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“Programa should not only work,

but they should appear to work as well.”

PDP-lX Dogma

The PLANNER project ia continuing research in natural and effective means for embedding knowledge in
procedures. In the course of this work we have succeeded in unifying the formaliam around one fundamental
concept: the ACTOR. Intuitively, an ACTOR is an active agent which plays a role on cue ac”c~ding to a

script. We use the ACTOR metaphor to emphasize the inseparability of control and data flow in our model.
Data structures, functions, semaphores, monitors, ports, descriptions,

—— —— —
Quillian nets, logical formulae,

numbers, identifiers, demons, proceasea, contexts, and data bases can all be shown to be special cases
of actors. All of the above are objects with certain useful modes of behavior. Our formalism shows
how all of these modes of behavior can be defined in terms of one kind of behavior: sendin~me~ea to

actors. An actor ia always invoked uniformly in exactly the s=rn~ way regardless of ~~~er ~t beha~s’ -

as a recursive function, data structure, or process.

“It is vain to multiply Entities beyond need.”
William of Occam

“Monotheism is the Answer”

The unification and simplification of the formalism for the procedural embedding of knowledge has a great

many benefits for us. In particular it enables us to substantiate properties of procedures more easily.

INTENTIONS : Furthermore the confirmation of properties of procedures is made easier and more
uniform. Every actor has an INTENTION which checks that the prerequisites and the context of the actor

being sent the message are satiafied. The intention ia the CONTRACT that the actor has with the
outside world. How an actor fulfills its contract is its own business. By a SIMPLE BUG we mean an
actor which does not satisfy its intention. We would like to eliminate simply=g~ of actors
by the META–EVALUATION nf actorsto show that they satisfy their intentions. By this we do not

necessarily mean a oroof in the first order quantificational calculua for input-output assertions
written in the first-order quantificational calculus. The rules of deduction to establiah that

actora satisfy their intentions essentially take the form of a high level interpreter for abstractly

evaluating the program in the context of its intentions. This process [called META--EVALUATION] can

be justified by a form of induction. In general in order to substantiate a property of the behavior

of an actor system some form of induction will be neelled, At present, actor induction for an actor

configuration with audience E can be tentatively described in the following manner:

1. The actors in the audience E satisfy the intentions of the actor
to which they send messages.

and
2. For each actor A the intention of A is satisfied => the intentions

for all actors sent messages by A are satisfied

Therefore

The intentions of all actions caused by E are satisfied
(i.e. the system behaves correctly)

Computational induction [Manna], structural induction [Burstall], and Peano induction are a
special cases of ACTORinduction. Actor based intentions have the followinq advantages:

The intention is decoupled from the actors it describes.

Intentions of concurrent actions are more easily disentangled.
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We can more elegantly write intentions for dialogues between actors.

The intentions are written in the same formalism as the procedures they
describe. Thus intentions can hav~tentions.

Because protection is an intrinsic property of actors, we hope to be able
to deal with protection issues in the same straight forward manner as more
conventional intentions.

Intentions of data structures are handled by the same machinery as for all
other actors.

Syntactic Sugar.

“What’s the good of Mercator’s North Poles and Equators, Tropics,
Zones and Meridian Lines?”
So the Bellman would cry: and the crew would reply
“They are merely conventional signs!”

Lewis Carroll

Thus far in our discussion we have discussed the semantic issues intuitively but vaauel,v. We would now
like to proceed with more precision. Unfortunately in order to do this it seems necessary to introduce
a formal language. The precise nature of this language is completely unimportant so Ionq as it is capable
of expressing the semantic meanings we wish to convey. For some .years we have been constructing a series
of languages to express our evolving understanding of the above semantic issues. The latest of these
is called PLANNER-73.

Mets-syntactic variables will be underlined. We shall assume that the reader is familiar with
advanced pattern matching languages such as SNOE0L4, CONVERT,PLANNERx71, 0A4, and POPLER.

We shall use (%A W%) to indicate sending the message M to the actor A. We shall use fsT 32
sn] to denote the finit~~equence s1, s2, . ..sn.

— —.” “ o
A sequence s is an actor where(%s i%) is element I of

=quence s. For example (%[a c b] 2%) is c. We will use ( ) to delimite the simultaneous synchronous
transmission of more than one message so that (Al A2 ,..An) will be defined to be (%A1 [A2 . . . An]%).
The expression [%al a2 . . . an%] (read as “al then a2 . . . finally send back an”) will be evaluated by
evaluating al, a2,..., and an in sequence and then sending back [“returni!?g”] the value of an as the
message.

Identifiers can be created by the prefix operator = For example if the pattern =1
is matched with v, then a new identifier is created and bound to v.

“But ‘glory’ doesn’t mean ‘ a nice knock-down argument,’”
Alice objected.

“When I use a word, “Humpty Dumpty said, in rather a
scornful tone, “it means just which I choose it to mean-neither
more nor less.”

“The question is,” said Alcie, “whether you can make words
mean so many different things.”

“The question is,” said Humpty Dumpty, “which is to be
master-that’s all.”

Lewis Carroll

Humpty Dumpty propounds two criteria on the rules for names:

Each actor has complete control over the names he uses,

All other actors must respect the meaning that an actor has
chosen for a name.

We are encouraged to note that in addition to satisfying the criteria of Humpty DumptY, our
names also satisfy those subsequently proposed by Bl”ll Wulf and t4ar.y Shaw:

The default is not necessarilyto extend
actor.

The right to access a name is by mutual
actor and each accessing actor.

An access right to an actor and one of

It is possible to distinguish different

the scope of a name to any other

aweement between the creatinq

ts acquaintances is decoupled.

types of access.
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The definition of a name, access to a name, and allocation of
storage are decoupled.

The use of the prefix = does not imply the allocation of any storage.
One of the simplest kinds of ACTORSis a cell. A cell with initial contents V can be created

by evaluating (cell V). Given a cell x, we can ask it to send back its content by evaluating (contents
x) which is an abbreviation for (x #contents). For example (contents (cell 3)) evaluates to 3. We
can ask it to change its contents to v by evaluating (x c- v). For example ifwe let x be (cell 3)
and evaluate (x <- 4), we will subsequently find that (contents x) will evaluate to 4.

The pattern (by-reference P) matches object E if the pattern P matches (cell E) i.e. a “cell”
[see below] which contains E. Thus matching the pattern (by-reference =x) against ~~s the same as
binding x to (cell ~) i.e. a new cell which contains the value of the expression E, We shall use =>
[read as–’’RECEIVE MESSAGE”] to mean an actor which is reminiscent of the actor LA~BDA in the lambda
calculus. For example (=> =X body) is like (LAMBDAx body) where ~is an identifier. An expression
(=> pattern body is an abbreviation for (receive(message pattern) body) where receive is a more qeneral
actor that is capable of bindinq elements of the action in addition to the messaae.
Evaluating

(%(=> pattern bod ) the-message%), i.e. sending
+(=> pattern body the-message,

will attempt to match the-message against pattern, If the-message is not of the form specified by pattern,
then the actor is NOT-APPLICABLEto the-messa e. If the-message matches pattern, the body is evaluated.

__ .~~~%) wilfie~e message arg and if ~s not applicableEvaluating (%(cases [fl f2
then it will send f2 the message arg, etc. until it findsone~hat is applic~e, The messaqe [#not -
applicable] is sent back if none were applicable. Evaluating (%(cases {fl f2 . . . fn}) ara%)will send
fl the message arg, . . . . and send fn the message arg concurrently.

—— .—
—

The following abbreviation~will be used to improve readability:

(rules object clauses) for
((c=cl-object)

(where object pattern-for-message body) for
((=> F!Jattern-for-messaael borlv) ob.iect)

(let

((=>

.! ~..

; for example (where “t+j) ‘x (x+ 1)) is 4

{
[xO c= ex ressionO]
[xl <= ex~ressionl]
. . .
[xn <= expression]}

bed_) for
F‘~o ‘ Xl . . . =~n] ~)
express~on 0
expresslon~
. . .
expression)

; for example
(let

{ [X<= (2+1)]
[y<= ( 2*2)]?

(x+y))is7

The world’s a theatre, the earth a state,
Which God and nature do with actors fill.

Thomas Heywood 1612

Conceptually at least a new actor is created every time a message is sent. Consider sendin~
to a target ~a message Band a continuation ~.
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The
the

(send ~
(message~,

[#continuation ~]) )

transmission (%T M%) is an abbreviation for the above where ~is defaulted to be the caller. If
target~is the following:

(receive
(message the-body

[#continuation =the-continuation])

the-~)—

then the-~is evaluated in an environment where the-message is bound to M and the-continuation is bound
to c.————

We define an EVENTto be a ouadruple of the form [C T M N ] where C_is the continuation of the
caller,~ the target, ~M the message thereby creating a new actor N.

——— —
We define a HISTORYto be a strict

partial order of events wTth the transitive closure of the partial o~dering ->[read as PRECEDES]where

[cl tl ml nl] -> [c2 t2m2 n2] if

{nl} intersect {c2 t2 m2} is nonvoid

The above definition states that one action proecedes another if any of the actors generated b.y the
first event are used in the second event. The relation -> can be thought of as the “arrow of
time.!, “ Notice that we do not require a definition of global simultaneity; i.e. we do not require
the two arbitrary events be related by ->. We define the BEHAVIORof a history with respect to an
AUDIENCE[ a set of actors] E to be the subpartial orderinmhistor.y consisting of those quad-
~C.l!!l!l WhereLorljs an element of the audience E. The REPERTOIRE of a configuration of
actors is the set of all behaviors of the configuration for all interpretations of the actors in the
audience. The REPERTOIREof a configuration defines what the configuration does as opposed to how it
does it. Two configurations of actors will be said t~EOUIVALENT if they have the same REPE~IRE

We can name an actor Hwith the name A in the body B by the notation (label {[A <= H]} B).
More precisely, the behavior~f the actor (la~el {[f <= (E n]} B) is defined by the M~NIMA~BEiTAVIORAL
FIXED POINT of (~F) i.e. the minimal repertoire F~uch t~a~(~fl = F. In the case where F happens to
define a function,–it will be the case that the repertoire F is isomorphic with the graph [set of ordered
pairs] of the function defined by F and that the graph of F is also the least (lattice-theoretic) fixed
point of Park and Scott.

Many happy returns

Many actors who are executing in parallel can share the same continuation. They can all send
a message [“return”] to the same continuation. This property of actors is heavily exploited in meta-
evaluation and synchronization. An actor can be thought of as a kind of virtual processor that is never
“busy” [in the sense that it cannot be sent a message].

The basic mechanism of sending a message preserves all relevent information and is entirely
free of side effects. Hence it is most suitable for purposes of semantic definiton of special cases
of invocation and for debugging situations where more information needs to be preserved. However, if
fast write-once optical memories are developed then it would be suitable to be implemented directly
in hardware.

The following is an overview of what appears to be the behavior of the process of a running
actor R sending a target T the message M specifying C as the continuation. If C is not explicitly
specified by R then a representative of R must be constructed as the default.

1: Call the banker of R to approve the expenditure of resouces by the caller.

2: The banker will probably eventually send a message to the scheduler of T.

3: The scheduler will probably eventually send a messaqe to the monitors ofT.

4: The monitors will probably eventually send a message to the intentions of
T.

5: The intentions of T will probably eventually send the message M co T.

6: T will finally attempt to get some real work done.

There are several important things to know about the process of sendina a message to an actor:

1: Conceptually at least, whenever a target is passed a messa~e a w actOr
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is constructed which is the target instantiated with a message. When ?ver
possible we reuse old actors where the reuse cannot be detected by the
behavior of the system.

2: Sending messages between actors is a universal control p~imitiy~in the
sense that control operations such as function calls~ratlon, coroutine
invocations, resource seizures, scheduling, synchronization, and continuous
evaluation of expressions are special cases.

3: Actors can conduct their dialogue directly with each others: they do not
have to set up some intermediary such as ports [Krutar, Balzer, and Mitchell]
or possibility lists [McDermott and Sussman] which act as pipes throuqh which
conversations must be conducted.

4: Sending a message to an actor is entirely free of side effects such as
those in the message mechanism of the current ~L TALK machine of Alan Kay,
the port mechanism of Krutar and Balzer, and possibility lists. Being free
of side effects allows us a maximum of parallelism and allows an actor to be
engaged in several conversations at the same time without becominu confused.

5: Sending a message to an actor makes no presupposition that the actor
sent the message will ever send back a message to the continuation. The
unidirectional nature of sendinq messages enables us to define iteration,
monitors, coroutines, etc. stra]ght forwardly.

6: The ACTORmodel is not an [environment-pointer, instruction-pointer]
model such as the CONTO~model. A continuation is a full blown actor
[with all the rights and privileges]; it is ma program counter. There
are no instructions [in the sense of present day machines] in our model.
Instead of instructions, an actor machine has certain primitive actors
built in hardware.

Static Data Structures— —

Data structures are special cases of ACTORS. For example consider the followina definition of
the list nil:

[nil <=
(cases

{(=> [#o~tt~J&r~gm~ comment”
““to print nil: print the,
string ‘(list)’ to stream”

(out stream

(=>

(=>

(print-open “(”)
(print-string “list”)
(print-close “)’’)))

T#empty?]
““it is empty”

truej
f~;~::v;:;nt =x =overl ord =the-complaint-dept]

[(=> x

(=>

(=>

true)
(else

(not-equal the-complaint-dept) )]))
[#structure?]

;’iit is a structure”
true)
[#next ‘the-complai nt-dept]
(exhausted the complai nt-dept) )
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We also define the function output:
[output <=

(=> [=x =stream]
( x#out stream ))]

The above is an operational definition of nil which is the null list. For example (nil #structure?)
is true. Evaluating (output nil s) will cause “(list)” to be p~inted to the stream s, However from an
operational point of view nil is not very interesting because it is completely static. What we need to
ask our-selvesis what are the useful modes of behavior that are embodied in the usual notion of a list
structure and define an object which behaves in this way. So let us try to qive an operational definition
of an arbitrary list: In order to do this we need to be able to make chanqes in the world, We will use
the primitive actor CELL to realize these changes.

Definition of LISP-like List Structure—— ——

[cons-list <=

(=> [( by-reference =first-of-list)
(by-reference =rest-of-l ist)]

(cases
{(=> i_#firstl-.

(=>

(=>

(=>

(=>

(=>

(=>

(=>

(=>

(=>

;“th& first element of
the list is contents of first-of-list”

(contents first-of-list)))
[#rest]

;“the rest is contents of rest-of-list”
(contents rest-of-list))
[#first <- =new-first]
(first-of ~list <- new-first))
[#rest <- =new-rest]
(rest-of-list <- new-rest))
[#constructor]

;“a constructor for this
kind of behavior is list”

list)
[~;:::m=the-compl aint-dept]

(contents first-of-list)

[#eqJFl#i~~~s-rest-of-li t-x =overlor~ ~~~e-complaint-dept]
r%.

(overlord
(first x)
(contents first-of-list)
the-complaint-dept)

(overlord
(rest x)
(contents rest-of-list)
the-complai nt-dept)%])

[#out =the-customer]
(out the-customer

‘“to print the list first print open-delimiter (“
(pri;t-open “(”)

;print that it is a list”
(print-string “list”)

“’print the first element”
(pri;t (contents first-of-list))

““print the rest of the elements in the list”
(pri;t-elements (contents rest-of-list))

““the function print-elements is defined below”
~“print the close )“

(print-close “)’’)))
[structure?]
true)
[empty?]
false)}))]
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The above definition is much more interesting. For one thing there is a subtle buq in that if cons-list
is implemented as a lambda calculus closure then it will hang onto too much storage since any actor which
hangs onto a piece of list structure will hang onto the creator of that list structure. We will deal .with
this bug later. But let’s see how it works enyway: Let x be (cons-list 6 nil). Thus x is ?n lnstanglated
CASESstatement in the definition of CONS-LIST with first-of-list the name of a new cell which contains
6 and rest-of-list the name of a new cell which contains nil.

now (x #first) evaluates to 6,
but suppose we execute ( x #first <- B) causing

[#first <- B] to be matched against
the patterns in the CASEStill it matches
[#first <- =new-firstl

now (x #first) evaluates to B.

The reason is that there is a side effect in the evaluation of
(x #first <- B) which changes the first element of x to B.
We can define a function which will print the elements of objects which behave like lists

as follows:

[print-elements <=
(=> [j:;gply =send-to]

supply
;“else let =element be the next element and

=remainder-of-supply be the remainder of the supply”
(=> \

(stream =element =remainder-of-supply)

(out send-to
(print element)
(print-elements remainder-of-supply))

(=> [#exhausted]
““if the supply is exhausted, do nothing”

nothing))))]

The function next calls up the supplY and asks it for the “next”.

[next <=
(=, ~~~~~~~~{r.the-customer =the-complaint-dept]

i
(the-supply #next the-complaint-dept) ))]

Note that to get the second [and subsequent] elements out of a stream ~ the continuation received
by~for (next s_n) must be used.

Let wbe~cons-list 3 (cons-list 4 nil)). The following expression will create a circular
structure when evaluated:

(w #rest <-w)
(output w s)

The printing will look like “(list 3 3 3 3 . . . to s and will never cease. It will never get to print

the “)”.
The reader might be puzzled why we proceed in this “ba$kward” way. Why don’t we write a FUNCTION

rest which takes the rest of a list like any ordinary Pro9rammln9 lanquaqe does? For example
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(rest
(cons-list

3
(cons-list B nil)))

would be “(list B)”. People who have taken the approach of attempting to define such functions have come

to realize that it is desirable to have some independence in the representation of data objects so they
have tried to define REST as a “polymorphic” operator. This means for example that RESTwould attempt
to operate on vectors as well as lists. But then in any modeling situation in which a kind of object
is desired for which we would like to be able to compute the REST, the extrinsic functional definition
of RESTwould have to change. The definition of RESTmust keep changing in a nonmodular way in order to
add new knowledge, For example we might create strings and want to be able to take the RESTof a string.
Of course the following definitions of RESTand FIRST as functions will work:

[rest <=
(=> [=2]

(z #rest))]

[first <=
(=> [=~

$(z first))]

These are in fact the definitions that we use. Note that we have two semantically related names:
#REST and REST. We use #REST as a message and REST for the function which sends the message # REST
to its argument. Making the above definitions of FIRST and REST and usinq them instead of directly
passing the messages #first and #rest does, however, increase the modularity of our formalism and
so we shall adopt them, For example the definitions of FIRST and REST enable us to monitor these
operations.

The reason that we have discussed the actor cons-list in such areat detail is that it provides
a paradigm for the way in which we will define actors in general.
[the actor which evaluates forms] is:

For example our definition of EVAL

[eva~=;=

[=x =the-environment]
(x#eval the-environment))]

In other words EVAL passes the buck to each kind of expression which is expected to either know how
to evaluate itself or to further delegate the responsibility.

There remains the problem of dividing up the responsibility and knowledge in a reasonable wa,y.
At this point we have only a few heuristics to offer. We hope to become more definitive as we ~ain
more practical experience with actors. In general we program each actor to field those requests for
which it feels Imost qualified because the information needed is most immediately at hand. For example
we have not included #length among messages fielded by list-structures but rather have preferred to write:

[length .=
(=> \;::: -supply]

the-supply
(message [#length]
[#al ternate

(=> [~:j~-appl cable]

the-supply
(=>

(stream ? =the-remaining-supply)

;“the answer is”

[
1 + (length the-remaining-supply)))

(=> #exhausted]
““if the supply is exhausted then 0“

O)))j

There is a complete duality between operands and operators in the actor formalism. In many cases the
precise organization seems more a matter of taste then anythinq else.

The data type cons-list is the class of all actors that have the behavior defined above. Certain
properties of the data type can be derived immediately from the definition. For example
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(where (cons-list xy) =Z
(first z) is x)

(where (cons-list xy) =Z
(restz) isy)

(where (cons-list xy) =Z
(z #first <- x’) is z
and z is equal to (cons-list x’ y))

(where (cons-listxy) =Z
(z #rest <-y’) is z
and z is equal to (cons-list x y’))

McCarthy has given the above formulas as axicms for lists. In his system the data type list is the class

of all structures that obey the above axioms. However if nothing is known about the actor draaons then

(whe& (cons-list xy) =Z

(draqons z)
(first (z #first <- x’)) is unknown!%])

The reason is that dragons may have swallowed the list z and passed it to some actor which is still acting
concurrently. Thus we don’t know that the first of z is x’ even thouqh we just stored x’ there!

Now any object which behaves like a list can be used in place of a list. For example we can con-
struct an object which is indistinguishable from an arbitrary list Z except that it will Print OUt when-
ever its first element is chanqed. To do this we will give a qeneral definition of a monitor.

Monitors

Every actor can have monitors which get to read ever,y message that is sent to the actor. Monitors
are mainly useful for metering and debugging. A monitor can be constructed b.y

(Cons-monitorpattyn in-yinq-action Out-wiwmonity) where pattern is the specification Of the
in going message, in-cjolng-action 1s what t~o~out-aolnq-moni tor [which b.y the waY is oPtional] an
out goinq rnonitor.—

——

For examplewe can define a monitor for factorial that keeps addina one to the contents of number-of-calls-
to-factorial every time that factorial is called and prints out the [input output] pairs on the stream
history-of-factorial for each call.

[monitor-for-factorial <m
(cons -monitor

(message =i nput)
(number-of-cal 1s-to-factori al

~con~-mo~~t;r(contents (number-of -calls-to-factorial))))

(;essage =output)
(out history-of-factorial

(print [input output])) ))]

The system actor NEW-MONITORis used to install a new monitor in an actor. For example (new-monitor
factorial monitor-for-factorial) installs monitor-for-factorial as a new monitor for factorial. After
which if (factorial 3) is evaluated then the contents number-of-cal is-to-factorial will be increased
by 3 and the stream history-of-factorial will be sent “[[l] l]” then “[[2] 2]”, and finally “[[3] 61”.

Iteration

Iteration is a special case of sending messages to oneself. We envisaae a finite state machine
with inputs on one side and outputs on the other.
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initial

~m~

input...- .-->.- he Continuation---.-autput[iew-i nput]

the

The iteration statement is due to Nick Pippinqer and has the syntax:

(iterate .~e

m

For example an iterative factorial program can be written as:

[iterative-factorial <=
(=> [=n]

(itefit~lcounti rig-up

(=> [=counter =accumulator]
(rules counter

[~~:en accumulator)

(counting-up

[
counter + 1)
counter* accumulator)))]))))]

Notice that there are no assignment statements in the above program!
The behavior of iterative-factorial is the same as if it were defined as follows:

[iterative-factorial <=
(= > [=n]

(label
{[counting-up <=

(receive
(message [=counter =accumlator]

[#continuation =c])
(rul~~=y~nter

accumulator)
(else

(send
counting-up
(mes~age

(counter +
(counter *

[#continuation
(counting-up 1 l)))]

We use

1)
accumulator )]
c])))]))]]

(cycle name
&T

as an abbreviation for

(ite~~te =

(=> [] ~))

Meta-Evaluation

Meta-evaluation is the process of binding actors to their intentions
actors abstractly on abstract data. Using actor induction we will show that
a configuration of actors succeeds then the intentions of the actors will be

and then evaluating the
if the meta-evaluation of
satisfied in the subsequent
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execution of the configuration. If the meta-evaluation cannot proceed it will stop at the point where it
cannot confirm that an actor always satisfied its intention and ask for help. At this point there are
several possibilities:

There really is an inconsistency:

The inconsistency is between the way the actor is being attempted to be
used and its intention.

The inconsistency is between the intention of the actor and its actual
implementation.

The intentions for a configuration of actors are not mutually consistent.

There is no inconsistency but:

There are hidden assumptions being made about actors that should be made
explicit.

There is hidden domain dependent knowledge that the actor is usino which
should be made explicit,

The intentions are not being sufficiently explicit as to why they are
expected to be satisfied.

Convergence of Actors——

Meta-evaluation can be used to show that certain inputs must eventually generate outputs. The
basic technique is the principle of induction over well-founded partial orders invented 11.v mathematicians
and elegantly formalized by John von Neumann. The technique is a special case of actor induction. At
present, actor induction for an actor configuration with input audience I and output audience O can be
tentatively described in the following manner:

1. There is a well-founded input-output partial order P. That is, there is
no sequence s of distinct elements of P such that for ever,y i we have (s i)

{P}(5 (i +1)).

2. The actors in the input audience I assiqn an element p of P to each
input message m. Me will denote this by the notation P<m,p>.

3. For each actor A if ~<m,p> is received by A, then A must send a messacie
p<m’,p’> such that P{P}P.

Therefore

Every message from the input audience must eventually result in a messaqe
being sent to the output audience.

A Simple Example Illustrating
How A Diligent ~ Moderately Dumb Apprentice Can ~—— —

We would like to give a simple concrete example to illustrate our techniques in action. Consider
the probelm of writing a program to shift the gears of a truck with a manual transmission. We apologize
for the necessity for introducing new syntax but the following concepts are crucial to the discussion which
follows:

1: Definitions
[x <=

(=> [=y]
body) ]

is actor syntax which at a rough intuitive level means: define an actor x which, when it is

called with an argument (to which ~is bound) executes ~.
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2: Rules
~es 3,

(=> =yl bodyl)
(=> =y2 bodyz)
.,.
. . . )

roughly means: take x, and
execute body 2, etc...

if it matches Y1, execute ~l; otherwise if it matches y~,—

3: Intentions
[x <=

(intention [n]
il
~finition
~

is an elaboration of 1, meaning that when ~ is called with ~, then il is the intention of
the incoming call and i2 is the intention when ~calls out again. ——

Our first try at a shift procedure might be:

Primitive-shift-to: when called with a target gear checks to see if it is 1, 2, 3, or 4 and calls the
appropriate select; upper-left, upper-riqht, or lower-right respectively.

[primitive-shift-to <=
(=> [=target-gear]

(rul~~>t~rget-gear

(select-upper-left))
(=> 2

(select-lower-left))
(=> 3

(select-upper-right))
(=> 4

(select-lower-right))))]

Now we consider the various select
incoming intention that the clutch
do the selecting. When a selector
to that selection.

[select-upper-right <=
(intention []

routines and their intentions. Each of the select functions has an
be disengaged. Furthermore each of them has code (delimited by *) to
calls out, we fully intend for the truck to be in the aear appropriate

(clutch-disengaged)
*code-for-select-upper-right*
(in-gear 3))]

[select-upper-left <=
(intention []

(clutch disengaged)
*code-for-select-upper-left*
(in-gear l))]

[select-lower-ri ht<=
(intention [ f

(clutch disengaged)
*code-for-select-lower-right*
(in-gear 4))]

[select-lower-left <=
(intention []

(clutch disengaged)
*code-for-select-upper-right*
(in-gear 2))]

Our apprentice notices that for each one that there is a physical constraint that the clutch must be
disengaged before shifting. He queries us abut this and so we decide to modify the function PRIMITIVE-
SHIFT-TO to first disengage the clutch.
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[primitive-shift-to <=
(=> [=target-gear]

(disengage clutch)
(rul~~>t~rget-gear

(select-upper-left))
(=> 2
~=~s;lect-l ower-1 eft) )

~=~s;lect-upper-ri ght))

(select-lower-right))))]

~engage clutcn~)j
how the code for primitive-shift-to is to first disengage the clutch, then do the selectinq as before,
and finally engage the clutch.

We also write functions to disengage and engage the clutch,
[disengage <=

(intention [=clutch]
(clutch engaged)
*code-for-disengage*
(clutch disengaged))]

[engage <=
(intention [=clutch]

(clutch disengaged)
*code-for-engage*
(clutch engaged))]

Now our apprentice is mollified. However, the engineers dealing with the transmission come to us with
some additional constraints. For example to select third gear the constraints are now that the clutch
must be disengaged and the truck must be in either second or fourth gear. The other constraints are
similar.

[select-upper-right <=
(intm;m

(clutch disengaged)
(or

(in-gear 2)
(in-gear 4)))

*code-for-select-upper-right*
(in-gear 3))]

[select-upper-left <=
(i nt~;~~on

(clutch disengaged)
(stopped))

*code-for-select-upper-left*
(in-gear l))]

[select-lower-right <=
(intention

(and
(clutch disengaged)
(in-gear 3))

*code-for-select-lower-right*
(in-gear 4))]

[select-lower-left <=
(int~:;~on

(clutch disengaged)
(or

(in-gear 1“)
(in-gear 3)))
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*code-for-select-lower-left*

(in-gear 2))]

The new requirements say that (temporarily at least) the truck has to be stopped to shift into gear 1 and

no gears can be skipped in shifting while running. (Note you can shift directly from any gear to first if
the truck is stopped. ) So we have to write some new procedures to meet these new intentions, We now write

our top-level shifting function:

SHIFT-TO: when called with a target gear considers in order the followinq rules for the tarqet gear:

If it is first gear, then-do a primitive-shift-to first qear.

If it is either one greater than the current gear or one less than the current
gear then do a primitive-shift-to the target gear.

If it is greater than the current gear then shift-to one less than the target
gear and then primitive-shift-to the target gear.

If it is less than the current gear then shift-to one greater than the target
gear and then primitive-shift-to the target gear.

[Silift-to <=
(=> [=target-gear]

(rul~~, tfrget-gear

(primitive-shift-to 1))
(=> (eithfl

(currcnc gear + 1)
(current-gear - 1))

(primitive-shift-to target-gear))
(=> (greater (current-gear))

(shift-to (target-gear-l))
(primitive-shift-to target-gear) )

(=> (less (current-gear))
(shift-to (target-gear+ 1))
(primitive-shift-to target-gear))))]

We ask our apprentice to meta-evaluate our program. It thinks for a while and sees two problems:

It can only shift to gear 1 if the truck is stopped.

It should not be asked to shift to the gear that it already is in. [the
procedure shift-to does not work if it is asked to shift to the current gear.]

We decide to give the following intention to SHIFT-TO: If the target-gear is first gear then
must be stopped; otherwise the target-gear must be 2, 3, or 4 and not be the current gear.

[shift-to <=
(intention [=target-gear]

(rul~~,t~rget-gear

(stopped))
(=> (or2 34)

(target-gear# current gear))
(else

(not-applicable)))
*code-for-repeatedly-shift-to*

(in-gear target-gear) )]

To summarize we have used intentions in the following somewhat distinct ways:

As a contract that the actor has with its external environment. How it carries
the contract is its own business.

As a formal statement of the conditions under which the actor will fullfill its
contract.

the truck
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The above example does not deal with all of the computational issues that our apprentice will
be faced with. For example it does not have sophisticated data structures,and has no concurrency or
parallelism. We deal with these problems in the technical report.
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