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Performance Analysis of Optimal Blind
Fusion of Bits

Jean-Pierre Delmas, Senior Member, IEEE, and Yann Meurisse

Abstract—This paper is devoted to a statistical performance
analysis of blind estimation of bit error rates (BERs) of a bank
of detectors, using empirical estimation algorithms that have ap-
peared in the literature (by Dixit et al.). In particular, we prove that
these blind estimators asymptotically (in the number of observed
bits) achieve the accuracy obtained with perfect knowledge of
the transmitted bits. We propose a maximum-likelihood solution
which follows from the standard expectation-maximization (EM)
algorithm, considered to be a reference algorithm. Finally, the
optimal fusion rule is revisited and our theoretical results are
compared to Monte Carlo simulations.

Index Terms—Fusion of bits, performance analysis, expectation-
maximization (EM) algorithm.

I. INTRODUCTION

I N recent years, signal processing with distributed sensors
and decentralized detection has been gaining importance in

many applications. Most results (see, e.g., [1] and [2] and the
references therein) on decentralized detection assume that each
sensor node produces a finite-valued function of its observation,
conditioned on the state 0 or 1 of a phenomenon , which is
conveyed over a noisy channel to the fusion center. In this paper,
we consider the simplest case where a binary sensor decision is
conveyed reliably to the fusion center.

This happens, for example, in cellular communications,
where one often wishes to merge data from several distributed
detectors located in base stations, to improve overall link
performance. In this case, raw bit decisions from each detector
are fused into a final bit decision. Naturally, this scheme is
suboptimal with respect to the optimal combination of sufficient
statistics issued from each of the detectors. Assuming perfect
knowledge of the individual BERs of each detector, optimal fu-
sion of bit estimates is a standard problem [3]. However, when
this knowledge is missing, only recent empirical algorithms
[4]–[6] have addressed this problem. Reference [4] introduces
the problem of blind fusion of bit estimates, curiously not
studied until now: It presents a very clever, simple, and intuitive
algorithm to solve this problem. Then, a refinement of the
previous algorithm and an iterative procedure that outperforms
the previous algorithms for small numbers of observations are
proposed in [5] and [6], respectively. In this contribution, we
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examine the statistical performance of blindly estimating bit
error rates (BERs).

The paper is organized as follows. After stating the problem
and giving a statistical framework in Section II, we consider
an expectation-maximization (EM) algorithm where the trans-
mitted bits play the role of the missing data and we analyze
the statistical performance of empirical algorithms based on the
number of mutual agreements between the different receivers
in Sections III and IV, respectively. Conditions where the op-
timal fusion detector reduces to the majority detector or to the
best detector are given in Section V. Our theoretical results are
compared to Monte Carlo simulations in Section VI. Finally
Section VII summarizes our contribution.

II. PROBLEM STATEMENT

A. Model and Notations

The problem we consider here involves the simultaneous
transmission of binary signals over
independent memoryless binary symmetric channels (BSC).
It is assumed that each bit may be randomly flipped by an
independent error sequence , depending on the
channel

and

where are the observations,
and denotes modulo-two addition. Hence, the received bit

from the channel at time is equal to the input bit
if ; otherwise and an error occurs. The
transmitted bits are assumed to be independent and
have equal prior probabilities. The error probabilities are

and are unknown parameters. Let be the
parameter .1

Based on the observation ,
the problem consists (see Fig. 1) of detecting the bits

without any knowledge of the separate
error probabilities with or without previous esti-
mates of the parameter .

B. Statistical Framework

It is a fundamental rule in decision theory that the statistical
framework must be carefully specified before examining op-
timality. As usual, classical and Bayesian approaches can be
considered.

1Note that alternative modeling of correlated binary observations
(y ) has been studied in literature (see, e.g., [7] and the refer-
ences therein).
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Fig. 1. Blind bit fusion.

In the classical approach, the parameter is assumed to be
a deterministic but unknown constant and we are faced with
a joint parameter estimation and bit detection problem, also
known as composite hypothesis testing in the statistical litera-
ture. The distributions and its marginal are
well defined. Ideally, we would like to detect by
minimizing the error probability for all
values of . This, however, is an unachievable
goal because the probabilities depend in
fact on and consequently would depend on

. In these situations, several practical solutions, very similar to
generalized-likelihood ratio tests, can be used. These solutions
are composed of two consecutive maximizations. The most at-
tractive one is the use of two maximum-likelihood estimates

(2.1)

followed by

The first step can be solved using the EM algorithm (see
Section III) and the second step gives the following detection
rule, which will be commented on in Section V:

(2.2)

Very attractive empirical parameter estimators can replace the
first step of the previous procedure, as addressed in Section IV.

In the Bayesian approach, the parameter is assumed to be a
random variable whose particular realization we must estimate.
A prior distribution of is assumed given. In this case,
is a marginal issued from the joint distribution . Once
a prior distribution has been chosen for , optimal detection of
the sequence can be considered. In particular, max-
imum a posteriori (MAP) estimators minimize the error prob-
ability . Because
is uniformly distributed, the MAP estimator is given by

with and
. If the

prior distribution of is now assumed uniform in (0,1), a
closed-form expression of can be derived

and is the solution of the following intricate
maximization:

We note that the previous function takes the same value for the
sequences and ; this comes from the
prior uniform distribution.

If the MAP criterion is applied to the “parameter” , a
suboptimal detection procedure can be proposed. Since the joint
distribution of is uniform, we have

(2.3)

Because

and

the maximization (2.3) can be solved with the following cyclic
procedure, after an appropriate initialization at iteration :

and
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Within the Bayesian framework, we note that an optimal esti-
mator always exists. However, this optimality is obtained “on
average” (as different values of are chosen). Of course, for
a particular value of , it may not perform as well as an esti-
mator obtained in the classical framework. Consequently, in the
sequel, only the classical approach will be considered.

III. MAXIMUM-LIKELIHOOD ESTIMATION OF THE

ERROR PROBABILITIES

Due to the intricate expression of the likelihood (2.1), its
direct maximization using standard optimization techniques is
likely to be intractable. In these situations, a practical solution
is to use the EM algorithm, an iterative method for finding max-
imum-likelihood estimates in problems involving incomplete
data. In this problem, the incomplete data is the observation
itself , and the complete data consists of with

. The likelihood of is referred to as the com-
plete likelihood. The basic idea behind EM is to maximize the
incomplete likelihood by iteratively maximizing the complete
likelihood. The complete likelihood may be written as

Each iteration of EM has two steps: an expectation step and a
maximization step. The st E-step finds the conditional
expectation of the complete data log-likelihood with respect to
the conditional distribution of the missing data given the obser-
vation and the current estimated parameter

as a function of the unknown parameter , given the values of
the observation and the parameter . Since the posterior
probabilities and

are given by

with

and

the st M-step involves the following maximization:

IV. BLIND EMPIRICAL FUSION RULE BY DIXIT et al.

A. Algorithms of Dixit et al.

To estimate the parameter , Dixit et al. consider the fol-
lowing statistic issued from the obser-
vation :

.

The idea behind these different numbers of mutual agreements
between the different receivers is that

. Consequently this statistic does not depend on the bit se-
quence , and each is Bernoulli distributed with
parameter .

From this statistic, Dixit et al. propose different methods
of moments based on the sample moments

that are consistent estimate of func-
tions of the parameter . All these methods are
composed of two steps.

1) Empirical ordering of the channels .
This procedure is based on comparisons of the different
outputs with the majority fusion rule detector (see [4]).

2) Resolution of a consistent system of equations
or an inconsistent overde-

termined system of
obtained by replacing by its sample estimate
and solving for , where the unknown is the estimate .
We note that first step is essential for the selection of the

equations and for the resolution of the overdetermined
system.

Note that the random variables are not in-
dependent because for

. Furthermore, given a set of consistent statistics
can only take two complementary equally

probable values; e.g., if
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or . Consequently, these statistics are suf-
ficient statistics for the parameter .

In [4]–[6], it is claimed that these approaches are optimal
and this assertion is supported by two points. The statistic

carries the same information about
as the observation , and the random variables are

independent. The reduced statistic , however,
is not a sufficient statistic because the Neyman–Fisher factor-
ization does not apply.

B. Statistical Analysis

After specifying the distribution of the statistic
, we give the asymptotic distribution

of the statistic . This allows us to give the asymptotic
distribution as well as closed-form expressions of the bias and
variance of an estimate of given by an arbitrary algorithm
based on the sample moments . It is also possible to derive
the asymptotic lower bound on the variance of an arbitrary
consistent estimator based on these statistics and the associated
Cramér–Rao bound.

Because and , it
is straightforward to prove that the dimensional
random variables for are inde-
pendent and composed of dependent Bernoulli random vari-
ables with parameter whose covariance matrix is
given by (4.1) shown at the bottom of the page, with

. Consequently, from the

standard central limit theorem, the sequence of statistics
is asymptotically Gaussian distributed

Here, collects the associated .
To consider the asymptotic performance of an arbitrary

algorithm based on the statistic or on a subset
of these statistics, we adopt a functional approach that con-
sists of recognizing that the whole process of constructing
an estimate 2 of is equivalent to defining a functional
relation linking the estimate to the sample statistic
from which it is inferred. This functional dependence is
denoted . Clearly, , so the different
algorithms constitute distinct extensions of the map-

ping to any statistics . If
and denote, respectively, the Jacobian and
the Hessian matrices associated with this mapping at point

2To emphasize that we are dealing with a sequence of estimates, we replace
in this section the notation �̂ by � .

, the asymptotic bias and variance of an
arbitrary algorithm are, respectively

...

And by the continuity theorem, is asymptotically Gaussian
distributed

where denotes the covariance matrix of the statistic
involved in the algorithm, deduced from (4.1).

For example, the algorithm proposed in [4], [5] consists in
solving the following consistent nonlinear equations

(4.2)

We note that the Jacobian and the Hessian matrices associated
with a one-to-one mapping “alg” and its inverse mapping
“alg ” are connected by the following relations (see, e.g.,
[10]):

and

...

...

in addition, it is straightforward to obtain the expressions of
and from (4.2) as shown in the first equation at

and
and

(4.1)
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the bottom of the page. Consequently, and
associated with the algorithm proposed in [4] and [5] are de-
duced. With the expression of , we prove the following
property.

Property 1: The estimated parameters given by the
Dixit et al. rule (4.2) have asymptotic variances

. Furthermore, if , these
estimates are asymptotically uncorrelated and have asymptotic
variances invariant with respect to the choice of the selected
statistics and .

As such, in these conditions, the blind estimation achieves
the accuracy obtained with perfect knowledge of the transmitted
bits given by . In prac-
tice, since the relative accuracy on the estimated parameters is
given by , the number of bits
observed must be roughly inversely proportional to the least bit
error probability .

Proof: With (where
) and

(where is the common subscript among ), we have the
second equation shown at the bottom of the page. In the same
way, the Jacobians associated with channels are given by

...
...

. . .
. . .

...
...

...
. . .

. . .
...

for

...

...
...

...
...

...
...

...
. . .

...

with . Putting these values in ,
we straightforwardly obtain after some tedious algebraic
manipulations

To assess the performance improvement obtained by an algo-
rithm that uses all available statistics , we
now consider the asymptotic lower bound on the variance of
an arbitrary consistent estimator based on all these statistics. As
with the Cramér–Rao bound, this bound can be used as a bench-
mark against which potential estimates are tested.

...
. . .

. . .
...

...
...

. . .
. . .

for and
otherwise

for and
otherwise

. . .
...

. . .
. . .

...
...

...
. . .

. . .
...
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From the works of [8] and [9], the asymptotic covari-
ance of a consistent estimator of is lower bounded
by the symmetric positive-definite matrix ,
where is the matrix defined as

(note that the par-
ticular ordering of the row of is irrelevant in the expression

if this order is consistent with the ordering of
the terms of defined in (4.1)).

Finally, to assess the relatively efficiency of the statistic
, this asympotically minimum variance lower

bound is compared to the Cramér–Rao bound. We note that the
Cramér–Rao bound appears to be prohibitive to compute be-
cause the distribution of is a mixture of two

-dimensional Bernoulli distributions. We can use, however,
a numerical expression derived from the Fisher information
matrix, i.e.,

CRB with

where3 (see the equation at the bottom of the page).

V. OPTIMUM BIT FUSION RULE REVISITED

We revisit in this section the optimal fusion rule, for three pur-
poses. First, we give closed-form expressions of the error prob-
ability given by the optimal fusion detector. Second, we give
conditions where this optimal fusion detector reduces to the ma-
jority detector or to the best detector,4 and finally we study the
sensitivity of the optimal fusion detector to errors in the estimate
of the error probabilities of the different channels.

Assume here that . The op-
timal fusion rule (2.2) can be interpreted as a weighting of
the outputs of the different
channels according to their reliability because the weights

are decreasing functions of . As for
fixed-point binary representation of numbers, the most signifi-
cant bits tend to impose their signs compared with the
least significant bits .

(5.1)

3We note that this score function appears to be prohibitive to compute at each
iteration of a Fisher scoring algorithm.

4An illustrative example is given in [4, Fig. 6].

From this rule, the optimal error probability is given by

(5.2)

where
is associated with . Consequently,

the following property is proven.
Property: The optimal error probability decreases or does

not change if a channel is added. In particular it does not change
if this added channel has an error probability equal to .

Proof: If a channel is added, each “word” is
split into two words due to the weight . Consequently, if

, the optimal fusion rule and the
error probability do not change. However, if

, three cases may be considered. First, for the first
channels, there is a word such that .

Consequently, the two words issued from this word introduce
two terms of opposite signs and consequently de-
creases. Second, for the first channels, suppose there is no
word such that . If is very close
to such that the two words issued from
each word do not change the sign of , the
optimal fusion rule and the error probability do not change. But
if is not very close to such that among the two words
issued from each word at least one term changes
the sign of , the optimal fusion rule changes and the error
probability decreases.

The optimal error probability for given by
(5.2) simplifies to

if we suppose that for all words . Un-
fortunately, for , such relations may not be proved by
induction.

An interesting problem is to deduce conditions under which
the optimal fusion rule reduces to the majority detector or to
the best detector. If the different probabilities of error are
equal, the optimal fusion rule reduces to the majority detector
(see (5.1)) and intuitively if these probabilities of error are
very close together, then this property remains true. On the other
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Fig. 2. (a) Theoretical (-) and empirical (o) variance given by the Dixit rule,
CRB (-) and empirical (*) variance given by the EM algorithm of the param-
eter � as a function of the sample size. (b) Probability of error given by the
“optimal” fusion (2.2) derived from channel BER estimated by the Dixit (4.2)
(o) and the EM (*) algorithms, compared with the “optimal” fusion (-) derived
from the exact values of (� ) as a function of the sample size.

hand, if the probability of error of the best channel is very
small compared to the probabilities of error of the other chan-
nels, then the optimal fusion rule reduces to the best detector. In
the following, we try to quantify these notions.

From the optimal fusion rule (5.1), because
, a neces-

sary and sufficient condition for the optimal fusion rule to
reduce to the best detector is

For even, the optimal fusion rule never reduces to the ma-
jority rule, except if the error probabilities are equal. In-
deed in the case of equality of 0 and 1, the majority detector

Fig. 3. (a) Theoretical (-) variance given by the Dixit rule, CRB (-) and em-
pirical variances given by the Dixit rule (o) and algorithm [6] (+) and the EM
algorithm (*) of the parameter � as a function of the sample size. (b) Proba-
bility of error given by the “optimal” fusion (2.2) derived from channel BER
estimated by the Dixit rule (4.2) (o), [6] (+) and the EM (*) algorithms respec-
tively, compared with the “optimal” fusion (-) derived from the exact values of
(� ) as a function of the sample size.

draws lots for its detection if the error probabilities are very
close together. For odd, a necessary and sufficient condi-
tion for the optimal fusion rule to reduce to the majority de-
tector seems to be very intricate in the general case. To draw
conditions, consider the particular case where the error proba-
bilities satisfy the condition . Be-
cause ,

.
Consequently

is a necessary and sufficient condition for the optimal fusion rule
to reduce to the majority detector.
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Fig. 4. Theoretical (-) and empirical (o) asymptotic variance given by the Dixit
algorithm (4.2), CRB (-) and empirical (*) asymptotic variance given by the EM
algorithm of the parameter � as a function of the sample size.

To study the sensitivity of the optimal fusion detector to errors
in the estimate of the error probability of the different channels,
we first note that the differential of satisfies

Consequently, if the relative accuracy is considered, the sensi-
tivity of the optimal fusion detector increases when the channel
degrades and conversely if the absolute accuracy is considered,
the sensitivity of the optimal fusion detector increases when the
channel improves.

VI. ILLUSTRATIVE EXAMPLES

Our performance analysis is illustrated by two experiments.
In each one, we plot the theoretical and empirical (averaged
over 1000 runs) asymptotic variances of estimates of a proba-
bility of error of a particular channel given by different Dixit
algorithms and by the EM algorithm. We also plot the resulting

Fig. 5. Probability of error given by the “optimal” fusion (2.2) derived from
channel BER estimated by the Dixit (4.2) (o), [6] (+), and the EM (*) algo-
rithms respectively, compared with the “optimal” fusion (-) derived from the
exact values of (� ) as a function of the sample size.

probability of error given by the “optimal” fusion (2.2) derived
from channel estimated by these Dixit al-
gorithms and by the EM algorithm.

The first experiment considers the case of three channels
where . The EM algorithm is initialized by
the following approximation of (4.2)):

Fig. 2(a) and (b) compare the performance of the EM algorithm
to the Dixit (4.2) rule. We see from Fig. 2(a), that our theoretic
asymptotic results are valid over a large range of the number
of observed bits (from and for the EM and the
Dixit algorithms (4.2) respectively). Naturally the EM algorithm
outperforms the Dixit (4.2) rule but their performances are very
close, except from a very small number of samples. We note that
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the resulting probability of error given by the “optimal” fusion
(2.2) derived from channel BER estimated by
these algorithms is very close to this ”optimal” fusion derived
from the exact values of , except for a very small
number of samples .

Fig. 3(a) and (b) compares the performance of the EM algo-
rithm to the Dixit (4.2) and [6] algorithms for a small number
of samples. In contrat to the previous figure, the EM algorithm
largely outperforms the Dixit algorithms especially for a very
small number of samples. The algorithms [6] outperform the
Dixit rule issued from (4.2) below 200 samples. Note that the
Dixit (4.2) rule gives very bad estimates for , whereas
the algorithms [6] keep on converging. We note that the resulting
probability of error given by the “optimal” fusion (2.2) derived
from channel BER estimated by all these al-
gorithms is robust to the bad estimate of given by the Dixit
(4.2) rule.

The second experiment considers the case of four chan-
nels where . To see the influence
of the choice of the selected statistics in the Dixit rule
(4.2), Figs. 4 and 5 exhibit the case where the different
channel BERs are arranged in ascending or descending
values of respectively. In other words, the Dixit rule is
based on in Figs. 4(a) and 5(a) and

in Figs. 4(b) and 5(b). We see from
Fig. 4 that our theoretic asymptotic results are valid over a large
range of the number of observed bits, but contrary to the case
where (see property 1), the Dixit rule is very
sensitive to the choice of the selected statistics. Naturally, the
EM algorithm (initialized by the following approximation of
(4.2))

outperforms the Dixit rule. Fig. 5 shows that the probability of
error derived from channel BERs estimated by the EM algo-
rithm is very close to the “optimal” fusion (2.2) derived from
the exact values of . However, this probability of
error is very robust to bad estimate of given by
Dixit rules for the second arrangement of .

VII. CONCLUSION

In this paper, we have presented a comprehensive asymptotic
statistical performance analysis of blind estimation of bit error
rates (BERs) of a bank of detectors which have appeared in the
literature (by Dixit et al.). We have proposed a maximum-like-
lihood solution obtained by the standard EM algorithm which
can be considered as a reference algorithm. We have proven,
in particular, that these blind estimators asymptotically (in the

number of observed bits) achieve the accuracy obtained with
perfect knowledge of the transmitted bits. Finally, the optimal
fusion rule is revisited and our theoretical results are compared
with Monte Carlo simulations.
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