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MODEL UNCERTAINTY AND ITS IMPACT ON THE PRICING
OF DERIVATIVE INSTRUMENTS
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Uncertainty on the choice of an option pricing model can lead to “model risk” in
the valuation of portfolios of options. After discussing some properties which a quan-
titative measure of model uncertainty should verify in order to be useful and relevant
in the context of risk management of derivative instruments, we introduce a quantita-
tive framework for measuring model uncertainty in the context of derivative pricing.
Two methods are proposed: the first method is based on a coherent risk measure com-
patible with market prices of derivatives, while the second method is based on a convex
risk measure. Our measures of model risk lead to a premium for model uncertainty
which is comparable to other risk measures and compatible with observations of mar-
ket prices of a set of benchmark derivatives. Finally, we discuss some implications for
the management of “model risk.”
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1. INTRODUCTION

In March 1997, Bank of Tokyo/Mitsubishi announced that its New York-based deriva-
tives unit had suffered a $83 million loss because their internal pricing model overvalued
a portfolio of swaps and options on U.S. interest rates. A few weeks later, NatWest Capital
Markets announced a £50 million loss because of a mispriced portfolio of German and
U.K. interest rate options and swaptions run by a single-derivatives trader in London.
According to observers having followed these events, many “of the situations [...] that
led to (recent) derivatives losses were attributable to model risk” (Elliott 1997).

With the dissemination of quantitative methods in risk management and advent of
complex derivative products, mathematical models have come to play an increasingly
important role in financial decision making, especially in the context of pricing and
hedging of derivative instruments. While the use of models has undeniably led to a better
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understanding of market risks, it has in turn given rise to a new type of risk, known
as “model risk” or “model uncertainty,” linked to the uncertainty on the choice of the
model itself. According to a recent report (Williams 1999), $5 billion in derivatives losses
in 1999 were attributable to “model risk.”

Uncertainty on the choice of the pricing model can lead to the mispricing of derivative
products. While model uncertainty is acknowledged by most operators who make use
of quantitative models, most of the discussion on this subject has stayed at a qualitative
level and a quantitative framework for measuring model uncertainty is still lacking. As
noted by (Williams 1999), “there are no packaged, off-the-shelf systems for model risk
management.” Some questions for which one would like quantitative answers are:

How sensitive is the value of a given derivative to the choice of the pricing model?
Are some instruments more model-sensitive than others?

How large is the model uncertainty of a portfolio compared with its market risk?
Can one provision for “model risk” in the same way as one provisions for market
risk and credit risk?

One could wonder whether model uncertainty deserves a separate treatment from other
sources of uncertainty in financial markets. Indeed, the classical approach to decision
under uncertainty (Savage 1954) does not distinguish between different sources of risk:
“model uncertainty” should be indistinguishable from market risk, credit risk, . . . which
would imply that “model uncertainty” simply amounts to weighting various models with
probabilities and representing all sources of uncertainty using a probability distribution
on the enlarged space comprising “models” + scenarios. Indeed, such “model averag-
ing” approaches have been proposed in the Bayesian literature (Hoeting et al. 1999; see
Section 2). However, this approach is in strong contrast with the current practices in risk
management: as noted by Routledge and Zin (2001), market participants typically use
different criteria to measure “market risk” and “model risk,” the former being valued by
using a probabilistic model while the latter is approached through a worst case approach,
for instance by stress testing of portfolios.

This had led to the distinction between risk (uncertainty on outcomes for which the
probabilities are known) and ambiguity or model uncertainty—when several specifica-
tions are possible for such probabilities (Knight 1921). Ellsberg (1961) has shown that
aversion to ambiguity clearly plays a role in decision making. A growing body of liter-
ature has explored decision under ambiguity, its axiomatic foundations (Gilboa and
Schmeidler 1989; Epstein 1999) and implications for the behavior of security prices
(Epstein and Wang 1995; Routledge and Zin 2001). Some of these ideas have resur-
faced in the recent literature on coherent risk measures (Artzner et al. 1999) and their
extensions (Follmer and Schied 2002a).

Although general in nature, these approaches do not take into account some spe-
cific features of the use of probabilistic models in the pricing of derivatives. The notion
of coherent risk measure does not distinguish hedgeable and nonhedgeable risks, nor
does it differentiate between market risk and model uncertainty. And, although coherent
measures of risk are expressed in monetary units, when applied to traded options they
may lead to numbers that are not necessarily comparable to the mark-to-market value
of these options. Also, in the context of derivative pricing, models are often specified
not in terms of objective probabilities but “risk-neutral” probabilities so, in incomplete
markets, ambiguity can prevail on pricing criteria even when there is no ambiguity on
the underlying price process itself. These remarks show that model uncertainty in option
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pricing cannot be reduced to the classical setting of decision under ambiguity and merits
a specific treatment.

We attempt to address these issues by defining a framework for quantifying model
uncertainty in option pricing models. We first discuss, at an intuitive level, some properties
which a quantitative measure of model uncertainty should possess in order to qualify as
a measure of model uncertainty in the context of risk measurement and management. We
then propose two methods for measuring model uncertainty which verify these properties
and are compatible with observations of market prices of a set of benchmark derivatives:
our first method is based on a set of pricing models calibrated to the benchmark options,
while the second method relaxes the calibration requirement. Both methods lead to a
decomposition of risk measures into a market value and a premium for model uncertainty.

The paper is structured as follows. We start by discussing some existing approaches to
decision making in presence of multiple probability measures in Section 2. Some specific
features of the use of models in the valuation of derivative instruments are not taken
into account in these general frameworks; these issues are discussed in Section 3, where
we give an intuitive definition of model uncertainty in the context of derivative markets
and enumerate some properties a measure of model uncertainty must have in order to
be meaningful for risk management of derivative instruments. In Section 4 we formulate
these requirements in mathematical terms and present a methodology for measuring
model uncertainty which verifies these requirements. This method requires to specify a
set of pricing models and calibrate them to a set of market option prices; this requirement
is relaxed in Section 5, where a more general approach based on convex risk measures is
proposed. Section 6 concludes by summarizing our main contributions, discussing some
open questions and pointing out possible implications of our work for the measurement
of “model risk.” We have attempted to motivate the mathematical notions introduced
through examples that illustrate their relevance.

2. RISK, UNCERTAINTY, AND AMBIGUITY

The starting point in option pricing theory is usually the specification of a stochastic
model: a set of future scenarios (€2, F) and a probability measure P on these outcomes.
However, there are many circumstances in financial decision making where the decision
maker or risk manager is not able to attribute a precise probability to future outcomes.
This situation has been called “uncertainty” by Knight (1921), by contrast with “risk,”
when we are able to specify a unique probability measure on future outcomes.! More
precisely, we speak of ambiguity when we are facing several possible specifications Py, P, ..
for probabilities on future outcomes (Epstein 1999).

In his 1961 thesis, Ellsberg (1961) established a distinction between aversion to risk—
related to lack of knowledge of future outcomes—and aversion to ambiguity,? related to
the lack of knowledge of their probabilities, and showed that aversion to ambiguity can
strongly affect decision makers’ behavior and resolve some paradoxes of classical decision
theory. More recently, ambiguity aversion has shown to have important consequences in
macroeconomics (Hansen, Sargent, and Tallarini 1999; Hansen et al. 2002) and for price

! This distinction appeared in Knight (1921), hence the term “Knightian uncertainty” sometimes used to
designate the situation where probabilities are unknown. We remark here that the term “model risk” some-
times used in the financial literature is somewhat confusing in this respect and the term “model uncertainty”
should be preferred.

2 We use here the terminology of Epstein (1999).
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behavior in capital markets (Chen and Epstein 2002; Epstein and Wang 1995; Routledge
and Zin 2001).

Two different paradigms have been proposed for evaluating uncertain outcomes in
presence of ambiguity. The first one, which consists of averaging over possible models,
has been used in the statistical literature (Raftery 1993; Hoeting et al. 1999). The other one
is based on worst case or “maxmin” approach and has been axiomatized by (Gilboa and
Schmeidler 1989) and studied in the context of asset pricing by (Epstein and Wang 1995;
Routledge and Zin 2001) and others. Related to this worst-case approach is the recent
literature on coherent measures of risk (Artzner et al. 1999). We review in this section
these approaches and their possible implications and shortcomings for quantifying model
uncertainty for portfolios of derivatives.

2.1. Bayesian Model Averaging

A lot of attention has been devoted to model uncertainty in the context of statistical
estimation, using a Bayesian approach. Hoeting et al. (1999) note that “data analysts
typically select a model from some class of models and then proceed as if the selected
model had generated the data. This approach ignores the uncertainty in model selection,
leading to overconfident inferences and decisions that are more risky than one thinks
they are.” Bayesian model averaging is one way to incorporate model uncertainty into
estimation procedures.

Let M ={M, ..., M;} be a family a of candidate models whose parameters (not
necessarily in the same sets) are denoted by 6, € Ej, ..., 0, € E;. Consider a Bayesian
observer with two levels of prior beliefs:

1. Priors on model parameters: p(6; | M;) is a prior density (on E;) that summarizes
our views about the unknown parameters of model j, given that M; holds.
2. Prior “model weights”: P(M;), j = 1..J, the prior probability that M; is the
“true” model.

Given a set of observations y, the posterior probability for model M; is

p(y | M;)P(M;)
y ,

> p(y | MOP(M)
k=1

(2.1) P(M; | y) =

where p( y | M;) is the integrated likelihood of the data under model M;:
22) P 1M = [ P16 M)p(e; 1 M) db
3

Suppose we want to compute a model dependent quantity, given by the expectation of a
random variable X: we only have the observations y but we are uncertain about the model
to use. The Bayesian model averaging approach suggests to compute this quantity in each
model and average over the models, weighting each model by its posterior probability
given the observations:

(2.3) E[X|y]=) E[X|y, Mi]P(M; | ).
j=1
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If M; are alternative option pricing models, this would amount to computing option
prices in each model and taking a weighted average across models. Similarly, one can use
the following quantity to measure dispersion across models:

2.4) DIX|y] = Z {ELX |y, M) — ELX| )] B(M; | ).

Averaging across models, whether or not it is done in a Bayesian way, provides a higher
stability of the estimates obtained. However, several obstacles appear when trying to
apply this approach in the framework of option pricing.

First, this method not only requires specifying (as in any Bayesian method) a prior
p(6;| M;) on parameters of each model, but also a prior probability P(M;) on possible
models, which is more delicate. How does one weigh a stochastic volatility model with
respect to a jump-diffusion model? How should prior weights vary with the number of
factors in interest rate models? While such questions might be ultimately reasonable to
ask, not much experience is available in assigning such prior weights.’> In other words,
this approach requires too much probabilistic sophistication on the part of the end user.

The second obstacle is computational: the posterior distributions involved in the for-
mulas above are not explicit and sampling from them requires the use of Markov Chain
Monte Carlo algorithms, which are computationally intensive. Such an approach has
been attempted in the case of Black—Scholes model (Jacquier and Jarrow 2000) but seems
less feasible as soon as we move to more complex models. It should also be noted that,
because of these computational difficulties, the Bayesian model averaging literature deals
with relatively simple model structures (linear and regression-type models).

Overall, the main justification for averaging over models is that it improves predictive
ability (Hoeting et al. 1999) of some target quantity (say, an option price). However,
the main concern of risk management is not to predict prices but to quantify the risk
associated with them so model averaging seems less relevant in this context.

2.2. Worst-Case Approaches

The model averaging procedure described above, whether or not it is done in a Bayesian
way, is in fact consistent with the classical approach to decision under uncertainty (Savage
1954), which does not distinguish between different sources of risk: in this approach,
“model uncertainty” should be indistinguishable from market risk, credit risk, . . . “model
uncertainty” then simply amounts to weighting various models with probabilities and
representing all sources of uncertainty using a probability distribution on the enlarged
space comprising “models” 4 scenarios. However, this approach is in strong contrast with
the current practices in risk management: market participants do not specify probabilistic
beliefs over models and, as noted by (Routledge and Zin 2001), typically use different
criteria to measure “market risk” and “model risk,” the former being valued by risk
neutral pricing (averaging across scenarios) while the latter is approached through a
worst case approach, for instance by stress testing of portfolios.

Aside from being observed in the practice of risk managers, the worst-case approach
also has a firm axiomatic foundation: Gilboa and Schmeidler (1989) propose a system
of axioms under which an agent facing ambiguity chooses among a set 4 of feasible
alternatives by maximizing a “robust” version of expected utility (also called “maxmin”
expected utility), obtained by taking the worst case over all models:

3 In the statistical literature, uniform priors on models are often used.
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P

2.9 max %llgE [UX)].

Here the risk aversion of the decision maker is captured by the utility function U, while
the aversion to ambiguity (model uncertainty) is captured by taking the infimum over all
models in P. The worst-case approach clearly distinguishes model uncertainty from risk:
the latter is treated by averaging over scenarios with a given model while the former is
treated by taking the supremum over models. With respect to model averaging procedures
described in Section 2.1, worst-case approaches are more conservative, more robust, and
require less sophisticated inputs on the part of the user. Thus, they are more amenable to
the design of a robust, systematic approach for measuring model uncertainty. Worst-case
approaches to option pricing have been considered in EI Karoui and Quenez (1995),
Avellaneda et al. (1995), Avellaneda and Paras (1996), and Lyons (1995).

2.3. Risk Measures

Related to the worst-case approach described above is the notion of coherent risk
measure. A risk measurement methodology is a way of associating a number (“risk mea-
sure”) p(X ') with a random variable X, representing the payoff of an option, a structured
product or a portfolio. More precisely, if we define a payoff as a (bounded measurable)
function X : Q — R defined on the set 2 of market scenarios and denote the set of pay-
offs as E, then a risk measure is a map p : £ — R. Artzner et al. (1999) enumerate a set
of properties that p needs to possess in order to be useful as a measure of risk in a risk
management context:

1. Monotonicity: if a portfolio X dominates another portfolio Y in terms of payoffs
then it should be less risky: X > Y = p(X) < p(Y).

2. Risk is measured in monetary units: adding to a portfolio X" a sum ¢ in numéraire
reduces the risk by a: p(X 4+ a) = p(X) — a.

3. Subadditivity: this is the mathematical counterpart of the idea that diversification
reduces risk.

(2.6) p(X+7Y) < p(X) + p(Y).
4. Positive homogeneity: the risk of a position is proportional to its size.
2.7 YA >0, p(AX) = Ap(X).

A risk measure p : E — R verifying these properties is called a coherent risk measure.
Artzner et al. (1999) show that any coherent measure of risk can be represented as the
highest expected payoff in a family P of models:
(2.8) p(X) = sup EF[-X].
PeP

Interestingly, this representation is a result of the “axioms” of risk measures: it shows that
any coherent risk measure is representable as a worst-case expected utility with a zero
“risk aversion” (i.e., a linear “utility”). It remains to specify the family P and different
choices will yield different measures of risk. Many familiar examples of risk measures
can be represented in this form (Artzner et al. 1999; Follmer and Schied 2002b).

Coherent risk measures were generalized in Follmer and Schied (2002a) by relaxing
the positive homogeneity hypothesis: if conditions (3) and (4) above are replaced by

2.9) Vi e[0,1], p(X+(1—1)Y) < r0(X)+ (1 —1)p(Y),
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then p is called a convex risk measure. Under an additional continuity condition, a convex
risk measure can be represented as

(2.10) p(X) = ;ug{E“”[—X] —a(P)},

where « : P — R is a “penalty” function. Allowing « to take the value 4+oc0, one can
always extend P to the set of all probability measures on (€2, F). A coherent risk measure
as defined above then corresponds to the special case where « only takes the values 0 or
00.

Several remarks can be made at this stage on the possible use of this approach for
derivatives. First, since p(X') is specified in monetary units, one can attempt to compare
it to the market price of X if it is traded in the market. For example, —p(X) and p(—X)
(risk of a short position in X') could be used to derive a price interval and be compared
to the market bid-ask spread for the derivative. In fact some authors have used the term
“risk-adjusted value” for —p(X'). However, there is no ingredient in the axioms above
guaranteeing that such a comparison will be meaningful. Indeed, the elements P € P
represent alternative choices for the “objective” evolution of the market: they are not
risk-neutral measures and the quantities EF[X] cannot be interpreted as “prices.” For
example the “risk-adjusted value” of a forward contract on USD/EUR, which has a
unique model-free valuation compatible with arbitrage constraints, is not equal in general
to this arbitrage value. What is lacking is a normalization of the family P which brings
the risk measures on the same scale as prices. In the case of convex risk measures, Follmer
and Schied (2002a) propose an additive normalization for a convex risk measure p by
setting p(0) = 0.

Second, a coherent risk measure p(-) does not distinguish in general between hedgeable
and unhedgeable risks. For example, p(X ') may be the same for a position in futures or for
a path-dependent option whereas the risks involved in the case of the call option are of
different nature: in one case they can be replicated in a model-free way by taking positions
in the underlying whereas in the other case hedging requires assumptions on the future
stochastic behavior of the underlying and is model-dependent. A related problem is that
coherent and convex risk measures do not distinguish between traded and nontraded
securities, which are very different from the perspective of model risk.

In order to better situate these issues, we will now discuss some requirements one would
like to impose on a measure of model uncertainty in the context of derivative pricing
(Section 3) and then proceed to formalize them in mathematical terms (Section 4). The
relation with coherent and convex measures of risk will then become clear.

3. MODEL UNCERTAINTY IN THE CONTEXT
OF DERIVATIVE VALUATION

Stochastic models of financial markets usually represent the evolution of the price of a fi-
nancial asset as a stochastic process (S;)ejo, 77 defined on some probability space (2, F, P).
An option on S with maturity 7 then corresponds to a random variable Hy, whose value
is revealed at 7" and depends on the behavior of the underlying asset S between 0 and 7.
The main focus of option pricing theory has been to define a notion of value for such
options and compute this value.

In an arbitrage-free market, the assumption of linearity of prices leads to the existence
of a probability measure QQ equivalent to P such that the value V;(H) of an option with
payoff H is given by:
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3.1) V(H) = B(t, T)EY[H | F],

where B(¢, T) is a discount factor. In particular, the discounted asset price is a martingale
under Q. Here the probability measure Q does not describe “objective probabilities”:
for an event 4 € F, while P(A4) represents its probability of occurrence, Q( A) represents
the value of an option with terminal payoff equal to 1/B(t, T) if A occurs and zero
otherwise. A pricing model, specified by such a “risk-neutral” probability measure Q,
therefore encodes market consensus on values of derivative instruments rather than any
“objective” description of market evolution: it should be seen as a market-implied model.

3.1. Statistical Uncertainty versus Uncertainty on Pricing Rules

When speaking of stochastic models and model uncertainty, one should therefore
distinguish econometric models, where one specifies a probability measure P in an attempt
to model the historical evolution of market prices, from pricing models where a risk-
neutral probability measure Q is used to specify a pricing rule whose role is to relate
prices of various instruments in an arbitrage-free manner.

If P corresponds to a complete market model (e.g., a one-dimensional diffusion model
for a single asset) then the pricing rule Q is uniquely defined by IP. Uncertainty on Q can
then only result from uncertainty on P—which results from the lack of identification of P
from historical data—so we are in the classical case of ambiguity or Knightian uncer-
tainty described in (Knight 1921; Ellsberg 1961; Epstein 1999; Routledge and Zin 2001).
However, if P corresponds to the more realistic case of an incomplete market model (e.g.,
a jump-diffusion or stochastic volatility models for a single asset or a multifactor dif-
fusion model with more factors than tradable assets) then the knowledge of P does not
determine the pricing rule Q in a unique way. Therefore, even if P is known with certainty
we still face uncertainty in the choice of the pricing model QQ. Thus, the notion of model
uncertainty in the context of option pricing extends beyond the traditional framework of
statistical uncertainty on the evolution of the underlying. While the literature mentioned
in Section 2 has focused on “statistical uncertainty,” we will focus here on uncertainty on
pricing rules.

We also note that in existing works on model uncertainty (Chen and Epstein 2002;
Epstein and Wang 1995; Gundel 2005; Karatzas and Zamfirescu 2004) all probabil-
ity measures IP € P are assumed to be equivalent to a reference probability Py.* This
“technical” hypothesis is actually quite restrictive: it means that all models agree on the
universe of possible scenarios and only differ on their probabilities. For example, if Py
defines a complete market model, this hypothesis entails that there is no uncertainty on
option prices! A fundamental example such as a diffusion model with uncertain volatility
(Avellaneda, Levy, and Paras 1995; Lyons 1995) does not verify this hypothesis. We will
not assume this hypothesis in the sequel.

3.2. Benchmark Instruments versus Illiquid Products

When discussing the role of mathematical models in derivative markets, one should
also distinguish between liquidly traded options, for which a market price is available, and
exotic or illiquid options, which are issued over-the-counter and for which a market price

4 With the notable exceptions of Avellaneda, Levy, and Paras (1995), Lyons (1995), and Schied (2005).
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is often unavailable. For the former, which includes call and put options on major indices,
exchange rates, and major stocks, the price is determined by supply and demand on the
market. Pricing models are therefore not used to price such options; their market prices
are rather used as inputs in order to “calibrate” (mark-to-market) option pricing models.
For exotic, over-the-counter or illiquid options, the value of the option is computed using
a pricing model. In order to guarantee coherence (in the sense of absence of arbitrage)
between these two categories of instruments, the pricing rule chosen should be consistent
with the observed market prices of the traded options. Thus a pricing model acts as
an arbitrage-free “extrapolation” rule, extending the price system from market-quoted
instruments to nonquoted ones.

3.3. Requirements for a Measure of Model Uncertainty

We now translate the above remarks into a set of requirements that any measure
of model uncertainty in derivative valuation should take into account. Hereafter, by a
“model” we mean an arbitrage-free option pricing rule, represented by a (risk-neutral)
probability measure Q on (2, F) such that (S;).ej0, 77 is @ martingale under Q.

Consider now a (model-dependent) value V(Q), a typical example of which is the
value at = 0 of a random terminal payoff X: V(Q) = B(0, T)EY[X]. Other exam-
ples are provided by values of options with early exercise features, such as an American
put V(Q) = sup, EX[B(0, t)(K — S;)*] where the supremum is taken over all nonantici-
pating (random) exercise times 0 < v < 7. Since these quantities depend on the choice of
the pricing rule Q, it is natural to ask what the impact of this choice on their value is. The
“model uncertainty” of V(-) is defined as the uncertainty on the value of V(Q) resulting
from the uncertainty in the specification of Q. Based on the above discussion, here are
some natural requirements that a measure of model uncertainty should verify:

1. Forliquidly traded options, the price is determined by the market within a bid-ask
spread: there is no model uncertainty on the value of a liquid option.

2. Any measure of model uncertainty must take into account the possibility of set-
ting up (total or partial) hedging strategies in a model-free way. If an instrument
can be replicated in a model-free way, then its value involves no model uncer-
tainty. If it can be partially hedged in a model-free way, this should also reduce
the model uncertainty on its value.

3. When some options (typically, call or put options for a short maturities and strikes
near the money) are available as liquid instruments on the market, they can be
used as hedging instruments for more complex derivatives. A typical example of
a model-free hedge using options is of course a static hedge using liquid options,
a common approach for hedging exotic options.

4. If oneintends to compare model uncertainty with other, more common, measures
of (market) risk of a portfolio, the model uncertainty on the value of a portfolio
should be expressed in monetary units and normalized to make it comparable
to the market value of the portfolio.

5. Asthe set of liquid instruments becomes larger, the possibility of setting up static
hedges increases which, in turn, should lead to a decrease in model uncertainty
on the value of a typical portfolio.

In order to take the above points into account, we therefore need to specify not only
the class of (alternative) models considered but also the set of hedging instruments. It is
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common market practice to use static or semistatic positions in call and put (“vanilla™)
options to hedge exotic options (Allen and Padovani 2002), so we will also include this
possibility.

4. A QUANTITATIVE FRAMEWORK FOR MEASURING
MODEL UNCERTAINTY

Let us now define a quantitative setting taking into account the above remarks. Consider
a set of market scenarios (€2, F). We stress that there is no reference probability measure
defined on Q. The underlying asset is represented by a measurable mapping: S. : Q +—
D([0, T]) where D(J0, T]) denotes the space of right continuous functions with left limit
(this allows for jumps in prices) and S (w) denotes the trajectory of the price in the market
scenario w € Q2. A contingent claim will be identified with the terminal value at T of its
payoff, represented by a random variable H revealed at 7. In order to simplify notations,
we will omit discount factors: all payoffs and asset values are assumed to be discounted
values.

4.1. An Axiomatic Setting for Model Uncertainty

In order to define a meaningful methodology for measuring model uncertainty we need
the following ingredients:

1. Benchmark instruments: these are options written on S whose prices are observed
on the market. Denote their payoffs as (H;);c; and their observed market prices
by (C7)ier. In most cases a unique price is not available; instead, we have a range
of prices C; € [CPd, CaK],

2. A set of arbitrage-free pricing models Q consistent with the market prices of the
benchmark instruments: the (discounted) asset price (S;);co,77 is @ martingale
under each Q € Q with respect to its own history F; and

4.1 VQe Q,Viel, EYH| <oco EYH]=C.

In a realistic setting the market price C; is only defined up to the bid-ask spread
so one may relax the consistency constraint (4.1) to:

(42) VQ (S Q,Vl € ], EQ[|I-I,|] < 00 EQ[I‘I,] c [C}Did’ C?Sk],

REMARK 4.1 (Parameter uncertainty versus uncertainty on model type). Someauthors
have distinguished between “parameter” uncertainty and “model uncertainty” (Kerkhof,
Melenberg, and Schumacher 2002). We find this distinction to be irrelevant: if (Qg)gcpisa
parametric family of (pricing) models, different values (6;);c4 of the parameter will define
probability measures Q, and this is the only ingredient we need here. The fact, that they
can be embedded in a “single” parametric family is purely conventional and depends
on the arbitrary definition of a “parametric family.” In fact by embedding all models
in Q in a single super-model one can always represent model uncertainty as “parameter
uncertainty.”

Define the set of contingent claims with a well-defined price in all models:

(4.3) C={HeFr, sup EYH|]<o0}.
QeQ
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When Q is finite this is simply the set of terminal payoffs which have a well-defined value
under any of the alternative pricing models: C = (;_; L'(Q, Fr, Qx).

For a simple (i.e., piecewise constant and bounded) predictable process (¢,)[0, 7] rep-
resenting a self-financing trading strategy, the stochastic integral fol ¢,.d S, corresponds
to the (discounted) gain from trading between 0 and ¢ is a Q-martingale. Note that the
usual construction of this stochastic integral depends on the underlying measure Q. Fol-
lowing (Doléans-Dade 1971), one can construct a stochastic integral with respect to the
family Q: for any simple predictable process ¢, there exists a process G(¢) such that for
every Q € Q the equality

G = /0 60.dS,

holds Q-almost surely. G,(¢) is then a Q-martingale and defines a model-free version of
the gain of the trading strategy ¢. In the case where Q is finite, this construction coincides
with the stochastic integral constructed with respect to Q = é > 0o Q. However, it is
more natural to refer to the models Q € Q instead of Q.

The set of integrands can be enlarged to include all bounded processes that are pre-
dictable with respect to all Q € Q.> We will denote by S the set of admissible trading
strategies and require that for any ¢ € S the stochastic integral G,(¢) = fO' ¢.dSis well
defined and is a Q-martingale bounded from below Q-a.s. for each Q € Q. Note that
we have made no assumption about market completeness or incompleteness, nor do we
require that the probability measures Q € Q be equivalent with each other.

Consider now a mapping u : C — [0, oo[ representing the model uncertainty on the
value contingent claim X. The properties enumerated in Section 3 can be stated as follows:

1. For liquid (benchmark) instruments, model uncertainty reduces to the uncer-
tainty on market value:

(4.4) Viel, u(H)<|C®—cr.

2. Effect of hedging with the underlying:

T
4.5) VoeSs, u <X+/0 d),.d&) = u(X).

In particular, the value of a contingent claim which can be replicated in a model-
free way by trading in the underlying has no model uncertainty:

(4.6)
T
[ElxoeR,EM)eS,‘v’QeQ, (@(X:xo—i—f qb;.dS,):l}iu(X):O.
0

3. Convexity: model uncertainty can be decreased through diversification.
4.7
VX, X €C, VA €[0,1] p( Xy + (1 =2)X) < ap(X1) + (1 — H)u(X2).

5 For various definitions of admissible strategies see Kabanov (2001) or Delbaen and Schachermayer
(1998).
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4. Static hedging with traded options:
(4.8)
k k .
VXeC, VueRK, M<X+ u,fl,) < u(X)+ D Jur(CF — P9y,
i=1 i=1

In particular, for any payoff that can be statically replicated with traded options,
model uncertainty reduces to the uncertainty on the cost of replication:

K K
(49) [3” €R% X= Zuz-Hz} = u(X) <Y il |G - ).
i=1 i=1

REMARK 4.2. Contrarily to the conditions defining coherent risk measures, condi-
tion (4.4) defines a scale for w: if u verifies the above properties then A still verifies
them for 0 < A < 1 but not necessarily for A > 1. This allows to construct a maximal
element among all mappings proportional to w, defined as the one that saturates the
range constraint (4.4):

(4.10) Mmax = AmaxM  Amax = Sup{i > 0, Au verifies (4.4)}.

As long as the set of benchmark instruments is nonempty, 0 < Apax < 0o. Then for any
0 < X <1, Aumax still verifies (4.4)—(4.9) and A can be interpreted as the proportion of
the bid-ask spread which is attributed to model uncertainty.

4.2. A “Coherent” Measure of Model Uncertainty

Given the ingredients above, we can construct a measure of model uncertainty verifying
the above properties. A payoff X € C has a well-defined value in all the pricing models Q €
Q. Define the upper and lower price bounds by:

(4.11) 7(X) =sup EYX] 7(X)= inf EYX]=—7(-X).

QeQ QeQ
X + 7(—X) then defines a coherent risk measure. Any of the pricing models Q € Q will
give a value for X falling in the interval [z (X), 7(X)]. For a payoff whose value is not

influenced by model uncertainty, 7(X) = 7(X). We propose to measure the impact of
model uncertainty on the value of a contingent claim X by

(4.12) no(X) =7 (X) — z(X).

PROPOSITION 4.1 (A coherent measure of model uncertainty).

1. 7,7 assign values to the benchmark derivatives compatible with their market
bid-ask prices:

(4.13) viel, CM<n(H)<@(H)<C*

2. wg:C > R defined by (4.12) is a measure of model uncertainty verifying the
properties (4.4)—(4.9).

Proof. See the Appendix.

Taking the difference between 77 (X) and 7 (X) isolates the model uncertainty po(X)
on the payoff. These quantities can be used to compute a margin (for an over-the-counter
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instrument) or to provision for model uncertainty on this trade. If the market value of
the derivative is computed using one of the pricing models (say, E2[X]), the margin for
model uncertainty is then 7(X) — EQ[X] < uo(X). wo(X) thus represents an upper
bound on the margin for “model risk.” One can summarize the model risk of a position
X in options, valued at 7 ,,(X), by the model risk ratio:

Ho(x)

(4.14) MR(X) = = i

A high-ratio MR(X') indicates that model risk is a large component of the risk of the
portfolio and such a ratio can be used as a tool for model validation.

The computation of the worst case bounds 77, 7 is similar to the superhedging approach
(El Karoui and Quenez 1995). If all models in @ correspond to complete market models,
then 77(X) can be interpreted as the cost of the cheapest strategy dominating X in the
worst-case model. However, in the usual superhedging approach Q is taken to be the set
of all martingale measures equivalent to a given probability measure PP. Therefore, price
intervals produced by superhedging tend to be quite large and sometimes coincide with
maximal arbitrage bounds (Eberlein and Jacod 1997), rendering them useless when com-
pared with market prices. Using the approach above, if X is the terminal payoff of a
traded option our construction interval [z (X), 7(X)] is compatible with bid-ask inter-
vals for this option. This remark shows that the calibration condition (4.2) is essential to
guarantee that our measure of model uncertainty is both nontrivial and meaningful.

4.3. Examples

The following example shows that a given payoff can be highly exposed to model
uncertainty while its “market risk” is estimated as being low.

EXAMPLE 4.1 (Uncertain volatility). Consider a market where there is a riskless asset
with interest r, a risky asset S;, and a call option on S with maturity 7', trading at price
C* at t = 0. Consider the alternative diffusion models:

(4.15) Qi : dS = Srdt+o;(t)dW,],

where o; : [0, T] — ]0, oo[ is a bounded deterministic volatility function and W a stan-
dard Brownian motion under ;. Then the calibration condition (4.1) reduces to

T
(4.16) l/ oi(1) dt = X2,
T Jy

where X is the Black—Scholes implied volatility associated to the call price C*. Obviously
(4.16) has many solutions, each of which corresponds to a different scenario for the
evolution of market volatility. Examples of such solutions are piecewise constant or
piecewise linear functions of #:

o) =X

[ TE2 — Tia? .
O',(t) =a,1[0,TI]+ Tfj}ll]ﬂjﬂ] i=2.n

with ¥ < a; < X/T/T; fori =2..n.Set a; = T and let

a=max{a;,i = 1..n} a=min{q;,i = 1..n}.
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Now consider the issue of a call option X with maturity 7 < 7 (with a possibly dif-
ferent strike). For each i = 1..n, (Q, F, F5, Q;) defines a complete market model (i.e.,
the martingale representation property holds) so under each Q; the call can be perfectly
hedged. However, the corresponding A-hedging strategy depends on the volatility struc-
ture: it is not model-free. Therefore, while the P&L of the delta-hedged position is almost
surely zero according to the model Q; used to compute the A, it is a random variable
with nonzero variance under any QQ;, j # i. In fact, using the monotonicity of the Black—
Scholes formula with respect to volatility it is easy to show that

7(X)= CPS(K, Ti;a) n(X)=CP(K, Ti;a).

This example also shows that, when all the alternative pricing models considered are
(one-dimensional) diffusion models, model uncertainty reduces to “Vega risk,” that is,
uncertainty on volatility.

The next example shows that, conversely, a position in derivatives can have a consid-
erable exposure to market risk but no exposure to model uncertainty:

EXAMPLE 4.2 (Butterfly position). Consider a market where options are liquidly
traded at strike levels Kj < K> < K3, at market prices C;(T, K;), i =1, 2, 3 where K,
is at the money. A butterfly position consists in taking a short position in two units
of the at-the-money call option C/(T, K») and a long position in each of the calls
C(T, K,), C(T, K3). This position has an exposure to “gamma” risk but since it can
be synthesized using market-traded options in a model-free way the model uncertainty
on its value reduces to the uncertainty on the cost of the static hedge:

ro(V) < |COYKY) — CBF(Ky)| + | CPY(K,) — C*K(Ko)| + 2| CPY(K3) — C*F(K3)).

A typical portfolio of derivatives will be exposed both to market risk and model uncer-
tainty, but the above examples illustrate the difference between the two concepts.

The above examples are theoretical. In the case of index options, one disposes of more
than a hundred prices and a simple model such as (4.15) is insufficient to reproduce
their smile and skew features: more sophisticated models such as local volatility models
(Dupire 1994), stochastic volatility models or models with jumps have to be used. Given
an empirical data set of option prices, how can a family of pricing models compatible
with market prices of options be specified in an effective way? Can one implement an
algorithm capable of generating such a class of models verifying (4.2) and subsequently
computing (X)) for any given payoff X? Ben Hamida and Cont (2004) give an example
of such a procedure in the case of diffusion (“local volatility”’) models:

EXAMPLE 4.3. Using an evolutionary algorithm, Ben Hamida and Cont (2004) con-
struct a family {Q;, i = 1..n} of local volatility models

Qi : dSi = Slrdi+ oi(1, &) dW ]

compatible with a given set of call option prices (C?4, C*¥) in the following manner: we
start with a population of candidate solutions (oy(., .), i = 1..N) and evolve them itera-
tively through random search/selection cycles until the prices generated for the bench-
mark options by the local volatility functions (o;(., .), i = 1..N) become compatible with
their bid-ask spreads. Denoting by E the set of admissible local volatility functions, this
algorithm defines a Markov chain in EV, which is designed to converge to a set of model
parameters which minimize the difference between model and market prices of bench-
mark options.

Here is an empirical example, obtained by applying this procedure to DAX index
options on June 13, 2001. The benchmark instruments are European call and put options
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FIGURE 4.1. DAX options implied volatilities: June 13, 2001.

traded on the market, numbering at around 150 quoted strikes and maturities. The implied
volatility surface is depicted in Figure 4.1. Figure 4.2 gives examples of local volatility
functions compatible with market prices of DAX options on June 13, 2001, obtained by
applying the algorithm described above to the data: while these volatility functions look
different, they are all compatible with the market prices of quoted European call options
and this cannot be distinguished on the sole basis of market information. However, they
will not give rise to the same values for American or exotic options for which we face
model uncertainty. Note the high level of uncertainty on short-term volatility, due to the
fact that the value of short-term options is not affected very much by the volatility and
thus the information implied by these options on volatility is imprecise. The diffusion
models defined by these local volatility functions can then be used to price a given exotic
option, leading to a range of prices.

We present now another example where both market risk and model risk are present,
which allows to compare the two; it also illustrates that our approach to measuring model
uncertainty is not tied to the class of diffusion models and can incorporate more general
specifications:

EXAMPLE 4.4 (Uncertainty on model type: local volatility versus jumps). Consider
the following jump-diffusion model, used in many cases to reproduce implied volatility
skews and smiles in short-term options:

N,
(4.17) Qi : St=Soexp[m+oWz+ZYj]
j=1
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Confidence intervals for local volatility : DAX options.
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FIGURE 4.2. A family of local volatility functions o (¢, S) compatible with the market
prices of DAX options on June 13, 2001, computed using an evolutionary algorithm
(Ben Hamida and Cont 2004).

where N, is a Poisson process with intensity A, W a standard Wiener process, and Y; are
1.1.d. variables denoting jump sizes. In this example we choose o = 10%, A = 1 and the
probability density of Y is shown in Figure 4.3. Figure 4.4 shows the implied volatilities
for call options, computed using (4.17) as a model for risk neutral dynamics.

The user, uncertain whether Q; is the right model to use, decides to price the option
using a more familiar diffusion model

(4.18) Qs : % =rdt+o(t, S)dwW,,

(2
where o (¢, S) is calibrated to the implied volatilities in Figure 4.4. The resulting volatility
function o (z, S) is shown in Figure 4.3 (right).

These two models give exactly the same prices for all call options with maturities
between 0.1 and 1 year and all strikes between +10% of the money. Using these options
as benchmark instruments, @ = {Q,, Q,} verifies (4.1). However, as Figure 4.5 shows, the
typical scenarios they generate are completely different: QQ; generates discontinuous price
trajectories with stationary returns while O, generates continuous trajectories with highly
nonstationary behavior.

Consider now the pricing of a barrier option, say a knock out call with strike at the
money, maturity 7 = 0.2 and a knock-out barrier B = 110. Due to the high short-term
volatilities needed in the diffusion model to calibrate the observed call prices, the price



MODEL UNCERTAINTY AND ITS IMPACT ON PRICING 535

Local volatiity function

. . . . . .
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 o 0.1 0.2 0.3
Jump size i log price strike

0 o1

Maturity

FIGURE 4.3. Left: Density of jump sizes in the jump-diffusion model (4.17). Right: The
local volatility, o (¢, S), as function of underlying asset and time in (4.18).
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FIGURE 4.4. Implied volatilities for European call and put options, produced by model
(4.17) or (4.18).

is higher than in the model with jumps. As shown in Table 4.1, model uncertainty on the
value of this exotic, yet quite common, derivative represents 40% of its selling price! This
example clearly illustrates that, even for common derivatives, model uncertainty does
not represent a small correction to the price but a major factor of risk, as important as
market risk.
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FIGURE 4.5. Left: typical sample path of the jump-diffusion model (4.17). Right: sam-
ple path of the local volatility model (4.18). Both models give rise to the same implied

volatility skew and term structure, shown in Figure 4.4.

TABLE 4.1
Model Uncertainty on a Barrier Option

Local volatility Black—Scholes+jumps Ho
At-the-money call T=0.2 3.5408 3.5408 0
Knock out call K = 105, 2.73 1.63 1.1

T = 0.2, Barrier B=110

4.4. Robustness of Hedging Strategies to Model Uncertainty

In the above examples, we have applied our measure of model risk to a terminal payoff
X obtained by buying and holding a derivative instrument. Of course, this is far from
being the only interesting case: in most cases a derivative is sold and then hedged through
its lifetime using a model-based hedging strategy. By applying the above framework to the
P&L of a hedged position, one can assess the impact of model uncertainty on the profit
and loss of a hedging strategy. Consider a (self-financing) hedging strategy ¢, for a payoff
H, derived from a given model: this can either be a replicating strategy if the model is a
complete market model or a risk-minimizing strategy in the case of incomplete market
models. Then, given the family of models Q, uo(H — fOT ¢;.dS;) quantifies the model
uncertainty associated to the P&L of the hedged position. Even when Q contains two
elements—the model on which the hedge is based and an alternative “stress” models—this
can lead to significant figures, as illustrated by the following example:

EXAMPLE 4.5 (Impact of model uncertainty on P&L of a hedged position). Whereas
sophisticated models are used for pricing equity derivatives, many traders hedge simple
options using the Black—Scholes delta hedging rule: each option position is hedged with
a position in underlying or futures given by the Black—Scholes delta, computed using the
(current) implied volatility of the option. Using the implied volatility of the option for
computing hedge ratios is often seen as a way to “correct” for the fact that the Black—
Scholes model is misspecified.
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FIGURE 4.6. Distribution of P&L of a Black—Scholes delta-neutral hedge for a Euro-
pean at-the-money 1-year call, expressed as a percentage of the option price at incep-
tion. One of the curves corresponds to a delta computed using the implied volatility at
t = 0, the other curve corresponds to daily updating of implied volatility.

Figure 4.6 represents the histogram of hedging errors (shortfalls) resulting from a
Black—Scholes delta hedging strategy when the underlying asset evolves according to the
Merton jump-diffusion model (Merton 1976):

N
S, =Sy exp(yt +oW,+ Z Yj> Y; ~ N(m, %),

Jj=1

where the number of jumps &, is a standard Poisson process. These results show that,
even for a simple payoff such as a European call option, the P&L of a “delta-neutral”
strategy can be as high as 20% of the value of the option: delta-neutral strategies are
“neutral” to (small) market moves within the model, but they may have a substantial
exposure to model uncertainty.

5. ACONVEX MEASURE OF MODEL UNCERTAINTY

The approach discussed above is quite intuitive but requires to “calibrate” various models
to a set of benchmark instruments, a task which can be more or less difficult depending
on the complexity of the models and the payoff structures of the benchmark instruments.
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We will now see that this difficulty can be overcome by using the notion of convex risk
measure (Carr et al. 2001; Follmer and Schied 2002a; Frittelli and Gianin 2002). As noted
in Section 2.3, a convex risk measure can be represented in the form (2.10), where the
penalty function « is a rather abstract object whose value does not have a clear financial
interpretation. Also, the representation (2.10) lacks a normalization which could allow to
compare it to marked-to-market values of portfolios. We show here that a special choice
of the penalty function can resolve these issues and provide us simultaneously with a
suitable generalization of (4.12).

Consider as in Section 4, a family of pricing rules Q and a set of benchmark options
with payoffs (H;);c; with market prices (C});c;. However, instead of requiring the pricing
models Q € Q to reproduce the market prices of benchmark instruments exactly as in
(4.1) or within bid-ask spreads as in (4.2), we consider a larger class of pricing models,
not necessarily calibrated to observed option prices, but penalize each model price by its
pricing error ||C* — EQ[H]|| on the benchmark instruments:

(5.1) (X)) = %ug{E@[X] —||C* — EQ[H]|I)}
(5.2) m(X) = —n*(=X) = égg{EQ[X] +IC* — EQ[H]|)}.

This means we price the payoff X with all the pricing models Q € Q but we take more or
less seriously the prices produced by any of the pricing models according to the precision
with which they are capable of reproducing the market prices of benchmark instruments.
Different choices of norms for the vector (CF — E Q[ H))ies lead to different measures for
the “calibration error”:

(5.3) IC* — E°[H]llo = sup | € — EC[H]|
(5.4) IC* = EC[H]I =) |Cf — E°[H)|
iel

or, more generally:
1/p
(5.5) IC* = EYH]|, = [Z G - EQ[HJ\”} :
iel

In the language of Follmer and Schied (2002a), o(X) = 7*(—X ) is a convex risk measure
associated with the penalty function « given by

@(Q) = |C*— E°[H]| ifQeQ

=400 ifQ¢ Q.
Define now, by analogy with (4.12), the following measure for model uncertainty:
(5.6) VXel, up(X)=n*(X)—m(X).

The following result shows that u, defines a measure of model uncertainty with the
required properties:

PROPOSITION 5.1.  If the pricing error |C* — EQ[H]|| verifies:
(5.7) VQeQ, Viel |C'—EYH]| =~ EYH]

then the following properties hold for w*, 7., and .
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1. 7* assigns to any benchmark option a value lower than its market price:
(5.8) Viel, n*(H)<C!
7 assigns to any benchmark option a value higher than its market price:
(5.9 Viel, wnJ(H)>C!.

2. Assume the class of pricing models contains at least one model compatible with the
market prices of the benchmark options.

(5.10) QeQ, Viel, EYH]=C.

ThenVi e I, n*(H;) = m.(H;) = C; and for any payoff X € C, m*(X) > m.(X).
3. Under assumption (5.10), . defined by (5.6) is a measure of model uncertainty
verifying the properties (4.4)—(4.7).
4. Static hedging reduces model uncertainty: under assumption (5.10), diversifying a
position using long positions in benchmark derivatives reduces model uncertainty:

K K
(5.11) |:1 > A > O,Z)»k = 1] = [y <)»0X+ ZMJ‘&) < mx(X).

k=0 k=1

In particular, any position which can be replicated by a convex combination of
available derivatives has no model uncertainty:

(5.12) [H(xf)ie,, 12420 n=1X= Zm&} = 1(X) < 0.

iel iel
Proof. See the Appendix.

REMARK 5.1 (Penalization by weighted pricing error). More generally, one could con-
sider weighted pricing errors as penalty function, for instance:

1C* = E9[H]|l.w = Y wi|Cf — E°[H]|.
iel
However, it is interesting to note that requiring (5.8)—(5.9) for any specification of Q
implies that w; > 1. Therefore the penalty functions (5.3)—(5.5) are the “minimal” ones
verifying our requirements. Since putting a weight on the ith option amounts to changing
its nominal, H; should be interpreted as the payoff of ith benchmark option, the nominal
being determined by the (maximal) quantity of the ith option available to the investor.°

REMARK 5.2. Properties (5.11)—(5.12) replace properties (4.8)—(4.9) verified by the
coherent measure of model uncertainty pg: this is due to the fact that a con-
vex measure of risk cannot extrapolate the risk of a portfolio to a larger, propor-
tional portfolio. A closer look at (5.12) shows that it is the only reasonable defi-
nition of a static hedge: in line with Remark 5.1, H; represents, in nominal terms,
the maximal position in the ith derivative so feasible positions in this derivative
are of the type A; H; with 0 < A; < 1. By contrast in (4.8)-(4.9), we implicitly al-
lowed unlimited short and long positions in all derivatives and H; was defined up to
a constant.

In practice u, can be computed in the following manner. Given a set of prices for
the benchmark options, we first choose a pricing model Q; which can reproduce these
prices and is easily calibrated to option prices. Typical examples are one-dimensional

6 See Cont and Gabay (2005) for a discussion of this point.
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diffusion models (local volatility models) used for equity and index derivatives and the
SABR model (Hagan et al. 2002) for European options on interest rates. Such models are
typically used for their ability to calibrate market prices, so they satisfy (5.10) but may
not generate realistic dynamics for future market scenarios. We have then the freedom to
add to such a calibrated model Q; other pricing models Q5, Qs, ... with more realistic
features but which may be more complex to calibrate. The procedure above does not
require to calibrate these models precisely but simply to penalize their pricing errors:
the easy-to-calibrate model Q; anchors our measure of model uncertainty in the market
prices while more realistic models Q,, Qs, ... can be incorporated without having to set
up heavy numerical procedures for their calibration.

REMARK 5.3 (Bid-ask spreads). The above construction can be generalized to the case
where market values of benchmark options are not unique but given by bid and ask prices
CPd, 8k The condition (5.7) then has to be replaced by:

«(Q) > sup max ((EQ[H] - CP)", (¢ — E9H])").
iel

REMARK 5.4. The constraint (5.10) of including at least one arbitrage-free pricing
rule Qp € @ which calibrates the market prices guarantees that option prices are arbitrage-
free and amounts to requiring that p(0) = 0 (see the proof of Proposition 5.1), which is
the normalization condition proposed in Follmer and Schied (2002a). However, this con-
dition may be difficult to satisfy in some cases, especially in presence of many benchmark
instruments with different payoff structures: available models may only be able to repro-
duce all options to within a certain precision ¢ > 0. In this case, one can still conserve the
structure above by replacing 7* by n* + ¢, m, by 7, — ¢ and pu, by u, + 2¢. This point
is further developed in Cont and Gabay (2005).

As more liquid instruments become available, this has the effect of increasing , and
of decreasing 7* thus the measure of model uncertainty becomes smaller. This can be
interpreted in the following way: the addition of more liquid options allows a wider
range of model-free (static) hedging strategies that allow to reduce exposure to model
uncertainty on a given portfolio.

Also, from the expression of the penalty functions (5.3)-(5.5) it is clear that models
with lower pricing errors will be more and more favored as the number of benchmark in-
struments | 7| increases. As |I| — oo, |C* — EQ[H]|| will stay finite only if the calibration
error is bounded independently of |/|; this happens for instance if the pricing model Q
misprices only a finite number of benchmark options, all others being calibrated. Con-
versely, when there are no options available (I = @), p is a coherent risk measure defined
by the set O.

6. DISCUSSION

We now summarize the main contributions of this work, discuss some open questions
and possible implications for the risk management of derivative instruments.

6.1. Summary

We have proposed a quantitative framework for measuring the impact of model un-
certainty on derivative pricing. Starting from a set of traded benchmark options and a
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family Q of option pricing models, we associate a measure of model uncertainty pu(X'), ex-
pressed in monetary units, with any derivative with payoff X in two ways. The first method
(Section 4) requires the models in @ to be pricing models calibrated to the benchmark
options and computes the range no( X) of prices for X over all of these calibrated models.
The second method (Section 5) does not require any calibration but penalizes a model
price by its pricing error on the benchmark instruments. In both cases, the specification
of a set of benchmark instruments constitutes a key ingredient in our procedure, which
was missing in preceding approaches to model risk: without it, the measures of model
risk may range between zero and infinity and be meaningless when compared to market
values of portfolios.

Both of these approaches verify the intuitive requirements, outlined in Section 3, that
a measure of model uncertainty should have in order to be meaningful in the context
of risk management. They are both compatible with market values of traded options
and take into account the possibility of model-free hedging with options. They lead
to a decomposition of the risk of a position into the sum of a first term, which is of
the same order of magnitude as its nominal value and a second term, which can be
interpreted as a component of the bid-ask spread due to model uncertainty. Measures
of model uncertainty computed in this manner are realistic enough to be considered as
bid-ask values. They are directly comparable with market prices and common measures
of market risk.

Our approach does not require the set of pricing models considered to define equivalent
measures on scenarios. When all the models considered are one-dimensional diffusions,
model uncertainty reduces to uncertainty on future volatility and the approach adopted
here is similar to the Lagrangian uncertain volatility model of Avellaneda and Paras
(1996). But the notion of model uncertainty proposed here reaches beyond the concept of
uncertain volatility and can encompass other types of models (jumps, stochastic volatility)
or sources of model uncertainty (number of factors in multifactor models, jump sizes,
etc.).

Finally, it is important to note that our measures of model risk are not defined “up to a
normalization constant”: they directly produce numbers consistent with mark-to-market
valuation of portfolios, when available, and do not require an ad hoc scaling factor in
order to be meaningfully used to provision for model risk.

6.2. Specifying the Class of Models

The relevance of our measure of model risk partly hinges on the specification of the
class Q of models. As noted by Hansen and Sargent (2001), “the development of com-
putationally tractable tools for exploring model misspecification [...] should focus on
what are the interesting classes of candidate models for applications.” This issue seems
less difficult in option pricing than, say, in macroeconomics, since a market consensus
has emerged on a set of standard pricing models (though not a unique model!) for each
type of underlying asset in the last decade.

In the approach described in Section 4, a further requirement is the ability to cali-
brate the models to market observations. Standard model calibration algorithms yield a
single-solution/pricing model. A first way out is to specify different model classes and
perform calibration separately in each model class, yielding a calibrated set of parameters
from each class. This approach takes into account uncertainty on model type. Another
approach, an example of which was given in Example 4.3, is to consider a single-model



542 R.CONT

class but recognize that the calibration problem may have multiple solutions and use a
stochastic search algorithm (Ben Hamida and Cont 2004). The two approaches are not
exclusive and may be combined. The availability of efficient numerical procedures will
ultimately orient market practice in one direction or the other.

The approach of Section 5, based on convex risk measures, has the advantage of relaxing
this calibration requirement and thus is potentially more flexible from a computational
point of view. The advantages and drawbacks of the two approaches remain to be studied
in specific settings.

6.3. Updating with New Information

In the above discussion, we have considered a market viewed at time ¢t = 0. How does
the procedure described above apply as time evolves? By analogy with (4.12), one could
define a dynamic bid-ask interval by replacing expectations by conditional expectations:

(6.1) 7(X) =esssup EX[X|F5] 7,(X)=essinf E¢[X|F]].
QeQ QeQ

Then, foreach ¢, 7,, and 7, define coherent risk measures that make use of the information
on the evolution of the underlying up to time ¢ and a natural candidate for building a
measure of model uncertainty would then be u,(X) = 7,(X) — m,(X). However, there
are at least two objections to the formulation (6.1). The first objection is that it does not
guarantee dynamic consistency (i.e., a dynamic programming principle). This problem
has been studied in the framework of a Brownian filtration in Chen and Epstein (2002)
and Peng (2004), where it is shown that a special structure has to be imposed on Q in order
for dynamic consistency to hold. These authors examine the case where the family Qy is
kept fixed while the market evolves through the evolution of the asset price. However, the
pricing models Q € Q have only been calibrated to the value of the benchmark options at
¢t = 0 and simply conditioning them on the evolution of the underlying asset clearly does
not exploit the information given by the evolution of the market prices of the benchmark
options. This is due to the fact that, in a realistic framework, one cannot assume that the
“true” model describing the joint evolution of the benchmark derivatives is included in
the set Q. In line with this remark, the market practice is to recalibrate pricing models
as prices of options evolve through time. This recalibration procedure implies that the set
of pricing rules Qy cannot be used at a later date but has to be replaced by a set Q(¢) of
pricing rules verifying:

(6.2) VQe Q(t),Yiel, E%H]e[C), Co)

This leads to a time-dependent set Q(¢) consisting of updated versions Q(¢) of elements
of Qy, each defining a risk-neutral measure on the future paths D([z, T']) verifying (6.2).
In other words, since the result of model calibration procedure at time ¢ depends on the
prices of benchmark instruments (C/(¢), i € I), Q(¢) is a set of random measures, whose
evolution depends on the market prices of benchmark options. Hence the updating pro-
cedure implied by recalibration procedures is more subtle than conditioning on the past
evolution of the underlying asset: the updating procedure must also reflect the evolution
of prices in the options market.

A related practical question is that of sensitivity of measures of model uncertainty to
market conditions.” This question is already present in the case of market risk measures

7 We thank Joél Bessis for pointing out this issue.
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such as value-at-risk (VaR), which can fluctuate in a nonnegligible manner as market
conditions (e.g., prices of underlying assets) vary. A strong sensitivity would blur the
distinction between market risk and model uncertainty. Case studies remain to be done in
order to clarify the impact of this sensitivity in practical examples of derivatives portfolios.

6.4. Conclusion

Quantitative risk management took off in the 1990s with the availability of simple tools
such as VaR for measuring market risk: notwithstanding its technical imperfections, VaR
convinced practitioners that it is possible in practice to quantify market risk, had a great
impact on risk management practices and motivated many researchers to improve this
methodology in various ways.

In the recent years, various case studies have indicated the importance of “model risk”
in the derivative industry and some spectacular failures in risk management of derivatives
have emphasized the consequences of neglecting model uncertainty. Many large financial
institutions are conscious of this issue and have been developing methods to tackle it
systematically.

We have provided in this paper a simple methodology that can be used to quantify model
uncertainty and provides meaningful figures compatible with mark-to-market values of
portfolios, when they are available. Our approach can serve as a basis for provisioning
for model uncertainty or simply as a decision aid for risk managers and regulators.

‘We hope this work will stimulate further case studies using the methodology presented
here, in order to better understand the impact of model uncertainty in various contexts.

APPENDIX
Proof of Proposition 4.1.

1. Each Q € Q verifies the calibration condition (4.2). By taking supremum (resp.
infimum) over Q € Q we obtain: C& > 7(H;) > n(H;) > C4.

2. Condition (4.4) follows from the above inequality. To show (4.5), note that for
any ¢ € S and any Q € Q the gains process G,(¢) is a Q-martingale so EQ[X +
Jo #.dS]=EX] so F(X+ [} ¢.dS)=7(X) and 7(X+ [} ¢.dS)=
7(X) 50 wo(X+ [y ¢.dS) = uo(X). Choosing in particular X = x, € R we
obtain (4.6).

To show the convexity property (4.7), consider X, Y € C and A € [0, 1]. For

each Q € Q we have

Ainf EQ X1+ (1 — 1) inf EQQY] < EQAX+ (1 —1)Y]
QeQ QeQ
<xsup EQX]+ (1 —21)sup EYY].
QeQ QeQ
By taking supremum (resp. infimum) over Q we obtain:
A(X)+ (1 =)r(Y) <z X+ (1 -1)Y)
<aAX+{A=-2Y) <17 (X)+ (1 —1)7r(Y)

from which (4.7) is easily derived.
Let us now show (4.8). Consider a portfolio composed of a long position in X,
and positions u;, i = 1..k in k benchmark options H;, i = 1..k. Assume without
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loss of generality that the first uy, ..., uy, are long positions, the others being
short positions. Since any Q € Q verifies (4.2), we have:

Kk k k
ECLXT+ ) wiCP 4+ Y ui G < EC [X+ uifli}
i=1 i=ki+1 i=1

ki k A
< EYqX]+ ) ;G 7w cPe,
i=1 i=ki+1

By taking the supremum (resp. the infimum) over Q € Q we obtain:

k k k
SEIES LN SEcTIeT G J)
i=1 i=k+1 i=1

k ki k
ﬁ(X+ Zu,-H,) <AX)+ Y w4+ D u P
i=1 i=l1 i=k+1

Adding the last two inequalities and taking into account the signs of u; we obtain:

k k k
r‘r<X+ Zu;-H;-) —71<X+ u,-H,-) <FX) -z + Y ui (CV4 - )
i=1 i=1

i= i=1

)

which yields (4.8). Substituting X = 0 yields (4.9). a

Proof of Proposition 5.1. Let *, w,, and u, be defined by (5.1), (5.2), and (5.6).

1. Using (5.7) and noting that
YQe Q,Vie I, —|Cf — E¥H| < C! — EY[H;] we obtain
ECH, — | C* — E°[H]| < E°H, - |Cf — EVH|
< EYH]+ Cf — EY[H] = C}.
Taking the supremum over Q € Q we obtain 7n*(H;) < C;. Similarly, starting

from

VQ e Q,Viel,

Cf — EYH| > Cf — E%[H;] we obtain
EQH]+ |C*— E%H)| = EYH]+ |C; — EVH,|
= EV[H]+ Cf — E°[H] = C].

Taking the infimum over Q € Q we obtain 7.(H;) > C}.

Since p defined by p(X) = 7*(—X) is a convex risk measure, applying (2.9) to
Y = —X and A = 1/2 yields:

(0) = p( R g) < S(o(X) + p(=X).

Since 7*(X) = p(—X) and 7,(X') = —p(X) we obtain
VXel, a*(X)=m(X)+20(0).

Now remark that —p(0) = infoeg [|C* — EQ[H]|| is simply the smallest calibra-
tion error achievable using any of the pricing models in Q. If we assume the class
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of pricing models contains at least one model compatible with the market prices
of the benchmark options:

QeQ, Viel, EYH]=C,

then p(0) = 0 and we obtain VX € C, 7*(X) > m.(X).
3. From the above inequality 7*(H;) > m.(H;) with (5.8) and (5.9) we obtain:

Viel, Cf > n"(H) > mdH) > C,
hence u.(H;) = O foralli e I. To show (4.6), note that forany ¢ € Sandany Q €
Q the gains process G,(¢) is a Q-martingale so EQX] = xy + E@[fOTqb.dS] =

xp. Therefore p(X) = —x¢ and 7*(X) = 7.(X) = x¢ hence u,.(X) = 0. More
generally,

T T
p(X+/ ¢,d&)=sup{E@[—X—f ¢td&]—n0*—E@[H]u}
0 Q 0

= s%p{E@[—X] —|IC* — EY[H]|

since fot ¢.d S is a martingale under each Q € Q, which implies (4.5). Using the
convexity property (2.9) of p we have, for any X, Y € C and A € [0, 1]:

WA X+ A =-2Y)=prX+A-1Y)+ p(—2X—(1 —-A1)Y)
< 2p(X)+ (1 =2)p(Y) +rp(—=X) + (1 = A)p(=Y)
= Mp(X) + p(=X)] + (I = V[p(Y) + p(=Y)]
= Aps(X) + (1 = MY,
which shows the convexity property (4.7) for u.

4. Toshow (5.11), consider A; > 0, k = 0..K with Z,{;O A = 1. Using the convexity
of .

K K
Mo <)L0X+ Z)\kl—lk> < dopx(X) + Z)\kﬂv*(l_lk)
k=1 k=1

Asshown above, . (H;) = Oforallie I and 0 < Ayp < 1 weobtain (5.11). Choosing
X = 0 and noting that u,(0) = 0, we obtain (5.12). a
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