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We study phase transitions and relevant order parameters via statistical estimation theory using
the Fisher information matrix. The assumptions that we make limit our analysis to order parameters
representable as a negative derivative of thermodynamic potential over some thermodynamic vari-
able. Nevertheless, the resulting representation is sufficiently general and explicitly relates elements
of the Fisher information matrix to the rate of change in the corresponding order parameters. The
obtained relationships allow us to identify, in particular, second-order phase transitions via diver-
gences of individual elements of the Fisher information matrix. A computational study of random
Boolean networks (RBNs) supports the derived relationships, illustrating that Fisher information
of the magnetization bias (that is, activity level) is peaked in finite-size networks at the critical
points, and the maxima increase with the network size. The framework presented here reveals the
basic thermodynamic reasons behind similar empirical observations reported previously. The study
highlights the generality of Fisher information as a measure that can be applied to a broad range
of systems, particularly those where the determination of order parameters is cumbersome.

PACS numbers: 05.70.Fh, 64.60.Bd, 64.60.De, 02.50.-r
Keywords: phase transitions, Fisher information, order parameter, thermodynamic potential, free entropy,
random Boolean network, critical points

I. INTRODUCTION

Critical phenomena and phase transitions have been
reported in a very broad range of systems, ranging from
physical to biological to computational. Phase transi-
tions have been vigorously studied for many decades, pro-
ducing fundamental scientific and technological results.
Various models have been proposed explaining intricate
details of order-disorder transitions under various con-
ditions, universal behavior at critical regimes, dynam-
ics of order parameters, and so on. These models have
found applications beyond statistical mechanics, reach-
ing as far as information geometry [1–4] and artificial life
[5, 6]. The research has produced various metaphors, hy-
potheses and theories such as the edge of chaos [6], the
enslaving principle in synergetics [7], universality classes
of critical exponents [8], self-organized criticality [9], and
guided self-organization [10] among many others.

In this paper we approach the study of phase transi-
tions and relevant order parameters via statistical esti-
mation theory and information theory, aiming to char-
acterize dynamics of order parameters in a fairly general
setting. Our tools of choice are Fisher information and
the Fisher information matrix, which are well known in
statistical estimation theory. We make a few assump-
tions, most notably, limit our considerations to order pa-
rameters representable as a negative derivative of ther-
modynamic potential over some thermodynamic variable.
The resulting representation, however, is general, imme-
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diately relating elements of Fisher information matrix to
the rate of change in the corresponding order parameters.

While this paper will turn its attention to information-
theoretic concepts, it is out of scope to comment here on
rich connections between Boltzmann entropy and Shan-
non entropy. It suffices to point out the seminal works
of Jaynes [11, 12] who convincingly demonstrated that
information theory can be applied to the problem of jus-
tification of statistical mechanics, producing predictions
of equilibrium thermodynamic properties.

It has been suggested in several previous studies [1–
4] that the Fisher information matrix provides a Rie-
mannian metric (more precisely, the Fisher–Rao metric)
for the manifold of thermodynamic states, and thus can
be used as an information-geometric complexity measure
for a classification of phase transitions. For instance, it
was suggested that the scalar curvature of the thermo-
dynamic metric tensor measures the complexity of the
system: the curvature diverges at (and only at) a phase
transition point [1]. In this paper we derive arguably
simpler relationships that directly connect first deriva-
tives of order parameter(s) to elements of the Fisher in-
formation matrix. This allows us to study second-order
phase transitions via divergences of individual (e.g., di-
agonal) elements of Fisher information matrix, as exem-
plified by a computational study of random Boolean net-
works (RBNs).

We select RBNs as an example because of their gener-
ality as discrete dynamical network models with a very
large sample space available, making them very suitable
for an ensemble study of the required dynamics. In par-
ticular, RBNs exhibit a well-known phase transition from
ordered to chaotic dynamics, with respect to average con-
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nectivity or activity level (magnetization bias). More-
over, Fisher information was recently argued to provide
a natural interpretation of the phase diagram in RBNs,
where the latter was obtained by maximizing Fisher in-
formation of either average connectivity or the activ-
ity level [13, 14]: i.e., the system dynamics reflected by
Fisher information were shown to be most sensitive to
control parameters near the critical points. The stud-
ies [13, 14], however, did not provide underlying rea-
sons for these observations — this paper fills this gap
by immediately relating Fisher information (more pre-
cisely, elements of Fisher information matrix) to order
parameters. That is, we argue that the maximization of
Fisher information reported in [13, 14] is a manifesta-
tion of the divergences of the corresponding elements of
Fisher information matrix, observed in finite-size exper-
imental networks. Specifically, we intend to show that
such a divergence occurs at a critical point whenever the
corresponding order parameter changes continuously but
disappears at the critical point (and its first derivative or
the rate of change diverges).

The paper is organized as follows. Section II briefly de-
scribes necessary details used in generic models of statis-
tical mechanics, such as the Gibbs ensemble, thermody-
namic potential, and derivatives of free entropy. Section
III presents the two main components of our analysis:
(i) order parameters representable via collective variables
and (ii) the Fisher information matrix. Section IV follows
with our main observations relating (the rate of change
of) order parameters with Fisher information values, ex-
emplified for a simple case of ferromagnetic magnetiza-
tion. This analysis provides an argument for divergence
of Fisher information values at second-order phase tran-
sitions. The divergence of Fisher information is demon-
strated in an experimental study of random Boolean net-
works for different increasing network sizes, presented in
Section V. This analysis includes a comparison with the
rate of change of a well-known order parameter, confirm-
ing the analytical relationship reported in Section III.
Finally, Section VI summarizes the findings and suggests
several directions for future research.

II. TECHNICAL PRELIMINARIES

A. Gibbs ensemble

Given a physical system in an equilibrium with a large
thermal reservoir, models of statistical mechanics typi-
cally deal with Gibbs measures of the form

p(x|θ) =
1

Z(θ)
e−

∑
i θ

iXi(x) , (1)

where the configuration variable x varies over the config-
uration space, Z(θ) is the partition function, the set {θi}
includes thermodynamic variables (e.g., inverse temper-
ature, pressure, magnetic field, chemical potential, etc.),

and the functions Xi(x) reflect the terms of the sys-
tem’s Hamiltonian and determine the form of action [2].
In other words, the probability p(x|θ) that the system
occupies the microstate x is represented via the time-
independent functions Xi(x) of the configuration and
time-dependent conjugate variables (forces) θi. Gener-
ally, one may refer to Xi(x) as collective variables [4].
The configurational probability distribution given by the
Gibbs ensemble (1) can be written as

p(x|θ) =
1

Z(θ)
e−βH(x,θ) , (2)

using the system’s Hamiltonian that captures the total
energy at x: βH(x, θ) =

∑
i θ
iXi(x), where β = 1/kBT

is the inverse temperature (T ) of the environment in nat-
ural units and kB is the Boltzmann constant. This rep-
resentation (2) makes clear that the partition function
“encodes” how the probabilities p(x, θ) are partitioned
among the different microstates x, based on the energies
H(x, θ):

Z(θ) =
∑
x

e−βH(x,θ) . (3)

For example, a simple model of statistical mechanics may
use two thermodynamic variables (θ1, θ2) = (β, h), con-
sidering β as the inverse temperature, and h as the ex-
ternal field [1] — this can be exemplified by the Ising
spin model with two parameters (β, h), where h is the
magnetic field.

B. Thermodynamic potential

The thermodynamic value of the total energy (i.e., the
expected value, or ensemble average for the energy), is de-
fined as the sum of the total microstate energies weighted
by their probabilities:

U =
∑
x

p(x|θ)H(x, θ) =
1

Z(θ)

∑
x

H(x, θ)e−βH(x,θ) .

(4)
Helmholtz free energy is defined as A = U − TS, where
S is the Boltzmann entropy:

S = −kB
∑
x

p(x) ln p(x) , (5)

where for clarity we omit parameters θ of the proba-
bility functions p(x). This expression is a statistical-
mechanics definition of entropy, and it is well-known that
it is equivalent to the thermodynamic definition (taking
Boltzmann’s constant kB into the account).

At this stage, we expand the expression (5) by substi-
tuting the probabilities (2) under the logarithm:

S = −kB
∑
x

p(x) ln

(
1

Z
e−βH(x)

)
(6)

= βkB
∑
x

p(x)H(x) + kB lnZ . (7)
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Then, substituting the definitions of the expected value
of the total energy U (4) and of S (7) into A = U − TS
(and noting βkBT = 1) yields the famous expression for
Helmholtz free energy:

A = −kBT lnZ . (8)

In thermodynamics, Helmholtz free energy A is a ther-
modynamic potential which measures the “useful” work
obtainable from a closed thermodynamic system at a con-
stant temperature and volume. For our purposes, this
concept is important due to its clear relationship with
the partition function and the configurational probabil-
ity distribution, allowing us to treat thermodynamic vari-
ables via statistical means.

C. Derivatives of free entropy

Sometimes, it is convenient to work with the expression

lnZ = −βA = ψ , (9)

and the quantity βA may be referred to as the reduced
free energy per site (dependent on the context) [1], and ψ
is the free entropy (Massieu potential) [4]. In particular,
the expression (8) yields

ψ = lnZ =
S

kB
− U

kBT
=

S

kB
−
∑
x

p(x)
∑
i

θiXi(x) ,

(10)
where the last step used the definition of U given by (4)
and H(x, θ) = 1

β

∑
i θ
iXi(x). Following [4], we denote by

angled brackets a weighted average over the appropriate
equilibrium ensemble, obtaining

ψ =
S

kB
− 〈
∑
i

θiXi〉 . (11)

The first derivatives of the free entropy produce quite
revealing expressions for the collective variables:

〈Xi〉 = − ∂ψ
∂θi

. (12)

III. METHODS

A. Order parameters

Basic thermodynamic classification of phase transi-
tions depends on determination of the “order” of a transi-
tion. This typically requires an examination of the ther-
modynamic potential (e.g., the Helmholtz free energy A)
and its derivatives at the transition. If the first deriva-
tives of A are discontinuous at the transition, then the
transition is called “first order”. Otherwise, if the first
derivatives are continuous but second derivatives are not
(and at least one of them is divergent), the transition is a

“second-order” transition, identified by a critical point in
the phase diagram [15]. A thermodynamic variable dis-
tinguishing the phases is called the “order parameter”.

Phase transitions are often related to symmetry break-
ing. For instance, Jetschke [16] defines a system as un-
dergoing a transition if the symmetry group of its dy-
namics changes to a less symmetrical one (e.g., a sub-
group of the original symmetry group). An example may
be given by a ferromagnetic system undergoing a second-
order phase transition: (i) in the high-temperature phase
the system has no net magnetization, is “disordered” and
has a complete rotational symmetry (isotropy); (ii) at
low temperature, the system becomes “ordered”, and the
net magnetization defines a preferred direction in space
(anisotropy), breaking rotational symmetry. The low-
temperature ordered phase is therefore less symmetrical
and can be fully described by an order parameter — the
magnetization vector [8]. It is well-known that critical
phenomena arise due to a diverging correlation length of
the fluctuations of the order parameter [15].

Binder [15] illustrates the concept by considering the
thermodynamic potential A which has the “field” h, i.e.
h is one of the thermodynamic variables θi. The order
parameter φ is then given, at constant temperature T as

φ = −
(
∂A

∂h

)
T

. (13)

For example, ferromagnetic magnetization M =
−
(
∂A
∂h

)
T

, given the magnetic field h. The field h is con-
jugate to the order parameter φ as a “natural variable”
[15]. Another derivative of A is the entropy S = −

(
∂A
∂T

)
h
.

Importantly, in many models there exists a collective
variable the mean value of which is known to be con-
nected with the order parameter [17]. We would like to
compare at this stage the representation (13) with (12):
it is easily seen that

φi = − ∂A
∂θi

=
1

β

∂ψ

∂θi
= −kBT 〈Xi〉 , (14)

for the collective variable Xi connected with the order
parameter φi. That is, if an order parameter φi is repre-
sentable as a negative derivative of thermodynamic po-
tential over some thermodynamic variable θi then there
exists a collective variable Xi such that equation (14)
holds.

B. Fisher Information

Revisiting the expression (10) for free entropy, we note
[4] that its second derivative yields the following expres-
sion:

−∂〈Xi〉
∂θj

=
∂2ψ

∂θi∂θj
= gij , (15)

where gij is the thermodynamic metric tensor. It was
pointed out in different studies [1–4] that the thermody-
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namic metric tensor gij is identical to the Fisher infor-
mation matrix

gij(θ) = Fij(θ) , (16)

where

Fij(θ) =
∑
x

p(x)
∂ ln p(x)

∂θi
∂ ln p(x)

∂θj
. (17)

The Fisher information is a measure for the amount of
information that an observed random variable provides
about an unknown parameter. Fisher information and
the Fisher information matrix are well known in statis-
tical estimation theory, and are briefly described in Ap-
pendix A.

Appendix B provides additional details needed to es-
tablish the equivalence (16). Importantly, as shown in
Appendix B, in deriving the equivalence (16) we do not
use the second form of Fisher information:

Fij(θ) = −
∑
x

p(x)
∂2 ln p(x)

∂θi ∂θj
. (18)

which requires certain regularity conditions to hold [18].
The equivalence (16), together with equation (15),

leads to the following relationship:

−∂〈Xi〉
∂θj

= Fij(θ) , (19)

that will prove to be very useful in relating Fisher infor-
mation to order parameters in the next section.

IV. PHASE TRANSITIONS AND FISHER
INFORMATION

Let us recall that for the collective variable Xi con-
nected with the order parameter φi we have the relation-
ship:

φi = −kBT 〈Xi〉 . (20)

Taking a derivative over some thermodynamic variable
θj , assuming conditions for the equation (14), and using
the equivalence (19), produces the representation

∂φi

∂θj
= −kBT

∂〈Xi〉
∂θj

= kBT
∂2ψ

∂θi∂θj
= kBT Fij(θ) .

(21)
Alternatively, we may use

Fij(θ) = β
∂φi

∂θj
(22)

In other words, Fisher information is immediately re-
lated to the rate of change in the corresponding order
parameter(s), and thus can be used in studying phase
transitions — especially, the second-order phase transi-
tions where the order parameters change continuously

and their derivatives are well-defined. For example, one
may consider diagonal elements

Fii(θ) = β
∂φi

∂θi
. (23)

Specifically, during a second-order phase transition the
order parameter changes continuously when an indepen-
dent variable is varied, disappearing at the critical point,
while Fisher information exhibits divergence.

A. An example: ferromagnetic magnetization

Let us consider a simple example of ferromagnetic mag-
netization. It is well-known that during a second-order
phase transition the order parameter (magnetization M)
changes continuously when an independent variable T is
varied, and disappearing at the critical point Tc accord-
ing to M = φ ∝ (1 − T/Tc)b, where b is the well-known
critical exponent. The derivative of the order parameter
over the variable h (i.e., i = 1) is equal to the negative
second derivative of the thermodynamic potential

kBT F11(h) =

(
∂φ

∂h

)
T

= −
(
∂2A

∂h2

)
T

(24)

and hence, for the case of ferromagnetic magnetization
M = −

(
∂A
∂h

)
T

, can be thought of as the susceptibility

[15]

χT = −
(
∂2A

∂h2

)
T

∝ (1− T/Tc)−γ , (25)

where γ is another well-known critical exponent. The
susceptibility has a power law singularity diverging at
the critical point Tc:

kBT F11(h) = χT ∝ (1− T/Tc)−γ . (26)

Noting that another derivative of A is the entropy S =
−
(
∂A
∂T

)
h
, we point out that entropy plays somewhat a

dual role to the order parameter:

kBT F22(T ) =

(
∂S

∂T

)
h

= −
(
∂2A

∂T 2

)
h

. (27)

Expressing the specific heat Ch as

Ch = −T
(
∂2A

∂T 2

)
h

∝ (1− T/Tc)−α , (28)

yields

kBT
2 F22(T ) = Ch ∝ (1− T/Tc)−α . (29)

This shows the divergence of the diagonal elements of
the Fisher information matrix at the critical point in this
example.
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B. A more general case

The following general relationship (derived in Ap-
pendix B)

Fij(θ) = 〈(Xi(x)− 〈Xi〉) (Xj(x)− 〈Xj〉)〉 (30)

gives the covariance matrix between the collective vari-
ables Xi and Xj . Thus, the Fisher information Fij can
be seen to measure “the size of fluctuations about equi-
librium” of the collective variables Xi and Xj [19].

Using this general expression, one may consider a
generic case of a d-dimensional Ising-type magnetic
model with a probability density expressible in the form
of equation (1) [2]. For this model, Brody and Rivier
[2] have shown that critical behaviour of thermodynamic
quantities can be analyzed in terms of the reduced tem-
perature t = T/Tc − 1 via scaling:

〈(X1(x)− 〈X1〉)n (X2(x)− 〈X2〉)m〉 (31)

∼
∫
ddr(t1−α)n(tb)mΛ(rtν) (32)

where α, b, and ν are critical exponents, Λ is some scal-
ing function, r is d-dimensional vector labeling the lattice
sites, and n+m is an even integer. Combining this for-
mula with the expression (30) results in

Fij(θ) ∼ |t|n(1−α)+mb−dν (33)

where n = 2 and m = 0 if i = j = 1; n = 0 and m = 2
if i = j = 2; and n = m = 1 if i 6= j. Assuming
hyperscaling relations dν = 2 − α and γ = dν − 2b that
explicitly use the number of space dimensions d, one may
obtain the general expression [2]:

Fij(θ) ∼
(
|t|−α |t|b−1
|t|b−1 |t|−γ

)
. (34)

One may demonstrate divergence of certain elements of
the Fisher information matrix at the critical point (where
T → Tc and t → 0) for specific cases of d and the cor-
responding values of critical exponents (e.g., for the 3-
dimensional Ising model all matrix elements diverge).

C. Divergence of Fisher Information at phase
transitions

Thus, the simple relationship (21) not only establishes
a clear connection between thermodynamic order param-
eters and Fisher information matrix but supports the
argument that phase transitions can be systematically
studied in information-theoretic terms. In particular,
rather than trying to determine an order param-
eter one could compute appropriate Fisher in-
formation values. The location of second-order phase
transitions can be identified where the Fisher informa-
tion values diverges. In finite-size computational studies

the divergence can be approximated by maximization of
Fisher information [13, 14]. Not only does this avoid the
issue of identifying order parameters, but also provides
a natural interpretation of localizing the critical point
where the observed variable is most sensitive to the con-
trol parameter(s) / thermodynamic variable(s) (an inter-
pretation applicable in both infinite and finite systems).
For first-order phase transitions the Fisher information
terms cannot be defined where the first derivative(s) of
A are discontinuous, also indicating a possible transition.

As mentioned in Section I several previous studies [1–4]
reported that Fisher information matrix provides a Rie-
mannian metric (more precisely, the Fisher–Rao metric)
for the manifold of thermodynamic states. In particu-
lar Janke et al. [1] noted that Fisher information matrix
can lead to an information-geometric complexity measure
for a classification of phase transitions. For instance, it
was suggested that the scalar curvature R of the ther-
modynamic metric tensor gij(θ) = Fij(θ) measures the
complexity of the system. Specifically, a flat metric im-
plies that the system is not interacting, while, conversely,
the curvature diverges at (and only at) a phase transi-
tion point for physical ranges of the parameter values
[1]. However, we believe that even the individual rela-
tionships like (22) can be useful in studying phase tran-
sitions. This will be exemplified in the next section.

V. RANDOM BOOLEAN NETWORKS

In this section, we revisit our earlier numerical study
[13, 14] of Fisher information through a second-order
phase transition in random Boolean networks (RBNs),
interpreting the results there in light of the above discus-
sion on the fundamental link between Fisher information
and such phase transitions.

A. Background

Random Boolean Networks are a class of generic dis-
crete dynamical network models. They were proposed as
models of gene regulatory networks by Kauffman [5]. See
also Gershenson [20] for another thorough introduction
to RBNs.

An RBN consists of N nodes in a directed network
structure. The network topology (i.e. the adjacency ma-
trix) is determined at random, subject to whether the
in-degree for each node is constant or stochastically de-
termined given an average in-degree K (giving a Poisso-
nian distribution).

Each node in the network has a Boolean state value,
which is updated in discrete time. For each node, the
new state value is a deterministic Boolean function of
the current state values of the nodes from which it has
incoming links (i.e. its neighbors). When the network
is initialized with a given topology, this Boolean update
function is decided at random for each node, subject to
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a probability r of producing “1” outputs. Note that r is
symmetric around 0.5: r close to 1 or 0 gives low activ-
ity, close to 0.5 gives high activity. In pure RBNs, the
nodes here are heterogeneous agents: there is no spatial
pattern to the network structure (indeed there is no in-
herent concept of locality), nor do the nodes have the
same update functions. In classical RBNs (CRBNs), the
nodes all update their states synchronously.[21]

Interestingly, the variable r is sometimes called the
magnetization bias: for example, Aldana et al. [22] note
that the word magnetization comes from the possibility
of identifying each element with an atomic spin (a very
small magnet), and the analogy has been used in the
seminal works of Derrida et al. [23, 24].

RBNs are known to exhibit three distinct regimes
of dynamics, depending on their parameters: ordered,
chaotic and critical. At relatively low connectivity (i.e.
low degree K) or activity (i.e. r close to 0 or 1), the net-
work is in an ordered phase, characterized by high sta-
bility of states to perturbations and strong convergence
of similar macro states in state space. Alternatively, at
relatively high connectivity and activity, the network is
in a chaotic phase, characterized by low stability of states
to perturbations and divergence of similar macro states.
In the critical regime (the edge of chaos [6]), there is
percolation in nodes remaining static or updating their
values, and uncertainty in the convergence or divergence
of similar macro states.

The first description of a phase transition in RBNs in
terms of an order parameter (in the thermodynamic limit
as the network size N → ∞) was provided by Derrida
and Pomeau [25]. There are a number of ways to study
the critical regime, and it has been shown that there is
a second-order phase transition both with respect to ac-
tivity r and average connectivity K. For example, Luque
et al. [26] contrasted different order parameters: (i) the
normalized Hamming distance obtained by means of Der-
rida’s annealed approximation [25], (ii) Flyvbjerg order
parameter defined via the asymptotic stable core [27],
and some others, with (iii) the percent of 1’s in the Jaco-
bian matrix that represents the Boolean derivative of the
system, and observed that all these parameters undergo
a continuous change in the vicinity of critical activity r.

Similarly, it can be shown that there is a second-order
phase transition near critical average connectivity K: for
example, there is a continuous phase transition in terms
of the frozen component, defined as the fraction of nodes
that do not change their state along an attractor, as
shown by Rohlf and Bornholdt [28].

To quantify the phase transitions in the r–K phase
space we shall use the well-known state-based measure
of sensitivity to initial conditions, or damage spreading
— that is, the normalized Hamming distance.

Following Gershenson [29], we take a random initial
state A of the network, invert the value of a single node
to produce state B, then run both A and B for many time
steps (enough to reach an attractor is most appropriate).

We then use the normalized Hamming distance:

D(A,B) =
1

N

N∑
i=1

|ai − bi|, (35)

between A and B at their initial and final states to obtain
a convergence/divergence parameter δ:

δ = D(A,B)t→∞ −D(A,B)t=0. (36)

(Note D(A,B)t=0 = 1/N). Finding δ < 0, implies the
convergence of similar initial states, while δ > 0 implies
their divergence. In infinitely-sized networks, for fixed r
the critical value of K between the ordered and chaotic
phases is [25]:

Kc =
1

2r(1− r)
. (37)

B. Experimental results

We aim to study Fisher information F (r) in RBNs as
a function of the magnetization bias, i.e., the probability
r of each node producing an output of “1”. This would
identify the peaks of F (r) (for a given K) with the criti-
cal point on the r−K plane. Tracing these critical points
allows us to build a phase diagram, contrasting it with
such a diagram obtained by using a traditional approach,
e.g. using equation (37). However, finite network size N
is known to have an effect on the locations of the ordered
and chaotic phases (moving the critical regime to more
active r and higher K), and so theoretical values inferred
by (37) for infinitely-sized networks are not directly com-
parable to maxima of F (r) in our finite-sized networks.
As described in [14], maximal values of the standard de-
viation σδ of δ are more appropriate as a guide to the
relative regions of dynamics in finite-N networks. We
select σδ then as our baseline measure for finite-N net-
works, noting that it also serves as a proxy to the rate of
change in the order parameter. Further details of com-
putational experiments are described in Appendix C.

Figure 1 contrasts the Fisher information F (r) with
our baseline measure for studying the phase transition
σδ. The dashed curve shows the standard deviation σδ
as it changes over r, with K = 4.0. We can see that there
are two separate peaks in this curve, representing the
edge of chaos for this finite-sized RBN. This is expected,
since the probability distribution function is symmetrical
about r = 0.5, when there is no bias between choosing 0
and 1. These two peaks occur at r = 0.22 and 0.77, which
as expected are ‘inside’ the theoretical edge of chaos of
an infinite-sized RBN at r = 0.147 and 0.853 yielded by
equation (37) (shown as vertical dotted lines).

Figure 1 also shows Fisher information F (r) for four
different network sizes: N = 125, 250, 500 and 1000,
with K = 4.0. F (r) has two peaks almost mirrored
about r = 0.5 for all the network sizes. These peaks
are close to those of the baseline measure σδ for finite-
sized networks, locating the phase transition between the
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FIG. 1. Standard deviation σδ versus the bias of the net-
work r, network size N = 250 (dashed line). Average Fisher
information F (r) versus the bias of the network, r for differ-
ent network sizes. Theoretical critical points are indicated by
vertical dotted lines. Average connectivity K = 4.0.

chaotic phase and the ordered phase for the RBNs. The
values of F (r) for r that are away from the phase transi-
tion are at least one order of magnitude smaller than the
peaks. Importantly, as the network size grows, the peaks
of Fisher information approach theoretical critical points
(for N = 1000, this occurs at r = 0.16 and 0.82). In
addition, the peaks become sharper at the edge of chaos,
as expected [30].[31] The peaks in Fisher information are
close to those of the baseline measure σδ for finite-sized
networks, though since our arguments in Section IV di-
rectly tie the maximization of Fisher information to the
location of the phase transition (while σδ is only a proxy
to the rate of change in the order parameter), we sug-
gest that the maximization of the Fisher information is
a more appropriate measure to locate the critical points.

The peaks of Fisher information can be represented
on the r − K plane (see Appendix C for the details).
The dashed curve in Figure 2 shows the theoretical crit-
ical regime (edge of chaos) of the RBNs, generated us-
ing equation (37). It is evident that the phase diagram
obtained by maximizing Fisher information generally fol-
lows the same shape, but is bounded by the theoretical
curve as expected for finite size RBNs (for finite-size net-
works the critical point is known to shift towards the
chaotic region — this is elaborated in Appendix C).

These experiments verify the general representation
(21)–(23) introduced in this study, and confirm our con-
jecture that Fisher information may be used instead of
the rate of change in the order parameter when one needs
to determine the critical point(s). In particular, as ar-
gued in Section IV C, while the Fisher information di-
verges at a second-order phase transition, for finite-sized
systems (where second derivatives of A only approxi-
mate divergence) the corresponding location of the criti-
cal point can be identified by maximization of the Fisher
information instead. While being more computationally
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FIG. 2. Phase diagram tracing the maximum Fisher informa-
tion, F (r), with respect to r, as a function of K. The error
bars on the curve show the standard deviation of r. The
dashed line is the theoretical curve for critical Kc versus r.

intensive in case of RBNs, we have argued that maxi-
mization of the Fisher information is a more appropriate
locator of the critical point than the baseline measure
for finite-sized networks σδ. Importantly, it can also be
applied to systems where the precise nature of the order
parameter is unclear.

VI. CONCLUSION AND DISCUSSION

In this paper we approached the study of phase transi-
tions and order parameters via Fisher information. First
of all, we pointed out that if an order parameter φi is rep-
resentable as a negative derivative of thermodynamic po-
tential over some thermodynamic variable θi then there
exists a collective variable Xi such that equation (14)
holds. We then examined the known relationship be-
tween the Fisher information and the derivatives of (the
expectation value of) these collective variables Xi in (16)
and therefore the second derivative of the free entropy,
demonstrating that the relationship holds even without
the regularity conditions for the second form of the Fisher
information. This led to a set of general representations
(21)–(23) immediately relating Fisher information to the
rate of change in the corresponding order parameter(s).
That is, thermodynamic variables were related to statis-
tical estimation theory and information theory in a fairly
general setting.

These relationships can be used in practical studies
of phase transitions, especially, the second-order phase
transitions where the order parameters change contin-
uously and their derivatives are well-defined. Specifi-
cally, during a second-order phase transition the order
parameter changes continuously when an independent
variable is varied, disappearing at the critical point, while
Fisher information exhibits divergence. While several
information-geometric studies [1–4] have recently pointed
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out that Fisher information matrix provides a Rieman-
nian metric for the manifold of thermodynamic states,
and thus can be used as a complexity measure for a clas-
sification of phase transitions, our contribution is in ex-
plicitly relating Fisher information to the rate of change
in the corresponding order parameter(s).

As pointed out by Crooks, Fisher information may pro-
vide a more general and fundamental definition of a met-
ric than the thermodynamic definition, “just as the sta-
tistical definition of entropy is widely considered more
general and fundamental than the original thermody-
namic definition”: in particular, the characterization via
Fisher information matrix naturally extends to the sit-
uation where the system is not in thermal equilibrium
[4]. In addition, Fisher information provides a natural
interpretation of critical points applicable in both infi-
nite and finite-size systems. That is, critical points are
localized where the observed variable is most sensitive
to the control parameter / thermodynamic variable, di-
verging in infinite systems and maximized in finite-size
systems (where it is often easier to detect the correspond-
ing maxima of Fisher information than the fluctuations
of the order parameter).

The reported relationships were illustrated in random
Boolean networks — a well-known class of generic dis-
crete dynamical network models that exhibit three dis-
tinct regimes of dynamics (ordered, chaotic and critical),
depending on their parameters, such as average connec-
tivity K and magnetization bias r. We used a well-
accepted baseline measure of phase transitions in RBNs:
the sensitivity to initial conditions, or damage spread-
ing (i.e., the normalized Hamming distance) δ. This is a
proxy to an order parameter, and the standard deviation
σδ of δ served as a proxy to the rate of change in the
order parameter.

Following earlier studies [13, 14] we observed that
Fisher information about the magnetization bias r has
maxima at the critical (r,K) points (in finite-size sys-
tems), and these maxima increase with the network size.
This is because F (r) measures (locally) the amount of
information that RBN dynamics carry about the param-
eter r, and these dynamics are most sensitive to the pa-
rameter near the critical point. These observations ex-
perimentally demonstrated that Fisher information can
be used to information-theoretically locate the critical
points in RBN dynamics. Moreover, the results presented
here reveal the basic thermodynamic reasons behind the
empirical observations reported in [13, 14] which related
the square of the first derivative of Shannon informa-
tion to Fisher information without uncovering an under-
lying representation like (27). Fisher information should
also be able to locate the critical points in the dynamics
of Boolean networks with heterogeneous topologies also,
e.g. with scale-free [32] or small-world topologies [33],
though this remains to be verified in future work.

In examining average computational properties as a
function of system (e.g., network) parameters, we em-
phasize that there is in general a very large range of sys-

tem realizations and consequently of behaviors possible
for each parameter set. The local information dynamics
of computation will provide much more detailed insights
for a given network (as for Cellular Automata in [34–
38]) than the averages over configurational elements (e.g.,
nodes, networks and network sets discussed here). That
being said, these averages can provide important insights
into the computational properties as a function of system
parameters, so long as we remember that the average re-
sults are akin to likelihoods rather than certainties, albeit
likelihoods that are much stronger in the limit of infinite
system size. In parallel, tracing local profiles of Fisher
information within a system (e.g., highlighting different
levels of Fisher information for individual nodes of an
RBN) may provide in future another tool for studies of
critical phenomena.

In summary, we suggest that in many studies the crit-
ical point(s) of second-order phase transitions can be de-
termined by divergence of the Fisher information (or its
maximization in finite-sized systems) instead of tracing
the rate of change in the order parameter. While com-
putation of Fisher information may often be more in-
tensive, it is more appropriate and much more naturally
interpretable than other measures that are only proxies
to the order parameter (e.g. σδ for RBNs). Crucially,
Fisher information is a generic measure that requires only
appropriately defined probability measures and therefore
can be applied to a broad range of systems, particularly
those where the precise nature of the order parameter is
unclear or its computation is cumbersome.

Appendix A: Fisher information

Fisher information [39] is a measure for the amount of
information that an observable random variable X has
about an unknown parameter θ, upon which the likeli-
hood function of θ depends. Let p(x|θ) be the likelihood
function of θ given the observations x. Then, Fisher in-
formation can be written as:

F (θ) = E

[(
∂

∂θ
ln p(x|θ)

)2
∣∣∣∣∣ θ
]

(A1)

=

∫
x

(
∂ ln(p(x|θ))

∂θ

)2

p(x|θ)dx, (A2)

where E[. . . |θ] denotes the conditional expectation over
values for x ∈ X with respect to the probability function
p(x|θ) given θ. Thus, Fisher information is not a function
of a particular observation, since the random variable X
has been averaged out.

Fisher information can be represented as:

F (θ) = −E

[
∂2

∂θ2
ln p(x|θ)

∣∣∣∣ θ] (A3)

= −
∫
x

(
∂2 ln(p(x|θ))

∂θ2

)
p(x|θ)dx, (A4)



9

if ln(p(x|θ)) is twice differentiable with respect to θ and
some other regularity conditions hold [18].

The discrete form of Fisher information is:

F (θ) =
∑
x

px

(
∆ ln(px)

∆θ

)2

, (A5)

where ∆ ln(px) = ln(p′x) − ln(px) and px = p(x|θ), p′x =
p(x|θ + ∆θ). In this case, p(x) is a discrete probability
distribution function, such that x ∈ {x1, . . . , xD}, where
D is the number of states for the variable X .

Similarly, n × n Fisher information matrix is defined
for several parameters θ = [θ1, θ2, . . . , θn]T, as follows

Fij(θ) = E

[(
∂

∂θi
ln p(x|θ)

)(
∂

∂θj
ln p(x|θ)

)∣∣∣∣ θ] .
(A6)

Again, under some regularity conditions:

Fij(θ) = −E

[
∂2

∂θi ∂θj
ln p(x|θ)

∣∣∣∣ θ] . (A7)

Appendix B: Equivalence of Fisher information and
second derivative of free entropy

Here, we will explicitly demonstrate the equivalence
gij(θ) = Fij(θ) from (16). First, following [4, 19] we show
that the Fisher information takes the form of a covariance
expression. Starting from:

Fij(θ) =
∑
x

p(x)
∂ ln p(x)

∂θi
∂ ln p(x)

∂θj
, (B1)

we have by definition of the configurational probability
distribution (1):

ln p(x) = −
∑
i

θiXi(x)− ψ (B2)

∂ ln p(x)

∂θi
= −Xi(x)− ∂ψ

∂θi
(B3)

= − (Xi(x)− 〈Xi〉) , (B4)

where the last step used the first derivatives of ψ (12).
Substituting (B4) into (B1) gives:

Fij(θ) =
∑
x

p(x) (Xi(x)− 〈Xi〉) (Xj(x)− 〈Xj〉) (B5)

= 〈(Xi(x)− 〈Xi〉) (Xj(x)− 〈Xj〉)〉 . (B6)

The resulting expression gives the covariance matrix be-
tween the Xi and Xj . Though they are related, we must
carefully note these Xi and Xj are different variables
to those directly considered by the Fisher information
(which studies the information contained in the observa-
tions x about the thermodynamic variables θ).

Turning our attention to (B4) once more and using
∂p(x)
∂θj = p(x)∂ ln p(x)

∂θj we obtain a useful expression[40] for
any j:

∂p(x)

∂θj
= p(x) (〈Xj〉 −Xj(x)) (B7)

Secondly, we demonstrate that gij(θ) also takes the
covariance form of (B5)-(B6) (which is stated but not
proven in [4]). We have:

gij(θ) =
∂2ψ

∂θi ∂θj
(B8)

= −∂〈Xi〉
∂θj

= −
∑
x

∂ (p(x)Xi(x))

∂θj
(B9)

= −
∑
x

p(x) (〈Xj〉 −Xj(x))Xi(x) , (B10)

where the last step used ∂Xi

∂θj = 0 and the expression
(B7).

Now by definition of 〈Xj〉:∑
x

p(x) (Xj(x)− 〈Xj〉) 〈Xi〉 (B11)

= 〈Xi〉
∑
x

p(x) (Xj(x)− 〈Xj〉) = 0, (B12)

and hence we can include an 〈Xi〉 term in (B10) (i.e.
effectively adding (B12) to the right-hand side of (B10))
to construct the symmetric covariance expression:

gij(θ) =
∂2ψ

∂θi ∂θj
(B13)

=
∑
x

p(x) (Xi(x)− 〈Xi〉) (Xj(x)− 〈Xj〉) (B14)

= Fij(θ), (B15)

where the last step used expression (B5). This proves the
required equivalence (16), as well as (19).

This demonstration of the equivalence (16) is an im-
portant one because we have not used the second form of
the Fisher information from (A4) which requires certain
regularity conditions to hold [18].

The equivalences can be demonstrated using this sec-
ond form (and therefore assuming regularity conditions,
as done for example in [1, 2]) and indeed this is a faster
demonstration. The second form of the Fisher informa-
tion for the discrete case is given by:

Fij(θ) = −
∑
x

p(x)
∂2 ln p(x)

∂θi ∂θj
. (B16)

We use now equation (B3), taking the partial derivative
of (B3) with respect to the thermodynamic variable θj ,
and obtaining the second derivative of ln p(x):

∂2 ln p(x)

∂θi ∂θj
=
∂
(
−Xi(x)− ∂ψ

∂θi

)
∂θj

= − ∂2ψ

∂θi ∂θj
(B17)

The right hand side does not depend on x, and so aver-
aging over p(x) yields:

Fij(θ) = −
∑
x

p(x)
∂2 ln p(x)

∂θi ∂θj
=

∂2ψ

∂θi ∂θj
, (B18)

establishing the equivalence (16).
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Appendix C: Experimental details of RBNs
experiments

We model the RBNs using enhancements to Gershen-
son’s RBNLab software [41]. For each simulation from an
initial randomized state of an RBN, we ignore a short ini-
tial transient of 30 steps, then observe another 400 time
steps (similar to the approach in [42]). The experiments
are repeated 10 times with different 250 networks.

We calculate p(xk|r) of each node k in a given RBN
over multiple runs with different initial conditions of a
specific RBN. Due to computational constraints we cal-
culate the average Fisher information of the individual
nodes:

F (r)RBN , 〈F k(r)〉 (C1)

where F k(r) is the Fisher information of the k-th node
of the RBN computed according to (A5). This is re-
peated then for multiple networks with the same r (and

the same K), producing the average Fisher information
for the value r, F (r) = 〈F (r)RBN 〉. Each F (r) is an av-
erage of Fisher information F (r)RBN over 250 networks
and 10 runs [14].

Phase diagram is obtained by plotting rmax (i.e., the
value of r attaining the maximum Fisher information) for
different K. Formally, rmax for every K is set to locations
of the global maxima of F (r) in two regions: 0 ≤ r ≤ 0.5
and 0.5 ≤ r ≤ 1. For example, rmax correspond to the
peaks shown in Figure 1.

The finite-size nature of the simulated networks is the
reason why the loci of the divergent maxima of Fisher
information do not meet as K → 2 (Figure 2). For
r = 0.5, the phase transition with respect to K shifts
towards the chaotic regime at around K ≈ 2.5 in these
finite size RBNs rather than the theoreticalK = 2.0. Our
experimental curve should converge/diverge at around
K ≈ 2.5. The fact that it does not converge is an artifact
of our explicit search for two maximum values of F (r) for
0 ≤ r ≤ 0.5 and 0.5 ≤ r ≤ 1.
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