MICROPROCESSORS AND

MICROSYSTEMS

4.4

ELSEVIE

Microprocessors and Microsystems 26 (2002) 97-106

www.elsevier.com/locate/micpro

Architecture of a fieldbus message scheduler coprocessor
based on the planning paradigm

. sk ,
Ernesto Martins™, Paulo Neves, José Fonseca

Electronics and Telecommunications Department/IEETA, University of Aveiro, P-3810-193 Aveiro, Portugal

Received 14 July 2000; revised 11 December 2001; accepted 14 December 2001

Abstract

The use of a centralised planning scheduler in fieldbus-based systems requiring real-time operation has proved to be a good compromise
between operational flexibility and timeliness guarantees. It is particularly well adapted to embedded systems based on low-processing power
microcontrollers due to the low overhead it imposes.

In this paper a preliminary implementation of a hardware scheduling coprocessor based on the planning paradigm is presented. The
coprocessor is installed in a special node of the fieldbus, the bus arbiter, and generates scheduling tables to be dispatched by the node CPU.
With this solution it is possible to decrease the response time to changes in the system configuration or message parameters of the software-
based planning scheduler. This opens the possibility of allowing automatic on-line changes requested by system nodes in addition to the ones
requested by human operators, thus improving system reactivity.

The paper includes a short review of the planning technique and a discussion on the motivation to develop the coprocessor as well as on
recent similar and related work. The coprocessor architecture and several implementation details such as its interface with the arbiter CPU are
presented. The initial calculations showing the feasibility of the unit are also derived, together with the first real implementation of the
coprocessor itself. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Real-time message scheduling; Coprocessors; Fieldbuses; Digital systems

1. Introduction

The dissemination of embedded fieldbus-based distri-
buted systems in real-time applications has triggered a
significant research activity on many of the related problems
and associated solutions. One of them is the improvement of
distributed embedded systems reactivity and flexibility
without loosing the timeliness guarantees required for a
real-time operation. Some promising results have been
studied in Ref. [1], concerning the use of a planning
scheduler technique in systems based on low-processing
power microcontrollers and in fieldbuses such as CAN [2]
and FIP [3]. This technique and an associated protocol
named FTT-CAN (flexible time-triggered protocol),
proposed in Ref. [4], can be used to achieve real-time
performance in distributed systems based in CAN, keeping
a run-time overhead in the nodes that is compatible with the
low-power CPUs used in most industrial embedded appli-
cations. However, a further step towards systems reactivity

* Corresponding author. Tel.: +351-234-3703733; fax: +351-234-
381128.
E-mail address: evm@det.ua.pt (E. Martins).

implies decreasing the response time to required changes.
This can be achieved with several solutions, including the
use of a specific scheduling coprocessor implemented in
hardware.

In this paper, preliminary results concerning the use of a
scheduling coprocessor in a CAN-based distributed system
are presented. As the coprocessor is, at this moment,
specifically developed to implement a planning scheduler,
the paper starts with a short presentation of the technique, in
Section 2. After, in Section 3, the motivation to adopt
the hardware scheduler solution is briefly discussed and
some previous works following the same line are shortly
presented, even when they refer to operating systems
scheduling and not to message scheduling in a bus. In
Section 4, the present coprocessor architecture is described
either from a global view and for detailed aspects of its main
blocks, the schedule plan builder (SPB), the variable’s
production timer (VPT) and the schedule plan memory
(SPM). It should be noticed that this version is still limited
in some features, namely in the on-line acceptance of
changes and in the definition of deadlines which, at this
moment, must be equal to the messages periods. This
section also includes the first computations showing the

0141-9331/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0141-9331(01)00149-1

98 E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97—-106

id bytes period type time

Periodic messages desc. table Scheduler
123..N [Ecl |12 .. Ec K+1
1 Ec2 [4 Ec K+2
12.. R | A
13.. EcK |1 .. Ec 2*K
plan (i+1)

@ plan (i)

Completely on-line
Dispatch each (P Y)
message to the bus

Fig. 1. The planning scheduler.

feasibility of the proposed architecture. Finally, the paper
ends in Section 5 with some conclusions and a brief
enumeration of the aspects of the coprocessor that are
being improved.

2. The planning scheduler

Message scheduling on a fieldbus can be done statically
or dynamically. Table driven and priority-based approaches
such as the ones in FIP and CAN, respectively, fall in the
category of static scheduling while dynamic scheduling can
be done using planning-based or best effort approaches.
Although dynamic planning-based schedulers are not
commonly found in current standard fieldbuses, recent
work on the subject [5], has shown that they could become
a good compromise between the static and dynamic
approaches.

The planning scheduler and an associated dispatcher can
be implemented in fieldbus-based systems imposing an
overhead compatible with the low-processing power micro-
processors or microcontrollers used as typical nodes’ CPUs.
Also, it presents some degree of flexibility resulting from the
possibility to change, from plan to plan, the message’s set,
adding or deleting messages or changing their parameters.
Finally, temporal response can be guaranteed if an adequate
schedulability analysis is used [5] or, at least, it is possible
to anticipate situations that can lead to missed deadlines
and, thus, take adequate corrective actions. That is why
the planning scheduler can result in a good compromise
between overhead and flexibility.

The underlying concept behind the planning scheduler is
the reservation of resources in the future. So, when a new
message is accepted, the additional bus bandwidth required
is reserved. To do this, the scheduler builds static schedules
for consecutive fixed duration periods of time called plans.

The static schedules are called plan tables. The creation of a
plan table is overlapped with the dispatching of the previous
one. In Fig. 1 the operation of the planning scheduler is
shown. The dispatcher is working with plan i, while the
scheduler is building plan i + 1.

In common implementations of the planning scheduler,
the available bus time is divided in fixed duration time slots
called elementary cycles (ECs). Each plan includes a fixed
number of ECs. Messages’ periods (also transmission dead-
lines) are then restricted to an integer multiple of the EC
duration. Transmission time of the longest message is
supposed to be less than the EC duration, then several
messages fit, in principle, within an EC.

The simple mechanism of this scheduler reduces run-time
overhead mainly because it is invoked fewer times. So,
comparing with a dynamic scheduler, each time it is
invoked, instead of determining the next message to be
transmitted, only, it determines all the bus activity, for all
the messages, for a certain period of time corresponding to
the plan duration. Reducing the plan duration increases the
run-time overhead. If the plan duration is increased then the
response time of changes in the message set is also increased
and flexibility is then reduced.

3. Scheduling in a dedicated coprocessor
3.1. Motivation

Experimental results [6] taken in a CAN-based system
where the planning scheduler was implemented supported
on a protocol named FTT-CAN (Flexible Time-Triggered)
showed the exponential decrease of run-time overhead with
the plan duration. As an example, with a bus transmission
rate of 125 Kbits/s, with an EC duration of 8.9 ms and with
the scheduler implemented in a Philips 80C592 controller,
the overhead decreased exponentially from 88% in the
worst-case for a plan of 1 EC to 33% for a plan of 20
ECs. Further increase in the plan duration did not corre-
spond to a significant decrease in the overhead.

The previous results show clearly that the response time
to a request of change in the message set (1 or 2 plans of 20
ECs, thus about 180 ms in the maximum) is more than
adequate when it comes from a human operator. Also, the
response time can be reasonable for automatic changes
during set-up or upgrade of the system. However, if more
dynamic mechanisms are to be thought for the system
operation, e.g. changing messages’ periodicity to react to
a bus overload or to adapt the sampling period of a distri-
buted control system (operation following a QoS—quality
of service model), then the response time is clearly insuf-
ficient. To overcome this limitation the plan duration
should be reduced.

Besides the run-time overhead due to the reduction of the
plan, the implementation of automatic procedures to allow
on-line changes in the communication parameters will also

E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97-106 99

require relevant processing power at the arbiter node CPU.
To overcome this problem three solutions are envisaged.
The first one consists in replacing the node CPU by a
much more powerful one, keeping all the tasks together.
The second and the third require the splitting of the
scheduler and of the other tasks such as the admission
control and protocol management. Here, there are two possi-
bilities: using another CPU as the scheduling coprocessor or
implementing it in dedicated hardware.

The repetitive nature of the scheduling process, the
robustness required for the arbiter node and the desire to
reduce strongly the response time to changes led to choose
the hardware coprocessor as the first solution to explore.
This option was reinforced by the fact that the planning
technique makes very easy the exchange of data between
the coprocessor and the arbiter CPU, even when the worst-
case execution time of the scheduling process is not com-
pletely determined. The output of the scheduler is, in this
case, a list of messages to be produced during several ECs.
The number of items in the list can be small for a reduced
plan duration. The plan duration can be easily adapted to
give time for the coprocessor to build the plan in a worst-
case situation as this just means to reserve more or less
memory positions. This advantage will be clearly shown
in the discussion of the coprocessor architecture.

Although other solutions such as a scheduling coproces-
sor based in another CPU are yet to be studied in the future,
the use of dedicated hardware is presently a good and easy
option namely due to the availability of support tools [7].
Also, there is already some work in the same direction as it
will be shown in the following paragraph.

3.2. Related work

Transferring critical functions of hard real-time systems
from the software domain to specialised hardware, is
becoming an increasingly hot topic within the scientific
community. While virtually nothing has been reported
addressing the problem of message scheduling in fieldbuses,
some papers have surfaced describing coprocessors aiming
at improving the execution time and predictability of
operating system functions.

The real-time unit (RTU) reported in Ref. [8] is a
complete multitasking kernel implemented in an ASIC. It
consists of a number of units, which handle most of the
time-critical functions of a typical real-time kernel such as
semaphores, interrupt handling, event flags and periodic
start of tasks. Task scheduling is based on the rate mono-
tonic algorithm. The RTU can handle a maximum of 64
tasks at eight priority levels, and supports up to three appli-
cation processors. For each processor there is a dedicated
ready queue. After determining the next task to run, the
coprocessor interrupts the CPU forcing a task switch. The
prototype described was used in a VME system with three
CPU boards executing tasks. The interaction between the
processors and RTU is through interrupts and registers,

which makes it easy to use the RTU with different types
of processors.

The spring scheduling coprocessor (SSCoP) [9], as the
name implies, is a VLSI coprocessor dedicated only to the
task of scheduling. It was designed to work together with
the Spring kernel and also supports multiple processors. The
SSCoP can use different scheduling algorithms, considering
shared resource requirements and precedence constraints.
The operating system writes the attributes of a set of tasks
in the coprocessors registers. Using these attributes SSCoP
tries to build a complete feasible schedule, which, if suc-
cessfully created, can be read back by the operating system.
When a new task arrives, a set of the already scheduled but
not yet dispatched tasks, together with the new task, is again
submitted to SSCoP for schedulability evaluation and
rescheduling.

Finally [10] describes a universal scheduling coprocessor
for single processor systems. The coprocessor is provided
with the task parameters and states, and gives back to the
operating system the identification of the task that has to be
executed next. The architecture approach is suited for the
implementation of nearly every scheduling algorithm that
is based on comparison of task parameters (e.g. RM,
EDF, LLF). Due to the serial comparison of parameters,
scheduling time is independent of the number of tasks.
The coprocessor was implemented in FPGA technology
and its latest version uses the enhanced least-laxity-first
(ELLF) scheduling algorithm (a non-thrashing version of
LLF), and supports up to 32 tasks with a parameter reso-
lution of 16-bits.

4. The planning scheduler coprocessor (PSCoP)

Before going into the architecture details of the coproces-
sor, a first overview of its basic features is in order. To start
working, PSCoP needs to be initialised first with the para-
meters of each variable to be scheduled. These include the
variable’s period (P), its initial phasing (Ph) and associated
transaction duration (C). The parameters of each variable are
written by the node CPU in a 3-register slot within PSCoP’s
interface. There are as many register slots as the maximum
number of variables supported by the coprocessor.

In this experimental version there is no support for
explicit deadline or priority parameters. The deadline of
all variables is assumed to be the same as their period.
Relative priorities are dictated by the allocation of register
slots. These are numbered 1-N and have assigned
decreasing priorities. The scheduling priority of a given
variable is thus set by mapping its parameters to the appro-
priate register slot at initialisation time. Clearly, priorities
are always static.

After instructed to begin, PSCoP starts generating
schedules. The results are passed to the node CPU, and
consist of one N-bit string per EC; which identifies the
transactions that must be carried out during that EC.

100 E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97—106

— SPB 2
A A A T A
- t L 2 y L
SPB - Schedule Plan Builder
VPT - Variable's Production Timer

SPM - Schedule Plan Memory
CCU - Configuration Control Unit

SPM ‘ ‘ CcCu

w uC Interface Port

Fig. 2. PSCoP architecture.

4.1. Architecture of PSCoP

In devising a hardware structure where the planning
scheduler functionality could be mapped, two separate
activities were identified within the scheduler algorithm.
One of them is performed in the context of each variable
and acts basically as a timer, keeping track of the instants
when the variable must be produced. The other concerns the
placing of transactions in the respective ECs in the plan
table.

This partitioning of activities inspired the architecture
shown in Fig. 2. Here, the VPT units are responsible for
the first activity while the SPB takes care of the second
activity.

Each variable to be scheduled is allocated to one VPT
unit which holds the variable’s period (P) and initial phase
(Ph) parameters. Global timing information received from

BEGIN

A 4

SEVERAL INITIALISATIONS
SIGNAL EC START TO THE SPMAND ALL VPTs

;Yes Nol

TURES THE SIGNALS EC
INFORMATION OVERTO THE
NEEDED TO DECIDE SPM
ALLOCATION

l SIGNALS TO THE VPT

SIGNALS TO THE VPT ALLOCATION || THAT THE ALLOCATION
SUCCESS FAILED
STORE THE VPTSs ID IN THE SPM SIGNALS EC OVER TO
UPDATES TIME AVAILABLE IN THE EC || THE SPM

v

‘ SIGNALS EC START TO THE SPM Fi
a)

the SPB allows all VPTs to be synchronised while keeping
track of the EC schedule currently being generated. When a
VPT detects that the scheduling for a particular EC where its
variable should be produced has started, it signals the SPB
requesting the allocation of the associated transaction.
Based on the transactions’ duration (C) and on the remain-
ing EC time left, the SPB unit decides to allocate or reject
the transaction. If the transaction is accepted, further
requests for allocation in the same EC (from other VPTs)
are received, otherwise the current EC schedule is finished
and a new one is started (see Fig. 3).

Because more than one VPT can request allocation in the
same EC, a mechanism must exist to help SPB to select
which request to serve first. A daisy chain structure similar
to the one commonly found in microprocessor-based
systems to solve interrupt or bus arbitration, is used with
this purpose.

The chain signal ripples through VPT; down to VPTy.
When a VPT unit raises a request for allocation, its chain
signal output is deactivated. After this, the unit is allowed to
communicate with SPB only if its chain signal input is true,
which means that, in a contention situation, the leftmost
VPT with a pending request is always the only one with
the chain signal input set to true, and therefore the one
which can engage communication with SPB.

The daisy chain structure defines a static priority hier-
archy between VPTs, which extends itself to the messages.
Thus at configuration time, the highest priority message
should be allocated to the VPT closest to the SPB, VPT|,

BEGIN

| SEVERAL INI'vI'IALISATIONS ‘

ALLOCATION
NEEDED?

Yes—y
REQUEST ALLOCATION THE THE SPB

1
TAKES ACTIONS
Yes IN ORDER TO
No» HETECT MISSED
DEADLINES | No
SENDS INFORMATION TO THE SPB TO
DECIDE
p SN No
Yes——— No¢——————
b)

Fig. 3. SPB (a) and VPT (b) operation flowcharts.

E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97-106 101

AC AL_TC
A
: Y
VPT
DE_TC
”{ D% Control Unit
A
[A
v v v
PhaReg ‘ ‘ PerReg | 1D |
A A
- A 4 A 4 -
‘“-—— »- »
EC_CLK CH_IN CH_OUT

Fig. 4. Internal structure of the VPT.

while the lowest priority message should be mapped in
VPTy. The resulting message scheduling is determined
both by the daisy chain arbitration and the EC time allo-
cation (managed by the SPB).

Besides the VPTs and SPB, the PSCoP architecture
includes two other functional blocks, the configuration
control unit (CCU) and the SPM. The former includes
control and status registers and provides access to the
parameter registers in the VPTs and SPB.

The SPM unit is where SPB builds the plans with the EC
schedules it generates, which are latter read by the CPU.
It includes two separate plan memories, which contain
alternately the plan being dispatched and the plan being
built. While the SPB is updating one memory, the CPU
reads the other.

The following sections describe in detail the coproces-
sors’s main components.

4.1.1. Variable’s production timer

Fig. 4 shows the internal structure of one VPT unit
connected to the internal shared bus of the coprocessor.
The registers PhaReg and PerReg hold the variable’s initial
phase and period, respectively. There are two presettable
decrement counters, the allocation counter (AC) and the
deadline counter (DC). The former is used to keep track
of the variable’s release time, and the latter allows detection
of missed deadlines. A state machine-based control unit

v MDLuUT (< ¥
mux
ReTReg
b
from/to SPM
SPB
"| Control Unit
| A-B [
7'y A
— 3 CH_IN
ECDReg AddReg -
CH_OUT
A 4 >
-~ P
—EC_CLK

Fig. 5. Internal structure of the SPB.

takes care of the entire operation of the VPT, including
arbitration using the daisy chain mechanism, and the hand-
shake with the SPB.

A clock signal common to all VPTs decrements the AC
counter every time the SPB starts a new EC schedule.
Initially AC is set with the phase value, and DC with the
period. When AC reaches zero, the control unit requests
the variable allocation to SPB. If there are more variables
to be released on the current EC, the VPT may have to wait
for its turn to have the SPB’s attention. When its turn
arrives, the VPT sends its identifier (ID), which is basically
its number in the daisy chain. The SPB unit replies with a
positive acknowledge if the variable’s transaction fits in the
EC, otherwise a negative acknowledge is sent.

If the allocation is successful, DC is copied to AC, and
then DC is again initialised with the period. The counters
will decrement again with the start of the next EC schedule,
and the cycle repeats. On the other hand, if the variable is
not allocated, the VPT enters a state where only DC is
allowed to decrement, starting on the following EC. Until
the VPT is finally able to allocate the variable, the value in
DC is the so-called laxity, that is, the number of slack ECs
left until the deadline is reached. DC reaching zero therefore
means that a deadline has been missed.

The desired behaviour of the coprocessor on a deadline
miss depends obviously on the application requirements. In
this design, however, it is assumed that such an event leads
generally to a catastrophic failure which requires the
initialisation of the whole system. Therefore, following a
deadline miss, the VPT signals the SPB which in turn,
warns the CPU with an interrupt. The coprocessor is then
shutdown.

4.1.2. Schedule plan builder

The SPB central unit is where the ECs which make up the
plan table are actually built. Its internal structure is shown in
Fig. 5.

The MDLut block is a RAM look-up table used to hold
locally the transaction duration parameter (C;) of each
variable. This is the only parameter the SPB needs to
know about each variable. All the others are stored in
local VPT registers, as we saw before. Another parameter
local to SPB is the elementary cycle duration, which is kept
in the ECDReg register.

The SPB builds EC schedules by accepting requests for
allocation from the VPTs. An EC schedule is actually a
stream of IDs, which identify the transactions placed in
that EC.

A global EC clock generated in the SPB is used to tell all
VPTs that a new EC is about to be processed. An active
transition on this signal indicates the end of an EC and the
start of a new one. VPTs use these transitions to decrement
their internal counters, and to know therefore, when they
should request the release of their respective variables.

After signalling the start of an EC, the SPB checks if there
is a request from any VPT. In case there are multiple

102 E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97—-106

SYSTEM
CLOCK

EC_CLK

VPTs
*REQUEST

SPB
CHAIN_OUT

VPT1
CHAIN_IN

VPT1
CHAIN_OUT

Fig. 6. Generation of a new EC by the SPB and arbitration mechanism with VPT; holding the daisy chain.

requests, the arbitration mechanism selects the highest
priority VPT among the competitors, which, then, sends
its ID to the SPB. The ID is captured in the register AddReg,
and used as an index to the table MDLut. The entry retrieved
from the table is the transaction duration of the correspond-
ing variable. This parameter is now used to check if the
transaction fits in the EC. To accomplish this, the SPB
maintains the remaining free time in the current EC in the
register RetReg, which is initialised at the beginning of
every EC with the total EC duration stored in ECDReg.
The transaction duration is then subtracted from the contents
of RetReg. If the result is zero or positive (C; = [RetReg]),

then the transaction fits in the EC and RetReg is updated
with the new time left. A positive acknowledge is sent to the
VPT, informing that its transaction was placed in the EC.
At this point, the VPT withdraws from the daisy chain,
allowing the arbitration mechanism to select the next higher
priority VPT with a pending request. The previous process
now repeats for the next VPT, if any, or the EC schedule is
closed and a new one is started.

On the other hand if the subtraction [RetReg] — C; returns
a negative result, then a negative acknowledge is sent to the
VPT, rejecting the transaction allocation. The current EC
schedule does not accept any further transactions, and is

SYSTEM
CLOCK

]

VPT1
DATA_BUS <0:2>

VPT1
*DATA_VALID

SPB
ALLOC_ACK <0:1>

0X03

VPT1
CHAIN_OUT

VPT1
*REQUEST

Fig. 7. Acceptance of a transaction. VPT, sends identifier and SPB replies with positive acknowledge.

E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97-106 103

SYSTEM
CLOCK

L

VPT1
DATA_BUS <0:2>

VPT1
*DATA_VALID

SPB
ALLOC_ACK <0:1>

0X01

VPTA1
CHAIN_OUT

VPT1
*REQUEST

SPB
CHAIN_OUT

Fig. 8. Rejection of a transaction. VPT, sends identifier and SPB replies with negative acknowledge.

therefore closed. This mechanism ensures that the EC
duration is never exceeded (transactions are never allowed
to cross EC boundaries). Clearly, before closing the EC
schedule, the coprocessor could try to allocate a shorter
transaction in the remaining time left in the EC (known
as inserted idle time). However, this would lead to an
undesired priority inversion situation, and so, to avoid it,
this portion of EC time is usually left unused.

Figs. 6-8 show some of the handshake sequences which
occur between SPB and VPTs during the actions described
earlier. Fig. 6 shows the case where an EC is generated by
the SPB and the first VPT needs allocation. As a result,

to/from SPB
Decoder

Y

SPM
Control
Unit

uC Interface

Fig. 9. Structure of the SPM.

VPT, will hold the daisy chain signal and disable it for
the other VPTs. In Fig. 7 the same VPT uses the data bus
and data valid signals to send its ID to the SPB to decide
allocation. The SPB signals the decision through a dedicated
bus line, and the VPT withdraws itself from the arbitration
scheme, allowing the daisy chain signal to ripple to the
other VPTs. Finally, the timing diagram in Fig. 8 shows
the rejection of a transaction. In this case, the VPT keeps
its request signal asserted, signalling that it has still a
pending request. The daisy chain is kept blocked.

4.1.3. Schedule plan memory

The EC schedules built by SPB are stored in the SPM
unit, which includes two separate memory banks, each with
enough capacity to hold an entire plan (see Fig. 9).

The SPB identifies the transactions allocated in a given
EC by the IDs of the corresponding VPTs. When a trans-
action is allocated, its respective ID is transferred to SPM. A
special ID code is used to flag the closing of an EC schedule.
In the SPM memories, an EC schedule is represented by an
N-bit word, with N being the number of VPTs in PSCoP.
The memory requirements of an EC schedule are therefore
fixed, independently of the number of transactions placed in
that EC. In every word, bit i corresponds to VPT,. If a
transaction corresponding to the variable in VPT; is allo-
cated in an EC, then bit i is set in that schedule. Otherwise
it is kept clear. The diagram in Fig. 10 shows the relation-
ship between the transactions placed in EC time slots, and
EC schedules in the SPM.

The SPM receives IDs from the SPB, codes them into an
N-bit word, and then writes this word in one of the SPM

104 E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97—-106

A[B[C [A[D] AB[FH[ATC| [ABID] |

L | |
/

A B CDEF G H

X, [1]1[1]0o]olojo]o0

X, [1/o]o|1[0o]0|0|0

X, |[1]1]ojojo|1]0]1

Ecs X |1|/0|1]0fl0o/0]0]0

X, |1]1]o]1]0lo]o0]o0

Fig. 10. EC schedules in the SPM and the corresponding bus transactions.
This example shows a 5-EC plan table supporting eight variables and,
above it, the respective timeline diagram.

memories, as soon as a special ID code is received marking
the end of the EC schedule.

The idea of having two FIFO memory banks is to allow
the coprocessor to generate one schedule plan while the
CPU dispatches the other. The coprocessor builds the
plans much faster than the CPU consumes them. Thus, it
is possible to have the CPU reading from a bank while
the other bank is already filled with the next plan. In this
situation, the SPM cannot hold any more EC schedules, and
so its control unit commands SPB to stop generating them.
The coprocessor remains halted until the CPU resumes
reading one bank and switches to the other.

This switching operation is transparent to the CPU. After
the last EC schedule from one bank is read, the multiplexer
switches the wPIF unit to the other bank. The CPU can
continue reading without ever polling the status register in
the CCU. The only exception to this is after initialisation,
where the CPU has to wait for PSCoP to complete the first
plan.

Finally, it should be noted that EC schedules are coded as
N-bit words, not only because of the memory advantage this

X540 Development Kit

CAN Bus

Fig. 11. Development and testing platform of the PSCoP coprocessor.

Performance of PSCoP prototype
(@ 12MHz)

70

[=2)
o

Scheduling time (us)

0 1 2 3 4 5 6 7 8
N° of messages

Fig. 12. Worst-case coprocessor execution time vs the number of scheduled
messages.

brings, but also because it allows to reduce drastically the
CPU post processing overhead in the particular set-up
where PSCoP is expected to be used. This will be a CAN
experimental system where the FTT-CAN [1] protocol is
used. Since each N-bit word is already in the form of the
FTT-CAN trigger message data field, the CPU load is
greatly reduced, minimizing the dispatching overhead.

4.2. Implementation and performance assessment

The first prototype of PSCoP is now implemented on a
XC4010XL series FPGA. It has eight VPTs, a parameter
resolution of 8-bits, and two memory banks in the SPM
supporting 16-EC plans (16 X 8-bits FIFO memories).
Each VPT occupies a matrix of 5 X 7 CLBs while the SPB
and SPM take together the equivalent of 120 CLBs, for a
total of 400 CLBs. The prototype was tested on a CAN
master node based on a XS40 development kit from
XESS® Corporation [11] which, besides having the FPGA
clocked at 12 MHz, includes an 8051 microcontroller (see
Fig. 11).

Using this test platform the coprocessor performance
was characterised by measuring its scheduling execution
time as a function of the number of messages. The message
sets used were defined in such a way to maximize the copro-
cessor execution time. This worst-case condition occurs if
all messages are allocated simultaneously in all the ECs of
the plan, forcing the SPB to generate the highest number of
allocations. So to achieve this, the measurements were
carried out with homogeneous messages, having zero
phase, a period of one EC and a transmission time of a
small fraction of the EC duration (so that all messages in
the set fit in the same EC).

Fig. 12 shows the execution times obtained. As it can be
seen, the time taken by the coprocessor to build a plan grows
linearly with the number of messages scheduled, reaching a
maximum of 63 ps for an 8-message set. This value should

E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97-106 105

be compared with the time taken by the CPU to dispatch the
plan. Considering an EC duration of 1 ms (the lowest value
typically used in distributed embedded applications), the
dispatching time is 16 ms, which means that the coprocessor
schedules literally on-the-fly.

By analysing the coprocessor internal operation it is
possible to obtain an estimate of performance for other
implementations supporting more than eight messages.
Since we are dealing with an all-synchronous design we
can do this just by counting the number of clock cycles
required by the various phases of the coprocessor’s
operation.

Each variable allocation takes 6 clock cycles. In the end
of each EC, another 3 clock cycles are needed to transfer the
schedule to the SPM unit and to begin the next schedule.
The time taken by PSCoP to build a complete plan with
W ECs, fynea, can thus be expressed (in clock cycles) as
written below

w
tyened = 3W + 6 > NV(EC)

i=1

where Nv(EC)) is the number of variables allocated in EC;.

For W =16 this equation approximates closely the
measured values in Fig. 12 for Nv(EC;) between 0 and 8.

We can use now this expression to predict the scheduling
time of a larger coprocessor implementation built into
a higher capacity FPGA, supporting, for example, 32
messages.

To calculate the worst-case scheduling time of this new
version, we assume again a maximum number of allocations
in every EC of the plan, now for a 32-message set. Con-
sidering again 16-EC plans, the coprocessor execution time
is 3.16 + 6.16.32 = 3120 clock cycles. Using the same
modest clock rate of 12 MHz this translates to 0.26 ms, or
1.6% of the time taken by the CPU to dispatch an entire
plan.

5. Concluding remarks and future work

A coprocessor for traffic scheduling in a fieldbus system
was described in this paper. Named PSCoP, the coprocessor
functions according to the planning scheduler principle,
and builds internally the plan tables in a format which is
particularly adapted to the FTT-CAN protocol.

The coprocessor architecture was defined with a main
goal in mind: the design of a simple, working coprocessor
which could be implemented in a medium-sized FPGA, and
used as an initial test bed to obtain insight on the real per-
formance gains and problems of the architecture. This is
expected to allow the identification of the design changes
needed to explore the whole benefits of the planning
scheduler paradigm.

The PSCoP can easily create a plan table in a small
fraction of a 1 ms elementary cycle. This result is quite
encouraging in what concerns future developments of

the coprocessor, because it suggests that some of the per-
formance room may be sacrificed in favour of a few design
improvements and additional functionality. In particular,
scheduling could possibly be done on an EC basis instead
of a plan basis which would make the system operation
practically fully dynamic. Some research on this topic has
already been started.

At this point it is clear that one improvement to consider
is the arbitration method used to resolve the contention
between several VPTs requesting to allocate their trans-
actions in the same EC. In fact, the current daisy chain
mechanism, while very simple to implement, strongly
compromises the operational flexibility of the planning
scheduler. Once the variables are allocated to VPTs it is
not possible to change dynamically their priorities. Also,
it is not possible to introduce at run-time a new variable
with a priority in between the ones already mapped.

To get rid of these limitations we are considering the use
of a self-selection arbitration system in the next version of
PSCoP. Since this scheme relies on dynamic priority vectors
it will be easy to implement various scheduling policies like
RM, EDF or simply priorities-based, and even to switch
dynamically between these policies. Another interesting
feature to include in this new design will be the possibility
to change the plan size while the coprocessor is running.

The coprocessor was described using a mix o VHDL,
state-graphs and logic gate schematics, and synthesised
with the Xilinx® Foundation Series software. Its imple-
mentation was tested in practice with the use of many sets
of variables, including the worst-case experiment presented
here. Within our future developments we intend also to
produce a VHDL-only specification of the coprocessor,
and then to formally validate its operation.

References

[1] L. Almeida, Flexibility and timeliness in fieldbus-based real-time
systems, PhD Thesis, University of Aveiro, Portugal, November
1999.

Bosch, CAN specification version 2.0—technical report, Bosch

GmbH, Stuttgart, Germany, 1991.

[3] P. Leterrier, The FIP protocol, WorldFip Europe, 2—4 Rue de Bone,
92160 Antony—France, 1992.

[4] J. Fonseca, L. Almeida, Using a planning scheduler in the CAN
network, Proceedings of the ETFA’99—7th IEEE International
Conference on Emerging Technologies and Factory Automation,
Spain, October 1999.

[5] L. Almeida, R. Pasadas, J. Fonseca, Using the planning scheduler to
improve flexibility in real-time fieldbus networks IFAC, Control
Engineering Practice 7 (1) (1999) 101-108 Janeiro de.

[6] L. Almeida, J. Fonseca, P. Fonseca, A flexible time-triggered commu-
nication system based on the controller area network, Proceedings of
the FeT’99—Fieldbus Systems and their Applications Conference,
Germany, September 1999.

[7]1 V. Sklyarov et al., Development system for FPGA-based digital
circuits, Proceedings of the FCCM’99: IEEE Symposium Field-
Programme Custom Computing Machines, USA, April de 1999.

[8] J. Adomat et al., Real-time kernel in hardware RTU: a step towards

[2

—

106

[9

—

[10]

E. Martins et al. / Microprocessors and Microsystems 26 (2002) 97—-106

deterministic and high-performance real-time systems, Proceedings
of the Euromicro RTS 96, L’ Aquila, Italy, 1996, pp. 164—168.

D. Niehaus et al., The spring scheduling coprocessor: design, use, and
performance, Proceedings of the 14th IEEE Real-Time Systems
Symposium, USA, 1993, pp. 106—111.

J. Hildebrandt, F. Golatowski, D. Timmermann, Scheduling copro-
cessor for enhanced least-laxity-first scheduling in hard real-time
systems, Proceedings of the 11th Euromicro Conference on Real-
Time Systems, England, June 1999, pp. 208-215.

[11] XESS corporation, URL: http://www.xess.com.

cations, and distributed embedded systems with real-time constraints.

"0 Ernesto F.V. Martins was born in Porto,

Portugal, in 1962. He received the Elec-
tronics Engineer degree from University
of Aveiro, Portugal, in 1986, and the PhD
degree in EE from the University of
Aveiro, Portugal, in 1999. Currently he is
an Assistant Professor at the Electronics
and Telecommunications Department of
University of Aveiro. His technical and
research interests include coprocessor
architectures and reconfigurable custom
computing machines for real-time appli-

Paulo A.C.S. Neves was born in Lisboa,
Portugal, in 1975. He received the Elec-
tronics Engineer degree from University
of Aveiro, Portugal, in 1998 and the Master
degree in 2001. Currently, he is a Teaching
Assistant at the Escola Superior de Tecno-
logia de Castelo Branco. His technical
and research interests include embedded
systems, software engineering and pro-
grammable logic systems.

José A.G. Fonseca was born in Aveiro,
Portugal, in 1957. He received a PhD
degree in Electronics from the University
of Aveiro, Portugal, in 1992. Since 2000 he
is an Associate Professor at the Electronics
and Telecommunications Department of
University of Aveiro. His research interests
include industrial communications and
distributed embedded systems. Since
1999 he has published 32 papers in Inter-
national Conferences (mainly from IEEE
and IFAC) and Journals, nine of them as
the main author. He has submitted successfully two national patents for
fieldbus-based systems and has been participating in the technical
committees of several conferences of Industrial Communications.

