
Fact Extraction from Bash
in Support of Script Migration

I. J. Davis, R. C. Holt

School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

{ijdavis,holt}@uwaterloo.ca

R. Mraz

Owl Computing Technologies, Inc.

38A Grove Street, Suite 101

Ridgefield, Connecticut, USA

rmraz@owlcti.com

Abstract—Owl Computing Technologies provides software

and hardware that facilitates secure unidirectional data transfer

across the internet. Bash scripts are used to facilitate customer

installation of Owl’s client/server software, and to provide high

level management, control, and monitoring of client/server

interfaces. With the evolution of more robust scripting

languages, Owl now wishes to convert their bash scripts to other

scripting languages. As part of this conversion exercise the

configuration and customization of their bash scripts will no

longer involve direct end user modifications of the script logic. It

will instead be achieved through appropriate modification of a

supporting XML configuration file, which is read by each script.

This avoids the risk that end users erroneously change scripts,

and makes legitimate end user customization of their scripts

simpler, more obvious, and easier to discern.

An open source fact extractor was implemented that

determines the dynamic usage made of every variable within an

arbitrary bash script. This tool reports errors in a script and

generates an XML configuration file that describes variable

usage. Those variables whose value may not be assigned by an

end user are manually removed from this XML configuration

file. A second program reads this configuration file, generates

the appropriate bash variable assignment statements, and these

are then applied within bash by using the bash eval command.

Collectively this provides a simple mechanism for altering

arbitrary bash scripts so that they use an external XML

configuration file, as a first step in the larger exercise of

migrating bash scripts to other scripting languages.

Keywords—bash; parameterization; customization; refactoring,

autonomous re-engineering

I. INTRODUCTION

Owl Computing Technologies Inc. [9] designs and markets
hardware enforced data-diode-based cross-domain solutions for
government and military cyber security. They provide
electronic perimeter diode defence systems for critical
infrastructure such as power generation and water
management. They support secure, reliable, one-way
information sharing for all data types, including historian
replication, streaming full-motion video, scanned files, and
SMTP email systems.

Because end-user requirements vary, and evolve over time,
the software distributed by Owl to a client must be configured
to align with each client’s stated needs, expectations,
operational environment and purchased features. This
customisation is currently achieved by manually modifying the

Owl bash scripts [3, 8] that install, invoke and monitor the
underlying network client/server protocols, implemented in C.

As the number of customers and products that Owl
supports has grown, this manual approach to configuring Owl’s
software has become increasingly difficult. It is difficult to
know what modifications can be safely performed to Owl’s
scripts and to recover from the scripts information about how
client software has been configured. It is difficult and time
consuming for Owl to troubleshoot problems that arise within
scripts that have been erroneously modified by an end user. It
is also difficult for Owl to incrementally improve or correct the
underlying logic employed within the scripts they provide to
customers, since each modification must be manually applied
against all variants of a given script. This is a labour intensive
exercise and an inherently risky process.

There is now a desire to refactor the existing scripts, so
they read instructions as to how they are to configure
themselves from an XML [13] configuration file [5]. Given
that Owl is currently maintaining in the order of 1,000 bash
scripts, and that the largest of these scripts is more than 2,000
lines long, this represents a considerable undertaking.

In the longer term this refactoring exercise is expected to

prove beneficial in simplifying the migration of bash scripts to

more robust scripting languages (such as Python) which have

built in capabilities for parsing XML files [1, 2, 6, 7].

II. OUR REFACTORING APPROACH

When we initially began examining Owl’s scripts [10], it
was assumed that refactoring would involve three steps:
manual examination of each script to identify the configurable
variables contained within it; manual construction of an XML
configuration file; and manual modification of each script to
assign configuration variables the values read from this XML
file. These assigned values would then parameterize the
behaviour of a script.

This approach proved to be problematic. Those doing the
refactoring lacked a-priori knowledge about what the numerous
scripts did; why they had been implemented as they had been;
or what aspects of a script were to be deemed by Owl to be
‘configurable’ by an end user. There was no obvious way of
changing all the scripts to assign certain variables within them
the corresponding values specified in an XML file, and there
was no mechanism for automating the construction of these
XML configuration files.

We have expertise in extracting facts from source code [11], so
we initially thought that we might benefit by developing a bash
fact extractor. The resulting facts contained in a bash script
could then be presented graphically, and navigated by
discovery software, more easily than the original scripts. To
this end we modified the bash 4.2 open source code [4] to parse
and document the contents of bash scripts.

The resulting fact extractor proved to be of limited use in
offering insights into the design and functionality of a bash
script. The sequential flow within most scripts, the lack of
deeply nested function calls or control structures, and the
comparatively small size of these scripts, meant that ‘facts’
about these scripts could be more readily understood by visual
examination of them, than by trying to interpret the graphical
output produced by running our bash fact extractor on them.

None the less, our decision to implement a fact extractor
proved serendipitous, because in working with the bash open
source code it became obvious that this source code might be
exploited in other ways. What we then implemented from this
same bash interpreter’s source code was a fact extractor that
discovered facts, not about the static logic and control
structures present within a bash script, but instead about the
dynamic run-time usage of bash variables.

III. EXTRACTING FACTS ABOUT VARIABLES

When a bash script is interpreted its variables are
dynamically created, assigned values, modified, and used.
Discovering how such variables are manipulated allows us to
automatically classify variables, and to automatically generate
an XML configuration file for each bash script.

 To discover the usage of variables, the bash interpreter was
modified. The resulting open source tool is named prowl, since
it discovers ‘parameterization within Owl scripts’ [12].

 Control flow tests are evaluated but the resulting value
then ignored. If statements have both their then and else clause
sequentially interpreted. Switch statements have every case
clause sequentially interpreted. For, while and until statements
have their body interpreted exactly once. Break, continue, exit
and return statements are ignored. Function declarations are
noted, and function calls invoked. Instructions to source
external bash scripts are honored. All other built in bash
operations are ignored, as are invocations of external programs.

Prowl keeps track of how each variable is created and
modified anywhere within a bash script. The following binary
flags are currently employed for this purpose:

1. ENVIRONMENT: Variable’s initial value is obtained from
the corresponding environment variable.

2. USED: Variable’s value is used in interpreting the script.

3. CHANGED: Variable is assigned multiple distinct values.

4. RETURNED: Variable is used in computing the value
associated with a return or exit statement.

5. SOURCED: Variable is created within a sourced script, and
never observed to be manipulated or used outside of
sourced scripts.

6. DERIVED: Variable is assigned a value that is itself
derived by expanding other variables.

7. LOOP: Variable is created in a for, while, or until construct.

8. FUNCTION: Variable is created within a function.

 Armed with the knowledge about how variables are created
and used within a bash script, it is straightforward to emit this
knowledge at end of run, in a suitably encode XML file.

For example, if a bash script file named script1 contains

 y=10; x=1; y=2; z=$x+$y; exit $(($z))

then the command prowl script1 > script1.cfg generates the
XML file script1.cfg shown below:

<prowl>

 <script1 version="default">

 <default>

 <x>1</x>

 <y changed>2</y>

 <z derived returned>1+2</z>

 </default>

 </script1>

</prowl>

Figure 1. Example XML Configuration File

The XML configuration file has four levels of nesting:

1. The outmost root entity is labelled <prowl>.

2. The second entity level (e.g., script1) identifies by its entity
name a named script. This entity can be repeated, thus
permitting configurations associated with multiple scripts
to be recorded in a single file. The optional version attribute
specifies a default version to use if none is provided.

3. The third entity level (e.g., default) identifies a named
version. Multiple configuration versions can be associated
with a named script. If no version is specified the earliest is
used. Distinct configurations for a named script typically
define the same named variables but with different values.

4. The innermost entities (e.g., x) contain text. The name of
each such entity identifies a bash variable, while the text
corresponds to the last value assigned to this variable.
Attributes associated with these entities describe variable
usage of potential concern to the reader. To improve
readability, and assist in file comparisons these entities are
themselves sorted by their entity name.

Those variables most likely to be configuration variables
are those that are assigned an initial value in the global scope
of the shell script and that never change. The value assigned to
these variables should be used, but not be derived from other
variable values, or used within return or exit statements.

Prowl can optionally include only such variables in the
output XML file. However, it is safer to emit details about all
variables used within a bash script to the XML configuration
file, and then have a reviewer manually remove from this XML
file those variable assignments not deemed to be modifiable by
an end user. The remaining variables are precisely those that

(by having their value changed) permit an end user to
configure their scripts appropriately.

Some scripting languages (such as Python) differ from bash

in requiring stricter typing of variables. Future work will

examine if it is possible to offer advice as to how variables

should be typed, within the XML file, as part of the larger

exercise of porting bash scripts to other scripting languages.

IV. READING THE CONFIGURATION FILE

Having produced the desired configuration file, the
assignments specified in it must be ported back into the
original bash shell script, so that the script operates on these
now external configuration settings.

This is achieved by implementing a second program
(named prowler). Prowler parses a specified configuration
file, and is provided with the name of a script and optional
configuration version, from which configuration information
must be recovered. It then emits a composite bash statement
that assigns all of the configuration variables the
corresponding values specified in the appropriate version of
the named script. By wrapping the prowler invocation within
a bash eval statement at an appropriate point within the
original script, these externally assigned values are imported
back into the script.

Configuration variables can also be assigned values by
specifying these assignments as input arguments to prowler.
This permits configuration instructions to also be provided as
command line inputs to a bash script, when this is considered
appropriate.

 For example, in Figure 1 eliminating the variable z because
it is derived from other variables and changing the values of x
and y produces the modified configuration file script1.cfg

<prowl>

 <script1 version="default">

 <default>

 <x>10</x>

 <y>20</y>

 </default>

 </script1>

</prowl>

The command

 prowler script1.cfg y=25

then emits

 x="10";y="25";

while the modified bash script

x=1; y=2

eval `prowler script1.cfg`

z=$x+$y

exit $(($z))

assigns x=10 and y=20 and so exits with a return code of 30. If
the variable x is removed from script1.cfg it will then default to
x=1. This value cannot then be changed by prowler.

V. INDUSTRIAL EXPERIENCE

In automating the construction of XML configuration files

a number of minor issues arose. Because we are interpreting

all possible paths within a bash script, we discovered

previously unobserved semantic errors in our bash scripts. For

example, functions must be declared before being invoked, but

we found cases where a bash function was being incorrectly

invoked before been declared. The ability to thus validate the

run time behavior of a bash script, and to correct discovered

errors, proved an unexpected benefit of running prowl on all

our bash scripts.

Because we do not execute external programs, there are

cases where we fail to identify the values associated with

variables. For example the bash statement a=`date` does not

execute date and so assigns the variable a the empty string

instead of the current date.

There are cases where the bash interpreter is instructed to

execute a script, rather than source it. Since such scripts are

not executed by prowl, their content is not interpreted by

prowl, and so variable usage within them is never seen. This

problem can be addressed by examining each program

invocation, discovering when a bash shell script is being

executed, and then recommending that such external scripts be

reworked so that they are sourced as bash scripts, rather than

executed as programs.

Sometimes there is complex nesting of sourced bash

scripts, and in these circumstances it is difficult to manually

determine where a discovered bash variable is actually being

used. To address this problem prowl was augmented to list

the locations of all source scripts which declared or used each

reported variable, as well as indicating if each such variable

was used in the main script.

Another problem is that sometimes constants within a script

are consecutively assigned distinct values, with the prior

redundant assignments being left unchanged, rather than being

removed. This poor programming style makes it difficult to

accurately report which script variables are intended to be

constant. Cases where the same variable is assigned distinct

values in consecutive statements should be reported, so that

the offending scripts can then be improved.

A benefit of our approach is that differences between

variants of the same script configured for different users can

now be discovered not only by comparing the scripts, but also

by performing ‘diffs’ on the XML configuration files produced

by our analysis of these scripts. This provides a good

indication of how scripts have been initially cloned, and then

subsequently modified on a per customer basis.

The final challenge in the refactoring exercise, having

decided which constants may be assigned values by an end

user, is in deciding where to place the introduced invocation to

prowler within each script. To be effective, this placement

must occur after all assignments of values to configuration

variables (which would ideally be commented out or removed

if not defaults), but before any of these configuration variables

are used or tested within a script. This is a straightforward

exercise when these configuration variables are all assigned

values at the start of the main script, but challenging when the

assignment of a value to a configuration variable is delayed

until first use of that configuration variable, which may

potentially occur not in the main script but in a sourced script.

When prowl is presented with a Bash script it therefore

assists in validating prowler’s placement. To do this it reports

all XML configuration variables used before prowler is

invoked, and all assignments to these variables afterwards.

VI. CONCLUSIONS

Our group at the University of Waterloo has historically

focused on static fact extraction from binary source code

written in C, C++, and Java, as well as from binary executable

programs. We have been hesitant to develop dynamic fact

extraction tools, which document the observed runtime

behavior of software, because it is difficult to ensure that all

relevant runtime behavior is observed, and because

representing runtime behavior is inherently challenging.

We solved the challenge of deciding how a bash shell script

should best be executed in order to extract dynamic facts from

its execution by forcing all possible paths through each bash

script to be executed at least once. We solved the problem of

how to concisely present factual information about the runtime

behavior of a script, by limiting the facts presented to those

that were both useful within the larger refactoring exercise,

and relevant to a reviewer, irrespective of the actual runtime

behavior of an observed script.

This represents a novel approach to dynamic fact

extraction, and offers opportunities for recovering other

important facets of run time behavior, not easily discovered by

static examination of source code. We could for example

discover what programs are potentially being invoked by the

execution of a script, what files are being accessed, or what

interfaces are being used.

Modifying the bash open source software as described is

straightforward and involves only a limited number of changes

to a small number of source files. The result is a useful tool,

which is as robust in handling arbitrary bash shell scripts as

the original bash interpreter. It is also easy to port to the

multitude of existing platforms that support bash.

The challenge of manually examining approximately 1,000

bash scripts to identify configuration variables in these scripts

and to then refactor each bash script so as to obtain actual

configuration values from an external configuration file

seemed a necessary, but daunting exercise. The tools we have

presented here make this exercise much less painful.

Our industrial partners no longer have to laboriously

examine each script to discover how each may be configured.

Instead they are presented with the list of all variables used by

an arbitrary bash script, and how each such variable is used. If

sensible naming conventions are used, it is comparatively easy

to decide which variable assignments are to be performed by

the end user as part of their configuration process, and which

are to remain within the script. The XML configuration file to

be associated with each script is automatically generated,

ensuring a consistent look and feel, and the decision as to

which scripts ultimately share a single configuration file is left

open.

End users benefit since it is easier for them to modify an

XML file than to identify which scripts need to be changed

and how. Reconfiguration of their software becomes easier, as

does the process of installing routine updates to the scripts

they are using. The modifications to the XML file concisely

document how an end user has elected to configure the

software they are using, which is important to both Owl and

the end user.

In the longer time frame, changing the bash scripts to use

external XML configuration files makes it easier to migrate all

of the bash scripts to other scripting languages, without

requiring end user familiarity with these new scripting

languages.

ACKNOWLEDGMENT

Owl CTI motivated this research, provided the funding for
it, and assisted in the preparation of this paper. Their support
and encouragement is much appreciated. Gabriel Silberman
provided the initial vision, which made this project possible.
The referees are thanked for their many helpful suggestions.

REFERENCES

[1] R. Delaney, “Python scripts as a replacement for bash utility scripts”
Linux Journal, November 2012 pp. 69-78

http://www.linuxjournal.com/content/python-scripts-replacement-bash-
utility-scripts

[2] N. Gift, “Python for bash scripters: A well-kept secret” Red Hat
Magazine, 7th February 2008.

http://magazine.redhat.com/2008/02/07/python-for-bash-scripters-a-
well-kept-secret

[3] GNU, “Bash reference manual”.

http://www.gnu.org/software/bash/manual/bashref.html

[4] GNU “Bash 4.2 project archive”. http://ftp.gnu.org/gnu/bash

[5] H. Hall, “XML configuration files for your applications”, Code Project,
6 February 2009. http://www.codeproject.com/Articles/33166/XML-
Configuration-File-for-Your-Applications

[6] M. Lutz, “Programming Python” O’Reilly 2011.

[7] Maxwell, "Python vs. Bash Benchmark Test” 17 February 2009
www.murga-linux.com/puppy/viewtopic.php?mode=attach&id=16212

[8] C. Newham, “Learning the bash shell: Unix shell programming”
O’Reilly 2005.

[9] Owl Computing Technologies, Inc. Securing your networks from cyber
threats. http://www.owlcti.com

[10] Owl Computing Technologies, Inc. “Owl Computing Technologies
partner with University of Waterloo” Press Release
http://www.owlcti.com/news/pr/Owl_Partners_Waterloo.html

[11] University of Waterloo, “Javex Java Fact Extractor”

http://www.swag.uwaterloo.ca/javex/index.html

[12] University of Waterloo, “Converting bash scripts to use XML
configuration files” http://www.swag.uwaterloo.ca/prowl/index.html

[13] W3C, “Extensible Markup Language (XML) 1.0 (Fifth Edition)

http://www.w3.org/TR/xml

