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Abstract. In this paper we improve the behavior of a reconstruction al-
gorithm for binary tomography in the presence of noise. This algorithm
which has recently been published is derived from a primal-dual subgra-
dient method leading to a sequence of linear programs. The objective
function contains a smoothness prior that favors spatially homogeneous
solutions and a concave functional gradually enforcing binary solutions.
We complement the objective function with a term to cope with noisy
projections and evaluate its performance.
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1 Introduction

Discrete Tomography is concerned with the reconstruction of discrete-valued
functions from projections. Historically, the field originated from several branches
of mathematics like, for example, the combinatorial problem to determine binary
matrices from its row and column sums (see the survey [1]). Meanwhile, however,
progress is not only driven by challenging theoretical problems [2, 3] but also by
real-world applications where discrete tomography might play an essential role
(cf. [4, chapters 15–21]).

The work presented in this paper is motivated by the reconstruction of vol-
umes from few projection directions within a limited range of angles. From the
viewpoint of established mathematical models [5], this is a severely ill-posed
problem. The motivation for considering this difficult problem relates to the ob-
servation that in some specific medical scenarios, it is reasonable to assume that
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the function f to be reconstructed is binary-valued . This poses one of the essen-
tial questions of discrete tomography: how can knowledge of the discrete range
of f be exploited in order to regularize and solve the reconstruction problem?

1.1 Motivation

Consider the 32 × 32 image on the left side of figure 1 which shows a black
rectangle. Given the horizontal and the vertical projection, see figure 2, it is
obviously easy to recover the original object from these projections.

Now let us assume that for some reason in each projection the ray in the
middle does not measure the correct value, in fact it measures a longer value in
the first (figure 3) and a smaller one in the second case (figure 4). The question
arises how does a reconstruction algorithm based on linear programming (see
section 3) behave on such disturbed data? In the first case (figure 3) there is

Fig. 1. Consider the following binary reconstruction problem: The horizontal and the
vertical projection of the left image, 32 × 32, are given, see figure 2. For some reason
one ray in both projections does not measure the correct value, but a higher in the
first (figure 3) and a smaller one in the second case (figure 4). The higher measurement
does not bother the reconstruction algorithm at all since there are other constraints
which are previously met. However, in the second case the constraint with the smaller
value is fulfilled before all others and hence the algorithm reacts sensitive to this kind
of error, as can be seen in the right image

no problem at all since the constraints of other rays are met first. Only the con-
straint of the wrong projection ray is not fulfilled entirely, means the inequality
constraint, see equation (5), is “less than” for a given solution. Anyhow, the
reconstruction algorithm will deliver the correct solution. Unfortunately, in the
second case (figure 4) the opposite is true. The constraint of the wrong measure-
ment is met first and hinders the other constraints from being fulfilled entirely.
This is shown in the right image of figure 1 where the reconstruction problem
was solved with (ILP ) (one iteration; α = 0.0), see section 3.3. Even for α > 0
which enforces more homogeneous reconstructions the gap is not filled up due
to the hard constraints.
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Fig. 2. Correct horizontal (left) and vertical projection (right) of the image shown on
the left side of figure 1
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Fig. 3. First error case: The detector at position 15 measures a longer value in both
projections
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Fig. 4. Second error case: The detector at position 15 measures a lower value in both
projections

The motivation of this paper is to overcome this systematic drawback that
occurs in case of noisy projection data. This is done by the modification of our
(ILP ) algorithm which we will describe in section 4.1.
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2 Problem Statement

The reconstruction problem we consider here is represented by a linear system
of equations Ax = b. Each projection ray corresponds to a row of matrix A, and
its projection value is the corresponding component of b. The entries of A are
given as the length of the intersection of a particular pixel (voxel in the 3D case)
and the corresponding projection ray (see Fig. 5). Each component xi ∈ {0, 1}
indicates whether the corresponding pixel (belongs to the reconstructed object,
xi = 1, or not, xi = 0 (see Fig. 5). The reconstruction problem is to compute the
binary indicator vector x from the under -determined linear system of projection
equations:

Ax = b, x = (x1, ..., xn)� ∈ {0, 1}n (1)

x9x8x7

x4

x1 x2 x3

x5
x6

a3

a4
a5

a6

a7

bi

Fig. 5. Discretization model leading to the algebraic representation of the reconstruc-
tion problem: Ax = b, x ∈ {0, 1}n

3 Related and Prior Work

In order to take advantage of a continuous problem formulation and numeri-
cal interior point methods, Fishburn et al. [6] considered the relaxation xi ∈
[0, 1], i = 1, . . . , n, and investigated the following linear programming approach
for computing a feasible point:

min
x∈[0,1]n

〈0, x〉, Ax = b (2)

In particular, the information provided by feasible solutions in terms of ad-
ditivity and uniqueness of subsets S ⊂ Z

n is studied in [6].

3.1 Best Inner Fit (BIF)

Gritzmann et al. [7] introduced the following linear integer programming prob-
lem for binary tomography:

max
x∈{0,1}n

〈e, x〉, e := (1, . . . , 1)�, Ax ≤ b , (3)
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and suggested a range of greedy approaches within a general framework for local
search. Compared to (2), the objective function (3), called best-inner-fit (BIF)
in [7], looks for the maximal set compatible with the measurements. Further-
more, the formulation of the projection constraints is better suited to cope with
measurement errors and noise.

3.2 Regularized Best Inner Fit (BIF2)

In [8, 9], we studied the relaxation of (3) xi ∈ [0, 1],∀i, supplemented with a
standard smoothness prior enforcing spatial coherency of solutions∑

〈i,j〉
(xi − xj)

2 (4)

Here, the sum runs over all 4 nearest neighbors of the pixel grid (6 neighbors
in the 3D case). In order to incorporate this prior into the linear programming
approach (3), we used the following approximation by means of auxiliary vari-
ables {z〈i,j〉}:

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉 +
α

2

∑
〈i,j〉

z〈i,j〉 (5)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

3.3 Iterated Linear Programming (ILP)

In [10], we added to the relaxation in (5) a concave functional which is minimal
at the vertices of the domain [0, 1]n enforcing binary solutions.

µ

2
〈x, e − x〉 =

µ

2

∑
i

xi − x2
i , (6)

The strategy is to choose an increasing sequence of values for µ and to min-
imize for each of them (7).

min
x∈[0,1]n,{z〈i,j〉}

−〈e, x〉 +
α

2

∑
〈i,j〉

z〈i,j〉 +
µ

2
〈x, e − x〉 (7)

subject to Ax ≤ b , z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Problem (7) is no longer convex, of course, but can be reliably minimized
with a sequence of linear programs. This will be explained in section 4.1.

4 Noise Suppression

In case of noisy projection information we cannot consider the entries of the
right-hand side vector b as fixed anymore, see section 1.1. Instead, the algorithm
should take errors into account and suppress effects on the reconstruction as
much as possible.
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4.1 Iterated Linear Programming with Soft Bounds (ILPSB)

According to the chosen discretization scheme, section 2 and equation (3.1), each
ray is represented by an equation of the form a�

i x ≤ bi, where ai is the i-th row
of matrix A. In order to handle false projections, we introduce the error variables
γi leading to the modified equations a�

i x + γi = bi, γi ∈ R. Since we do not
wish to perturb the projection equations arbitrarily, we include the term

∑
i λi

into the objective function, where:

λi :=
{

τ0γi if γi ≥ 0
− τ1γi else , τ0 > 0, τ1 > 0 (8)

The parameters τ0 and τ1 allow to assign different weights to positive and neg-
ative deviations from the measurement bi. Choosing τ0 > τ1 prefers an approxi-
mation of the best inner fit constraints, Ax ≤ b. Consider again a�

i x + γi = bi,
in order to met equality it is favorable to set more xi instead of compensat-
ing with the expensive γi. Conversely, the choice of τ0 < τ1 approximates the
best outer fit constraints. Finally, if τ0 = τ1 = τ the term

∑
i λi results in

τ
∑

i |γi| = τ ||Ax − b||1. Hence, instead of (7), we consider the following opti-
mization problem:

min
x∈[0,1]n,{z〈i,j〉}

α

2

∑
〈i,j〉

z〈i,j〉 +
µ

2
〈x, e − x〉 + β

m∑
i=1

λi (9)

subject to

Ã

(
x
γ

)
= b , Ã :=

⎛
⎜⎝

a11 . . . a1,n 1
...

. . .
...

. . .
am,1 . . . am,n 1

⎞
⎟⎠

0 ≤ xi ≤ 1, γi ∈ R,

λi ≥ τ0γi, λi ≥ −τ1γi,

z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

Compared to (ILP ), equation (7), we can skip the term −〈e�x〉 in the objec-
tive function of equation (9) since minimizing λi forces x to satisfy the projection
equations.

Further, the regularization parameter β controls the error tolerance.

4.2 Optimization

As the original (ILP ) approach ( section 3.3), this problem is not convex. To
explain our approach for computing a minimizer, we put

z := (x�, . . . , z〈i,j〉, . . . , λ�)� (10)

and rewrite all constraints from equation (9), in the form

Âz ≤ b̂ , (11)
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Using the notation

δC(z) =

{
0 , z ∈ C

+∞ , z 	∈ C

for the indicator functions of a convex set C, problem (9) then reads:

min
z

f(z) ,

where (cf. definition (10))

f(z) =
α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi +
µ

2
〈x, e − x〉 + δK(b̂ − Âz) , (12)

= g(z) − h(z) , (13)

K = R
n
+ is the standard cone of nonnegative vectors, and

g(z) =
α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi + δK(b̂ − Âz) , (14)

h(z) =
µ

2
〈x, x − e〉 . (15)

Note that both functions g(z) and h(z) are convex, and that g(z) is non-
smooth due to the linear constraints.

To proceed, we need the following basic concepts [11] defined for a function
f : R

n → R and a set C ⊂ R
n:

dom f =
{
x ∈ R

n
∣∣ f(x) < +∞}

effective domain of f

f∗(y) = sup
x∈Rn

{〈x, y〉 − f(x)
}

(conjugate function)

∂f(x) =
{
v

∣∣ f(x) ≥ f(x) + 〈v, x − x〉 , ∀x
}

subdifferential of f at x

We adopt from [12, 13] the following two-step subgradient algorithm for min-
imizing (13):

Subgradient Algorithm:
Choose z0 ∈ dom g arbitrary.
For k = 0, 1, . . . compute:

yk ∈ ∂h(zk) (16)

zk+1 ∈ ∂g∗(yk) (17)

The investigation of this algorithm in [13] includes the following results:

Proposition 1 ([13]). Assume g, h : R
n → R be proper, lower-semicontinuous

and convex, and
dom g ⊂ dom h , dom h∗ ⊂ dom g∗ . (18)

Then
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(i) the sequences {zk}, {yk} according to (16), (17) are well-defined,
(ii)

{
g(zk) − h(zk)

}
is decreasing,

(iii) every limit point z∗ of {zk} is a critical point of g − h.

Reconstruction Algorithm.
We apply (16), (17) to problem (9). Condition (18) holds, because obviously
dom g ⊂ dom h, and g∗(y) = supz

{〈z, y〉 − g(z)
}

< ∞ for any finite vector y.
(16) reads

yk = ∇h(zk)

= µ(xk − 1
2
e) (19)

since
∂h(z) =

{∇h(z)
}

if h is differentiable [11]. To compute (17), we note that g is proper, lower-
semicontinuous, and convex. It follows [11] that

∂g∗(y) =
{
z

∣∣ g∗(y) ≥ g∗(y) + 〈z, y − y〉, ∀y
}

(20)

= argmaxz

{〈y, z〉 − g(z)
}

, (21)

which is a convex optimization problem. Hence, (17) reads:

zk+1 ∈ argminz

{
g(z) − 〈yk, z〉}

Inserting yk from (19), we finally obtain by virtue of (14), (11), and (10):

Reconstruction Algorithm (µ Fixed).
Choose z0 ∈ dom g arbitrary.

For k = 0, 1, ..., compute zk+1 as minimizer of the linear program:

min
x∈[0,1]n,{z〈i,j〉},λ∈R

m
≥0

−
〈

µ(xk − 1
2
e), x

〉
+

α

2

∑
〈i,j〉

z〈i,j〉 + β

m∑
i=1

λi (22)

subject to

Ã

(
x
γ

)
= b

0 ≤ xi ≤ 1, γi ∈ R,

λi ≥ τ0γi, λi ≥ −τ1γi,

z〈i,j〉 ≥ xi − xj , z〈i,j〉 ≥ xj − xi

In practice, we start with µ = 0 and repeat the reconstruction algorithm for
increasing values of µ, starting each iteration with the previous reconstruction zk.
This outer iteration loop terminates when ∀i, min{xi, 1 − xi} < ε. Throughout
all experiments in section 5, (ILP ) or (ILPSB), µ was increased by 0.1.

Note that for µ = 0, we minimize (5), whereas for µ > 0 it pays to shift in (22)
the current iterate in the direction of the negative gradient of the “binarization”
functional (6). While this is an intuitively clear modification of (5), convergence
of the sequence of minimizers of (22) due to proposition 1 is not obvious.
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5 Experimental Evaluation

For evaluation purposes, we took three parallel projections, 0◦, 45◦, and 90◦, of
the 64 × 64 image shown in figure 6(a). In case of noiseless projections (ILP )
and (ILPSB) are able to find the correct reconstruction within 10 iterations,
figure 6(b)-(d).

We independently added for each projection direction a value δbi ∼ N (0, σ)
to the respective measurement bi in order to simulate the presence of noise.
Roughly speaking, in the experiments with σ = 1.0 a projection value can differ
between ±2 from its correct value and in case of σ = 2.0 even between ±4.
Relative to the image size, 64 × 64, the choice of σ seems to be reasonable for
real application scenarios.

(a) Original (b) Iteration 1.

(c) Iteration 8. (d) Iteration 10.

Fig. 6. (a) Shows the original image, 64×64, from which we have taken three parallel
projections, 0◦, 45◦, and 90◦. (b)-(d) In case of noiseless projections (ILP ), α = 0.25,
and (ILPSB), α = 0.25 and β = 1.0, are able to find the correct solution within 10
iterations
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Fig. 7. Each histogram was created from 255 (64 (horizontal rays) + 64 (vertical rays) +
(127 (diagonal rays))) samples of different normal distributions, µ = 0.0 (in both cases),
σ = 1.0 (left) and σ = 2.0 (right). In order to simulate noise, we added independently
for each projection direction a value δbi ∼ N (0, σ) to the respective measurement bi
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Fig. 8. Experiments with σ = 1.0: Plots the difference between the original image and
the solution at iteration k for (ILP )(left) and (ILPSB)(right). The tables 1 and 2
give the final numerical values of these experiments
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Fig. 9. Experiments with σ = 1.0: Plots the number of undecided pixels, i.e. pixels
that are neither 0 nor 1, at iteration k for (ILP )(left) and (ILPSB)(right). For the
final numerical values see the tables 1 and 2
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In order to find a suitable choice of α we decided to check (ILP ) with α ∈
{0.25, 0.5, 0.75, 1.0}. In case of noiseless projections, α = 0.25 is a good choice.
However, in combination with noisy projections our experiments show that α
should be set higher (α ∈ [0.5, 0.75]). The (ILP ) approach achieved best results
with α = 0.75 (σ = 1.0) and α = 0.5 (σ = 2.0).

We checked (ILPSB) for different choices of β. In case of σ = 1.0 we set the
parameters to τ1 = 1.0, τ0 = 3.0, α = 0.5 and for σ = 2.0 to τ1 = 1.0, τ0 = 5.0,
α = 1.0. In our experiments best performance was achieved with β = 0.2. In
both cases (ILPSB) reached better final results than (ILP ).

Numerical results of our experiments are given in table 1 and plots are shown
in the figures 8, 9, 10, and 11. Images of intermediate and the final reconstruction
are presented in figure 12.
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Fig. 10. Experiments with σ = 2.0: Difference between the original image and the
solution at iteration k for (ILP )(left) and (ILPSB)(right). For the final numerical
values see the tables 1 and 2

Table 1. Summary of the (ILP ) results for different α and σ. The quality of the recon-
struction (third column) was simply measured by the difference between the original
and the solution, i.e. ||xcorrect − xsolution||1. Further, we measured the number of pix-
els that have not been decided, i.e. that are neither 0 nor 1 (fourth column). The best
result of (ILP ) was obtained with α = 0.75 in case of σ = 1.0 and α = 0.5 for σ = 2.0.
Plots of this experiments are shown in the figures 8(left), 9(left), 10(left), and 11(left)

α σ difference undecided
0.25 1.0 124.45 1.00 %
0.50 1.0 156.75 0.63 %
0.75 1.0 112.24 0.49 %
1.00 1.0 172.59 1.03 %
0.25 2.0 240.83 0.98 %
0.50 2.0 142.73 0.90 %
0.75 2.0 159.67 1.25 %
1.00 2.0 215.96 0.93 %
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Fig. 11. Experiments with σ = 2.0: Number of undecided pixels at iteration k

for (ILP )(left) and (ILPSB)(right). For the final numerical values see the tables 1
and 2

Table 2. (ILPSB) results for different α and σ. The third column shows the difference
between original and solution, ||xcorrect−xsolution||1, and the fourth column the number
of undecided pixels. The (ILPSB) approach yields best results for β = 0.2. In both
cases these results were better than the best results achieved by (ILP ), see table 1.
Plots of this experiments are shown in the figures 8(right), 9(right), 10(right), and
11(right)

β σ difference undecided
0.1 1.0 191.00 0.00 %
0.2 1.0 68.04 0.05 %
0.3 1.0 93.02 0.05 %
0.4 1.0 104.87 0.10 %
0.2 2.0 119.51 0.17 %
0.3 2.0 232.75 0.20 %
0.4 2.0 220.80 0.20 %
0.5 2.0 194.44 0.59 %

6 Conclusion

In this paper we presented the (ILPSB) approach which is a modification of
(ILP ) with noise suppression. For evaluation purposes, noise was simulated by
sampling normal distributions with µ = 0.0 and σ ∈ {1.0, 2.0}. In order to
compare both approaches we measured the difference between the solution and
the original image. Further, we considered the number of pixels that were not
decided, i.e. neither 0 nor 1. In our experiments (ILPSB) achieved better results
than (ILP ) under both criteria.
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(ILP ) Iteration 1. (ILP ) Iteration 10. (ILP ) Iteration 50.

(ILPSB) Iteration 1. (ILPSB) Iteration 10. (ILPSB) Iteration 50.

(ILP ) Iteration 1. (ILP ) Iteration 10. (ILP ) Iteration 50.

(ILPSB) Iteration 1. (ILPSB) Iteration 10. (ILPSB) Iteration 50.

Fig. 12. First row: σ = 1.0, (ILP ) with α = 0.75. Second row: σ = 1.0, (ILPSB)
with β = 0.2. Third row: σ = 2.0, (ILP ) with α = 0.5. Fourth row: σ = 2.0, (ILPSB)
with β = 0.2
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