate implementation to describe
and realize software systems.

In addition to their advantages, [GHJV95] already characterized software design patterns
by their consequences including side effects and disadvantages caused by their use. In
this paper, we address the drawbacks associated with patterns based solutions for variant
management [Tic97]. Design patterns rely on basic principles of reusable object design
like manipulation of objects through the interface defined by abstract classes, and by fa-
voring delegation and object composition over direct class inheritance in order to deal with
variation in the problem domain.

However, the decision of what to choose from a variation typically needs to be specified
at a client class. For example, solutions based on patterns like Strategy embed the treat-
ment of variants into the clients code at various locations, leading to an unnecessary tight
coupling of classes. This issue has already been identified by [GHJV95] as a drawback

∗Partially supported by CAPES Brazil BEX1153054 and EU STReP-216691 MOST.

of pattern-based solutions e. g. when discussing the Strategy Pattern and its combination
with the Abstract Factory Pattern. Hence, the question arises of how the selection of spe-
cific classes could be determined using only their descriptions rather than by weaving the
descriptions into client classes.

Here, description logics come into play. Description logics, in general, and OWL-DL as
a specific expressive yet pragmatically usable W3C recommendation [MvH04] allow for
specifying classes by rich, precise logical definitions [BCM+03]. Based on these defini-
tions, OWL-DL reasoner may dynamically infer class subsumption and object classifica-
tion.

The basic idea of this paper lies in decoupling class selection from the definition of client
classes by exploiting OWL-DL modeling and reasoning. We explore a slight modification
of the Strategy Pattern and the Abstract Factory Pattern that includes OWL-DL modeling
and that leads us to a minor, but powerful variation of existing practices: the Selector
Pattern.

To realize the Selector Pattern, we apply a hybrid modeling approach in order to allow
for joint UML and OWL-DL modeling, i. e. our TwoUse approach (Transforming and
Weaving Ontologies and UML in Software Engineering, cf. [SPSW07]).

This paper is organized as follows. We present an example demonstrating the application
of the Strategy and Abstract Factory patterns to solve a typical implementation problem
in Section 2. The example illustrates the known drawbacks of the state-of-the-art straight-
forward adoption of these patterns. Then, we present a solution extending the existing
patterns by OWL-DL based modeling in Section 3. We explain how our revision modifies
the prior example and how it addresses the issues raised in the example. We describe an
abstraction of the modified example, i. e. the Selector Pattern, in Section 4. We present its
structure, guidelines for adoption, some consequences and related works. A short discus-
sion of open issues concludes this paper in Section 5.

2 A Pattern Solution

This section presents a typical use case of design patterns involving the Strategy and Ab-
stract Factory Pattern. To illustrate an application of such patterns, we take a well-known
example of an order-processing system for an international e-commerce company in the
United States [ST02]. This system must be able to process sales orders in many different
countries, like the US and Germany, and handle different tax calculations.

Design patterns rely on principles of reusable object-oriented design [GHJV95]. In order
to isolate variations, we identify the concepts (commonalities) and concrete implemen-
tations (variants) present in the problem domain. The concept generalizes common
aspects of variants by means of an abstract class. When several variations are re-
quired, we subsume the variations to the contextual class, which delegates behavior to the
appropriate variants. These variants are used by clients.

2.1 Applying the Strategy Pattern

Considering the principles above, we identify the class SalesOrder as context, Tax as
concept, and the classes USTax and GermanTax as variants of tax calculation. Since tax
calculation varies according to the country, the Strategy Pattern allows for encapsulating
the tax calculation, and letting them vary independently of the context. The resulting class
diagram is depicted in Fig. 1.

TaskController

so : SalesOrder

getRulesForCountry() : Tax
process()

USTax GermanTax

Country

name : String

Tax

taxAmount()

Customer +country

SalesOrder

process(tax : Tax)

+customer

Client
Concept

Context

Variants

context TaskController::getRulesForCountry():Tax
body:
if so.customer.country.name = 'USA' then
USTax.new()

else
if so.customer.country.name = 'GERMANY' then
GermanTax.new()

endif
endif

Variation

Figure 1: Application of the Strategy Pattern in the problem domain.

To specify operations, we use a platform independent language, the Object Constraint
Language (OCL) [OMG05] and the UML Action Semantics [OMG07b]. Owing to the fact
that the UML Action Semantics does not have an standardized surface language, we use
an OCL-like version, basically the operation new(). The TaskController requires
the operation getRulesForCountry, which returns the concrete strategy to be used.
The specification must include criteria to select from the strategies. In our example, the
criterion is the country where the customer of a sales order lives in.

The drawback of this solution is that, at runtime, the client TaskController must
decide on the variant of the concept Tax to be used, achieved by the operation
getRulesForCountry. Nevertheless, it requires the client to understand the differ-
ences between the variants, which increases the coupling between these classes.

Indeed, the decision whether a given object of SalesOrder will use the class
GermanTax to calculate the tax depends on whether the corresponding Customer lives
in Germany. Although this condition refers to the class GermanTax, it is specified in
the class TaskController. Any change in this condition will require a change in
the specification of the class TaskController, which is not intuitive and which im-
plies an undesirably tight coupling between the classes GermanTax, Country, and
TaskController.

2.2 Extending to the Abstract Factory

When the company additionally needs to calculate the freight, new requirements must be
handled. Therefore, we apply again the Strategy Pattern for freight calculation. As for the
tax calculation, the context SalesOrder aggregates the variation of freight calculation,
USFreight and GermanFreight generalized by the concept Freight (cf. Fig. 2).

GermanTaxUSTax GermanFreightUSFreight

AbstractFactory

makeCalcFreight() : Freight
makeCalcTax() : Tax

USAbsFact GermanAbsFact

TaskController

so : SalesOrder

process()

Configuration

so : SalesOrder

getRulesForCountry() : AbstractFactory

Tax

taxAmount()

Freight

freight()

SalesOrder

process()

Customer

+customer

Country

name : String

+country

context Configuration::getRulesForCountry():AbstractFactory
body:
if so.customer.country.name = 'USA' then
USAbsFact.new()

else
if so.country.name = 'GERMANY' then
GermanAbsFact.new()

endif
endif

Figure 2: Strategy and Abstract Factory Patterns with configuration object.

As we now have families of objects related to USA and Germany, we apply the Abstract
Factory Pattern to handle these families. The Abstract Factory Pattern provides an inter-
face for creating groups of related variants [GHJV95].

As one possible adaptation of the design patterns (not depicted here), the client
(TaskController) may remain responsible for selecting the variants of the concept
AbstractFactory to be used, i. e., the family of strategies, and may pass the concrete
factory as parameter to the class SalesOrder. The class SalesOrder is associated with
the class AbstractFactory, which interfaces the creation of the strategies Tax and
Freight. The concrete factories USAbsFact and GermanAbsFact implement the
operations to create concrete strategies USFreight, GermanFreight, GermanTax
and USTax.

The adaptation of the design patterns we use as example introduces a configuration ob-
ject [ST02] to shift the responsibility for selecting variants from one or several clients
to a Configuration class, as depicted in Fig. 2. The class Configuration
decides which variant to use. The class SalesOrder invokes the operation
getRulesForCountry in the class Configuration to get the variant. These in-
teractions are also depicted in a sequence chart in Fig. 3.

: TaskController

: SalesOrder

: Configuration : AbstractFactory

: Tax

: Freight

2: process()
3: getRulesForCountry()

4: makeCalcTax()

7: taxAmount()

8: makeCalcFreight()

11: freight()

1: «create»

6: «return»

10: «return»

9: «create»

5: «create»

Figure 3: UML Sequence diagram of Strategy and Abstract Factory Patterns with configuration
object.

2.3 Drawbacks

In general, the Strategy Pattern solves the problem of dealing with variations. However, as
already documented by [GHJV95], the Strategy Pattern has a drawback. The clients must
be aware of variations and of the criteria to select between them at runtime, as already
described at the end of Sect.2.1.

When combining the Strategy and the Abstract Factory Pattern, the problem of choosing
among the variants of the AbstractFactory remains almost the same. Indeed, the
Abstract Factory Pattern just groups the families of strategies. Hence, the client must still
be aware of variations.

The solution using the class Configuration does not solve this problem either. As the
Configuration must understand how the variants differ, the selection is transferred
from the client TaskController to the class Configuration. The coupling just
migrates.

Furthermore, each occurrence of the Strategy and the Abstract Factory patterns increases
the number of operations that the class Configuration must be able to handle. It
makes the specification of such a class rather complex, decreasing class cohesion.

Thus, a solution that reuses the understanding of the variations without increasing the com-
plexity is desirable. Furthermore, such a solution should allow to decide on the appropriate
variants as late as possible. Separating the base of decision from the decision itself will
provide an evolvable and more modular software design. In the next section we describe
how an OWL-based approach can provide such a mechanism.

3 Using Patterns and Description Logics: A Use Case

A solution for the drawbacks presented at the end of Sect. 2 is to dynamically classify the
context, and verify if it satisfies the set of requirements of a given variant. To do so,
one requires a logical class definition language that is more expressive than UML, e.g. a
description logics language like the Web Ontology Language OWL-DL [MvH04].

The strength of modeling with description logics lies in disentangling conceptual hi-
erarchies with an abundance of relationships of multiple generalization of classes (cf.
[RDH+04]). For this purpose, description logics allows for deriving concept hierarchies
from logically precisely defined class axioms stating necessary and sufficient conditions of
class membership. The logics of class definitions may be validated by using corresponding
automated reasoning technology.

Note that reasoning could be achieved by means of OCL, since OCL constraints are essen-
tially full first-order logic (FOL) formulas, i.e., they are more expressive than the complex
class and property restriction expressions of OWL-DL, which is a decidable fragment of
FOL. However, no guarantee on the completeness of reasoning with OCL is given whereas
OWL-DL is equipped with automated, sound and complete reasoning services.

To benefit from the expressiveness of OWL-DL and UML modeling it is necessary to
weave both paradigms into an integrated model-based approach, e. g. by using the TwoUse
modeling approach (cf. [SPSW07]).

3.1 OWL for Conceptual Modeling

OWL provides various means for expressing classes, which may also be nested into each
other. One may denote a class by a class identifier, an exhaustive enumeration of individ-
uals, a property restriction, an intersection of class descriptions, a union of class descrip-
tions, or the complement of a class description.

For sake of illustration, an incomplete specification of the problem domain using a De-
scription Logics syntax is exposed. The identifier Customer is used to declare the cor-
responding class (1) as a specialization of Thing (>), since all classes in OWL are spe-
cializations of the reserved class Thing. The class Country contains the individuals
USA and GERMANY (2). The class USCustomer is defined by a restriction on the prop-
erty hasCountry, the value range must include the country USA (3). The description of
the class GermanCustomer is analogous (5). USSalesOrder is defined as subclass
of a SalesOrder with at least one USCustomer(4). The intersection of both classes is
empty (⊥), i.e., they are disjoint (7). The class SalesOrder is equal to the union of
GermanSalesOrder and USSalesOrder, i.e., it is a complete generalization of both
classes (8).

Customer v > (1)
{USA,GERMANY } v Country (2)

USCustomer v Customer u ∃hasCountry{USA} (3)
USSalesOrder v SalesOrder u ∃hasCustomer.USCustomer (4)

GermanCustomer v Customer u ∃hasCountry{GERMANY } (5)
GermanSalesOrder v SalesOrder u ∃hasCustomer.GermanCustomer (6)

GermanSalesOrder u USSalesOrder v ⊥ (7)
SalesOrder ≡ GermanSalesOrder t USSalesOrder (8)

Different notations for OWL-DL modeling have been developed, resulting in lexical
notations (cf. [HDG+06],[BPST03]) and in UML as visual notation (cf. [BHHS06],
[DGDD04], [OMG07a]). When modeling the problem domain of our running example
using a UML profile for OWL-DL [OMG07a], the diagram may look as depicted in Fig. 4.
The number relates the list of DL statements above to the corresponding visual notation.

GermanSalesOrder
<<owlClass>>

USSalesOrder
<<owlClass>>

Country
<<owlClass>>

Customer
<<owlClass>>

+hasCountry

SalesOrder
<<owlClass>>

<<rdfSubClassOf>> <<rdfSubClassOf>>

+hasCustomer+hasOrder

USCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = USA} country : Country

<<owlRestriction>>

<<equivalentClass>>

«owlValue» {someValuesFrom=USCustomer} hasCustomer

GermanCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = GERMANY} hasCountry : Country

<<owlRestriction>>

<<equivalentClass>>

«owlValue» {someValuesFrom=GermanCustomer} hasCustomer

{complete, disjoint}

<<rdfSubClassOf>><<rdfSubClassOf>>

3
4

5

7,8

6

Figure 4: Domain design by a UML class diagram using a UML profile for OWL.

3.2 TwoUse-based Solution

To integrate the UML class diagram with patterns (cf. Fig. 2) and the OWL profiled class
diagram (cf. Fig. 4), we rely on the TwoUse approach. The TwoUse approach uses UML
profiles as concrete syntax, and allows for specifying UML entities and OWL entities using
just one hybrid diagram. These entities are connected using the TwoUse profile and OCL-
like expressions. This hybrid diagram, i.e., a UML class diagram with profiles for OWL
and TwoUse is mapped later onto the TwoUse abstract syntax, which is a metamodel that
imports the UML, OCL and OWL metamodels (cf. [SPSW07]).

The approach enables the modeler to use OCL-like expressions to describe the query op-
erations of classes that have both semantics of an OWL class and a UML class in the same
diagram. Moreover, this operation can query the OWL model, i. e., invoke a reasoning
service at runtime that uses the same OWL-DL model 1.

Hence, we can achieve dynamic classification writing OCL-like query operations in the
context to classify the variation in the OWL-DL model in runtime. The result is returned
as a common object-oriented class.

The OWL-DL model can be directly generated from the model, whereas the object ori-
ented classes and OCL expressions are translated into a specific platform and later into
programming code including the API for ontology and reasoning invocation.

1The semantics of UML and OWL-DL coincides at the M1 level, but at the M0 level the modeler has to
decide whether to adopt the open world OWL-DL semantics or the closed world OCL semantics.

3.2.1 Structure

The hybrid diagram is depicted in Fig. 5. The classes Customer and Country are
OWL classes and UML classes, i.e., they are hybrid TwoUse classes. They are used in the
OWL-DL part of the model to describe the variations of the context SalesOrder. The
TwoUse profile provides a mapping between the names in OWL and in UML in such a
way that class names in both OWL and UML are preserved.

The concrete factories, i. e. the variants to be instantiated by the client TaskController
are TwoUse classes as well. The concrete factories are described based on the restrictions
on the class SalesOrder which must also exist in both paradigms. In the OWL-DL
part of the model, the concrete factories specialize the SalesOrder, but in UML they
specialize the class AbstractFactory. Hence, they do not inherit the methods of the
class SalesOrder, because the associations between the variants and the context happen
only in OWL-DL part of the model.

3.2.2 Participants and Collaborations

The TwoUse approach preserves the signature and behavior of existing pattern implemen-
tations, as just the body of the operation getRulesForCountry is affected. The class
Configuration is no longer needed, as the selection is moved to querying the OWL-
DL part of the model (cf. the query in Fig. 5).

As depicted in Fig. 6, the class TaskController invokes the operation process in the
class SalesOrder (2), which invokes the operation getRulesForCountry (3). This
operation calls OCL operations and operations of the OCL-DL library (4), part of the
generic TwoUse implementation. The operations of the OCL-DL library queries the rea-
soner to classify dynamically the object SalesOrder to the appropriate subclass. The
resulting OWL class, i. e., USSalesOrder or GermanSalesOrder, is mapped onto a
UML class and is returned. The remaining sequence (5-12) remains unchanged.

For instance, let so1 be a SalesOrder with the property customer being c1 with the
property country being de. The call so1.getRulesForCountry() would return
an object of type GermanSalesOrder.

3.2.3 Implementation

The novelty of our proposed solution is how variants are selected and instantiated. It
requires behavior specification from UML and class descriptions from OWL-DL.

After the design phase, the UML class diagrams profiled with OWL and TwoUse are
translated to TwoUse models, that conform to the TwoUse metamodel, using the ATL
model transformation language [JK05]. The TwoUse metamodel imports the OWL, UML
and OCL metamodels and extends the OCL language with operations that use the reasoner.
Based on the idea that in OCL some operations are available for all UML classes, we have
proposed operations available for all classes that are UML and OWL classes at the same
time, i.e. TwoUse classes.

UML

Package

OWL

TwoUse

GermanTaxUSTax
GermanFreightUSFreight

AbstractFactory

makeCalcFreight() : Freight
makeCalcTax() : Tax

TaskController

so : SalesOrder

process()

GermanSalesOrder
<<owlClass>>

USSalesOrder
<<owlClass>>

Country
<<owlClass>>

Customer
<<owlClass>>

+hasCountry

SalesOrder
<<owlClass>>

getRulesForCountry() : Tax
process()

+hasOrder

+hasCustomer

Tax

taxAmount() Freight

freight()

<<owlRestriction>>

<<equivalentClass>>

USCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = USA} country : Country

«owlValue» {someValuesFrom=USCustomer} hasCustomer

<<owlRestriction>>

<<equivalentClass>>

GermanCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = GERMANY} hasCountry : Country

«owlValue» {someValuesFrom=GermanCustomer} hasCustomer

<<rdfSubClassOf>><<rdfSubClassOf>>

context SalesOrder::getRulesForCountry():AbstractFactory
body:
self.owl2uml(self.owlMostSpecNamedClass()).new()

{disjoint, complete}

Customer
<<owlClass>>

Figure 5: Profiled UML class diagram of an OWL-based solution.

TwoUse models are translated again to the platform specific UML models and, finally, to
code and to the normative OWL exchange syntax RDF/XML (please refer to [SPSW07]
for more details of the implementation of TwoUse).

The OCL-DL operations reason on the OWL-DL part of the model exploiting inference
services like consistency checking, concept classification and instance classification. We
describe here only the two operations needed to understand the running example:

• owlMostSpecNamedClass(): OclType. Given an OWL-DL individual, the operation
returns intersection of all OWL-DL named classes that classify this individual.

• owl2uml(typespec: OclType): OclType. This operation maps the identifier
typespec in OWL onto the corresponding UML type, where the object is of the
type identified by typespec in OWL.

: TaskController

: SalesOrder

: AbstractFactory

: Tax

: Freight

2: process()

3: getRulesForCountry()

5: makeCalcTax()

12: freight()

8: taxAmount()

9: makeCalcFreight()

10: «create»
11: «return»

6: «create»

7: «return»

1: «create»

4: owl2uml(owlMostSpecNamedClass()).new
OCL-DL Operations

Figure 6: Sequence Diagram of an OWL-based solution.

In our example (cf. Fig. 5 and 6), evaluating the expression so1.owlMostSpec
NamedClass() issues a call to the reasoner that classifies the object based
on the descriptions of the classes in OWL and the properties of the object
so1, and returns the classifier GermanSalesOrder. Then, the operation
so1.owl2uml(GermanSalesOrder) maps the OWL-DL identifier to the corre-
sponding UML identifier. The operation so1.af.oclAsType(GermanSalesOrder) casts the
object of the UML type AbstractFactory as the UML type GermanSalesOrder.

3.2.4 Comparison

In the Strategy and Abstract Factory solution, the decision of which variant to use is left to
the client or to the Configuration object. It requires associations from these classes
(TaskController and Configuration respectively) with the concepts (Tax and
AbstractFactory respectively). Furthermore, the conditions are hard-coded in the
clients operations.

The TwoUse-based solution cuts these couplings, as the selection is done at the OWL-DL
concept level, without any impact on the UML level, allowing the OWL-DL part of the
model to be extended independently.

The descriptions of the classes USSalesOrder and GermanSalesOrder are
used for the Reasoner to classify the object dynamically whenever the operation
owlMostSpecNamedClass asks for. As the classification occurs at the OWL level,
the operation owl2uml maps the resulting class onto a UML class. Hence, the conditions
are clearly specified as logical descriptions.

When evolving from Fig. 1 to Fig. 2, the OWL-DL part of the model does not change, just
the mappings. Thus, new patterns can be applied without additional effort in modeling the
OWL-DL domain.

4 The Selector Pattern

After analyzing the use case of composing OWL-DL and design patterns in Sect. 3, we
abstract repeatable arrangements of entities and propose a design pattern supported by
OWL-DL to address decision of variations — the Selector Pattern.

The Selector Pattern provides an interface for handling variations of context. It enables the
context to select the most appropriated variants based on their descriptions. Selections in
the Selector Pattern are encapsulated in appropriate OCL-DL-queries against the concept,
facilitating a clear separation between the base of decision and the decision itself.

: Concept: Context

1: selector()

2: behavior()

Context
<<owlClass>>

selector()

VariantA
<<owlClass>>

VariantB
<<owlClass>>

Concept

behavior()

<<rdfSubClassOf>><<rdfSubClassOf>>

{disjoint, complete}

context Context::selector():Concept
body:
owl2uml(owlMostSpecNamedClass()).new()

Figure 7: Structure, participants and collaborations in the Selector Pattern.

4.1 Participants and Collaborations

The Selector Pattern is composed by a context (e.g. SalesOrder in Fig. 5), the spe-
cific variants (e.g. USAbsFact and GermanAbsFact in Fig. 5) of this context and
their respective descriptions, and the concept (e.g. AbstractFactory in Fig. 5), which
provides a common interface for the variations (Fig. 7). Its participants are:

• Context maintains a reference to the Concept object.

• Concept declares an abstract method behavior common to all variants.

• Variants implement the method behavior of the class Concept.

The Context has the operation select, which uses OCL-DL operations to call the rea-
soner and dynamically classify the object according to the logical descriptions of the vari-
ants. A Variant is returned as result (Fig. 7). Then, the Context establishes an association
with the Concept, which interfaces the variation.

4.2 Applicability

The Selector Pattern is applicable:

• when the Strategy Pattern is applicable (cf. [GHJV95]);

• when the decision of what variant to use appears as multiple conditional statements
in the operations;

• when exposing complex, case-specific data structures must be avoided.

The Selector Pattern preserves the interactions of the patterns Strategy and Abstract Fac-
tory, studied in this paper. The following steps guide the application of the Selector Pattern:

1. Design the OWL-DL part of the model using a UML profile for OWL, identifying
the concept and logically describing the variations;

2. Map the overlapping classes in UML and in OWL using a UML profile;

3. Write the operation in the Context class corresponding to the operation selector
using OCL-DL expressions.

4.3 Drawbacks

The proposed solution may seem complex for practitioners. Indeed, Applying the Selector
Pattern requires sufficiently deep understanding by the developers about topics like Open

and Closed World Assumption, property restriction and satisfiability, in addition to the
knowledge about the OCL-DL library. Moreover, the diagram presented by Fig. 5 is visibly
more complex than the corresponding version without patterns, although applying aspect
oriented techniques can minimize this problem.

Further, calls from OCL to the OWL reasoner may in general return OWL classes that are
not part of the TwoUse model. This implies a dynamic diffusion of OWL classes into the
UML model which must either be accommodated dynamically or which may need to raise
an exception (the latter would be a good, valid solution in our running example).

Therefore, class descriptions must be sufficient for the reasoner to classify the variant, i. e.
all classes and properties needed to describe the variants must also exists at the OWL level.
When it is not possible, the reasoner may not be able to classify the variants correctly.

Finally, the specification of design patterns with OWL-DL is currently restricted to UML
class diagrams, to the of usage OCL query operation specifications and to the adoption of
non standard surface syntax for the UML Action Semantics. In fact, other UML diagrams,
e.g. state machine diagrams, might be useful to model different aspects of design patterns.
These other diagrams can benefit from observing reasoning behavior, as we are currently
investigating.

4.4 Advantages

The application of the Selector Pattern presents some consequences, that we discuss as
follows:

Reuse. The knowledge represented in OWL-DL can be reused independently of platform
or programming language.

Flexibility. The knowledge encoded in OWL-DL can be modeled and evolved indepen-
dently of the execution logic.

Testability. The OWL-DL part of the model can be automatically tested by logical unit
tests, independently of the UML development.

Ease of Adoption. Expanding Fig. 2 with Fig. 5 and Fig. 3 with Fig. 6 in the motivating
example, show that the changes required by applying the Selector Pattern in existing
practices are indeed minor.

UML paradigm dominance. The concrete cases are bound to the context only in OWL-
DL. It has no impact on the UML part of the model. The programmer freely specifies
the OCL-DL operation calls when applicable.

4.5 Related Works

State-of-the-art approaches require hard-coding the conditions of selecting a particular
variant to solve problems like the one given in [ST02]. Our approach relies on OWL-DL
modeling and reasoning to dynamically subclassify an object when required.

Another kind of design patterns has been considered for semantic web content [Gan05].
These patterns do not address the composition of OWL-models with object-oriented soft-
ware and, therefore, do not support representation of behavior as required here.

The composition of OWL with object-oriented software has been addressed by some work
like [Knu04] and [PT05]. We address this composition at the modeling level in a platform
independent manner [KWB02].

5 Conclusion

We have proposed a novel way of reducing coupling in important design patters by includ-
ing OWL-DL modeling. It provides a framework which integrates ontologies and UML
approaches, i.e., TwoUse. We have proposed an OWL-based design pattern called Selector
Pattern and discuss the impact of adopting the new approach.

We are currently extending the application of TwoUse to other design patterns concerning
variant management and control of execution and method selection and the preliminary
results are encouraging. Design patterns that factor out commonality of related objects,
like Prototype, Factory Method and Template Method, are good candidates. New OWL-
based patterns may be required to support different design patterns.

References

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook. Cambridge University
Press, 2003.

[BHHS06] Saartje Brockmans, Peter Haase, Pascal Hitzler, and Rudi Studer. A Metamodel and
UML Profile for Rule-Extended OWL DL Ontologies. In Proc. of 3rd European Seman-
tic Web Conference (ESWC), volume 4011 of LNCS, pages 303–316. Springer, 2006.

[BPST03] Sean Bechhofer, Peter F. Patel-Schneider, and Daniele Turi. OWL Web Ontology Lan-
guage Concrete Abstract Syntax, December 2003. Available at http://owl.man.
ac.uk/2003/concrete/latest/.

[DGDD04] Dragan Djurić, Dragan Gašević, Vladan Devedžić, and Violeta Damjanovic. A UML
Profile for OWL Ontologies. In Proc. of Model Driven Architecture, European MDA
Workshops, volume 3599 of LNCS, pages 204–219. Springer, 2004.

[Gan05] Aldo Gangemi. Ontology Design Patterns for Semantic Web Content. In Proc. of
4th International Semantic Web Conference, ISWC 2005, volume 3729 of LNCS, pages
262–276. Springer, 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert Stevens, and
Hai Wang. The Manchester OWL Syntax. In Proc. of the OWLED’06 Workshop on
OWL: Experiences and Directions, volume 216, Athens, Georgia, USA, November
2006. CEUR-WS.org.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Satellite Events at
the MoDELS 2005 Conference, volume 3844 of LNCS, pages 128–138, Jamaica, 2005.
Springer.

[Knu04] Holger Knublauch. Ontology-Driven Software Development in the Context of the Se-
mantic Web: An Example Scenario with Protege/OWL. In 1st International Workshop
on the Model-Driven Semantic Web (MDSW2004), Monterey, California, USA, 2004.

[KWB02] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA Explained, The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley, Boston, 2002.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Lan-
guage Overview, February 2004. Available at http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

[OMG05] OMG. Object Constraint Language Specification, version 2.0. Object Model-
ing Group, June 2005. Available at http://www.omg.org/cgi-bin/doc?
formal/2006-05-01.

[OMG07a] OMG. Ontology Definition Metamodel. Object Modeling Group, November 2007.
Available at http://www.omg.org/cgi-bin/doc?ptc/07-09-09.pdf.

[OMG07b] OMG. Unified Modeling Language: Superstructure, version 2.1.2. Object Modeling
Group, November 2007. Available at http://www.omg.org/cgi-bin/doc?
formal/07-11-02.

[PT05] Alexander Paar and Walter F. Tichy. Zhi#: Programming Language Inherent Support for
XML Schema Definition. In The Ninth IASTED International Conference on Software
Engineering and Applications (SEA 2005), volume 467, pages 407–414, Phoenix, AZ,
USA, November 2005. ACTA Press.

[RDH+04] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Practical Expe-
rience of Teaching OWL-DL: Common Errors & Common Patterns. In Proc. of EKAW
2004, volume 3257 of LNCS, pages 63–81. Springer, 2004.

[SPSW07] Fernando Silva Parreiras, Steffen Staab, and Andreas Winter. TwoUse: Integrat-
ing UML Models and OWL Ontologies. Technical Report 16/2007, Universität
Koblenz-Landau, Fachbereich Informatik, 4 2007. Available at http://isweb.
uni-koblenz.de/Projects/twouse/tr16.2007.pdf.

[ST02] Alan Shalloway and James Trott. Design patterns explained: a new perspective on
object-oriented design. Addison-Wesley, Boston, MA, USA, 2002.

[Tic97] W. F. Tichy. A Catalogue of General-Purpose Software Design Patterns. In TOOLS ’97:
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems,
pages 330–339, Washington, DC, USA, 1997. IEEE Computer Society.

