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Abstract. In this thesis we improve on various methods connected with

computing the Mordell-Weil group of an elliptic curve. Our work falls into

several parts:

1. We give a new upper bound for the difference of the logarithmic and

canonical heights of points on elliptic curves.

2. We give a new method for performing the infinite descent on an elliptic

curve. This is essentially a lattice enlargement algorithm.

3. We show how to compute the 2-Selmer group of an elliptic curve defined

over the rationals by a method which has complexity

LD(0.5, c1) = (e(log D)0.5(log log D)0.5

)c1+o(1),

where D = |∆| the absolute value of the discriminant of the elliptic curve,

and c1 is a positive constant. This part is based on joint work with N.

Smart.

4. We give a recipe for ‘higher descents’ on homogeneous spaces arising from

the 2-descent. This is useful in dealing with homogeneous spaces which

are everywhere locally soluble but for which a search for points does not

reveal any global points.

5. We give algorithms for checking our homogeneous spaces for solubility

over completions of number fields.
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Chapter 1

Introduction

In this thesis we improve on various methods connected with computing the

Mordell-Weil group of an elliptic curve. This is a deep and non-trivial problem

with many interesting applications to diophantine equations. For reasons which

will be made clear, it is not within the present “state-of-the-art” to be able

to determine the Mordell-Weil group of every elliptic curve, even in theory.

However we genuinely believe that the existing methods together with those

developed in this thesis will eventually make it practical to compute the Mordell-

Weil group of most elliptic curves defined over the rationals with a reasonably

small discriminant.

We start by sketching the proof of the Mordell-Weil theorem. We assume

that the reader is familiar with the basic theory of elliptic curves. Excellent

references on the theory of elliptic curves are [Si2] and [Ca1]. For the basic

algorithms concerning computing the Mordell-Weil group over the rationals see

[Cre].
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1.1 The Mordell-Weil Theorem

Let K be a number field. We shall normally take our elliptic curve defined over

K to be in standard Weierstrass form:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (1.1)

where a1, . . . , a6 are in the ring of integers OK of K.

Theorem 1.1.1 E(K) is finitely generated.

This was proved by Mordell for elliptic curves defined over the rationals, and

later extended by Weil to elliptic curves (as well as higher-dimensional abelian

varieties) defined over arbitrary number fields. We shall sketch the basic idea

of the proof, which falls in to 2 parts: the first is called the weak Mordell-Weil

theorem, where one proves that E(K)/2E(K) is finite, and the second is called

the infinite descent, where it is shown that this implies that E(K) is finitely

generated.

1.1.1 The Weak Mordell-Weil Theorem

By a standard change of variable we may suppose that

E : Y 2 = X3 +AX +B, (1.2)

where A, B ∈ OK . We let f(X) = X3 + AX + B, and let L be the K-algebra

defined by

L = K[X ]/(f(X)).

Then L is the sum of as many fields as f(X) has irreducible factors in K[X ].

We let Θ be the image of X under the natural map

K[X ] → L.

It turns out that we have a group homomorphism (see [Ca1] page 66 or [Ca6]

page 31)

α : E(K) → L∗/L∗2 (1.3)
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given explicitly by 1

P = (x, y) → (x− Θ)L∗2. (1.4)

This homomorphism has kernel 2E(K). Moreover its image is some finite sub-

group of L∗/L∗2. Hence it will follow that the group E(K)/2E(K) is finite.

This is the first step in the proof of the Mordell-Weil Theorem.

For the ‘generic’ case where f(X) is irreducible over K, and hence L is a

field, we shall be more explicit about the image of α. It can be shown that the

image of α is contained in the group

L(R, 2) = {β ∈ L∗/L∗2 : NormL/K(β) ∈ K∗2 and ord℘(β) ≡ 0 (mod 2) if ℘ 6∈ R}.

(1.5)

where R is the set of all primes in L which are either infinite or divide the

discriminant ∆ of the elliptic curve.

It will be seen that to determine E(K)/2E(K) it is sufficient to determine

for each s ∈ L(R, 2) whether or not it is in the image of the map α and if it is

to give a P ∈ E(K) satisfying α(P ) = s.

Hence given s ∈ L(R, 2) we must determine if it is possible to have

(x− Θ) = sε2 (1.6)

for some x ∈ K and ε ∈ L∗, and if so determine the x (and ε) explicitly. Now

any such ε can be written in the form

ε = u1 + u2Θ + u3Θ
2

where u1, u2, u3 ∈ K. Substituting in equation (1.6) and comparing coefficients

of 1, Θ, Θ2 we get

Q1(u1, u2, u3) = x (1.7)

Q2(u1, u2, u3) = −1 (1.8)

Q3(u1, u2, u3) = 0, (1.9)

1The definition must be adjusted appropriately to give the correct image of the points of

order 2, if there are any. See [Ca1] page 67.
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where Q1, Q2, Q3 are ternary homogeneous quadratic forms.

Here we would solve our problem for the particular s if and only if we can

find a simultaneous solution to the last two equations above. We will call the

simultaneous pair of equations 2

Q2(u1, u2, u3) = −u2
4

Q3(u1, u2, u3) = 0







(1.10)

a homogeneous space (see [Si2] page 287). It is convenient to point out here

that it is not always possible to determine if our homogeneous space (1.10)

has solutions over K (these would be termed global solutions). However, in

principle, there is no problem in checking if our homogeneous space has solutions

over every local completion of K, and this is plainly a necessary condition for it

to have global solutions. When (1.10) has solutions over every local completion

of K, we will say that it is everywhere locally soluble. It turns out the set of all

s ∈ L(R, 2) for which the corresponding homogeneous space 1.10 is everywhere

locally soluble forms a subgroup of L(R, 2). This is termed the 2-Selmer group.

We note here for later reference that if we determine which of the pairs of

equations (1.10) have rational solutions, and for each of these find a point on

it, then we will be able to recover a complete set of coset representatives of

E(K)/2E(K).

At any rate, for the proof of the Weak Mordell-Weil Theorem it suffices to

note that L(R, 2) is finite, and hence that E(K)/2E(K) is finite.

1.1.2 The Infinite Descent

We assume that the reader is familiar with the basic theory of heights in pro-

jective space and on elliptic curves (see [Si2] page 205-220).

Recall, that if MK is a complete set of inequivalent valuations on K, then

we define the naive height of a point P = (X,Y ) ∈ E(K) by

H(P ) =

(

∏

υ∈MK

max {1, |X |v}
nv

)
1

[K:Q]

(1.11)

2Note that we will prefer to write these in homogeneous form.
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where nv = [Kv : Qv].

We define the logarithmic height of the point P by h(P ) = logH(P ), and

finally the canonical height of the point P by

ĥ(P ) = lim
n→∞

{

4−nh(2nP )
}

. (1.12)

It turns out that for any constant C, the points for which H(P ) ≤ C are at

most finitely many, and these may be effectively enumerated. To complete the

proof of the Mordell-Weil Theorem we use the fact that E(K)/2E(K) is finite

to show that there is a C such that the points for which H(P ) ≤ C generate

E(K). The first step here is to use the following theorem of Zagier.

Theorem 1.1.2 (Zagier) Let B1 > 0 be such that

S =
{

P ∈ E(K) : ĥ(P ) ≤ B1

}

(1.13)

contains a complete set of coset representatives for mE(K) in E(K) (m ≥ 2).

Then the set S generates E(K).

Proof. See [Cre] p61 or [Si1] p740. 2

Now it remains to show that if B1 is given by the above Theorem, then we

can obtain a C such that the region H(P ) ≤ C contains all the points for

which ĥ(P ) ≤ B1. This is possible at once since the difference h(P ) − ĥ(P ) is

absolutely bounded for any elliptic curve E. For example, Silverman has shown

the following.

Theorem 1.1.3 (Silverman) Let K be a number field and let E/K be given by

the Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (1.14)

whose coefficients are in the ring of integers of K. Let ∆ be the discriminant of

the equation (1.14) and let j be the j-invariant of E. Further let

b2 = a2
1 + 4a2 and 2∗ =







2 if b2 6= 0,

1 if b2 = 0.
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Define “height of E” (really of the Weierstrass equation (1.14)) by

µ(E) =
1

12
h(∆) +

1

12
h∞(j) +

1

2
h∞(b2/12) +

1

2
log(2∗),

where 3, for t ∈ K,

h∞(t) =
1

[K : Q]

∑

υ∈M∞

K

nυ log(max(1, |t|v))

Then for all P ∈ E(K̄),

h(P ) − ĥ(P ) ≤
1

12
h(j) + 2µ(E) + 1.946.

Proof. See [Si1]. 2

If we let B2 be the bound for h(P ) − ĥ(P ) in Silverman’s Theorem above,

then we see E(K) is generated by the points satisfying H(P ) ≤ C where C =

exp(B1+B2). This completes the (sketched) proof of the Mordell-Weil Theorem.

1.2 Outline of the Usual Method of Computing

the Mordell-Weil Group

The classical method of computing the Mordell-Weil group of an elliptic curve E

over a number field K is via several distinct steps. We outline these below and

explain if and why the method involved in each step is in need of improvement.

Further we will summarize the contribution we have made towards making each

step practical.

1.2.1 Computing the Torsion Subgroup of E(K)

This step is completely trivial for elliptic curves over Q (see [Cre] page 52). We

will not consider the problem of computing the torsion subgroup for an elliptic

curve defined over a number field.

3M∞

K
is the set of archimedean valuations on K.
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1.2.2 Computing the 2-Selmer Group of E

The best method for computing the 2-Selmer group for elliptic curves de-

fined over Q and of small discriminants is using the algorithm of Birch and

Swinnerton-Dyer (see [Bi, SwD]). Indeed Cremona’s program mwrank (see page 19),

which is an implementation of algorithm of Birch and Swinnerton-Dyer, com-

putes 2-Selmer groups of elliptic curves of discriminants of size 1015 in a few

minutes. In this algorithm the elements of the 2-Selmer group are represented

by curves of the form

y2 = g(x)

where g(x) is a quartic polynomial with integral coefficients. Birch and Swinnerton-

Dyer showed that for each element of 2-Selmer we can choose a representative

as above where the coefficients of g(x) lie in a certain region and have given

invariants. Hence the algorithm involves searching this region for the polyno-

mials with the given invariants. It turns out that the size of this region is at

least O(|∆|
1
2 ) where ∆ is the discriminant of the elliptic curve E (See [Bi, SwD]

page 11). This is in fact the obstruction to using the method for elliptic curves

of large discriminant.

There is a much older method of determining the 2-Selmer group. Birch and

Swinnerton-Dyer comment on this:

“It is possible to find the elements of G [the 2-Selmer group]

by the classical process of descent; and for hand calculation this

is probably the easiest way. However for any given curve . . . one

needs to know the structure of the appropriate algebraic number

field, and it is not convenient to investigate this by means of an

automatic computer. We have therefore used a different procedure

. . . ”. ([Bi, SwD] page 8).

Of course the situation concerning algorithms for computing the structure of

algebraic number fields is now very different from that of the time Birch and

Swinnerton-Dyer devised their algorithm ([Bi, SwD] appeared in 1963). There

are now ‘subexponential’ algorithms for computing the class groups and funda-
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mental units of algebraic number fields (see for example Chapters 5 and 6 of

[Cohen] for a description of some of these). This strongly suggests that the de-

scent via algebraic number fields deserves to be examined again. Indeed we show

in Chapter 3, which is based on joint work with N. Smart, that this approach

can be refined so that its complexity is

LD(0.5, c1) = (e(log D)0.5(log log D)0.5

)c1+o(1),

where D = |∆|, and c1 is a positive constant. This is better than the complexity

of the method of Birch and Swinnerton-Dyer.

The only implementation of these ‘subexponential’ algorithms for comput-

ing the class groups and fundamental units that is available to us is part of the

package Pari/GP (see page 19). According to the manual ([Pari] page 46) these

programs are “completely experimental”, and we have found that they perform

rather badly for cubic number fields of large discriminants. It is for this reason

that no example is given for computing the 2-Selmer group using the method

of Chapter 3. However it is hoped that improved implementations for comput-

ing the class group and fundamental units will make this method completely

practical in the future.

1.2.3 Computing E(K)/2E(K)

Once we have computed the 2-Selmer group we hope to find enough points on

E(K) to show that the map from E(K)/2E(K) to the 2-Selmer group is a

surjection. Equivalently we wish to show that every homogeneous space corre-

sponding to an element of the 2-Selmer group has point defined over K on it.

This is not always possible because of the failure of the local-to-global principle

for curves of genus 1. This leads us to the concept of ‘higher descent ’ discussed

in Chapter 4 where we give a method often successful in resolving the problem

of which homogeneous spaces have K-rational points. It should be noted that

these methods do not always meet with success.

Both the computation of the 2-Selmer group and the method of ‘higher

descent’ require algorithms for testing certain homogeneous spaces for local
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solubility. We give these in Chapters 5 and 6.

1.2.4 The Infinite Descent: Computing E(K) from E(K)/2E(K)

Having obtained a set of generators for E(K)/mE(K) we can compute all the

coset representatives for E(K)/mE(K) and hence their canonical heights. If B

is an upper bound for these canonical heights then by Zagier’s Theorem (1.1.2)

we get an upper bound for the canonical heights of all the points of a set S

(defined above) which generates E(K). Combining this with Silverman’s re-

sult (1.1.3) we get an upper bound B′ for the logarithmic heights of all the

points of S. It follows that the set S can be enumerated, provided of course that

this upper bound is not too large.

Unhappily, practical experience suggests that the upper bound B ′ involved

in this method is often too large. This can be for several reasons:

1. It is possible that the Silverman estimate on the difference between the

logarithmic and canonical height is very large.

2. It is possible that the canonical heights of the generators of E(K)/mE(K)

are large .

3. It is also possible that even though the generators of E(K)/mE(K) have

small canonical heights, that some of the coset representatives (particu-

larly if the rank is large) will have large heights.

We stress that the size of the search regions for the points of S increase expo-

nentially with B′. To illustrate, if say K = Q, and if P = (X,Y ) ∈ S then

we can write X = x/z2 where x and z are in Z and satisfy |x| ≤ exp(B′) and

|z| ≤ exp(B′/2). It follows that the search region here is roughly proportional

to exp(1.5B′). For a number field K of degree n over the rationals, the search

region is, very roughly, between exp(1.5nB′) and exp(2nB′) in size. Hence small

savings on B′, can translate in to big savings in the actual size of the search

region.

In Chapter 2 we will adopt a different approach to the infinite descent:
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1. We will give an algorithm which will allow us, in most cases, to calulate a

sharper upper bound for the quantity h(P ) − ĥ(P ).

2. We will show how a basis of a submodule of the torsion-free part of E(K),

having full rank, can be enlarged efficiently to a basis for E(K).

The algorithm for infinite descent we will give uses both of these ingredients,

and involves searching much smaller regions than the above.

1.3 Applications of Computing the Mordell-Weil

Group

As noted already, we will be concerned with the problem of determining a

basis for the Mordell-Weil group of an elliptic curve. We hope to convince the

reader that this is an interesting and engaging problem in itself. It is however

appropriate to describe some of the applications of computing the Mordell-Weil

group of an elliptic curve 4:

1.3.1 Describing Rational Solutions to Elliptic Diophan-

tine Equations.

Many diophantine problems are equivalent to computing the Mordell-Weil group

of an elliptic curve, or showing that an elliptic curve has rank at least 1. This

includes many geometrical problems. A well-known example is the so called

‘congruent number problem’ (see [Kob]): An integer n is said to be a ‘congruent

number’ if it is the area of some right-angled triangle with rational sides. It

turns out that n is congruent if and only if the elliptic curve

Y 2 = X(X2 − n2)

4It should be noted that what is presented here is necessarily a random sample, and that

some parts are perhaps out of date. This is because of the vastness of the topic and the

modest knowledge of the author. Nice references here are [Guy], [Mord].
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has rank at least 1, and that to find a particular right-angled triangle with area

n it necessary to find a point of infinite order on this curve. This can be a

highly non-trivial problem. For example, as a corollary to the calculations in

Section (4.7) it turns out that the simplest right-angled triangle having area

2833 has base and perpendicular

5334745291350384

709516254613385
,

2010059549319719705

2667372645675192
,

and has hypotenuse

1426240910614742861472434930476897

1892544249217657898838245644920
.

1.3.2 Integral Points on Elliptic Diophantine Equations.

Many diophantine problems are equivalent to computing all the integral points

on a model of an elliptic curve. For elliptic curves in standard minimal Weier-

strass form there is now a practical algorithm for performing this using elliptic

logarithms (see [GPZ], [Smart], [Str, Tz], and for a generalization to number

fields [Sm, Ste]). These algorithms require the computation of the Mordell-Weil

group beforehand. This method has been extended (see [Tz]) to finding the

integral points on elliptic curves of the form

Y 2 = f(X)

where f(X) ∈ Z[X ] is a quartic polynomial. 5

As an example, we mention Ljunggren’s infamous equation (see [Mord] page

271)

Y 2 = 2X4 − 1.

Ljunggren had shown that the only integral solutions of this are (±1,±1) and

(±13,±239). However his method was exceedingly complicated, especially for

such an innocuous looking equation, and Mordell had wished if only a simpler

proof could be found. It is striking to note that this can now be resolved by a

5See [Str, We] for an example which arises from the theory of Radon Transforms.
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couple of computer programs. Letting y = 2XY and x = 2X2 we find that

E : y2 = x(x2 − 2). (1.15)

Using mwrank (see page 19) we find that the Mordell-Weil group of this elliptic

curve is 〈(0, 0)〉
⊕

〈(−1, 1)〉. We thank N. Smart for computing the integral

points on this equation using his own implementation of the elliptic logarithm

method mentioned above. After a minute or so the program output that the

only integral points on E are

(0, 0), (−1,±1), (2,±2), (338,±6214).

It easily follows that the only integral solutions to Ljunggren’s equation are the

ones he gave.

1.3.3 Rational Points on Certain Curves of Genus > 1.

Given a curve of genus > 1, we can occasionally cover an elliptic curve by this

curve, and then use the Mordell-Weil group of the elliptic curve to obtain infor-

mation about its rational points. We give one example of a method essentially

due to Dem’Janenko (see [Ca5]). Suppose we wanted to determine the rational

points on

X4 + Y 4 = 2Z4. (1.16)

If (X,Y, Z) is a non-trivial solutions of the equation (1.16) then we may assume

that X, Y, Z are coprime integers. It easily follows that

P1 =

(

2Z2

X2
,
2Y 2Z

X3

)

, P2 =

(

2Z2

Y 2
,
2X2Z

Y 3

)

,

are rational points on the elliptic curve (1.15). We note that the naive heights

of P1, and P2 are equal: it is clear that 2Z2 > X2, Y 2. Hence it follows that

the difference between their canonical heights is bounded. Using Silverman’s

estimates for the difference between the logarithmic and canonical heights we

get

|ĥ(P1) − ĥ(P2)| ≤ 9.6988.
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We recall that the Mordell-Weil group of (1.15) is

〈(0, 0)〉
⊕

〈(−1, 1)〉

where (0, 0) is a point of order 2 and (−1, 1) is of infinite order. Write

Pi = mi(−1, 1) + ni(0, 0)

where mi ∈ Z and ni ∈ {0, 1} (i = 1, 2). It follows that

|m2
1 −m2

2| ≤
9.6988

ĥ((−1, 1))
= 15.93.

From this we deduce that either m1 = m2 or |m1|+ |m2| ≤ 15. It is now a simple

matter to check that the only (non-trivial) solutions to (1.16) are (±1,±1,±1).

1.3.4 Rational Points on Certain Surfaces.

It is possible to describe certain surfaces by a parametric family of elliptic curves.

In this case one can obtain information about the rational points on the surface

by studying the Mordell-Weil groups of these elliptic curves. For example, in

[SwD2], Swinnerton-Dyer uses this idea to show that the rational points on the

variety

X4 + Y 4 = Z4 +W 4

are dense (with respect to the Euclidean topology).

An impressive recent success for this method is the counterexample by N.

D. Elkies (see [Elkies]) to a conjecture of Euler that there are no solutions in

positive integers to

A4 +B4 + C4 = D4. (1.17)

Elkies parametrized this as a pencil of curves of genus 1. By finding the simplest

curve in the pencil which is everywhere locally soluble and checking that it has
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a solution, he found a solution 6 to Euler’s (1.17):

26824404 + 153656394 + 187967604 = 206156734 .

He also showed that the rational points are dense in the real locus of

r4 + s4 + t4 = 1.

1.4 Computer Packages

In preparing the examples in this thesis, we have found it useful to use some

computer packages and programs which we list below.

1.4.1 mwrank and findinf

These are programs written by J. Cremona for elliptic curves defined over Q.

mwrank is an implementaion of the Birch and Swinnerton-Dyer method of 2-

descent ([Bi, SwD] and [Cre] pages 68-76). It also attempts an infinite descent

via the traditional method explained on page 9.

The 2-descent step is remarkably successful for curves of small discriminant 7.

The infinite descent is not so successful for reasons explained on page 14.

findinf is a program for searching for points up to a given logarithmic

height on an elliptic curve using a quadratic sieve method.

1.4.2 Pari/GP

We have found this package very useful for number-theoretic computations. It

has many functions for doing arithmetic on elliptic curves, including elliptic

6Clearly this solution could not be easily found by a naive computer search. The smallest

solution

958004 + 2175194 + 4145604 = 4224814

was later found by Roger Frye - using Elkies’ ideas- in a search which took 100 hours of

computer time.
7Though of course there is no guarantee of finding rational points on all the everywhere

locally soluble homogeneous spaces.
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logarithms, and canonical height computations. Moreover it provides tools for

dealing with modular arithmetic, algebraic numbers, p-adic numbers.

All the programming we did was done using this package.
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Chapter 2

The Infinite Descent

The contents of this chapter have been accepted for publication by the Rocky

Mountain Journal of Mathematics.

2.1 The bound on the difference h(P ) − ĥ(P )

2.1.1 Preliminaries

Let E be an elliptic curve given by the Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

where a1, . . . , a6 are in the ring of integers OK of a number field K. In this

section we shall give an algorithm for obtaining an upper bound for the quantity

h(P )−ĥ(P ). This is based on the traditional method of estimating the difference

h(2P )−4h(P ). Generally speaking, when this has been done in the past, it relied

on the use of elimination theory, which leads to poor upper bounds. The method

we shall give bypasses elimination theory using explicit calculations over some

local completions of K.

Apart from Silverman’s Theorem 1.1.3, there are other results which give

bounds on the quantity h(P ) − ĥ(P ), most notably in [Zim] and [Dem]. The

21



reason why we make specific comparisons only with Silverman’s theorem is that

this is currently the most widely used and quoted in the literature.

As our method is very different from Silverman’s method for obtaining his

estimate (1.1.3), we have no easy way of deciding a priori which should give

the smaller bound. We can only note that, in practice, we have found that our

method gives much smaller bounds most of the time, or exceptionally bounds

which are slightly better. For example, a straightforward application of Silver-

man’s Theorem 1.1.3 for the curve

Y 2 + Y = X3 − 7X + 6

gives

h(P ) − ĥ(P ) ≤ 5.4.

In [BGZ] Buhler, Gross and Zagier derive that

h(P ) − ĥ(P ) ≤ 0 for all P ∈ E(Q),

and we get this also by applying our Theorem 2.1.1. Needless to say, here our

method gave a much better bound than Silverman’s. In contrast to this, for the

curve

Y 2 = X(X2 − p2)

where p is prime and > 2, Silverman’s theorem gives

h(P ) − ĥ(P ) ≤ log(p) + 4.505

and our Theorem 2.1.1 gives

h(P ) − ĥ(P ) ≤ log(p) + 0.347 for all P ∈ E(Q).

Here for small primes p our bound looks much better and for large p it looks

roughly the same as Silverman’s. However, even here, the extra work we had to

do to get our bound was worthwhile, since to search for all rational points on

the curve of canonical height ≤ B, the size of the search region if we apply our

bound is roughly

1.682p1.5 exp(1.5B),
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and if we apply Silverman’s bound it is roughly

860.488p1.5 exp(1.5B).

Accordingly, we believe, that the small amount of work that goes into obtaining

our bound will usually be amply rewarded by the time saved through searching

smaller regions.

We employ some standard notation to do with number fields and elliptic

curves. Given a number field K we let MK be the set of all valuations on

K. We write M0
K and M∞

K for the sets of non-archimedean and archimedean

valuations on K respectively. For an elliptic curve E given by a Weierstrass

equation of the form (2.1) we define some associated constants (see [Si2] page

46):

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

(2.2)

Let

f(X) = 4X3 + b2X
2 + 2b4X + b6

g(X) = X4 − b4X
2 − 2b6X − b8.

(2.3)

It will be seen that the polynomials f, g arise in the duplication formula for

a point on the curve E and a little study of these polynomials essentially gives

us our required bound for h(P ) − ĥ(P ).

As usual, we denote the residue field of a completionKυ with respect an non-

archimedean prime υ by kυ , and we denote the canonical map Kυ → kυ ∪ {∞}

by x → x̄. We let π be a prime element for υ (i.e. π ∈ Kυ such that υ(π) = 1).

Lemma 2.1.1 Suppose that υ is a non-archimedean valuation on K and P =

(x, y) ∈ E(Kυ) is such that its reduction P̄ = (x̄, ȳ) ∈ E(kυ) is non-singular.

Then

max {|f(x)|v , |g(x)|v} = max {1, |x|v}
4
.
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Proof. If |x|v > 1 then |f(x)|v ≤ |x|3v and |g(x)|v = |x|4v and in this case the

conclusion is obvious.

Hence we can suppose that |x|v ≤ 1. Now we are required to prove that

max {|f(x)|v , |g(x)|v} = 1

Hence it is enough to show that when f(x) ≡ 0 (mod π) and g(x) ≡ 0

(mod π) then P̄ is singular on E(kυ).

By a change of variable which is non-singular modulo π, we may suppose that

(x, y) = (0, 0). Now the condition for (0, 0) to be on the Weierstrass equation is

that a6 = 0. Moreover, since f(0) ≡ g(0) ≡ 0 (mod π) we get that b6 ≡ b8 ≡ 0

(mod π). Hence from the formulae for b6, b8 we get that a3 ≡ a4 ≡ 0 (mod π).

This is a sufficient condition for (0, 0) to be singular on E(kυ). 2

Here is some more notation which we will find useful:

f ′(X ′) = X ′4f( 1
X′

)

g′(X ′) = X ′4g( 1
X′

).

(2.4)

Further let, for each υ ∈MK ,

Dv =
{

X ∈ Kυ : |X |v ≤ 1 and f(X) ∈ Kυ
2
}

D′
v =

{

X ′ ∈ Kυ : |X ′|v ≤ 1 and if X ′ 6= 0 then f

(

1

X ′

)

∈ Kυ
2

}

.

Lemma 2.1.2 Define constants dv, d
′
v by

1. dv = infX∈Dv
max {|f(X)|v, |g(X)|v},

2. d′v = infX′∈D′

v
max {|f ′(X ′)|v, |g′(X ′)|v}.

Then, dv, d
′
v are non-zero.

Proof. We begin by noting that the sets Dv, D
′
v, are compact subsets of Kυ

(with respect to the υ-adic topology), and hence the infimums dv, d
′
v must

24



be attained. If say dv was zero then there would exist X1 ∈ Dv such that

f(X1) = g(X1) = 0. However, from [Si3] p347 we have that

Resultant(f, g) = Resultant(f ′, g′) = ∆2

where ∆ is the discriminant of the elliptic curve E. Accordingly, as this cannot

be zero, dv 6= 0. Similarly d′v 6= 0.

2

If E is minimal at some non-archimedean valuation υ then we define

cυ = [E(Kυ) : E0(Kυ)].

i.e. cυ is the Tamagawa index at υ.

Lemma 2.1.3 Let, for any valuation υ on K,

ευ
−1 = inf

(X,Y )∈E(Kυ)

max(|f(X)|v, |g(X)|v)

max(1, |X |v)4
(2.5)

Then

1. ευ exists. (i.e. the quantity on the right exists and is non-zero). Moreover

ευ
−1 = min(dυ, d

′
υ).

2. ευ ≥ 1.

3. If υ is non-archimedean, E is minimal at υ, and the local Tamagawa index

cυ = 1, then ευ = 1.

4. If υ is non-archimedean, then ευ = dυ
−1 where dυ is as defined in Lem-

ma (2.1.2).

5. If υ is non-archimedean, and

b
υ(4∆)

2
c = n,

then ευ ≤ |π|−2n
v (where b c denote the integer part of a number).
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Proof. Suppose (X,Y ) ∈ E(Kυ). Then by a standard manipulation of the

Weierstrass equation (2.1) we get

(2Y + a1X + a3)
2 = f(X) (2.6)

Hence, if |X |v ≤ 1 then X ∈ Dυ and

max(|f(X)|v, |g(X)|v)

max(1, |X |v)4
= max(|f(X)|v , |g(X)|v).

If |X |v ≥ 1 then X ′ = X−1 ∈ D′
υ and

max(|f(X)|v , |g(X)|v)

max(1, |X |v)4
= max(|f ′(X ′)|v , |g

′(X ′)|v).

Hence it is clear that the quantity on the right of (2.5) exists and is equal to

min(dυ , d
′
υ), and so is non-zero (by Lemma (2.1.2)). This proves the first part

of the above.

For the second part we note that we may take (X,Y ) ∈ E(Kυ) to be ar-

bitrarily close to 0. Hence X is unbounded with respect to the metric | |v and

so
max(|f(X)|v, |g(X)|v)

max(1, |X |v)4

is arbitrarily close to 1. It follows that ευ
−1 ≤ 1, and hence that ευ ≥ 1, as

required for part 2.

Part 3 is clear from Lemma (2.1.1).

For part 4 we note that if υ is non-archimedean and |X |v > 1 then by the

proof of Lemma (2.1.1),

max(|f(X)|v, |g(X)|v)

max(1, |X |v)4
= 1,

and if |X |v ≤ 1 then
max(|f(X)|v, |g(X)|v)

max(1, |X |v)4
≤ 1,

so by the definition of ευ we get

ευ
−1 ≤ inf

(X,Y )∈E(Kυ), |X|v≤1
max(|f(X)|v, |g(X)|v)

which immediately gives part 4.
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Let us now prove part 5. Let n be as defined in the Lemma. Suppose that

inf
X∈Dυ

max(|f(X)|v, |g(X)|v) ≤ |π|2n+1
v

and it is sufficient to derive a contradiction. If this were the case then there

would exist (X,Y ) ∈ E(Kυ), with

f(X) ≡ g(X) ≡ 0 (mod π2n+1).

But from equation (2.6) we must deduce that f(X) ≡ 0 (mod π2n+2). We now

invoke the following identity:

4g(X) = (6X2 + b2X + b4)
2 − (8X + b2)f(X). (2.7)

This is easily verified. It follows that (6X2 + b2X + b4)
2 ≡ 0 (mod π2n+2).

Finally we use congruence

[48X2 + 8b2X + (−b22 + 32b4)](6X
2 + b2X + b4)

2 ≡ −4∆ (mod f(X)) (2.8)

in Z[X, a1, . . . , a6]. This is straight forward but rather tedious to verify ( it is a

slightly more general form of the congruence in page 51 of [Ca1]). We can now

conclude that π2n+2 divides 4∆ as required. 2

For a non-archimedean valuation υ, we let (as usual) E0(Kυ) be the subgroup

of points on E(Kυ) with non-singular reduction modulo π. It is useful to define

µυ = µυ(E) as follows:

1. if υ is archimedean, then µυ = 1
3 ,

2. if υ is non-archimedean and E is not minimal at υ, then µυ = 1
3 ,

3. if υ is non-archimedean and E is minimal at υ, then

µυ =



























0 if [E(Kυ) : E0(Kυ)] = 1

1/4 if E(Kυ)/E0(Kυ) ∼= Z/2Z or (Z/2Z)
2

(

1 − 1
4α

)

/3 if E(Kυ)/E0(Kυ) ∼= Z/2αZ where α ≥ 1

1/3 if [E(Kυ) : E0(Kυ)] is not a power of 2.
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Here we recall that for non-archimedean υ at which E is minimal, the group

E(Kυ)/E0(Kυ) is either cyclic or is equal to (Z/2Z)
2

(see for example Theorem

VII.6.1 on page 183 of [Si2]). Hence the above definition for υ covers all the

possible cases.

We are now ready to state our main Theorem on the bound h− ĥ.

Theorem 2.1.1 Let MK be a complete set of inequivalent valuations on K.

For each υ ∈MK , let nυ = [Kυ : Qυ]. Define a function

ε : MK ×E(K) → R≥1 (2.9)

by

ε(υ, P ) =







1 if υ ∈ M0
K, E is minimal at υ, and P ∈ E0(Kυ)

ευ otherwise.
(2.10)

Then for all P ∈ E(K) we have

h(P ) − ĥ(P ) ≤ 1
[K:Q]

(

∑

υ∈MK
µυnυ log(ε(υ, P ))

)

≤ 1
[K:Q]

(

∑

υ∈MK
µυnυ log(ευ)

)

.

(2.11)

We note here that if υ is non-archimedean, E is minimal at υ, and the

Tamagawa index cυ = 1, then by the definition for µυ above, and Lemma (2.1.3)

we have that µυ = log(ε(υ, P )) = log(ευ) = 0. Hence only finitely many terms

in the above sums are non-zero.

Proof. We begin by noting that for all P ∈ E(K), υ ∈ MK ,

max(|f(X)|v, |g(X)|v) ≥ ε(υ, P )
−1

max(1, |X |v)
4 (2.12)

using the definition of ευ on page 25, and the definition of ε(υ, P ) above, and

Lemma (2.1.1).

Now if P = (X,Y ) ∈ E(K) then by the duplication formula (see [Si2] p59)

the x-coordinate of 2P is g(X)/f(X). Hence using the product definition for
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naive heights and Lemma (2.1.1) above we get

HK(2P ) =
∏

υ∈MK
max {|f(X)|v, |g(X)|v}

nυ

≥
∏

υ∈MK

(

ε(υ, P )
−1

max {1, |X |v}
4
)nυ

=
(

∏

υ∈MK
ε(υ, P )

−nυ
)

HK(P )4.

(2.13)

Recall that

h(P ) =
1

[K : Q]
log(HK(P ))

and so

h(2P ) − 4h(P ) ≥
1

[K : Q]





∑

υ∈MK

nυ log(ε(υ, P )−1)



 .

Rearranging, we get

h(P ) ≤
1

4
h(2P ) +

1

4[K : Q]





∑

υ∈MK

nυ log(ε(υ, P ))



 .

Using

ĥ(P ) = lim
n→∞

4−nh(2nP )

we get

h(P ) ≤
1

[K : Q]





∑

υ∈MK

nυ

(

∞
∑

n=1

1

4n
log(ε(υ, 2nP ))

)



+ ĥ(P ).

However, from the definition of the function ε we find that

log(ε(υ, 2nP )) =







0 υ ∈M0
K , E is minimal at υ, and 2nP ∈ E0(Kυ),

log(ευ) otherwise.

It is now an easy matter to show that for all υ ∈MK ,

∞
∑

n=1

1

4n
log(ε(υ, 2nP )) ≤ µυ log(ε(υ, P ))

where µυis as defined above. This completes the proof. 2
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It is apparent from our Theorem above that to get an upper bound on h− ĥ,

all that remains is to calculate the values ευ at the finitely many valuations for

which µυ is not zero: to recall these are the cases when either υ is archimedean

(i.e. where Kυ = R or C), or where υ is non-archimedean but E is not minimal

at υ, or it is minimal but the Tamagawa index cυ 6= 1.

We give separate algorithms for calculating ευ = min(dυ , d
′
υ)−1 for three

different cases:

• Kυ = R

• Kυ = C

• υ is non-archimedean.

2.1.2 υ is Real

Suppose that Kυ = R. Note that there exists σ ∈ Gal(K/Q) such that Kσ ⊂ R

and for all x ∈ K, |x|v = |xσ | where | | is the ordinary absolute value. Hence, by

replacing f, g, f ′, g′ by fσ, gσ , f ′σ , g′
σ

if necessary, we can assume f, g, f ′, g′

are all real polynomials. Now the problem is reduced to finding

dv = inf
X∈Dv

max {|f(X)|v, |g(X)|v} ,

d′v = inf
X′∈D′

v

max {|f ′(X ′)|v , |g
′(X ′)|v} ,

where

Dv = {X ∈ R : |X | ≤ 1 and f(X) ≥ 0}

and

D′
v =

{

X ′ ∈ R : |X ′| ≤ 1 and either X ′ = 0 or f(
1

X ′
) ≥ 0

}

are clearly finite unions of intervals. Finally we use the following elementary

lemma.

Lemma 2.1.4 If f, g are continuous real functions and I is an interval then

the infimum of the continuous function max {|f(X)|, |g(X)|} over the interval

I is attained at one of the following points
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(i) an end point of I,

(ii) at one of the roots of f , g, f + g, f − g in the interval I,

(iii) at a turning point of one of the functions f , g.

Proof. We simply note that at any point in I not listed in (i) or (ii), the

function max {|f(X)|, |g(X)|} is equal to one of ±f, ± g and its infimum must

be a local supremum or infimum of f , or g. 2

Hence, to calculate dv , we write Dv as a union of intervals (I) and calculate the

infimum of max {|f(X)|, |g(X)|} over each interval separately using the above

Lemma, and then dv will be the minimum of these (finitely many) infima. Sim-

ilarly we calculate d′υ, and then ευ = min(dυ , d
′
υ)−1.

2.1.3 υ is Complex

Suppose that Kυ = C. In the same way as the real case, we can if necessary

replace f, g, f ′, g′ by appropriate conjugates so that

dv = inf
X∈Dv

max {|f(X)|v, |g(X)|v} ,

d′v = inf
X′∈D′

v

max {|f ′(X ′)|v , |g
′(X ′)|v} ,

where Dv = D′
v = D = {z ∈ C : |z| ≤ 1} is the closed unit disc. We make use

of the following Lemma.

Lemma 2.1.5 let f and g be as above. Then the continuous function k : C →

R>0 defined by

k(z) = max {|f(z)|, |g(z)|}

attains its infimum over D at a point z0 satisfying either

1. |z0| = 1 (i.e. it is on the boundary of D), or

2. |f(z0)| = |g(z0)|.

Proof. For each ρ ∈ C there are, counting multiplicities, 4 solutions to the

equation f(X) = ρg(X). In fact by Cardano’s formulae, there exist 4 functions

φ1, . . . , φ4 : C → C such that φ1(ρ), . . . , φ4(ρ) are solutions to f(X) = ρg(X).
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Let

S = {ρ ∈ C : |ρ| = 1} .

It follows that each φi(S) is a path in C. We note that for all z ∈ C, |f(z)| =

|g(z)| if and only if there exist ρ ∈ S such that f(z) = ρg(z) and hence if and

only if z ∈ φi(S) for some i.

Now the paths φ1(S), . . . , φ4(S) divide the unit disc D into finitely many

connected regions U1, . . . , Un. Consider a region Uj ; denote the interior of Uj by

int(Uj) and its closure by U j . We note that that the intersection of int(Uj) and

φi(S) is empty for i = 1, . . . , 4. Hence, by the connectedness of Uj , we get that

either |f | > |g| or |g| > |f | on all of int(Uj). Suppose, without loss of generality,

that |f | > |g| on all of int(Uj). Then k(z) = |f(z)| for all z ∈ U j . It is easy to

see that f is never zero on U j : if f is zero at some point of U j , then g is also

zero at that point, contradicting Lemma (2.1.2). Let w(z) = 1
f(z) . Then w is

holomorphic on int(Uj) and continuous on U j and so by the Maximum Modulus

Theorem of Complex Analysis (see [Pr] p76), it attains its maximum modulus

over U j on the boundary U j\int(Uj). Hence k(z) = |f(z)| attains its infimum

over U j on the boundary U j\int(Uj). But each of these boundaries is a subset

of S∪φ1(S)∪ . . .∪φ4(S). Since the U j cover D we get that k attains its infimum

over D on S ∪ φ1(S) ∪ . . . ∪ φ4(S). This is the statement of the theorem. 2

It is plain that the Lemma is true for f ′, g′, instead of f, g. Now it is

necessary to estimate inf {|f |, |g|} over the boundary S, and over the sections of

the paths φi(S) inside the unit disc D. We will use the following naive method.

Fix some n ≥ 2 (this should be roughly 1 more than the number of significant

digits we want to determine dυ to). Let θj = 10−nj for j = 1, . . . , 10n. For each

θj we solve (numerically) the equation

f(X) = e2πθjg(X),

and let

κj = min
{

max(|f(e2πθj )|, |g(e2πθj )|)
}

∪
{

|f(X)| : X ∈ D and f(X) = e2πθjg(X)
}

.

Finally, we take dυ = min(κj). Similarly, we estimate d′υ , and take ευ =

min(dυ , d
′
υ)−1.
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Of course, this method is crude, and great improvements must be possible,

but we will not do this.

2.1.4 υ is Non-Archimedean

In this section we want to calculate

ευ
−1 = inf

(X,Y )∈E(Kυ)

max(|f(X)|v, |g(X)|v)

max(1, |X |v)4

for non-archimedean υ. We note by Lemma (2.1.1), that if the reduction of the

curve E(kυ) is non-singular then ευ = 1. Hence, we can assume that E has bad

reduction at υ, and calculate the infimum over the points of E(Kυ) which have

singular reduction modulo υ. To do this we define the following sequence of sets:

We define Ui for i = 1, 2, . . ., to be the set of all X (mod π2i) satisfying

1. f(X) ≡ 0 (mod π2i),

2. g(X) ≡ 0 (mod π2i−1), and

3. there exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ
2.

And we define Vi for i = 1, 2, . . ., to be the set of all X (mod π2i) satisfying

1. f(X) ≡ g(X) ≡ 0 (mod π2i),

2. there exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ
2.

Lemma 2.1.6 1. Suppose υ(2) = 0. If i ≥ 1 and Ui 6= ∅, then Vi = Ui and

π2i | ∆.

2. Suppose υ(2) = e > 0. If Ui 6= ∅ or Vi 6= ∅, then π2i | 4∆.

Proof. We recall the identity and the congruence we used in the proof of

Lemma (2.1.3) (on page 27)

4g(X) = (6X2 + b2X + b4)
2 − (8X + b2)f(X). (2.14)

[48X2 + 8b2X + (−b22 + 32b4)](6X
2 + b2X + b4)

2 ≡ −4∆ (mod f(X)). (2.15)
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It follows from the first that if υ(2) = 0, and X ∈ Ui, then

(6X2 + b2X + b4)
2 ≡ 0 (mod π2i)

and so π2i | g(X) and so X ∈ Vi. Further, by the congruence, π2i | ∆, and this

completes the proof of the first part. The proof of the second part is similar. 2

Corollary 2.1.1 If υ(2) = 0 and U1 = ∅ then ευ = 1. If Uj 6= ∅ and Uj+1 = ∅

then ευ = |π|v
−2j

.

Hence if υ(2) = 0 then we compute (Ui) explicitly for i = 1, 2, . . . until we reach

the empty set. Then the value of ευ is given by the above corollary. Here in

calculating the (Ui), it is needed to be able to test, given X (mod π2i), if there

exists X0 ∈ Kυ such that X ≡ X0 (mod π2i) and f(X0) ∈ Kυ
2. For this the

algorithm given in the Appendix A can be used.

Corollary 2.1.2 Suppose υ(2) 6= 0

1. If U1 = ∅ then ευ = 1.

2. If Uj 6= ∅ and Vj = ∅ then ευ = |π|v
−(2j−1)

.

3. If Vj 6= ∅ and Uj+1 = ∅ then ευ = |π|v
−2j

.

Hence if υ(2) 6= 0, then we compute (Uj) and (Vj) explicitly until one of them

is empty. Then we compute ευ from the above corollary.

2.1.5 The Height Modulo Torsion

As will be seen in the examples, curves where the bound obtained by Theo-

rem (2.1.1) is small tend to be those where the Tamagawa indices are trivial at

the larger primes which divide the discriminant. This is often not the case where

the torsion group is non-trivial. However the following Theorem will show us

how to exploit the torsion group in order to reduce the bound obtained.

Theorem 2.1.2 Under the notation and hypotheses of Theorem (2.1.1), let

υ1, . . . , υn be the (finitely many) valuations in MK where the quantities µυ log(ευ)
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are non-zero. Suppose (for some m ≤ n) that υ1, . . . , υm are non-archimedean

valuations such that E is minimal at each of them, and there exists a subgroup

H ≤ Tor(E(K)) such that H surjects onto E(Kυi
)/E0(Kυi

) (via the natural

map) for 1 ≤ i ≤ m. Then for each P ∈ E(K), there exists T ∈ H such that

h(P + T ) − ĥ(P ) ≤ 1
[K:Q]

(

|H|−1
|H|

)

(
∑m

i=1 µυnυ log(ευ))

+ 1
[K:Q]

(
∑n

i=m+1 µυnυ log(ευ)
)

.

(2.16)

Proof. Let

H = {T1, . . . , Tk} .

Given any P ∈ E(K), and 1 ≤ i ≤ m we must have at least one of P + Tj has

good reduction at υi. Hence, using Theorem (2.1.1), we get that

∑k
j=1 h(P + Tj) − ĥ(P ) =

∑k
j=1 h(P + Tj) − ĥ(P + Tj)

≤ 1
[K:Q]

(

∑n
i=1 µυi

nυi

∑k
j=1 log(ε(υi, P + Tj))

)

≤ k−1
[K:Q] (

∑m
i=1 µυi

nυi
ευi

) + k
[K:Q]

(
∑n

i=m+1 µυi
nυi

ευi

)

(2.17)

Hence, for one of the Tj we must have that

k(h(P + Tj) − ĥ(P )) ≤
k − 1

[K : Q]

(

m
∑

i=1

µυi
nυi

ευi

)

+
k

[K : Q]

(

n
∑

i=m+1

µυi
nυi

ευi

)

which gives us the statement of the Theorem 2

2.1.6 Examples

Example 2.1.1

E : Y 2 = X3 − 73705X − 7526231 (2.18)

We find that the equation is minimal and that its discriminant is

∆ = 1155136043932048 = 24 × 199× 362793983647

35



as a product of prime factors. Hence the Tamagawa indices will be 1, except

possibly at 2, and so from the definition on page 27, all the µp = 0 except

possibly for p = 2, or p = ∞. Using Pari/GP we find that the Tamagawa index

at 2 is 3. Hence µ2 = µ∞ = 1
3 . To use Theorem (2.1.1) it remains to calculate

ε2 and ε∞.

We find that

f = 4x3 − 294820x− 30104924 = 4(x3 − 73705x− 7526231)

and

g = x4 + 147410x2 + 60209848x+ 5432427025.

Now if g ≡ 0 (mod 2) then x is odd. But clearly, if x is odd then |f |2 =

1/4, and |g|2 ≤ 1/4. Moreover, (−137,−1) ∈ E(Q) ⊆ E(Q2) and |f(−137)| =

|g(−137)| = 1/4. Hence ε2 = 4.

In computing ε∞ we find

D∞ = ∅

and

D′
∞ = [−0.007299,−0.005691]∪ [0, 0.003198].

Using Lemma (2.1.4) we find ε∞ = 2.939442. Applying Lemma (2.1.1) we

get

h(P ) − ĥ(P ) ≤ 0.8215047. (2.19)

for all P ∈ E(Q).

Here we note that Silverman’s Theorem (1.1.3) gives a bound

h(P ) − ĥ(P ) ≤ 13.0242

Example 2.1.2 We begin with a curve of Mestre (quoted on page 234 of [Si2])

E : Y 2 + Y = X3 − 6349808647X + 193146346911036 (2.20)

The discriminant of this curve is

∆ = 60259× 550469× 11241887× 722983930261
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as a product of primes. Since it is not divisible by any squares we must have

that all constants µp = 0 for all finite primes p. By definition µ∞ = 1
3 and it

remains to determine ε∞. Hence we write D∞, and D′
∞ as unions of intervals

as described on page 30 :

D∞ = [−1, 1]

and

D′
∞ = [−1 , − 1.08780× 10−5] ∪ [0 , 2.02512× 10−5] ∪ [2.35024× 10−5 , 1].

Hence we find that d∞ ≈ 4 × 1019 and d′∞ = 0.1289169. So ε∞ = 7.75693 and

using Theorem (2.1.1) we get

h(P ) − ĥ(P ) ≤ µ∞ log(ε∞) = 0.68286 (2.21)

for all points P ∈ E(Q). We note here that Silverman’s theorem (1.1.3) gives

an upper bound of 21.7782 instead 0.68286.

It is apparent in the last two examples that the reason why the bound for

h(P ) − ĥ(P ) is so small is that all or almost all of the Tamagawa indices were

1. Here is an example where this is not the case:

Example 2.1.3 We compute the bound for the following curve which is given

by Thomas Kretschmer in [Kret] (page 633)

Y 2 +XY = X3 − 5818216808130X+ 5401285759982786436 (2.22)

The model given here is minimal and the discriminant is

∆ = 26 × 38 × 72 × 112 × 292 × 312 × 412 × 472 × 277891391058913

We compute the following table
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p cp µp εp

2 6 1/3 26

3 8 21/64 38

7 2 1/4 72

11 2 1/4 112

29 2 1/4 292

31 2 1/4 312

41 2 1/4 412

47 2 1/4 472

∞ - 1/3 518.48024

Hence we get

h(P ) − ĥ(P ) ≤ 15.70819.

In comparison Silverman’s bound is 27.5866.

Here we note that although our bound is much smaller than Silverman’s it is

still somewhat large for the purpose of the infinite descent (see the continuation

of this example on page 51). However we note that the reduction of the point of

order 2

Q = [1402932,−701466]

is singular at the primes 7, 11, 29, 31, 41, 47. Hence using Theorem (2.1.2)

we get that for all points P ∈ E(Q) there is a T ∈ {0, Q} such that

h(P + T )− ĥ(P ) ≤ 11.03099

2.2 The Canonical Height and Results from the

Geometry of Numbers

It is worth recalling at the outset of this section, that in the case when the

elliptic curve E has rank 1 over the number field K, the infinite descent can be

performed in a much easier way than that described in the introduction. This

is well known: suppose P ∈ E(K) has infinite order and and let us say that P
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generates E(K)/2E(K). Then, modulo torsion, P = nQ where n ≥ 1, and Q

generates the free part of E(K). Since P generates E(K)/2E(K), n cannot be

even and hence n = 1 or n ≥ 3. If n ≥ 3 then

ĥ(Q) ≤
1

9
ĥ(P )

and so, if P is not the generator of the free part of E(K), we will find a generator

in a much smaller region than that given by Zagier’s Theorem (1.1.2).

In this section we develop a general technique for the infinite descent which

is analogous to the reduction of the bound for the rank 1 case given above.

The inspiration for much of this comes from Manin’s Theorem (see [Ge, Zi]).

There it is shown, using the Geometry of Numbers, how an upper bound for

the regulator gives an upper bound for heights of generators of a sublattice of

full rank. Below, we shall use the Geometry of numbers to show how given a

basis for a sublattice of full rank, and a little extra information, we get an upper

bound on the index.

We shall employ the language of lattices. Following [Ge, Zi] we define

Ê(K) = E(K)/Tor(E(K)), where Tor(E(K)) is the torsion of E(K). Suppose

that P1, . . . , Pr generate a sublattice of Ê(K) of full rank (for example P1, . . . , Pr

could be a basis of Ê(K)/mÊ(K) for some m ≥ 1). Suppose that this sublattice

had index n. If n = 1, then of course, P1, . . . , Pr is a basis for Ê(K), and we

can easily recover a basis for E(K). We will define the height pairing matrix of

P1, . . . , Pr as follows:

H(P1, . . . , Pr) = (〈Pi, Pj〉)i,j=1,...,r (2.23)

where for all P , Q in E(K)

〈P,Q〉 =:
1

2
(ĥ(P +Q) − ĥ(P ) − ĥ(Q)) (2.24)

Let R(P1, . . . , Pr) be the determinant of the height pairing matrixH(P1, . . . , Pr).

If R is the regulator of E(K) it follows that

R =
1

n2
R(P1, . . . , Pr) (2.25)
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We recall that the regulator is roughly of the same order of magnitude as the

product of the canonical heights of some basis for Ê(K) (See, for example, the

proof of Manin’s theorem in [Ge, Zi]). Hence if the index n was very large we

would expect (by virtue of (2.25)) there to be points of Ê(K)−{0} of very small

canonical height. We make this idea precise. Roughly it tells us that if there

are no points of Ê(K) − {0} of height smaller than some lower bound, then we

can get an upper bound for the index n and hence reduce the infinite descent to

checking the index of P1, . . . , Pr in Ê(K). We make use of the following Lemma

from the Geometry of Numbers.

Lemma 2.2.1 (Hermite, Minkowski and others) Suppose

f(x) =

r
∑

i,j=1

fijxixj (2.26)

where (fij) is a symmetric positive definite matrix with determinant

D = det(fij) > 0. (2.27)

Then there exists a positive constant γr such that

inf
m6=0 integral

f(m) ≤ γrD
1
r (2.28)

Moreover we can take

γ1
1 = 1, γ2

2 = 4
3 , γ3

3 = 2, γ4
4 = 4,

γ5
5 = 8, γ6

6 = 64
3 , γ7

7 = 64, γ8
8 = 28

(2.29)

and for r ≥ 9

γr =

(

4

π

)

Γ
(r

2
+ 1
)

2
r

(2.30)

Proof. The Lemma with constant γr =
(

4
3

)

(r−1)
2 was originally due to Hermite.

The formula (2.28) with γr given for all r by (2.30) is the formula for the ‘first

Minima’ in Minkowski’s Second Theorem (see [Ca2] p260, and [Sieg1] p26 for

the formula (2.30)). The constants γ1, . . . , γ8 given above are, for 1 ≤ r ≤ 8,

the smallest constants which make the Lemma valid (See [Ca3] p332).
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I am unaware if the smallest possible values of γr have been determined for

any r ≥ 9. 2

Lemma 2.2.2 Let E be an elliptic curve defined over a number field K. Let R

be the regulator of E(K). If the rank r is ≥ 1 then there exists a point Q in

E(K) of infinite order such that

ĥ(Q) ≤ γrR
1
r (2.31)

Proof. Suppose Q1, . . . , Qr is a basis for Ê(K). If Q =
∑r

i=1 miQi then

ĥ(Q) =

r
∑

i,j=1

mimj < Qi, Qj > . (2.32)

Recall that the height pairing matrix H(Q1, . . . , Qr) = (< Qi, Qj >) is symmet-

ric positive definite, and its determinant is R, the regulator of E(K). It follows

from Lemma (2.28) that there exist an m 6= 0 integral such that

ĥ(Q) =





r
∑

i,j=1

mimj < Qi, Qj >



 ≤ γrR
1
r . (2.33)

Since Q1, . . . , Qr is a basis for Ê(K) and m 6= 0, Q must have infinite order,

and the Lemma now follows. 2

We now combine the above with the observation (2.25) to deduce the fol-

lowing theorem.

Theorem 2.2.1 Let E be an Elliptic curve defined over a number field K.

Suppose that E(K) contains no point Q of infinite order with canonical height

ĥ(Q) ≤ λ where λ is some positive real number. Suppose that P1, . . . , Pr generate

a sublattice of Ê(K) of full rank r ≥ 1. Then the index n of the span of P1, . . . , Pr

in Ê(K) satisfies

n ≤ R(P1, . . . , Pr)
1
2

(γr

λ

)
r
2

(2.34)

where R(P1, . . . , Pr) is the determinant of the height pairing matrix and

γ1
1 = 1, γ2

2 = 4
3 , γ3

3 = 2, γ4
4 = 4,

γ5
5 = 8, γ6

6 = 64
3 , γ7

7 = 64, γ8
8 = 28

(2.35)
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and for r ≥ 9

γr =

(

4

π

)

Γ
(r

2
+ 1
)

2
r

(2.36)

Proof. By Lemma (2.2.2), if R is the regulator of E(K) then there exists Q in

E(K) of infinite order such that

ĥ(Q) ≤ γrR
1
r .

It follows that

λ ≤ γrR
1
r .

But R = 1
n2R(P1, . . . , Pr). Hence

λr ≤
γr

rR(P1, . . . , Pr)

n2
.

Rearranging, we get the required inequality

n ≤ R(P1, . . . , Pr)
1
2

(γr

λ

)
r
2

.

2

2.3 A Sub-lattice Enlargement Procedure

Suppose we are given P1, . . . , Pr which is a basis for a sublattice of Ê(K) of

full rank. By the methods of the previous section, we can establish an upper

bound for n, the index of this sublattice in Ê(K). If n < 2, then it is clear that

P1, . . . , Pr is a basis for Ê(K) and the infinite descent is finished.

Suppose now that the method of the previous section gave us a bound n ≤ α

for some α ≥ 2. Here it is necessary to check, for each prime p ≤ α whether or

not the index n is divisible by p. Equivalently, we must determine if there exist

a1, . . . , ar ∈ Z, not all divisible by p. such that

∑

aiPi = pQ (2.37)

for some Q ∈ Ê(K).

It is clear that in checking this we can assume that |ai| ≤ p/2. This leaves us

with a finite number of equations of type (2.37) to solve. We explain how these
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may be solved later. However, as these equations can be many, it is useful to

start with some sieving. In practice, we have found the sieving described below

to be very effective.

2.3.1 Sieving

In the notation of above, given a prime p ≤ α, we let Pr+1, . . . , Pr+s be a basis

for Tor(E(K))/pTor(E(K)), where Tor(E(K)) is the torsion subgroup of E(K)

(and so typically s = 0). We let

Vp =

{

ā ∈ Fp
r+s : if a ∈ Zr+s and a ≡ ā (mod p) then

r+s
∑

i=1

aiPi ∈ pE(K)

}

It is clear the Vp is an Fp-linear subspace of Fp
r+s and that the index n is

divisible by p if and only if Vp 6= {0}.

Suppose that υ ∈M0
K is a prime such that:

1. E has good reduction at υ,

2. |E(kυ)| is divisible by p but not by p2.

Write |E(kυ)| = lp where p does not divide l.

We let π be a uniformizer at υ and compute P ′
i ≡ lPi (mod π). If P ′

i ≡ 0

(mod π) for i = 1, . . . , r + s, then the sieving modulo π, will give us nothing

and we should start with another υ ∈ MK satisfying the 2 conditions above.

However, suppose, say that P ′
1 is not 0 (mod π). We note that the subgroup

lE(kυ) of E(kυ) is cyclic of order p, and contains P ′
1, . . . , P

′
r+s; in particular

P ′
1 (mod π) generates lE(kυ). By computing the multiples of P ′

i (mod π),

we determine mi such that P ′
i ≡ miP

′
1 (mod π). Hence, if (ā1, . . . , ār+s) ∈ Vp,

we must have that
∑

miāi = 0 (2.38)

in Fp. This gives us a relation that must be satisfied by the vectors in Vp. If we

were to compute r + s independent relations by this method, then Vp = {0},

and the index would not be divisible by p.
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At the very least, our hope is that by sieving modulo a few of these prime

π, we have reduced Vp to being in a much smaller subspace of Fp
r+s, and so we

have considerably reduced the number of equations of type (2.37) to be checked.

Our method of sieving has an obvious gap, which is to find υ ∈ MK , for

which |E(kυ)| is divisible by p but not p2. At least the second assumption is

not always attainable (for example if Tor(E(K)) had a subgroup of order p2).

So we note that the assumption that p2 does not divide |E(kυ)| can be easily

circumvented after determining the structure of the p-Sylow subgroup of E(kυ),

as the reader may readily verify. However, the assumption that p divides |E(kυ)|

is essential to the idea of the sieving.

If primes υ ∈ MK satisfying the conditions above exist, we hope to uncover

some by computing sufficiently many |E(kυ)|. IfK = Q, then there exist efficient

methods of computing |E(Fq)| for primes q, and judging from [Cohen] (pages

396-398), these have become very impressive.

2.3.2 Solving the Equation P = pQ

If the sieving described above has not been entirely successful in proving that

Vp = {0}, then it will leave us with a subspace V ′
p of Fp

r+s, containing Vp (V ′
p is

simply the set of all solutions to the equations (2.38)). Here it is useful to take

a projective subset of V ′
p , which we denote by Sp; we will let Sp be a subset of

Zr+s\ {0} with the following properties

1. if (b1, . . . , br+s) ∈ Sp, then |bi| ≤ (p − 1)/2 unless p = 2 in which case

bi = 0 or 1,

2. for every (ā1, . . . , ār+s) ∈ Vp\ {0}, there exists exactly one (b1, . . . , br+s) ∈

Sp such that (ā1, . . . , ār+s) ≡ β(b1, . . . , br+s) (mod p) for some β ∈ Fp.

It is clear that all that remains is to check, for all (b1, . . . , br+s) ∈ Sp, if

r+s
∑

i=1

biPi = pQ (2.39)

for some Q ∈ E(K).
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For each (b1, . . . , br+s) ∈ Sp, the equation (2.39) has exactly p2 solutions in

E(C), and it is not at all difficult to find these p2 possible Q = (x, y) ∈ E(C)

with x, y ∈ C computed as accurately as is desired using elliptic logarithms

(see [Cohen]). This leaves us with the problem of deciding, given a sufficiently

accurate computation of x, y ∈ C, whether or not these are in our number field

K. We make use of the following Lemma.

Lemma 2.3.1 Suppose the elliptic curve E is given by Weierstrass equation (2.1)

with a1, . . . , a6 ∈ OK , and suppose that P = nQ, where P = (x1, y1) and

Q = (x2, y2) are on E(K)\ {0}. If υ ∈ M 0
K and υ(x2) < 0 then υ(x1) ≤ υ(x2).

Moreover, if c ∈ OK is such that cx1 ∈ OK , then cx2 ∈ OK .

Proof. Let E′ be the minimal Weierstrass equation at υ, and let (x′, y′) ∈

E′(Kυ) correspond to coordinates (x, y) ∈ E(Kυ). Then by [Si2] p172, there

exists u, r, t, s ∈ Oυ such that

x = u2x′ + r

y = u3y′ + u2sx′ + t.

If υ(x) < 0 then υ(x′) = υ(x)− 2υ(u), where υ(u) ≥ 0. Hence it is sufficient

to assume that υ(x′2) < 0 and show that υ(x′1) ≤ υ(x′2).

Let υ(x′2) = −2m, where m ∈ Z (as is well known, υ(x′2) < 0 implies that

3υ(x′2) = 2υ(y′2) and hence that υ(x′2) is even). Then the subset

E′
m(Kυ) = {(x′, y′) ∈ E′(Kυ) : υ(x′) ≤ −2m} ∪ {0}

is a subgroup of E′(Kυ) (see for example [Si2], p187). Hence P ′ ∈ E′
m(Kυ) and

υ(x′1) ≤ −2m = υ(x′2).

This concludes the proof of the first part of the Lemma. The second part is

now obvious. 2

Hence given (b1, . . . , br+s) ∈ Sp, we calculate P = (x1, y1) =
∑

biPi, and

find a c ∈ OK such that cx1 ∈ OK . If P = pQ, with Q = (x2, y2) ∈ OK ,

then cx2 ∈ OK by the above Lemma. So if we compute the p2 values x2
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accurately enough 1 we can determine if any of the cx2 is expressible as a Z-

linear combination of any Z-basis for OK , using an LLL-based algorithm such

as the one given on page 100 of [Cohen]. (Of course, if K = Q, then we can

be much more down to earth. We simply calculate the x2s accurately enough

to see if any of cx2 is an integer to many decimal places.) If any cx2 seems to

equal an element a ∈ OK , then we can substitute a/c for x in the equation for

E and ask if there is a solution y ∈ K.

If we have found that none of the equations (2.39) is soluble with Q ∈ E(K),

then we have proven that the index is not divisible by p, and we can proceed

to the next prime until we reach α, our upper bound for the index. However,

if we find that
∑

biPi = pQ with Q ∈ E(K), then there is a 1 ≤ j ≤ r, such

that p does not divide bj . Here we replace Pj by Q. The index of the sublattice

generated by the new P1, . . . , Pr in Ê(K) is ≤ α/p. In any case, we continue

until we get to show that the index is 1.

2.4 Examples

Example 2.4.1 Here we return to our Example on page 35

E : Y 2 = X3 − 73705X − 7526231.

We recall that we established

h(P ) − ĥ(P ) ≤ 0.8215 (2.40)

for all P ∈ E(Q). It is easy to show that this curve has no torsion. Using

Cremona’s program mwrank, we found that the 2-part of the Tate-Shafarevich

group is trivial, that the rank is 4, and that a basis for E(Q)/2E(Q) is

P1 = (−137,−1), P2 = (−157,−419), P3 = (−175,−113), P4 = (413,−5699);

1Here, if K has a real embedding, then it is useful to replace K with a real conjugate field

at the beginning of the computation, and so reject all the values of x2 which are not real

(taking into account that floating-point arithmetic a real number is one with a very small

imaginary part!).
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this the program did in approximately 1.5 minutes.

The determinant of the height pairing matrix of P1, . . . , P4 is 248.987. We

search for points of logarithmic height ≤ 5 using Cremona’s program findinf.

The search takes a few seconds and turns up only one point: P1 = (−137,−1).

This has canonical height 4.41996. We note that had there been any point of

canonical height ≤ 4.1, then its logarithmic height would have been ≤ 4.1 +

0.8215 < 5 and would have been uncovered by the search. Hence there are no

points of canonical height ≤ 4.1. Using Theorem (2.2.1) we find that the index of

the span of P1, . . . , P4 is ≤ 1.88 . Hence we have found the Mordell-Weil group.

Next we compare our method to that outlined in the introduction. We recall

that if (X,Y ) ∈ E(Q), then we can write X = x/z2 where x, z ∈ Z. Hence to

search up to logarithmic height 5, our search region on x, z is

−148 ≤ x ≤ 148, 1 ≤ z ≤ 12.

We note that had we used Zagier’s (1.1.2) on page 10, we would be required to

enumerate all the points on E(Q) of canonical height ≤ 13.5831. If we combine

this with our estimate (2.40) above, we must list all points with logarithmic

height 14.4046. The corresponding search region is

−1802346 ≤ x ≤ 1802346, 1 ≤ z ≤ 1321.

To search this region is possible using a well written program such as findinf

mentioned above, but this would take a few hours on a work station.

Moreover we note that if we had to use Silverman’s bound on the difference

h(P ) − ĥ(P ) as well as Zagier’s Lemma we would have to search for all points

on E(Q) with logarithmic height ≤ 26.6073. Then the search region would be

−359255618029≤ x ≤ 359255618029, 1 ≤ z ≤ 599379.

Finally, at the suggestion of Dr Cremona, we compute the following table to

give another illustration of how effective our bound (2.40) is.
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P h(P ) ĥ(P ) h(P ) − ĥ(P )

P1 4.9199809 4.4199587 0.50002214

P2 5.0562458 4.4416097 0.61463607

P3 5.1647859 4.4605122 0.70427372

P4 6.0234476 5.8817481 0.14169942

Example 2.4.2 We return here to Mestre’s curve:

E : Y 2 + Y = X3 − 6349808647X + 193146346911036 (2.41)

We recall that on page 36 we proved that

h(P ) − ĥ(P ) ≤ 0.682862 (2.42)

for all points P ∈ E(Q). Mestre (see [Mestre]) has shown that this curve has

rank at least 12 and has given 12 independent points (Mestre in fact gave a non-

minimal model of the curve, and the equation (2.41) which we will work with

is the minimal model). Moreover he has shown that the standard conjectures 2

imply that the rank is 12. Here we will not take on the task of determining the

rank unconditionally 3; we will simply assume that the rank is 12, and obtain a

basis from the points given by Mestre. Here is a list of the points that Mestre gave

(after applying the change of variable which takes the points onto our minimal

model (2.41)):

P1 = [49421, 200114], P2 = [49493, 333458], P3 = [49513, 362258],

P4 = [49632, 502899], P5 = [49667, 538049], P6 = [49797, 654674],

P7 = [49899, 735713], P8 = [50012, 818375], P9 = [50165, 921837],

P10 = [50215, 954017], P11 = [50823, 1305633], P12 = [51108, 1454591].

2The Birch and Swinnerton-Dyer conjecture, the Taniyama-Weil conjecture, and a suitable

Riemann hypothesis.
3Here mwrank would take too long. In the absence of 2-torsion, mwrank uses the algorithm

for 2-descent described in [Bi, SwD] and in [Cre] pages 68-76. In this algorithm the size of the

search region for the homogeneous spaces is roughly proportional to the square root of the

discriminant of the elliptic curve. In cases where the discriminant is very large, such as that

for Mestre’s curve above, the algorithm is no longer practical. Unfortunately there does not

seem to be any unconditional algorithm suited for determining Mordell-Weil groups of curves

of large discriminant and no torsion.
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Here we proceeded with the sieving first. We used Pari/GP, which calculates

|E(Fq)| for prime q using the Shanks-Mestre algorithm (see [Cohen] page 397).

We found that it took roughly 1 second to compute |E(Fq)| for the first 200

primes q (i.e. for all the primes ≤ 1223). We wrote a program which does the

following: for each prime 2 ≤ p ≤ 11 it lists all the primes q ≤ 1223 for which

|E(Fq)| is divisible by p but not p2 as recommended by our sieving algorithm

on page 43. Next, for each prime q satisfying these conditions, it computes a

relation modulo p, which must be satisfied by the vectors in Vp as defined on

page 43 using the idea described there; if it finds 12 independent relations then

the rank of Vp is 0 and the index is not divisible by p. For each of the primes p,

the program continues computing relations until the rank of the relations is 12

or until there are no more prime q ≤ 1223 satisfying the conditions described.

The program took roughly 25 seconds to run and output that for all the primes

p ≤ 11 the rank of relations found is 12 except for p = 2 where the rank was 10.

We note that there are 47 primes q in the above range satisfying the criterion

that 2 divides |E(Fq)| but 4 does not. Hence it seems very probable that the

index is divisible by 2. Calculating the kernel of the relations obtained we get

that

V ′
2 = span {(1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0), (1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1)} (mod 2).

Hence we want to test if any of the 3 points P1 + P4 + P5 + P7 + P9 + P10,

P1 +P4 +P5 +P8 +P12, P7 +P8 +P9 +P10 +P12 is 2-divisible in E(Q). Using

Pari/GP we calculate the periods of E and the 2-division points of the first 2

points. We get for each one a division point which is integral to 50 decimal

places. We checked that these give us integral points on the curve. We replace

our old P7, and P8 with these two new points:

P7 = [38756,−2294721]

P8 = [208314, 88938858],

thus gaining index 4.

We repeat the sieving for p = 2. This time the rank of relations obtained for

p = 2 is 11. We find that if the index is still divisible by 2 then P3 + P5 + P6 +
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P8 + P10 + P11 + P12 must be 2-divisible in E(Q). Here none of the 2-division

points were integral and we used Lemma (2.3.1) to recover a rational 2-division

point. This becomes our new P3:

P3 =

[

2739835340

5041
,
141949849330392

357911

]

.

Repeating the sieving described for p = 2 we find get that the rank of relations

obtained is 12, and hence the index of the span of our new P1, . . . , P12 is not

divisible by 2. Moreover, this index is not divisible by any prime 3 ≤ p ≤ 11

since the index of the span of the original points was not.

We return to the sieving again. We calculate |E(Fq)| for the first 2500

primes q (i.e. all the primes q ≤ 22307), and we extend our range for the prime

p to all the primes ≤ 200. It took Pari/GP roughly 25 seconds to compute all

the |E(Fq)| for all the primes q ≤ 22307. Our program this time took about 10

minutes to stop. In each case the rank of relations computed was 12 except for

p = 167, 179, 191 where the ranks were respectively 8, 10, 10. Hence if the

index of the span of our new P1, . . . , P12 is not 1, then it must be ≥ 167.

The determinant of the height matrix of P1, . . . , P12 is

R(P1, . . . , P12) = 586593208.77747

and computing γ12 we get 3.81181 according to formula (2.36) . Hence Theo-

rem (2.2.1) gives us that if there are no rational points on E with canonical

height ≤ λ then the index of the span of P1, . . . , P12 in E(Q) satisfies:

n ≤
74295365.4988

λ6
.

Using this inequality we find that if there were no points of canonical height

≤ 8.73 then the index would be ≤ 166.9 and we would be finished. Using the

inequality (2.42) we see that we need to find all points of logarithmic height

≤ 9.41. We used Cremona’s program findinf and found none in that range of

canonical height ≤ 8.73 (the program took roughly 5 minutes to list all the points

of logarithmic height ≤ 9.41). Hence the points listed below form a basis assum-

ing that the rank (as predicted by the Birch and Swinnerton-Dyer conjecture) is
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12:

P1 = [49421, 200114], P2 = [49493, 333458], P3 =
[

2739835340
5041 , 141949849330392

357911

]

,

P4 = [49632, 502899], P5 = [49667, 538049], P6 = [49797, 654674],

P7 = [38756, − 2294721], P8 = [208314, 88938858], P9 = [50165, 921837],

P10 = [50215, 954017], P11 = [50823, 1305633], P12 = [51108, 1454591].

Example 2.4.3 Here we return to the curve

Y 2 +XY = X3 − 5818216808130X+ 5401285759982786436 (2.43)

In [Kret] Kretchmer gave this as a curve of (exact) rank 8 with torsion of order

2, but did not give the points he found on the curve. We used Cremona’s program

mwrank and it gave a basis for E(Q)/2E(Q):

P1 = [1410240, − 29977314], P2 = [1704648, − 661672482],

P3 = [1421184, − 55353570], P4 = [259761720/125, − 189069355038/125],

P5 = [4740024, 9180268266], P6 = [975216, 808674546],

P7 = [7028688, − 17659711842], P8 = [3418038804/289, 195936026213238/4913],

Q = [1402932, − 701466],

where P1, . . . , P8 are of infinite order and Q is a point of order 2. Here it is

easy to show that there are no other torsion points. It remains to complete the

infinite descent.

Of course the index of the span of the points above is not divisible by 2 since

the points are independent modulo 2E(Q). Sieving (as in the above example)

with roughly 200 primes (here we excluded all the primes of bad reduction), we

were able to show that the index of the span of the given points is not divisible by

5, 7, 11, 13 and detected a possibly 3-divisible linear combination of the points.

We found

P4 − P5 − P6 − P7 + P8 = 3 [−2623596,−1613325930]

and hence replacing P8 by

P8 = [−2623596,−1613325930]

51



we reduce the index by 3. Repeating the sieving we found that the new index is

not divisible by 3. Now we continued the sieving using 15000 primes q and our

program proved that the index is not divisible by any prime p less than 500 (this

took roughly 30 minutes).

The determinant of the height pairing matrix of the new P1, . . . , P8 is

184808.298. Using Theorem (2.2.1) it is now sufficient to show that there are

no points of canonical height ≤ 1.96 whence it would follow that the index is 1.

Here we recall that we proved that

h(P ) − ĥ(P ) ≤ 15.70819.

and so that to check that there are no points of canonical height ≤ 1.96 using

this it would be necessary to uncover all the points of logarithmic height ≤ 17.67.

We expect that this computation would take roughly 10 days. However we also

proved that for any point P there is a point T which is either 0 or Q such that

h(P + T )− ĥ(P ) ≤ 11.03099 (2.44)

Now it is sufficient to enumerate all the points of logarithmic height ≤ 13 and

check that none have canonical height ≤ 1.96. We did this in roughly 45 minutes

using findinf. Hence it follows that

P1 = [1410240, − 29977314], P2 = [1704648, − 661672482],

P3 = [1421184, − 55353570], P4 = [259761720/125, − 189069355038/125],

P5 = [4740024, 9180268266], P6 = [975216, 808674546],

P7 = [7028688, − 17659711842], P8 = [−2623596, − 1613325930]

Q = [1402932, − 701466],

is a basis for E(Q).

Finally we would like to point out that we were able to obtain the bound (2.44)

using the fact that the torsion group surjects onto E(Qp)/E
0(Qp) for most of

the primes where the Tamagawa index is not 1. Since this will not be be the case

for most curves we would like to illustrate a third method which can be used

to complete the infinite descent when the bound for h(P ) − ĥ(P ) is too large.

We note that for all the non-archimedean primes except 2 and 3, the Tamagawa
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index is either 1 or 2 (see the table on page (2.1.3)). In any case, if P ∈

E(Q) was of infinite order, and had canonical height ≤ 1.96, then 2P will have

canonical height ≤ 7.84 and will have good reduction at all the non-archimedean

primes except possibly at 2 or 3. Hence, in the notation of Theorem (2.1.1) we

have

ε(p, 2P ) = 1

for all primes p 6= 2, 3, ∞ and

ε(p, 2P ) ≤ εp

for p = 2, 3, ∞. Using the values of εp given in the table on page (2.1.3) for

the primes p = 2, 3, ∞ and Theorem (2.1.1) we get

h(2P ) − ĥ(2P ) ≤ 6.39956.

Hence to uncover 2P we need to find all points of logarithmic height ≤ 14.24 and

this would not take much longer than the search we have already done. Finally

we would have to test each point found with canonical height ≤ 7.84 to see if it

is twice a point.
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Chapter 3

Computing the 2-Selmer

Group of an Elliptic Curve

When trying to compute the Mordell-Weil group of an elliptic curve one nor-

mally first computes the 2-Selmer group. This is a group which contains a

subgroup isomorphic to E(Q)/2E(Q). Whilst computing the 2-Selmer group is

certainly an effective procedure there is no known effective procedure for com-

puting the subgroup isomorphic to E(Q)/2E(Q). However all is not lost as at

least the 2-Selmer group gives one an upper bound on the rank of the elliptic

curve. We set

LD(α, β) = (e(log D)α(log log D)1−α

)β+o(1).

This is a function which interpolates between polynomial time, α = 0, and

exponential time, α = 1. In this chapter we show the complexity of computing

the 2-Selmer group is O(LD(0.5, c1)) where D denotes the absolute discriminant

of the elliptic curve.

Let E be our elliptic curve given by

E : Y 2 = X3 +AX +B.

We shall assume that the elliptic curve has no points of order 2 defined over

Q. This is certainly the most difficult case for finding the 2-Selmer group. The
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modern method of computing the 2-Selmer group in this case goes back to the

paper of Birch and Swinnerton-Dyer, [Bi, SwD]. In their method a search is

carried out for the quartics which represent the homogeneous spaces given their

invariants. As we noted in the Introduction (page 12), this method is certainly

fast for small values of D, however it is not hard to see that its complexity is at

least O(
√

|D|), [Bi, SwD][Page 11]. In the present chapter we shall show how

the “old-fashioned” technique which is the basis for Weil’s proof of the Mordell-

Weil Theorem combined with a method derived from a paper of Brumer and

Kramer, [Brum, Kra], will determine the 2-Selmer group in our stated time.

Our complexity is therefore much better than the Birch and Swinnerton-Dyer

algorithm.

As we have pointed out already, this chapter is based on joint work with Dr

N. Smart.

We let S denote the set of primes dividing 2D, we note that this has

cardinality O(logD). Let K denote the number field generated by θ where

θ3 +Aθ+B = 0. We will let R denote the set of primes of K lying above those

in S as well as the infinite primes. As usual we let K(R, 2) denote the group of

all elements of K∗/K∗2 such that by adjoining a square root of an element of

K(R, 2) to K one obtains an extension of K unramified outside R. Equivalently

we have

K(R, 2) = {α ∈ K∗/K∗2 : ord℘(α) ≡ 0 (mod 2) if ℘ 6∈ R.}. (3.1)

One can show (see for example Exercise 10.9 on page 320 of [Si2]), that K(R, 2)

contains the 2-Selmer group. We first find K(R, 2) and then reduce it to the

2-Selmer group.

3.1 The Method of Brumer and Kramer

For each prime p ∈ S ∪ {∞} we define

Kp = Qp[T ]/(f(T )) = Qp(t)
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where (f(T )) is the ideal in Qp[T ] generated by f(T ) = T 3 + AT + B, and

t = T + (f(T )). Just as in the classical case of the 2-descent over Q we have an

embedding

E(Qp)/2E(Qp) → K∗
p/K

∗
p
2 (3.2)

with the usual definition ofK∗
p/K

∗
p
2. Here, for each prime p we have the following

diagram

0 −→ E(Q)/2E(Q)
X−t
−→ K(R, 2)





y





y

0 −→ E(Qp)/2E(Qp)
X−t
−→ K∗

p/K
∗
p
2.

(3.3)

We denote the natural map from K(R, 2) to K∗
p/K

∗
p
2 by σ.

For each prime p ∈ S ∪ {∞} we let Up be the image of E(Qp)/2E(Qp) in

K∗
p/K

∗
p
2 under the mapping (3.2). In [Brum, Kra] Brumer and Kramer showed

that the Selmer group is the maximal subgroup of K(R, 2) whose image under

the natural map σ is contained in Up for all primes p ∈ S ∪ {∞}. Ostensibly,

to use this method for the computation of the 2-Selmer group, one must first

calculate E(Qp)/2E(Qp) for each prime p ∈ S ∪ {∞}. However, we have found

this mildly troublesome, and indeed what is really needed is to compute the

images Up. We note that the size of K∗
p/K

∗
p
2 is bounded for all primes p and

all (cubic) polynomials f .

To determine Up it is sufficient to take each element of K∗
p/K

∗
p
2 which has

norm in Q∗
p
2

and determine whether or not it is in Up. As in the classical case

(see page 65) this leads to a homogeneous space as the intersection of 2 quadric

surfaces, and here all that is required is to check their solubility over the local

field Qp. This can be done by the polynomial time algorithm given in Chapters 5

and 6 1; these algorithms are non-constructive (they do not give points on the

homogeneous space but simply determine whether or not they have a point

defined over Qp, which is all that is needed here).

1It is to be noted here that any homogeneous spaces (over Qp) arising here will be the

intersection of 2 quadric surfaces, one of which is singular. Hence if p 6= 2,∞ then we can use

our polynomial time algorithm in Section 5.3
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3.2 Finding K(R, 2)

It will be seen later that determining K(R, 2) is useful for our higher descents

which we describe in the next chapter. But there K will not necessarily be a

cubic field. We should also point out that the above method of Brumer and

Kramer has been applied to computing the Mordell-Weil group of Jacobians of

hyperelliptic curves of higher genus by Schaefer [Scha], where again the field K

is not necessarily cubic. Hence for the purpose of this section we will assume

that K is a general number field with absolute discriminant D, and R is a finite

set of valuations on K which includes all those at infinity. It should be noted

however, that some of the complexity analysis is valid only for the case where

|R| = O(log(D)). We shall assume that we are given an integral basis for the

maximal order of K and generators for the unit and class groups. To determine

this information will take time O(LD(0.5, c2)) as computing a basis for the

maximal order can be done in time O(LD(1/3, c3)), [Bu, Len], and computing

the unit and class groups can be done in time O(LD(0.5, c2)), [Buch] assuming

GRH and a certain conjecture about the number of reduced smooth ideals of a

number field. The class group ClK is then presented as a set of ideals c1, . . . , cg

and integers si with si−1|si, such that, if for an ideal a we denote by a the image

of a in the class group, we have

ClK ∼= 〈c1〉 × . . .× 〈cg〉 ,

with 〈ci〉 ∼= Z/siZ. We denote by η1, . . . , ηr a set of r fundamental units for K.

Given an ideal of K then using the basis of the relation lattice which was used

in computing the class group one can determine whether the ideal is principal

and if so compute a generator in time O(LD(0.5, c4)) (see [Buch]). We note that

in general one cannot write down the elements we require in polynomial time

when we express them in standard representation so throughout we assume all

elements are in a compact representation, see [Thiel]. We now give the algorithm

to compute K(R, 2) as a product of cyclic groups of order 2. Let the finite prime

ideals in R be denoted ℘1, . . . , ℘t.

Suppose α ∈ K(R, 2). Then by the definition (3.1) above (α) = ab2 where
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a|(2D). Let F be the group of fractional ideals. We have a homomorphism

φ : K(R, 2) → F/F2

given by α → (α)F2. Clearly the image of φ is contained in the group

H1 =
〈

℘1F
2
〉

× . . .×
〈

℘nF
2
〉

.

Let

H2 =
{

dF2 ∈ H1 : dF2 = (γ)F2 for some γ ∈ K∗
}

.

Clearly Im(φ) = H2. We want to show how to calculate H2 and then how to

refine it to obtain K(R, 2) as a product of cyclic groups of order 2. We assume

that for each ℘i that we can write

℘j =

g
∏

i=1

ci
bij ;

this can be done by the method in [Buch] in time O(LD(0.5, c4)). Suppose

dF2 ∈ H2, then we can take d =
∏n

j=1 ℘j
aj . Hence

d =

g
∏

i=1

ci
ei ,

where ei =
∑n

j=1 ajbij . Suppose that s1, . . . , sk are odd, and sk+1, . . . , sg are

even. Then dF2 lies in H2 if and only if
∑n

j=1 ajbij ≡ 0 (mod 2) for i =

k + 1, . . . , g.

By a computing an F2-basis for the subspace of the vectors (a1, . . . , an) in

F
n
2 which satisfy the congruences above, we get a basis for H2. Further we

may replace the representative of each element of this basis by one which is a

principal ideal as follows: Suppose d is such a representative which we want

to replace by a principal ideal. By construction of this basis we know d as a

product of the ℘i and hence we can write d =
∏

ci
ui where uk+1, . . . , ug are

even. Now since s1, . . . , sk are odd we can find t1, . . . , tk such that ui + 2ti ≡ 0

(mod si) for i = 1, . . . , k. We take tj = −uj/2 for j = k + 1, . . . , g. Hence we

have that

d

g
∏

i=1

ci
2ti = (α)
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for some α ∈ K∗. This α can be computed in time O(LD(0.5, c4)) as we stated

above. Hence we can write

H2 =
〈

(α1)F
2
〉

× . . .×
〈

(αn)F2
〉

for some α1, . . . , αn ∈ K∗.

Lemma 3.2.1 Let b1, . . . , bl be an F2-basis for Cl[2]. Write bi
2 = (βi). Then

α1K
∗2, . . . , αnK

∗2, β1K
∗2, . . . , βlK

∗2, η1K
∗2, . . . , ηrK

∗2, ηr+1K
∗2 (3.4)

is a basis for K(R, 2), where η1, . . . , ηr is a system of fundamental units for K,

and we take ηr+1 a generator for the roots of unity.

Proof. It is clear that the elements of the list above generate K(R, 2). What

remains is to show that these are independent. Suppose that

n
∏

i=1

αi
ai

l
∏

i=1

βi
bi

r+1
∏

i=1

ηi
ci ∈ K∗2

where the a’s, b’s, c’s, are in {0, 1}. Then
∏

((αi)F2)ai = (1)F2 which implies

that ai = 0 for i = 1, . . . , n. Hence we can now assume that

l
∏

i=1

βi
bi

r+1
∏

i=1

ηi
ci ∈ K∗2.

Hence
∏

bi
2bi = (ε)2 where ε ∈ K∗, i.e.

∏

bi
bi = (ε), so bi = 0. The result now

follows. 2

Lemma 3.2.2 The complexity of finding K(R, 2) as a product of cyclic groups

of order 2 is given by O(LD(0.5, c1)).

Proof. We note that the number of ideals ℘i dividing (2D) is O([K : Q] logD).

The number of elements in a basis of Cl[2] is O(log(hK)) = O(log(D)). Hence

the number of ideals that we need to check to be principal is a polynomial

function in logD. As we stated earlier for each ideal this can be done in time

O(LD(0.5, c4)) by an algorithm which will also produce a generator of any prin-

cipal ideal found. The desired complexity then follows. 2
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3.3 Computing The 2-Selmer Group

We return now to the special case where K is a cubic field arising from our

elliptic curve E. For each element of K(R, 2) we eliminate those elements which

do not lie in the image of σ in diagram (3.3) for all p ∈ S ∪ {∞}. Suppose we

know that the Selmer group is a subgroup of some group

〈k1〉 × . . .× 〈kv〉 ≤ K(R, 2)

where the 〈ki〉 are cyclic groups of order 2 (it is understood that the ki are in

fact kiK
∗2). Consider any prime p ∈ S∪{∞}; recall that we denoted the image

of the map

E(Qp)/2E(Qp) → K∗
p/K

∗
p
2 (3.5)

by Up. To determine the Selmer group we want to determine the maximal

subgroup of 〈k1〉 × . . . × 〈kv〉 whose image under σ is in Up for all primes p;

obviously we need only consider those primes which divide 2D and the infinite

prime. This idea we find explained in [Brum, Kra] or [Scha] as we have already

stated.

Lemma 3.3.1 The image of an element of K(R, 2) under σ can be checked to

lie in Up in polynomial time.

Proof. Suppose X3 +AX +B has three roots in Qp and p > 2; then

Up ≤ Qp
∗/Qp

∗2 × Qp
∗/Qp

∗2 × Qp
∗/Qp

∗2.

There are at most four elements of Qp
∗/Qp

∗2 and |Up| has order O(1).

We therefore have O(1) tests to perform as to whether an element of Qp is a

p-adic square. This can certainly be done in polynomial time. The other cases

are similar. 2

For i = 1, . . . , v, we define the subgroup Si of 〈k1〉 × . . . × 〈ki〉 to be the

maximal subgroup of 〈k1〉 × . . .× 〈ki〉 whose image under σ is in Up. We let

b1, . . . , bji
∈ 〈k1〉 × . . .× 〈ki〉
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be such that

Hi := 〈b1Si〉 × . . .× 〈bji
Si〉 = (〈k1〉 × . . .× 〈ki〉) /Si.

Notice that |Hi| = O(1). This is because |E(Qp)/2E(Qp)| = O(1). Hence if

there were too many bj then there would exist a relation of the form

σ(b1
s1) . . . σ(bji

sji ) = identity of K∗
p/K

∗
p
2

where the sj ∈ {0, 1} and not all sj = 0. But certainly the identity is in the

image of the map (3.2). Hence b1
s1 . . . bji

sji is in Si giving a contradiction.

Hence as we claimed |Hi| = O(1).

Now we determine the Si and Hi recursively. To determine S1 simply check

if the image of k1 is in Up. If it is then S1
∼= 〈k1〉 and H1

∼= {S1}. If it is not

then S1
∼= {identity}, and H1

∼= 〈k1S1〉.

Suppose we have determined Si and the Hi. To determine Si+1 and Hi+1

we check if

σ(b1
s1) . . . σ(bji

sji )σ(ki+1) (3.6)

is in Up for any sj = 0 or 1. If none of these are in Up then Si+1 = Si, and

Hi+1 = 〈b1Si+1〉 × . . .× 〈bji
Si+1〉 × 〈ki+1Si+1〉 .

If, on the other hand, the expression (3.6) is in Up for some choice of sj = 0 or

1 (there can be at most one such choice), then

Si+1
∼= Si × 〈b1

s1 . . . bji

sji ki+1〉

and

Hi+1
∼= 〈b1Si+1〉 × . . .× 〈bji

Si+1〉 .

The number of choices of bj that we have is O(1) as |Hi| = O(1). Hence we

can determine Sk as a product of cyclic groups all of order 2. The time to do

this is then polynomial in logD via Lemma 3.3.1

Now to determine the Selmer group, we start with K(R, 2) expressed as a

product of cyclic groups. For our primes p1, . . . , pr dividing 2D we start with p1
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and we determine as above the maximal subgroup Vp1 ≤ K(R, 2) whose image

under σ = σp1 which is contained in Up1 . Our construction will give us Vp1 as

a product of cyclic groups of order 2. This will certainly contain the Selmer

group. We now discard K(R, 2) and find the maximal subgroup of Vp1 whose

image under σp2 is contained in Up2 . Doing this recursively we arrive at the

Selmer group as soon as we have carried out the above construction for all of

p1, . . . , pr and also the infinite prime.

If we have K(R, 2) as a product of cyclic groups of order 2 then we will find

the Selmer group in polynomial time. Hence the total complexity is given by

the complexity of finding K(R, 2).

62



Chapter 4

Descents on the

Intersections of 2 Quadrics

4.1 Introduction

Let us briefly review the progress made so far with the problem of comput-

ing the Mordell-Weil group of an elliptic curve. We have shown, jointly with

N. Smart, how the 2-Selmer group may be computed efficiently (at least in

theory) for an elliptic curve defined over Q. We have also given practical meth-

ods for performing the infinite descent. We want to show how to determine

the coset representatives for E(Q)/2E(Q) once we have computed the Selmer

group. Equivalently, we want to determine which of the homogeneous spaces

representing the 2-Selmer group has a rational point on it. This is an unsolved

problem, and one which we have failed to solve.

Hopefully, a computer search will find rational points on all of the homoge-

neous spaces representing the 2-Selmer group and this would give us the coset

representatives for E(Q)/2E(Q). Occasionally we will not be able to find ratio-

nal points on some of the homogeneous spaces representing the 2-Selmer group.

Here we have two possibilities:
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1. The homogeneous space, though everywhere locally soluble, has no global

points. Unfortunately, there is no local-to-global principle for curves of

genus 1 (see, say [Ca1] pages 85-88).

2. The homogeneous space, has global (i.e. rational) points but these are too

large to be found by a naive computer search.

Here, in order to try to find out if the homogeneous space has points on it we

will use what is referred to as ‘higher descents’. It is appropriate here to explain

what is meant by a descent (Compare this to [Ca4] p205): Given a homogeneous

spaceD we construct other curvesD1, . . . , Dn and rational maps (which are also

defined over Q) φi : Di → D (of degree > 1) such that for all P ∈ D(Q) there

would exist Q ∈ Di(Q) for some i such that φi(Q) = P . We will sometimes

refer to D as the ‘parent’, and the Di as the ‘descendants’. 1

Of course, if we discover that none of the Di is everywhere locally soluble,

then D cannot have a rational point and we would be finished. If a search

reveals a rational point Q on one of the Di then φi(Q) is a rational point on D

and we are finished.

Our hope is that the method of constructing the curves Di and the maps φi

will be recursive. Since deg(φi) > 1, we expect that if there is a rational point

P on D(Q) and if P = φi(Q), Q ∈ Di(Q), then the (logarithmic) height of Q

will be smaller than that of P and hence it will be easier to find a rational point

on Di.

Repeating this process, and rejecting at each stage the Di which are not

everywhere locally soluble, we hope to finally arrive at some curve Di which has

a small rational point or prove that D does not have a rational point.

The basic idea behind such methods is known and has been used to treat par-

ticular families of elliptic curves (see for example [Brem, Ca], [Brem], [Str, Top]).

However, our exposition will be in a more general setting, allowing the meth-

1In the descents which we will study in this chapter, our descendant curves Di, will always

be intersections of two quadric surfaces in P3. Our D will always be a curve genus 1, and it

follows from Theorem B.0.3 that the intersection of the 2 quadric surfaces is in fact transverse,

and that Di is a curve of genus 1.
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ods to be better understood and applied. Moreover, we will give new faster

algorithms for testing the curves Di for local solubility.

It should be clear that there is no guarantee for such a method to succeed in

deciding whether a particular homogeneous space D has a rational point or not

(see [Brem, Bue] and our Chapter (4.8)). But such methods are often effective,

and at the very least we hope to have minimized the possibility of failure.

In theory, it happens to be no extra trouble for us to consider these descents

over a general number field K, and we will do this. However, we will always

assume that we can determine the class group and fundamental units of the

number fields we use.

4.2 The Homogeneous Spaces for the 2-Descent

Suppose E is an elliptic curve defined over the number field K and given by the

equation

y2 = f(x) (4.1)

where f(x) = x3 +Ax+B is a polynomial over K with no repeated roots. Let

L be the algebra

L = K[T ]/(f(T )),

and let Θ be the image of T under the natural homomorphism

K[T ] → L.

We recall that we have an group homomorphism (see [Ca1] page 66 or [Ca6]

page 31)

α : E(K) → L∗/L∗2 (4.2)

given explicitly by

P = (x, y) → (x− Θ)L∗2. (4.3)

This homomorphism has as its kernel 2E(K). Moreover, the image of this

homomorphism is contained in the 2-Selmer group which we regard as a (finite)

subgroup of L∗/L∗2. We assume that we have already determined the 2-Selmer
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group which we will denote by S. For each element of S we would like to know

if this element can be expressed as α(P ) for some P ∈ E(K). If s1, . . . , sn are

the elements of S which can be so expressed, and if say siL
∗2 = α(Pi) where

the Pi ∈ E(K) then P1, . . . , Pn is a complete set of coset representatives for

E(K)/2E(K).

Hence we would like to know, for each s ∈ S if it is possible for us to have

(x− Θ) = sε2 (4.4)

for some x ∈ K and ε ∈ L, and if so determine the x (and ε) explicitly. Now

any such ε can be written in the form

ε = u1 + u2Θ + u3Θ
2

where u1, u2, u3 ∈ K. Substituting in equation (4.4) and comparing coefficients

of 1, Θ, Θ2 we get

Q1(u1, u2, u3) = x

Q2(u1, u2, u3) = −1

Q3(u1, u2, u3) = 0.















(4.5)

Here we would solve our problem for the particular s if and only if we can find

a simultaneous solution to the last two equations above. Thus our ‘homogeneous

space’ is an intersection of 2 quadric surfaces in four (homogeneous) variables:

Q2(u1, u2, u3) = −u4
2

Q3(u1, u2, u3) = 0.







(4.6)

This will be a curve of genus 1 and the intersection of the 2 quadric surfaces

in (4.6) is a transverse intersection by Theorem B.0.3. It is on this curve that we

look for a solution, and it is this curve which is the starting point for our higher

descents. We note for future reference that that the second of these quadrics is

singular.

4.3 ‘Coprimality’ in number fields

When dealing with homogeneous equations over the rationals (in say n vari-

ables), one often make the simplifying assumption that all the solutions are given
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by integer n-tuples which are not all divisible by a common prime factor. Of

course, this useful device does not extend without modification to homogeneous

equations defined over number fields, due to the failure of unique factorization

over number fields in general. Our purpose here is to show how this method

may be modified as follows: instead of insisting that there be no common prime

ideal factors at all, we demand that there are no common prime ideal factors

from outside a certain finite pre-determined set.

Theorem 4.3.1 Let a1, . . . , ak be a set of ideals whose image in the ideal class

group of K generates the ideal class group, and let S = {℘1, . . . , ℘m} be the

set of prime ideals which divide any of the ai. If (a1, . . . , an) ∈ Kn\0 then

there exists u ∈ K∗ such that (ua1, . . . , uan) ∈ On
K\0 and if ℘ is a prime ideal

dividing all the uai then ℘ ∈ S.

Proof. It is obvious that the images of the ℘i in the ideal class group also

generate the ideal class group. By scaling, we may assume that (a1, . . . , an) ∈

On
K\0. Suppose we are given ℘, a prime ideal which divides all of the ai but is

not contained in S. Let

r = min
i=1,...,n

{ord℘(ai)} ≥ 1.

Then there exists non-negative integers α1, . . . , αm such that





m
∏

j=1

℘j
αj



℘r = (b)

for some b ∈ OK . Also, clearly, there exist β1, . . . , βm such that βj ≥ αj for

j = 1, . . . ,m and
m
∏

j=1

℘j
βj = (c).

Hence the n-tuple
(

a1c
b , . . . , anc

b

)

is proportional to (a1, . . . , an) and is not di-

visible by ℘. Furthermore, if ℘′ is a prime ideal not in S ∪ {℘} then clearly

min
i=1,...,n

{

ord℘′(
aic

b
)
}

= min
i=1,...,n

{ord℘′(ai)} .
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Proceeding recursively in this fashion, it follows that there is a vector in OK
n

which is proportional to our original (a1, . . . , an) and which is not divisible by

any common prime ideal which is not in S. 2

It is clear that our set S depends on our choice of generators for the ideal

class group and so is not unique. However, we will still find it convenient to

think of it as fixed at the outset and will denote it by SK . If (a1, . . . , an) ∈ On
K

we will say that a1, . . . , an are coprime outside SK if no prime ideal ℘ in SK

divides all of the ai.

4.4 Diagonalization

For this section we will assume that A, B are n×n matrices with coefficients in

our number field K. We write K for the algebraic closure overK. The following

is a trivial modification of a standard result for Hermitian matrices.

Lemma 4.4.1 Suppose x1, x2 ∈ K
n

which satisfy

(A− λ1B)x1 = (A− λ2B)x2 = 0

for λ1, λ2 ∈ K. If λ1 6= λ2 then

xt
1Ax2 = xt

1Bx2 = 0.

Proof. Note that Ax2 = λ2Bx2 and xt
1A = λ1x

t
1B. Hence

λ1x
t
1Bx2 = xt

1Ax2 = λ2x
t
1Bx2.

If λ1 6= λ2 then the result follows. 2

Theorem 4.4.1 Suppose that A and B are n × n symmetric matrices defined

over a number field K such that

F (X,Y ) = det(XA− Y B)

has distinct roots over K.
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If F (X,Y ) factorizes as

F (X,Y ) = F1(X,Y ) . . . Fr(X,Y )

where F1, . . . , Fr are homogeneous and irreducible over K, then there exists a

non-singular matrix P ∈ GL(K,n) such that

P tAP =











A1

. . .

Ar











, P tBP =











B1

. . .

Br











(4.7)

where Ai and Bi are symmetric matrices of size deg(Fi), and

det(XAi − Y Bi) = ciFi(X,Y )

with ci ∈ K satisfying
∏

ci = 1.

Proof. By replacing A by A + εB for some ε ∈ K, we may assume that

det(A) 6= 0. Suppose λj is a root of Fj(X, 1). Then there exists vj ∈ K
n

such that (A − λjB)vj = 0. Let v
(i)
j (i = 1, . . . , deg(Fj)) be the conjugates

of vj . Using Lemma 5.8.1, page 40 of [Si2] we know that there are w
(i)
j ∈ Kn

(i = 1, . . . , deg(Fj)) which span the same K-linear subspace of K
n

as the v
(i)
j .

Now let P be the matrix with columns

w
(1)
1 , . . . ,w

(deg(F1))
1 , . . . ,w(1)

r , . . . ,w(deg(Fr))
r .

It is easy to see, using Lemma 4.4.1 that P is the matrix required by the The-

orem. 2

4.5 Parametrization of the Singular Combina-

tions

As is noted before our intersections of pairs of quadric surfaces, will be curves

of genus 1, must be a transverse intersections, and the singular combinations of

the corresponding pencils will all have rank=3. Hence a singular combination
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is a curve of genus 0. Now since we would have checked our intersection of 2

quadrics for everywhere local solubility we know that this singular combination

is everywhere locally soluble 2. Hence this singular combination must have a

global solution and if we were to find one such solution then all others will be

given parametrically. It is this parametrization which will enable us to perform

our descents in Section 4.6.

Of course, after a non-singular change of variable, we may take our singular

combination to be of the form

aX2 + bY 2 + cZ2 = 0 (4.8)

where a, b, c ∈ OK\{0}. In [Sieg2] Siegel gives a region for the triple (X,Y, Z)

which is guaranteed to contain a solution. We omit giving this because of its

complexity. If K = Q then we have the following Theorem of Holzer

Theorem 4.5.1 The solvable equation ax2+by2+cz2 = 0 taken in its canonical

form with a > 0, b > 0, c < 0 has a non-trivial solution with

|x| ≤ |bc|
1
2 , |y| ≤ |ca|

1
2 , |z| ≤ |ab|

1
2 .

Proof. See [Holzer], or [Mord] page 47. 2

Once we have one non-trivial solution of the Equation (4.8) we can parametrize

all others as is well-known.

Theorem 4.5.2 Suppose x0, y0, z0 ∈ K is a non-trivial solution of equa-

tion (4.8) then there exist binary quadratic forms q1, q2, q3 defined over K

2Here the assumption that the intersection is transverse is critical. For in this case our

equations can be taken of the form

q1(x1, x2, x3) = 0, q2(x1, x2, x3) = x4
2,

and if this has a non-trivial solution over any (say local) field then not all of x1, x2, x3 will be

zero, and hence q1(x1, x2, x3) = 0 has a non-trivial solution. This of course is not the case for

the rational curve

x2 + y2 + z2 = 0, x2 + 2y2 = zw

which has the solution (0, 0, 0, 1), the singular combination x2 +y2 +z2 = 0 has no non-trivial

solutions over either of R, or Q2.
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such that x, y, z ∈ K is a solution if and only if it is a K-rational multiple of

q1(u, v), q2(u, v), q3(u, v) for some u, v ∈ K.

Proof. See [Mord] page 48 which gives q1, q2, q3 explicitly in terms of a, b, c

and x0, y0, z0. 2

It follows from the above that one can always constructively obtain a parametric

solution to any singular combination of an everywhere locally soluble transverse

intersection of 2 quadric surfaces in 4 variables.

4.6 Descents

We will explain 3 methods of ‘descent’ on the (transverse) intersection of 2

quadrics

xtAx = 0

xtBx = 0







(4.9)

Write F (X,Y ) = det(XA−Y B). Each method will require that F splits over K

in a certain way. Since we are performing the descents to determine if the homo-

geneous space (4.9) has rational points, we will assume that (4.9) is everywhere

locally soluble.

4.6.1 F has at least 2 roots defined over K

Suppose F has at least 2 roots defined over K. By Theorem (4.4.1) we know

that by performing a simultaneous change of variable we can take

A =



















a1

a2

0

0 A1
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and

B =



















b1

b2
0

0 B1



















.

By again taking suitable linear combinations we can assume that in the

above a1 = 1, a2 = 0, b1 = 0, b2 = 1. Hence our original equations will have

become of the form

x2
1 = Q1(x3, x4),

x2
2 = Q2(x3, x4)







(4.10)

where Q1, Q2 are quadratic forms with coefficients in K. Since our original pair

was everywhere locally soluble, both x2
1 = Q1(x3, x4), and x2

2 = Q2(x3, x4) are

everywhere locally soluble, and hence have parametric solutions of the form

x1 : x3 : x4 = p1(u1, u2) : p3(u1, u2) : p4(u1, u4)

x2 : x3 : x4 = q2(v1, v2) : q3(v1, v2) : q4(v1, v2)







(4.11)

where the pi and the qi are binary quadratic forms with coefficients in K.

We construct a set SK of prime ideals as in Section 4.3. Clearly we may

assume that the pi, qj have coefficients in OK . Moreover we may assume that

the pairs u1, u2 and v1, v2 are defined over OK , and that each pair is not

divisible by any prime ideal not in SK . Now, we will have a solution to the

pair (4.10) if we can find α ∈ K∗ such that

p3(u1, u2) = αq3(v1, v2)

p4(u1, u2) = αq4(v1, v2)







(4.12)

has a solution. We note that if ℘ is an ideal such that ord℘(α) > 0 then either

℘ ∈ SK or ℘ divides the resultant of p3, p4, which is necessarily non-zero 3.

Similarly if ord℘(α) < 0 then ℘ is either in SK or ℘ divides the resultant of

3Suppose that the resultant of p3, p4 is 0. Then p3, p4 (when regarded as homogeneous

polynomials) have a common factor. Since p1, p3, p4 satisfies p2

1
= Q1(p3, p4), this common

factor must divide p1. If this common factor is quadratic, then there is precisely one solution to

x2

1
= Q1(x3, x4) in P2, and this is impossible. Hence pi(u1, u2) = l(u1, u2)mi(u1, u2), where
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q3, q4. Now dropping our requirement that v1, v2 are in OK , we see that α

matters only up to squares in K∗. Hence we may, by the method used for

determining K(R, 2) in Chapter 3, determine all possible α modulo K∗2. Doing

this we will have finitely many curves (4.12) defined over K. The process of

deriving these curves from our original curve (4.9) is a ‘descent’ according to

the paradigm of our introduction to this chapter (page 64). The explicit maps

from the ‘descendants’ (4.12) to the ‘parent’ (4.10) are given explicitly by (4.11).

4.6.2 F is the Product of 2 Irreducible Quadratic Factors

Suppose F (X,Y ) = det(XA−Y B) is the product of 2 irreducible factors defined

over K. Then, by Theorem 4.4.1, after a non-singular change of variable defined

over K we can assume

A =





A1 0

0 A2





and

B =





B1 0

0 B2





where A1, A2, B1, B2 are 2 × 2 matrices over K and

det(XA− Y B) = det(XA1 − Y B1) det(XA2 − Y B2).

Hence det(XA1 − Y B1) and det(XA2 − Y B2) are irreducible. Hence we may

re-write our original equations 4.9 in the form

ytA1y = −ztA2z

ytB1y = −ztB2z







(4.13)

where

y =





y1

y2



 , z =





z1

z2



 .

l, m1, m3, m4 are linear, and m3, m4 are linearly independent. By a non-singular change

of variable, we can assume that m2(u1, u2) = u1, m3(u1, u2) = u2. Hence m1(u1, u2)2 =

Q1(u1, u2). So Q1 is a square polynomial, and it follows that x2

1
− Q1(x3, x4) has rank=2,

contradicting our assumption that (4.9) is a transverse intersection of quadric surfaces.
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Let λ be a root of det(A2 −Y B2), so λ is defined over a quadratic extension

of K. Then A2 − λB2 has rank=1. So there exists δ ∈ K(λ) such that

yt(A1 − λB1)y = δζ2. (4.14)

Since our original pair of equations (4.9) was soluble over all localizations of

K, it follows that this equation regarded as curve of genus 0 over K(λ) must

have solutions over all localizations of K(λ). By the results of Section 4.5 there

exists binary quadratic forms q1, q2, q3 defined over K(λ) such that the triple

y1, y2, ζ is a solution to (4.14) over K(λ) if and only if

y1 : y2 : ζ = q1(ψ1, ψ2) : q2(ψ1, ψ2) : q3(ψ1, ψ2). (4.15)

By comparing the coefficients of 1, λ in (4.14), we see that there exists a solution

to (4.13) defined over K if and only if there exists y1, y2 ∈ K and α ∈ K(λ)∗,

ψ1, ψ2 ∈ K(λ) (not both zero) such that

y1 = αq1(ψ1, ψ2)

y2 = αq2(ψ1, ψ2).
(4.16)

Suppose for the moment that we have a fixed α. Now ψ1 = β1 + λβ2, and

ψ2 = β3 + λβ4 for some β1, . . . , β4 ∈ K, and not all zero. Then expanding

αq1(ψ1, ψ2) and αq2(ψ1, ψ2) and comparing the coefficients of λ in (4.16) we

get a pair of homogeneous quadratic equations in 4 variables (defined over K)

which we want to solve:

Q1(β1, . . . , β4) = 0

Q2(β1, . . . , β4) = 0.

Now this pair depends on the choice of α and we need to show that α can be

taken from a finite set whose elements can be effectively enumerated. This is

what we shall do. We note that we may assume the following

1. By scaling we can assume that A1, A2, B1, B2 all have entries in OK .

2. If y1, y2, z1, z2 is a solution to (4.13) then we may assume that they are

in OK and that the 4-tuple (y1, y2, z1, z2) is not divisible by any prime

ideal not in SK .
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3. q1, q2 are defined over OK(λ), and ψ1, ψ2 are in OK(λ) and are not both

divisible by any prime ideal not in SK(λ).

Now if ℘ is a prime ideal of K(λ) such that ord℘(α) ≤ −1 then it is easy to

see from (4.16) and the above assumptions that either ℘ divides the resultant

of q1, q2 or ℘ is in SK(λ). Moreover if ℘ is a prime ideal of K(λ) such that

ord℘(α) ≥ 1 then ℘ will divide both y1, y2 and hence ℘ will divide one of the

ideals in
{

℘′OK(λ) : ℘′ ∈ SK

}

. Hence it is clear that ord℘(α) = 0 for all prime

ideal ℘ not in some finite set, and that this set can be determined. We now

drop our requirement that ψ1, ψ2 are in OK(λ), and so we see from (4.16) that

α matters only up to squares in K(λ)
∗
. By the methods of Chapter 3 we may

determine all possible α modulo K(λ)
∗2

. This shows that the α may be taken

from a finite set which can be enumerated.

4.6.3 F has exactly one root defined over K

Suppose F (X,Y ) = det(XA − Y B) has exactly one rational root. By a non-

singular change of coordinates (defined over K) and then taking appropriate

linear combinations, we may assume that

A =













A1 0

0 0













B =













B1 0

0 1













,

where A1, B1 are 3 × 3 matrices over K and det(XA1 − Y B1) is irreducible.

Hence we may rewrite our original equations (4.9) in the form

ztA1z = 0

ztB1z = y2







(4.17)
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where z =









z1

z2

z3









. As usual we parametrize the solutions to ztA1z = 0 by

z1 : z2 : z3 = q1(X1, X2) : q2(X1, X2) : q3(X1, X2), (4.18)

Suppose that zi = αqi(X1, X2) for some α ∈ K∗. Substituting this into ztB1z =

y2 we see that

G(X1, X2) = Y 2 (4.19)

where Y = α−1y and G is a binary quartic form with coefficients in K. It is

easy to see that (4.17) has a solution defined over K if and only if (4.19) has

a solution defined over K. Hence if G has a root defined over K, (4.17) has a

solution defined over K.

Lemma 4.6.1 IF G has no roots defined over K then it is irreducible (i.e. it

is not a product of 2 irreducible quadratic factors).

Proof. Suppose G is a product of two irreducible quadratic factors. Let L′

be the splitting field of G. Let λ be a root of the irreducible cubic polynomial

det(B1 −XA1). Now [K(λ) : K] = 3 and [L′ : L] = 2 or 4, and so λ /∈ L′.

Now zt(B1 − λA1)z has rank = 2 and so

zt(B1 − λA1)z = βm(z1, z2, z3)
2 + γn(z1, z2, z3)

2

where β, γ ∈ K(λ)∗ and m, n are linear forms with coefficients in K(λ). Let

L′′ = L′(
√

−β/γ). Clearly λ /∈ L′′, since again [L′′ : K] is a power of 2.

Then

zt(B1 − λA1)z = M(z1, z2, z3)N(z1, z2, z3) (4.20)

where M, N are linear forms with coefficients in L′′(λ). But if we let zi =

qi(X1, X2) then ztB1z = G(X1, X2) and ztA1z = 0. Hence

G(X1, X2) = M(q1, q2, q3)N(q1, q2, q3),

where M(q1, q2, q3) and N(q1, q2, q3) will be quadratic factors of G(X1, X2).

But the roots of G are contained in L′ and hence in L′′. So there is some
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δ ∈ L′′(λ)\ {0} such that δM(q1, q2, q3) and δ−1N(q1, q2, q3) are in L′′[X1, X2].

Write

δM(z1, z2, z3) = M1(z1, z2, z3) + λM2(z1, z2, z3) + λ2M3(z1, z2, z3)

whereM1, M2, M3 are linear forms with coefficients in L′′. Hence M2(q1, q2, q3)

is (identically) zero, and so (since q1 : q2 : q3 is a parametrization of the zeros of

ztA1z,) the (projective) variety M2(z1, z2, z3) = 0 contains the locus of zeros of

the non-singular conic ztA1z = 0. It follows that M2(z1, z2, z3) is (identically)

zero. Similarly M3 = 0 and hence δM(z1, z2, z3) has coefficients in L′′. This is

also true for δ−1N(z1, z2, z3) by the same argument. Hence by (4.20) it follows

the coefficients of zt(B1 − λA1)z are in L′′, which contradicts λ /∈ L′′. This

completes the proof 4. 2

We have already stated that if G has a root in K then (4.19) and hence (4.17)

has a point defined over K. Hence we will assume that G has no roots over K,

and by the above Lemma it will follow that G is irreducible. We now return to

the descents. Rewrite the equation (4.19) in the form

aY 2 = F (X1, X2) (4.21)

where a ∈ OK and F is irreducible monic of degree 4 with coefficients in OK
5.

Let Θ be a root of F (X1, 1) and let L = K(Θ). It is clear that if (X1, X2, Y )

is a solution to (4.21) then we can assume that X1, X2 are coprime outside a

certain predetermined set of prime ideals SK .

Lemma 4.6.2 If (X1, X2, Y ) is a solution to the equation (4.21) and X1, X2

are coprime outside SK , then we can write

(X1 − ΘX2)OL = ab2 (4.22)

where a, b are ideals of L, and

4In essence we have shown that det(B1 − XA1) is the resolvent cubic of G.
5Clearly by multiplying the equation (4.19) by a suitable element in OK

2 we can assume

that G has coefficients in OK . Now if a is the leading coefficient of G(X1,X2), then we simply

multiply (4.19) by a3, replace Y by a−2Y , and X1 by a−1X1.
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1. a is square-free,

2. NormL/K(a) ∈ aK∗2,

3. If ℘ is a prime ideal of L and ℘|a then either

(a) ℘|a, or

(b) ℘|∆(F ), where ∆(F ) is the discriminant of F , or

(c) ℘|qOL where q ∈ SK .

Proof. It is clear that we can write (X1 − ΘX2)OL in the form (4.22), where

a satisfies conditions 1 and 2 of the Lemma. Suppose ℘ is a prime ideal of L,

such that ℘|a, and ℘ does not divide a, ∆(F ). Let L′ be the splitting field of F

over K, so that L′ ⊇ L ⊇ K. Since ℘ does not divide ∆(F ) we see that ℘ does

not ramify over L′. Hence if q|℘OL′ , where q is a prime ideal of L′, then

ordq(X1 − ΘX2)OL′ = ord℘(X1 − ΘX2)OL

which is odd. But

ordq

4
∏

i=1

(X1 − ΘiX2) = ordqF (X1, X2) = ordqaY
2

is even, since q does not divide a. So q|(X1 − Θ′X2)O′
L where Θ′ is a root of

F (X1, 1) which does not equal Θ. Hence q|(Θ − Θ′)X1 and q|(Θ − Θ′)X2. But

q does not divide (Θ− Θ′) since otherwise q|∆(F ) which would imply ℘|∆(F ).

Hence q|X1, X2. Since this is true for all ideals q of L′ dividing ℘OL′ , it follows

that ℘|X1, X2. Hence the conclusion follows. 2

Suppose that (X1, X2, Y ) is a solution to (4.21), andX1, X2 are coprime outside

SK . We will write

X1 − ΘX2 = εγ2 (4.23)

where ε, γ ∈ L∗. As usual, our ε matters only up to squares in L∗. From the

above Lemma, we see that our ε is supported, modulo square ideals, by the

(finitely many) prime ideals specified in condition 3 of the Lemma. Hence, by

the method in Chapter 3, we can list a complete set of representatives of L∗
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modulo L∗2 which are supported by these prime ideals. Of these, we keep only

those whose Norm is in aK∗2; these will be our required εs. For any fixed ε, if

we write γ =
∑4

i=1 viΘ
(i−1), vi ∈ K∗ and compare coefficients of 1, . . . ,Θ3 in

(4.23), we will get

Q1(v1, . . . , v4) = X1

Q2(v1, . . . , v4) = X2

Q3(v1, . . . , v4) = 0

Q4(v1, . . . , v4) = 0



























(4.24)

where the Qi are quadratic forms with coefficients in K. Now

Q3(v1, . . . , v4) = 0

Q4(v1, . . . , v4) = 0







(4.25)

defines an intersection of 2 quadrics as is required.

4.7 Examples

We have applied the method of the previous section to obtain generators on the

congruent number curve

E : Y 2 = X(X2 − p2) (4.26)

for primes

p = 257, 313, 353, 1201, 1217, 1249, 1321, 2113, 2273, 2777, 2833, 2953.

these primes are all congruent to 1 (mod 8), and it is easy to show that the

2-Selmer rank will always be 2 (see below). In [Serf], all the integers n ≤ 3000

for which the rank of Y 2 = X(X2 − n2) is 2 are predicted. For most of these,

Mordell-Weil generators were found in [Ge, Zi]. However some values were omit-

ted (presumably because the generators were too large for the method). The

primes above are all the primes p ≡ 1 (mod 8) for which generators are not

given in [Ge, Zi]. We shall omit most of the details, as they are quite tedious.

As usual, we have a map

E(Q) → Q∗/Q∗2 × Q∗/Q∗2 × Q∗/Q∗2
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given by 6

(X,Y ) → [XQ
∗2
, (X − p)Q∗2

, (X + p)Q∗2
].

It is not hard to show that the 2-Selmer group, regarded as a subgroup of

Q
∗/Q∗2 × Q

∗/Q∗2 × Q
∗/Q∗2 is generated by [p, 1, p], [p, 2p, 2], and the images

of the points of order 2. Hence if we can find points on the homogeneous spaces

corresponding to these 2 elements of the 2-Selmer group, we will be able to write

down generators for E(Q)/2E(Q).

1. The homogeneous space corresponding to [p, 1, p] is

U2 − V 2 = pA2

U2 + V 2 = B2







A rational point on this homogeneous space gives a corresponding rational

point on E: (pU2/V 2, p2ABU/V 3). After 2 descents starting from this

homogeneous space we arrived at the equation

e41 + 8e31f1 + 12e21f
2
1 + 16e1f

3
1 + 4f4

1 = pg2
1 . (4.27)

A rational point on this gives P1 on E with X-coordinate

X = p

(

e41 + 4e31f1 + 4e21f
2
1 + 8e1f

3
1 + 4f4

1

4e1f1(e21 + 2e1f1 + 2f2
1 )

)2

.

After a small search for points on (4.27) we have found a point for each

p in our list and computed the corresponding generator P1 on E. The

information is contained in the table below.

2. Similarly, after 2 descents on the homogeneous space corresponding to

[p, 2p, 2] we arrive at

e42 − 8e32f2 + 18e22f
2
2 + 8e2f

3
2 + f4

2 = pg2
2 . (4.28)

which gives generator P2 on E with X-coordinate

X = p

(

e41 − 4e31f1 + 10e21f
2
1 + 4e1f

3
1 + f4

1

e41 − 4e31f1 − 6e21f
2
1 + 4e1f3

1 + f4
1

)2

.

6For (X,Y) a point of order 2 the definition must be adjusted as on page 67 of [Ca1]
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Again, after a short search for points on (4.28), we found a point with

small coordinates for each p in our list.

p e1 f1 ĥ(P1) e2 f2 ĥ(P2) R(P1, P2)

257 1 2 10.243 13 2 19.340 168.055

253 121 4 38.629 34 23 30.979 177.561

313 194 3 39.493 −18 103 35.825 193.933

1201 151 6 40.455 −56 57 36.927 247.108

1217 −29 4 25.829 8 1 15.628 316.657

1249 27 52 36.378 206 45 41.421 443.022

1321 11 3 21.274 9 2 16.394 285.289

2113 −1 6 16.437 −24 31 30.879 490.464

2273 8 1 14.848 1346 751 59.533 785.932

2777 22 73 35.506 11 2 17.919 621.627

2833 164 3 38.172 −117 82 41.802 1147.840

2953 537 29 50.718 −261 184 48.236 848.351

It should be clear from the height of the points listed that not all could be

found by a naive computer search for points 7 on E.

4.8 Local to Global- A Counter Example

As we saw, given an intersection of two quadrics which defines a curve of genus

1, if there exist a singular combination of the quadrics which defined over the

ground number field, then it is possible to perform a descent arriving at other

curves of genus 1. It was therefore clear a priori, that it is unreasonable that

a local-to-global principle should exist for such curves. This is because, even

though the original curve is everywhere locally soluble, it is possible that none

of its descendents are. This leaves us with the following question: Given an

7Experience with findinf shows that it is not very feasible to search for points whose

logarithmic height is much greater that 15.
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intersection of two quadrics

xtAx = 0

xtBx = 0







(4.29)

where A, B, are symmetric 4 × 4 matrices with entries over a number field K,

and suppose that F (X,Y ) = det(XA − Y B) is irreducible over K, and that

the pair (4.29) is everywhere locally soluble. Is it the case that the pair must

have a non-trivial solution defined over K? Infact, in the literature of Curves of

Genus 1 I know of no counterexamples to local-to-global principle which cannot

be demonstrated by constructing a complete covering of rational 8 descendents

of the original curve, and showing that these are all insoluble on local grounds.

Here we are faced with the task of constructing such a counterexample with

no obvious method of constructing a covering of rational descendants. However

there are well-known counterexamples where (by an argument due to Lind,

see [Ca4] page 284) it is possible to show that there are no global points, without

constructing any coverings , even though in such cases it was always easy to

disprove global solubility by constructing a complete set of rational coverings.

In our counterexample to the question posed we will mimic Lind’s argument

for disproving global solubility, and use our results from Chapters 5, and 6 to

prove everywhere local solubility.

Example 4.8.1

−2x2 + 34x(z + w) + y2 − 17z2 = 0

−17x2 + 3y2 + 4yz + w2 = 0







(4.30)

Here, the relevant det(XA−Y B) is irreducible, as required by our question.

We will show that (4.30) is everywhere locally soluble but has no non-trivial

rational points.

Let us prove first that the pair (4.30) have no common solutions over Q.

Suppose that a non-trivial rational solution (x, y, z, w) exists. We may suppose

that x, y, z, w are integers and that they have no common divisor.

8Here, by rational, we mean defined over the ground field.
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It is easy to see that x 6= 0. If 17|x then by the first equation y2 − 17z2 ≡ 0

(mod 172) (since 172|x2 and 172|34x). It would follow that 17|y and 17|z. From

the second equation we get that 17|w. This contradiction shows that 17 does not

divide x.

Suppose p is an odd prime dividing x. Reducing the first equation of (4.30)

modulo p , we get that y2 ≡ 17z2 (mod p). It is straightforward to see that if

p|y or p|z then p|x, y, z, w, giving us a contradiction. Hence we deduce that 17

is a quadratic residue modulo p. By the Law of Quadratic Reciprocity it follows

that p is a quadratic residue modulo 17. This is true of all odd primes that divide

x. But −1, and 2 are quadratic residues modulo 17. Hence we can write

x ≡ x2
1 (mod 17).

Similarly to the above, it is easy to show that 17 does not divide y, and that

there exists y1 such that

y ≡ y2
1 (mod 17).

Since 17 does not divide x, y we get that 17 does not divide x1, y1 either.

Now reduce the first equation of (4.30) modulo 17. It follows that

−2x2 + y2 ≡ 0 (mod 17)

and so

2x4
1 ≡ y4

1 (mod 17).

But 2 is not a quartic residue modulo 17. This gives us a contradiction. Hence

no rational solution to the pair (4.30) exists.

Let us now prove that the pair (4.30) has solutions everywhere locally. We

can write (4.30) in the form of (4.29) where

A =















−2 0 17 17

0 1 0 0

17 0 −17 0

17 0 0 0
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and

B =















−17 0 0 0

0 3 2 0

0 2 0 0

0 0 0 1















Let F (λ, µ) = det(λA− µB). The discriminant of F is

−11 327 320 899 466 789 632 139.

The prime factorization of this is

173 × 2 305 581 294 416 199 803.

We denote the second prime by p1. It follows from our Theorem 5.2.1 that to

prove everywhere local solubility it sufficient to prove that the pair (4.30) has

solutions over R, Q2, Q17, Qp1 .

1. Over R. Here we note that the roots of F (1, µ) are roughly 0.34, 13.29,

−0.38± 3.79i. Hence F is not totally real and so we must have solubility

in R by Lemma (6.2.2) on page 97.

2. Over Q2. We recall that any 2-adic number which is congruent to 1 modulo

8 is a 2-adic square. Hence 17 is a 2-adic square. Moreover, it is easy

to show that the (two) 2-adic square-roots of 17 are congruent to 1, −1

modulo 8 respectively. Let α ∈ Q2 satisfying α2 = 17 and α ≡ 1 (mod 8).

Then −3α2 − 4α ≡ 1 (mod 8). Hence there exists β ∈ Q2 satisfying

β2 = −3α2 − 4α.

It follows that (0, α, 1, β) is a 2-adic solution to the pair (4.30).

3. Over Q17. Here it is sufficient to observe that (1, 6, 4, 0) (mod 17) is

a non-singular point on the reduction of the pair (4.30) modulo 17, and

hence by Theorem (5.2.1) it must lift to a non-trivial solution on Q17.

4. Over Qp1 Here F (λ, µ) has only one double root modulo p1. This is

1 : 393 077 095 592 234 641.
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Write this as 1 : µ1. Then A+ µ1B (mod p1) is, up to scalar multiples,

the only linear combination of A, B (mod p1) which might have rank

≤ 2. Using Pari/GP, we find that its rank = 3. This means that every

non-trivial linear combination of A, B (mod p1) has rank ≥ 3. It is now

easy to use the proof of Lemma B.0.4 to construct a non-singular point on

the pair (4.30) modulo p1, and hence this must have a non-trivial point

defined over Qp1 .
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Chapter 5

Local Solubility I: Over

Non-Archimedean

Completions

5.1 Introduction

LetK be a number field, and let A, B be 4×4 symmetric matrices with entries in

K such that det(XA−Y B) has distinct roots (i.e. the combinant 1 ∂(A,B) 6= 0).

Our goal in this chapter is to give algorithms for determining the solubility of

xtAx = 0

xtBx = 0







(5.1)

over the non-archimedean completions of K. Our notation for this chapter is as

follows:

K a number field

M0
K a full set of inequivalent non-archimedean valuations on K

O the set of integers of K

1See page 107.
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υ a non-archimedean valuation on K

Oυ := {x ∈ Kυ : υ(x) ≥ 0}

π a prime element for υ (i.e. π ∈ Kυ such that υ(π) = 1)

kυ residue field associated with Kυ

q the number of elements in kυ

Pπ := {(x, y) : x, y ∈ Oυ and min(υ(x), υ(y)) = 0}

Further, when working with a fixed valuation υ, we let Oυ → kυ be the

natural map sending x ∈ Oυ to x ∈ kυ. Similarly, given vectors v and matrices

C defined over Oυ, we denote by v and C to be their reductions in the obvious

way.

We can assume without loss of generality that A and B have entries in O

and hence that ∂(A,B) is in O.

The first algorithm we will give, relies on searching for points on

xtAx ≡ 0

xtBx ≡ 0







mod(π) (5.2)

for πs corresponding to a finite pre-determined set of υs, and then attempting

to lift the points found to points modulo powers of π until it is certain that they

will lift to points defined over Oυ
4. We need two pieces of information:

1. For which of the infinitely many υ ∈M 0
K is it necessary to do this?

2. Modulo which power of the corresponding π is it sufficient to find a solu-

tion, to be sure that this solution will lift?

The second algorithm we give assumes that A, B have a singular combina-

tion defined over Oυ.

5.2 Algorithm I

Theorem 5.2.1 Suppose A, B are 4 × 4 symmetric matrices with entries in

Oυ such that ∂(A,B) 6= 0. We have
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1. If υ(2∂(A,B)) = 0 then

xtAx = 0

xtBx = 0







(5.3)

has a non-trivial solution over Oυ.

2. Suppose that there exists x0 ∈ Oυ
4\πOυ

4 such that

xt
0Ax0 ≡ xt

0Bx0 ≡ 0 (mod π2δ+1)

and there is no pair (λ, µ) ∈ Pπ such that 2(λAx0−µBx0) ≡ 0 (mod πδ+1).

Then there exists x ∈ Oυ
4 such that x ≡ x0 (mod πδ+1) and x is a non-

trivial solution to the pair of equations (5.3).

Proof. For the first part it is sufficient to note that if υ(2∂(A,B)) = 0 then

xtAx ≡ xtBx ≡ 0 (mod π) has genus 1 by Theorem B.0.2; it follows then

from [Ca4] page 205 that there is a non-trivial solution to (5.3). The second

part is a special case of Theorem 5.21 on page 64 of [Gre]. 2

Thus it is clear that to test local solubility at the archimedean places, it sufficient

to check solubility over Kv only for those υ ∈ M0
K for which υ(2∂(A,B)) 6= 0.

For any such υ, we can do this using the following algorithm.

Algorithm 5.2.1 We write down a complete set of coset representatives of

Oυ
4/πOυ

4. For any of these (other than the one contained in πOυ
4) we check

if it gives a solution to xtAx ≡ xtBx ≡ 0 (mod π). If there are none which

give a solution to this, then (5.3) has no solution over Kv and we can stop.

If there are some, and for one of them we can establish that it lifts to a point

on (5.3) by the above Theorem then we can stop. If not then we will be left

with x1, . . . ,xn satisfying xtAx ≡ xtBx ≡ 0 (mod π) and for each there exists

(λ, µ) ∈ Pπ such that 2(λAx − µBx) ≡ 0 (mod π).

Suppose now that after r steps we are left with a set of x1, . . . ,xn (not neces-

sarily the same xi as before) satisfying xtAx ≡ xtBx ≡ 0 (mod π2r+1) and for

each there exists (λ, µ) ∈ Pπ such that 2(λAx − µBx) ≡ 0 (mod πr+1). Then

for each i = 1, . . . , n, we write a complete set of representatives of Oυ/π
2r+3Oυ

which are congruent to xi modulo π2r+1. If none of these are on xtAx ≡ xtBx ≡
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0 (mod π2r+3) then we go to the next i (if there are none for all the is then

5.3 has no solutions and we can stop). If there are some on xtAx ≡ xtBx ≡ 0

(mod π2r+3), which using the above Theorem will lift to points on (5.3) then we

can stop. So we may suppose that pooling our xs that we get for each i we end up

with a new list x1, . . . ,xn all satisfying xtAx ≡ xtBx ≡ 0 (mod π2r+3) and for

each there exists a pair (λ, µ) ∈ Pπ such that 2(λAx− µBx) ≡ 0 (mod πr+2).

The following Lemma shows that we must eventually stop.

Lemma 5.2.1 Suppose that there exists x1 ∈ Oυ
4 such that

x1Ax1 ≡ x1Bx1 ≡ 0 (mod πα)

and there exists (λ : µ) ∈ Pπ such that (λAx1 − µBx1) ≡ 0 (mod πβ), then

min(α, β) ≤ υ(∂(A, B)).

Proof. Let γ = min(α, β). Choose x2, x3, x4 ∈ Oυ
4 such that x1, x2, x3, x4

are linearly independent modulo π. Let T be the 4 × 4 matrix with columns

x1, x2, x3, x4. Further, choose (λ′ : µ′) ∈ Pπ such that λµ′−λ′µ 6≡ 0 (mod π).

Write

C = T t(λA− µB)T, D = T t(λ′A− µ′B)T.

Then by Theorem B.0.4 we have that υ(∂(C,D)) = υ(∂(A,B)). Now note that

C ≡













0 0

0 C1













(mod πγ)

where C1 is a 3 × 3 matrix with entries in Oυ. Also

D ≡













0 vt

v D1













(mod πγ)

where D1 is a 3 × 3 matrix with entries in Oυ, and v ∈ Oυ
3. It is now easily

seen that the coefficients of X4 and X3Y in G(X,Y ) = det(XC − Y D) are
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congruent to 0 modulo πγ . By considering the formula for the discriminant of

G in terms of its coefficients, we see that πγ |∂(C, D). This completes the proof.

2

5.3 Algorithm II: F has a rational root over Oυ

If F (X,Y ) = det(XA−Y B) has a root defined over Oυ, then by parametrizing

a singular combination of our equation

xtAx = 0

xtBx = 0







(5.4)

we can reduce the testing of solubility of (5.4) overKv, to the problem of testing

solubility over Kv of an equation of the form

Y 2 = g(X), (5.5)

where g(X) ∈ Kv[X ] has degree 4 and no repeated roots. In our algorithm

here, instead of Hensel’s Lemma we intend to use techniques such as finding the

roots of polynomials over finite fields, which will give us an overall polynomial

time complexity 2. We shall restrict ourselves to the case where υ(2) = 0, or

equivalently where the residue field has odd characteristic.

5.3.1 Parametrizing the Singular Combination

As in the case over a number field (see page 76), to get to an equation of

the form (5.5), it sufficient to find a single non-trivial solution of the singular

combination. By a change of variable defined over Kv we may assume that our

singular combination is of the form

aX2 + bY 2 + cZ2 = 0 (5.6)

2The polynomials we wish to solve all have degree at most 4, and hence are soluble. Hence

computing the roots is reduced to extracting pure roots of elements of finite fields. This

problem is soluble in probablistic polynomial time, or alternatively in deterministic polynomial

time assuming the Generalized Riemann Hypothesis (see [Cohen] pages 31-34 and page 37).
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where a, b, c ∈ Oυ, and υ(a) = υ(b) = 0 and υ(c) = 0 or 1. If υ(c) = 1, then

−ab−1 must be a square in Oυ, otherwise (5.4) does not have a solution over

Kv and we may stop. So if α2 = −ab−1 then (1 , α , 0) is a non-trivial solution

to (5.6), and we are finished. If υ(c) = 0, then heuristically, for 50% of pairs

(x, y), −c−1(ax2 + by2) is a square in Oυ. Thus we assume that we can arrive

at a solution in O(1) steps.

5.3.2 Local Solubility Testing for Y 2 = g(X)

We recall that g ∈ Oυ[X ] has degree 4, and non-zero discriminant, and that

the characterstic of the residue field kv is odd. We write q for the number of

elements in the residue field kv . When considering solutions to

Y 2 = g(X)

we shall include those at infinity; thus this curve has a pair of points at infinity

if and only if the leading coefficient of g is square in Oυ. If f is a polynomial in

Oυ[X ], we write f for the image of f under the map Oυ[X ] → kv [X ] induced

by the natural map Oυ → kv . If deg f = 4 but deg f ≤ 3 we shall say that f

has a root at infinity; if deg f ≤ 2 we shall say that f has a multiple root at

infinity. These conventions should be borne in mind in what follows.

Lemma 5.3.1 Suppose the curve

C : aY 2 = f(X) (5.7)

is given with f(X) ∈ Oυ[X ], a ∈ Oυ. Let x1, y1 ∈ Oυ such that

ay2
1 ≡ f(x1) (mod π).

Then there exists x, y ∈ Oυ with x ≡ x1, y ≡ y1 (mod π), such that

ay2 = f(x)

except possibly when

ay1 ≡ f ′(x1) ≡ 0 (mod π).

91



Proof. The conclusion follows by applying Hensel’s Lemma to the polynomial

G1(X) = f(X) − ay2
1

in the case f ′(x1) 6≡ 0 (mod π), and to the polynomial

G2(Y ) = aY 2 − f(x1)

in the case ay1 6≡ 0 (mod π). A suitable version of Hensel’s Lemma is given

on page 49 of [Ca7]. 2

Lemma 5.3.2 Suppose that f(X) ∈ Oυ[X ] such that deg f = 4 and deg f =

3 or 4. Suppose f(X) has no repeated factors. Then the equation

Y 2 = f(X)

has solutions over Kv.
3

Proof. Under the hypotheses of the Lemma, the equation

Y 2 = f(X)

is a curve of genus 1 defined over kv . It follows (see [Ca1] page 119) that it

has at least one point defined over kv . Again, since f does not have repeated

factors, we can use Lemma 5.3.1 to show that this solution lifts to one defined

over Kv. 2

Lemma 5.3.3 Suppose f(X) ∈ Oυ[X ] such that 1 ≤ deg f ≤ 4. Suppose that

f = g2h where deg g ≥ 0, degh ≥ 1 and h is a square-free polynomial. Then

the equation

Y 2 = f(X)

has solutions in Kv.

3There is nothing new here: see [Ca4] page 205 (where the term elliptic curve really means

a curve of genus 1).
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Proof. The curve Y 2 = h(X) has genus 0, and hence has q + 1 points defined

over kv . Of these at most 2 are at infinity. Further, there is at most 1 root

of g. If this root is x0 say, then there are at most 2 points on Y 2 = h(X)

whose x-coordinate is x0. Hence if q ≥ 5 then Y 2 = h(X) has at least one point

(x1, y1) ∈ k2
v with x1 6≡ x0. Then the point (x1, y1g(x1)) lifts to a point on

Y 2 = f(X) by Lemma 5.3.1. For the case q = 3 the Lemma can be established

by a lengthy but straightforward case-by-case check which we omit. 2

The following theorems follow easily from the above Lemmas.

Theorem 5.3.1 Suppose f 6≡ 0. If

Y 2 = f(X) (5.8)

has no points over Kv then

f ≡ αg2

where g(X) ∈ kv [X ] and α ∈ kv
∗\kv

∗2
.

Proof. The only case that remains to be checked is that if f 6≡ 0 and f ≡ g2

then ( 5.8) has a solution over Kv. For this it is sufficient to choose any x0 such

that g(x0) 6≡ 0 (mod π), and then note that (x0, g(x0)) lifts by Lemma 5.3.1.

2

Theorem 5.3.2 Suppose f(X) ∈ Oυ[X ] such that f 6≡ 0 (mod π), and deg f ≤

4. Then

πY 2 = f(X)

has a solution in Kv if f has a root defined kv which is not a repeated root.

Algorithm 5.3.1 Testing

Y 2 = f(X) (5.9)

for solubility over Kv, where f(X) ∈ Oυ[X ], deg f = 4, and the discriminant

of f is non-zero.

Step I If f ≡ 0 (mod π), then go to Step II. Now suppose f 6≡ 0. Check

if f = ag2 for some g ∈ kv[X ], and a ∈ kv. If this is not the case, or if a ∈ k∗v
2
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then we have local solubility by the above theorems and we can stop. Hence

we can assume that f = ag2, and a 6∈ k∗v
2. So any solution (X0, Y0) ∈ Oυ

2

to (5.9) must satisfy Y0 ≡ 0 and g(X0) ≡ 0. Now g has at most two solutions

ε1, ε2 (mod π); if g has no solutions in kv then (5.9) has no solutions in Oυ

and we can stop. Hence

Y0 = πY1 and X0 = πX1 + εi

where Y1, X1 ∈ Oυ. Choose a ∈ Oυ and g ∈ Oυ[X ] such that the images of a

and g under Oυ → kv are a and g. Then f = ag2+πh where h has coefficients in

Oυ. Since π2|Y 2
0 = f(X0) and π|g(X0), we get that π|h(X0). Hence if neither

of ε1 and ε2 is a root of h then (5.9) is not soluble and we can stop. If say εi is

a root of h then π divides the trailing coefficient of h(πX + εi). So we will get

at most 2 equations of the form

Y 2 = fi(X)

where fi(X) = 1
π2 f(πX + εi) ∈ Oυ[X ]. It is now necessary and sufficient that

one of these should have solutions in Oυ, and we use Step I again with fi instead

of f .

Step II Here f is divisible by π. If f is divisible by π2 then we can replace

f by 1
π2 f and go to Step I. So suppose that f1 = 1

πf 6≡ 0 (mod π). We see

that we want to determine if

πY 2
1 = f1(X)

has solutions in Oυ. If f1 has no roots in kv then (5.9) is not soluble and we

can stop. If f1 has a root which is not a repeated root then (5.9) is soluble and

we can stop. Suppose that f1 has repeated roots εi where i = 1, or i = 1, 2.

Then it is necessary and sufficient to determine if either of

Y 2
1 =

1

π
f1(πX1 + εi)

is soluble, and 1
πf1(πX1 + εi) ∈ Oυ[X ]. So we use Step I again.
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Lemma 5.3.4 Suppose r = υ(∂g) where ∂g is the discriminant of g. In the

above algorithm, if we are still undecided after r+1 steps, then the equation (5.9)

has a solution defined over Kv and we can stop.

Proof. It is clear that after r steps, we may write down a Z ∈ Oυ, such that

f(Z) ≡ π2(r+1). By [Ca7] page 52, f has a root in Oυ. This immediately implies

that (5.9) has a solution defined over Kv. 2
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Chapter 6

Local Solubility II: Over

Archimedean Completions

6.1 Introduction

Let K be a number field, and A, B be n×n symmetric matrices with entries in

OK , the ring of integers of K. Suppose further that F (X,Y ) = det(XA− Y B)

is non-zero and does not have any repeated roots. We want to determine the

local solubility of

xtAx = 0

xtBx = 0







(6.1)

over all completions of K isomorphic to R. If σ1, . . . , σn : K ↪→ R are the real

embeddings of K, then this is equivalent to determining if, for each i,

xtAσix = 0

xtBσix = 0







(6.2)

has a non-trivial solution over R.

Without loss of generality, we will assume for the rest of this chapter that

σK = K ⊆ R, and hence that A,B are n× n real matrices.
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Further, as det(XA − Y B) is non-zero, by taking appropriate linear com-

binations of A and B (if necessary), we can assume that detA and detB are

non-zero. Hence F (λ) = det(A − λB) is a real polynomial of degree n with

distinct roots.

6.2 Reducing to Totally Real F (λ)

The following lemma of Swinnerton-Dyer allows us to get a better grip on the

problem.

Lemma 6.2.1 (Swinnerton-Dyer) Let f, g be homogeneous real quadratic forms;

the manifold f = g = 0 contains non-zero real points if and only if the quadratic

form λf − µg is not definite for all real λ, µ.

Proof. This is part of Lemma 1 of [SwD1]. 2

We are now ready for a simplification:

Lemma 6.2.2 Suppose that F (λ) = det(A− λB) has a non-real root. Then

xtAx = 0

xtBx = 0







(6.3)

has a non-trivial solution over R.

Proof. Recall first our assumption above that detA and detB are non-zero.

Suppose for a contradiction that the pair of equations (6.3) has no non-trivial

real solutions. By Lemma (6.2.1) above, there exists a real linear combination

of A and B which is a positive definite matrix. Without loss of generality, we

may suppose that this is B, and that detA 6= 0. From Linear Algebra we know

that there exists a non-singular real matrix P such that P tBP = I , the identity

n×n matrix. Note that P tAP is a real symmetric matrix, and hence must have

only real eigenvalues. Hence the solutions to det((P tAP )−λI), or equivalently

those of det(A− λB) are all real. This gives our desired contradiction. 2

97



6.3 Results on the Totally Real Case

By Lemma (6.2.2), we may restrict our attention to the case where F (X,Y ) =

det(XA−Y B) has n real roots. Hence by the next Lemma, the two matrices A,

B are simultaneously diagonalizable over R. Naturally, it is much easier to ask

if there is a definite linear combination of two matrices when they are diagonal.

Lemma 6.3.1 Suppose that detA, detB are non-zero, and that det(A−Y B) is

a polynomial of degree n, which has n real roots λ1, . . . , λn say. Let x1, . . . ,xn

be non-trivial vectors in Rn such that

(A− λiB)xi = 0. (6.4)

Let P = (x1, . . . ,xn), the n × n matrix with the xi as its columns. Then

P ∈ GLn(R) and

P tAP =











α1

. . .

αn











, P tBP =











β1

. . .

βn











(6.5)

where αi = λixi
tBxi , βi = xi

tBxi .

Proof. This is straightforward (cf Lemma 4.4.1 and Theorem 4.4.1). 2

Lemma 6.3.2 Under the hypotheses and notation of Lemma (6.3.1), the pair

of equations

xtAx = 0

xtBx = 0







(6.6)

has a non-trivial real solution if and only if there do not exist real λ∗, µ∗ (not

both zero) such that the real numbers µ∗αi − λ∗βi all have the same sign.

Proof. This is immediate from Lemmas (6.2.1), (6.3.1). 2

Lemma 6.3.3 Under the hypotheses and notation of Lemma (6.3.1), the pair

of equations

xtAx = 0

xtBx = 0







(6.7)
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has no non-trivial real solution if and only if there exists λj , one of the roots of

F (λ) = det(A− λB), such that A− λjB is semi-definite.

Proof. Suppose first that the pair of equations (6.7) has no non-trivial real

solution. By Lemma (6.3.3) above, there exist real λ∗, µ∗ such that µ∗αi −λ∗βi

all have the same sign. If µ∗ = 0 then we can replace it by a very small non-zero

real number and still have that µ∗αi − λ∗βi all have the same sign. Hence, we

will assume that µ 6= 0. By dividing by µ∗, we see that there is a real λ∗∗ such

that αi − λ∗∗βi all have the same sign. Let λj be the root of F (λ) which is

closest to λ∗∗.We note that as we vary λ along the real line, none of the αi−λβi

change sign until we cross a root of
∏

(αi − λβi) = F (λ). Since λj is the closest

root of F (λ) to λ∗∗, it follows that αi − λjβi i 6= j all have the same sign and

that, of course, αj − λjβj = 0. Hence A− λjB is semi-definite, as required.

Conversely, suppose that A−λjB is semi-definite, where λj is a root of F (λ).

Write

A =











α1

. . .

αn











, B =











β1

. . .

βn











(6.8)

as in Lemma (6.3.1). Recall that the alphas and betas are all non-zero, since by

assumption detA, detB 6= 0. A − λjB is semi-definite and so all the αi − λjβi

are all of the same sign except αj − λjβj = 0. Note αj − (λj + ε)βj = −εβj ;

hence, since βj 6= 0, by choosing ε small enough and with appropriate sign, we

will have that αi − (λj + ε)βi are all of the same sign. Hence A− (λj + ε)B is

definite and the lemma follows. 2

Theorem 6.3.1 Under the notation and hypotheses of Lemma (6.3.1),the pair

of equations

xtAx = 0

xtBx = 0







(6.9)

has a non-trivial solution in R if and only if, for each λj , the real numbers

αi − λjβi (i 6= j) do not all have the same sign.

Proof. Immediate from Lemma (6.3.3). 2
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6.4 The Algorithm

We can now present our algorithm for determining the solubility of the pair

xtAx = 0

xtBx = 0







(6.10)

over R, under the assumption that det(XA−Y B) is non-zero, and has distinct

roots.

Algorithm 6.4.1 Since det(XA − Y B) is non-zero, we can choose K-linear

combinations of A and B which are non-singular and hence assume that det(A)

and det(B) are non-zero. Now check if all the roots of det(A− λB) are real. If

there is a non-real root then the pair (6.10) has a non-trivial solution over R

and we can stop. Otherwise let λ1, . . . , λn be the roots of F (λ) = det(A − λB)

and let xi ∈ K(λi)
n−{0} be solutions to (A−λiB)xi = 0 (this is simply solving

linear equations). Define βi = xi
tBxi and αi = λixi

tBxi. It is clear that the

λi, βi and αi can be calculated to arbitrary accuracy in R. Check if, for each

1 ≤ j ≤ n, the numbers αi − λjβi (1 ≤ i ≤ n, i 6= j) do not all have the same

sign. These are non-zero, and so it is easy to determine their signs. If for some

j, αi − λjβi i 6= j have the same sign then (6.10) has only the trivial solution.

Otherwise, it has a non-trivial solution.

6.5 A Special Case for Two Quadrics in Four

Variables

We record in passing the following theorem, which says that if n = 4, K = Q

and F (X,Y ) = det(XA−Y B) has 4 distinct roots, all in Q, then solubility over

R is guaranteed once solubility over Qp has been checked for all (finite) primes

p.

Theorem 6.5.1 Suppose that A, B are symmetric 4× 4 matrices with rational

entries such that F (X,Y ) = det(XA − Y B) can be factorized completely over
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Q. Then, if

xtAx = 0

xtBx = 0







(6.11)

has non-trivial solutions in Qp for all finite primes p, it has a non-trivial solution

in R.

Proof. Suppose (6.11) has non-trivial solutions in Qp for all finite primes p, and

it has no non-trivial solution in R. As before, we may assume that A and B are

non-singular. Hence by Lemma (6.3.3), there exists λj , a root of det(A − λB)

such that A − λjB is semi-definite. Now after a simultaneous diagonalization

over Q (see Theorem 4.4.1), we can assume that

xtAx = α1x
2
1 + α2x

2
2 + α3x

2
3 + α4x

2
4

xt(A− λjB)x = γ1x
2
1 + γ2x

2
2 + γ3x

2
3







(6.12)

where γ1, γ2, γ3 have the same sign. Recall that this has non-trivial solutions

over Qp, for all finite primes p. We will show that the second equation, as

an equation in 3 variables, has a non-trivial solutions over all completions Qp

(p 6= ∞). If (x1, x2, x3, x4) ∈ Qp
4−{0} and solves the pair (6.12) then we cannot

have x1 = x2 = x3 = 0. For otherwise α4x4
2 = 0 in Qp and so either α4 = 0

or x4 = 0. Hence either det(A) = 0 or (x1, x2, x3, x4) = 0. This contradiction

shows that the equation

γ1x
2
1 + γ2x

2
2 + γ3x

2
3 = 0 (6.13)

is solvable at all the finite primes. By the well known lemma below, this must

also have a solution in the reals. This contradicts the fact that γ1, γ2, γ3 share

the same sign, and so we are finished. 2

Lemma 6.5.1 for any conic over Q, the number of primes p (including ∞)

for which there is not a point over Qp is even.

Proof. See [Ca2] page 46. 2
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Appendix A

Hensel Lifting for Y 2 = g(X)

Let K be a field complete with respect to a non-archimedean valuation υ, such

that the corresponding residue field is finite. Let O be the ring of valuation

integers, and let π be a uniformizer for υ. Suppose g(X) is a non-zero polynomial

with coefficients in O, and has non-zero discriminant. In this Appendix we

consider the following problem: Given x0 ∈ O and ε ≥ 0, does there exist x ∈ O

such that g(x) is a square in O and υ(x− x0) ≥ ε ?

The question arises from our method of computing the non-archimedean

contribution to the upper bound for h − ĥ in Chapter 2. This question is

considered in [Bi, SwD] and [Cre] for the case where K = Qp for some prime

p, and g is a polynomial of degree 4, though the details for our general case

are not any more difficult. The following Lemma, is a direct generalization of

Lemmas 6 and 7 of [Bi, SwD], and the details of their proof carry over without

any changes, and thus a proof is omitted.

Lemma A.0.2 Suppose υ(2) = e ≥ 0. Suppose that x0 ∈ O, and let

υ(g(x0)) = λ, υ(g′(x0)) = µ.

Then there exists x ∈ O, with g(x) a square in O, and υ(x− x0) ≥ ε if

1. g(x0) is a square in O, or

102



2. λ− µ ≥ ε > µ, or

3. λ is even, and there exists i such that 1 ≤ i ≤ 2e, λ = µ + ε − i, ε > µ,

and π−λg(x0) ≡ 1 (mod πi).

There may exist x ∈ O, with g(x) a square in O, and υ(x− x0) ≥ ε if

1. µ ≥ ε and λ ≥ 2ε, or

2. µ ≥ ε and λ = 2ε− 2i where 1 ≤ i ≤ e.

There does not exist x ∈ O, with g(x) a square in O, and υ(x− x0) ≥ ε in any

other case.

Now suppose that x0 ∈ O, and that we want to know if there exists x ∈ O such

that g(x) is a square in O and υ(x−x0)ε. If we use the above Lemma we will be

able to decide this question unless µ0 ≥ ε, and λ0 ≥ 2ε−2e, where λ0 = υ(g(x0)),

and µ = υ(g′(x0)). Suppose that this is the case. Let α1, . . . , αq be a complete

set of coset representatives for O/πO. Now it is sufficient to determine, if for

some j, there exists x ∈ O such that g(x) is a square in O and υ(x−x1) ≥ ε+1

where x1 = x0 +αjπ
ε. For any fixed j, we use the above Lemma. If we are still

undecided, then µ1 ≥ ε+ 1, and λ1 ≥ 2(ε+ 1) − 2e, where λ1 = υ(g(x1)) and

µ1 = υ(g′(x1)). Continuing recursively in the obvious manner, if our question

remains undecided forever, then we will have constructed a sequence (xk) ∈ O

(k = 0, 1, . . .) such that υ(g(xk)) ≥ ε+k, and υ(g′(xk)) ≥ 2(ε+k)−2e. Since K

is complete, and the discriminant of g is non-zero, we arrive at a contradiction.
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Appendix B

The Geometry of the

Intersection of two Quadrics

Suppose A and B are linearly independent 4 × 4 matrices with entries in a

ground field K, which has characteristic 6= 2. We shall say that two distinct

quadric surfaces (in P
3)

H1 : xtAx = 0

and

H2 : xtBx = 0

intersect transversely if F (X,Y ) = det(XA− Y B) is non-zero and has distinct

roots. We assume throughout that our ground field K has characteristic 6= 2.

Theorem B.0.2 The intersection of the 2 distinct quadric surfaces H1, and

H2 is an (irreducible) curve of genus 1 if and only if it is transverse. Moreover,

if the intersection is not transverse, then it has a (Zariski) component which is

a curve of genus 0.
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Proof. Suppose that H1, and H2 intersect transversely. Then by Proposition

22.38 on page 304 of [Harris], the intersection

xtAx = 0

xtBx = 0







(B.1)

is a curve of genus 1. The rest of the theorem follows from the two Lemmas

below. 2

Lemma B.0.3 If det(XA − Y B) = 0 identically, then (B.1) must have a

Zariski component which is a curve of genus 0.

Proof. Let y be transcendental over K. Now det(A − yB) = 0 and so there

exists a vector v(y) ∈ K[y]4\{0} such that

(A− yB)v(y) = 0.

Moreover, we may assume that the elements of v(y) are coprime as polynomials

in y. Now let y1, y2 be independent transcendental elements over K. By the

usual argument (cf. Lemma 4.4.1) y1 6= y2 implies that

v(y1)
tAv(y2) = v(y1)

tBv(y2) = 0.

Now substitute y1 = y2 = y in the above. So we have

v(y)tAv(y) = v(y)tBv(y) = 0.

If v(y) is a non-constant vector then the conclusion follows. Suppose that

v(y) = v ∈ K4\{0}. So (A − yB)v = 0, which implies that Av = Bv = 0. In

this case it is easy to show now that the intersection H1 ∩H2 is a collection of

straight lines (in P3). 2

Lemma B.0.4 Suppose det(XA−Y B) 6= 0 but it has a multiple root. Then (B.1)

has a component which is a curve of genus 0.

Proof. Without loss of generality we may assume that Y 2 divides det(XA −

Y B). Clearly the rank of A is at most 3. If A has rank 1 or 2, then let
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L(x1, . . . , x4) be a linear form dividing xtAx. Then the intersection of L(x1, . . . , x4) =

0 and xtBx = 0 is either a pair of lines or a plane conic. In either case the

conclusion of the lemma follows.

Hence suppose that the rank of A is 3. By a non-singular change of variable

we may assume that

A =













A1 0

0 0













.

Write

xtBx = q(x1, x2, x3) + x4l(x1, x2, x3) + bx2
4

where q is quadratic, l is linear and b is constant. It follows that the coefficient

of X3Y in det(XA− Y B) is b det(A1). Since Y 2| det(XA− Y B) we have that

b = 0. So (B.1) is birational to the conic

(x1, x2, x3)A1(x1, x2, x3)
t = 0

via the map

x4 =
−q(x1, x2, x3)

l(x1, x2, x3)
.

2

This completes the proof.

Theorem B.0.3 Suppose that the characteristic of K is 0. Suppose that C is

a curve of genus 1, and D is the intersection of 2 distinct quadric surfaces H1

and H2 (in P
3) as above. If there is a non-constant morphism φ : D → C then

the intersection is transverse and D is a curve of genus 1.

Proof. If the intersection is not transverse, then D contains a component D1

which is a curve of genus 0. Restricting φ to D1 we see that we have a non-

constant morphism from a curve of genus 0 into a curve of genus 1. This is

impossible (see exercise 2.8 on page 43 of [Si2]). 2
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B.0.1 The Combinant

Define ∂(A,B) = disc(det(XA− Y B)). We need(ed) the following theorem.

Theorem B.0.4 If a, b, c, d are elements of K and P is a 4× 4 matrix then

write C = P t(aA− bB)P and D = P t(cA− dB)P . We have

∂(C, D) = (ad− bc)12(det(P ))12∂(A, B).

Proof. See [Bi, Le, Mu] page 112. 2
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