
T. Magedanz et al.(Eds.): MATA 2005, LNCS 3744, pp. 161 – 171, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Widget Integration Framework for
Context-Aware Middleware

Eun-Seok Ryu, Jeong-Seop Hwang, and Chuck Yoo

236, Department of Computer Science and Engineering, Korea University,
Anam-dong, Sungbuk-ku, Seoul, S.Korea

{esryu, jshwang, hxy }@os.korea.ac.kr

Abstract. Widget Integration Framework (WIF) is a framework that covers
diverse widgets and their interactions with higher layers above. The framework
offers several advantages of supporting a programming abstraction over
widgets, supporting high reliability, run-time widget binding to the middleware
and augmenting a service discoverer with available widget state information.
This paper explains the processes of designing the WIF, including
implementation, and applying WIF to the middleware. As an example, we
explain a location-based service that uses a location positioning widget in a
middleware employing WIF.

1 Introduction

There are several researches [15,16,17,18] for sensing environment changes and
offering the most suitable context information to users. However, they were designed
and implemented depending on restricted situations, only in several scenarios, only
focusing on sensing an environment and managing context information with service
discoverers and context manage modules, and are heavy to be applied to the mobile
device for the future light-weight mobile middleware.

This paper presents WIF that addresses how middleware integrates and manages
widgets effectively, binds appropriate widgets to the service discoverer, and supports
mobile environment. The goal of WIF is to design and implement a light-weight
widget abstraction layer for pervasive middleware. The focus is on widget integration,
and such integration requires a programming abstraction over widgets. This
framework encapsulates widgets, transmits sensed context information from widget to
the upper middleware layers, registers and deregisters widget in real time and checks
the registered widget’s state for service discoverer.

The WIF has following advantages. First, it is light. Existing researches for
pervasive environment(e.g. UIUC’s Gaia and ASU’s RCSM) provide CORBA-based
services. However, this way makes offering dynamic service to handheld devices
hardly. WIF is designed to support light-weight context-aware middleware platform
for a mobile device. Second, WIF helps service discoverer to select a proper widget in
the middleware by using our SDP(Service Discovery Protocol)-like protocol. Because
WIF has an internal mechanism that can find available widgets and that delivers these
widgets to the upper middleware layer, dynamic reconfiguration is supported. Third,
WIF makes a middleware application fault-tolerant. Current middleware applications
may impose a fatal obstacle on the entire system caused by an error from various

162 E.-S. Ryu, J.-S. Hwang, and C. Yoo

hardware sensors. WIF monitors error occurrences by administrating widgets and
disallowing the widget to operate in services. Through this, the WIF can support
strong fault-tolerance. Finally, WIF has excellent interoperability with other
middleware layers. It can interact effectively with other modules in middleware using
the Service Interaction Broker[20] offering basic communications as well as an
interface for interaction between service objects. The WIF that was developed
through our research and related individual functions was verified by actual
demonstration.

This paper is composed as follows. Section 2 explores existing systems aimed to
support pervasive environments with their own visions. In Section 3, we describe the
goal of this paper and the WIF design considerations. Section 4 describes the design
of the WIF and its components in detail. In Section 5, we show how this WIF works
in real pervasive environments by applying it to the middleware. In Section 6, we
finally conclude our framework research for active surroundings and propose
practical usage.

2 Related Work

2.1 Middleware for Pervasive Computing
Thorough research regarding middleware application that support pervasive
environments includes projects, GAIA from the University of Illinois at Urbana-
Champaign, AURA from Carnegie Mellon University, Oxygen from MIT and Dey’s
Context Toolkit from Georgia Institute of Technology. This paper addresses each of
these research projects.

2.1.1 GAIA - UIUC
GAIA[1,2,3,15] is intended to coordinate software entities and heterogeneous
networked devices contained within a physical space. GAIA is composed of four
major building blocks, the Gaia Kernel, the Gaia Application Framework, the QoS
Service Framework, and the Applications. The Gaia kernel contains a management
and deployment system for distributed objects and an interrelated set of basic services
that are used by all applications. The Application framework provides mobility,
adulteration, and dynamic binding. The QoS service framework not only provides
resource management for the QoS sensitive applications, but also dynamically adapts
applications based on the QoS constraints and determines appropriate nodes for
service instantiation. However, small mobile devices cannot cooperate autonomously
without the infrastructure.

2.1.2 Aura - CMU
Aura[4,5,16] aims to provide a distraction-free computing environment where people
can get services or perform their jobs without interventions from the system or
environments. Aura is composed of five main components, Intelligent networking,
Coda, Odyssey, Spectra and Prism. Odyssey supports resource monitoring and
application-aware adaptation, and Coda provides support for nomadic, disconnect-
able, and bandwidth-adaptive file access. Spectra is an adaptive remote execution
mechanism that uses context to decide how to best execute the remote call. And,
Prism is responsible for capturing and managing user intent.

 Widget Integration Framework for Context-Aware Middleware 163

2.1.3 Oxygen - MIT
Oxygen [17] aims to provide human-centered computing environments which help
people automate repetitive human tasks, control a wealth of physical devices in the
environment, find the information people need, and enable us to work together with
others through space and time. To support dynamic and varied human activities, the
Oxygen system focuses on the pervasiveness of the system or devices, supporting
nomadic users, and representing system adaptability.

2.1.4 Context Toolkit – Gatech
The Context Toolkit[10,18] provides designers with the abstractions they have
described — widgets, interpreters, aggregators, services and discoverers - as well as a
distributed infrastructure. The Context Toolkit was developed using the Java
programming language, programming language independent mechanisms were used,
allowing the creation and interoperability of widgets, interpreters, aggregators and
applications in any language.

2.2 Protocols for Service Discovery

Service Discover Protocol(SDP) finds a way software and network resources are
configured, deployed, and advertised, all in favor of the mobile user researches on the
emerging technologies of service discovery in the context of wireless and mobile
computing are increasingly important. Some of these emerging SDPs include SLP,
Jini, and UPnP(Universal Plug and Play). In these SDPs, UPnP uses SSDP(Simple
Service Discovery Protocol)[23] for service discovery for announcing a device’s
presence and capabilities to others as well as discovering other devices or services.

3 Key Considerations

WIF is an individual framework that has ability to support applications without any
other components or resources.

WIF is located in middleware's bottom layer in whole hierarchical system layers by
integrating widgets which wrap sensors and it interacts with upper middleware
through SOAP-based interface Service Interaction Broker[13]. If context-aware
middleware uses WIF in it, it may manage service discoverer just only without caring
about managing all sensors. In this chapter, we describe the key considerations of
designing WIF.

- High reliability : The application expects data received from middleware layer to
be reliable. Therefore, to support reliability, the middleware application needs
functions that manage a widget's registration and deregistration, finds error
occurrences and ignores targeted modules. This also includes filtering of abnormal
sensor values.

- Dynamic binding in mobile environment : To support several services required
from applications, middleware should be reconstructed dynamically according to
situations of the context and of available hardware. Therefore, WIF needs to support
run-time widget binding so that middleware can act plug-and-play. Some of previous
systems which were developed for general purposes are heavy to apply to mobile

164 E.-S. Ryu, J.-S. Hwang, and C. Yoo

device, because they are using XML-based protocol and CORBA for general
interaction. However, we are trying to design a light-weight framework by choosing
efficiency instead of generality. Of course, this way may cause system dependency to
WIF, because it has to know all widgets will be used and has functions of those
widgets in advance.

- Common interface over different widgets : WIF has interoperability with other
middleware layers. It can interact effectively with other modules in middleware using
the Service Interaction Broker(SIB)[20] offering basic communications as well as an
interface for interaction between service objects. By this reason, other middleware
components are allowed to just using a SIB-level interface. Consequently, it makes
WIF offer a common interface over different widgets.

- Augmenting a service discoverer by offering status information of available
widgets : If applications request necessary services from a middleware application’s
Service Discoverer, the Service Discoverer must be able to find and deliver available
widgets among whole widgets, which support required services.

4 Proposed System Architecture

Fig. 1 shows the WIF system architecture and its internal components. It consists of
Widget Information Manager, Fault Detector, Service Matcher, Widget Register and
Widgets. In this section, each component is explained.

Fig. 1. Widget Integration Framework (WIF) Architecture

4.1 Widget

We use the concept widget as the Context Toolkit. Context widgets encapsulate
information about a single piece of context, such as location or activity, for example.
They provide a uniform interface to components or applications that use the context,
hiding the details of the underlying context-sensing mechanisms [24]. In our research,
we implemented Ubisense widget for location based service and it is treated in
section 5.2.

 Widget Integration Framework for Context-Aware Middleware 165

4.2 Widget Information Manager

Widget Information Manager (WIM) role is to manage widget state information. It
manages state information of widgets received from the Widget Register or Fault-
Detector with List updater. It also keeps specification information of several widgets
in order to find a suitable widget through Service Matcher regarding services required
from the Service Discoverer. Also it exchanges all information from widgets with
other modules in the middleware application through Service Interaction Broker.

4.2.1 List Updater
List updater (LU) belongs to WIM and manages the widget status information table.
Widget Type Number in Table 1 divides widgets by the core unit role. For example,
number 0 means that those widgets have relations with the Location Positioning
System and number 1 means that those widgets are related to the sound/video input
system. Within such classification, the widget number is granted to the widget, which
is actually installed or is going to be installed. Then, the Widget Type Number and the
Widget Number are combined and used as Widget ID. LU communicates whether
relevant widget operates, encoded as 1 or 0 to the Live Information field. And, State
Information expresses the state of widget (1: Occupied, 2: Requested, 0: available
(non-used)). That is, value 0 means that the widget is not used and required at all,
value 1 means that it is being used and value 2 means it was required to use if the
relevant one is linked to the system. LU’s role is table management. Therefore, other
modules can use the necessary widget or unavailable widget in services using this
table representation.

Table 1. Example of Widget State Table

Widget Type Number
Widget
Number

Live
Information

State
Information

0
(Location widgets)

001
002

1
1

1 (Occupied)
1 (Occupied)

1
(Sound Level /

Camera widgets)

001
002
003

1
0
0

1 (Occupied)
2 (Requested)
0 (Available)

2
(…)

…
…

…
…

…
…

4.3 Fault Detector

 Fault Detector is designed to check the state of the widget through a periodic
heartbeat checker. It updates the Live Information value and the State Information
value regarding the widget state table in Widget Information Manager if an error
happens to the sensor or widget. LU informs Service Discovery Manager of these
events. This guarantees high reliability by removing problematic widgets or replacing
them with a new one. Fault Detector has various filters. Data, which is input from
sensors, is transferred from the widget, and filtered. For example, a position revision
filter corrects context location information retrieved from the Ubisense widget.

166 E.-S. Ryu, J.-S. Hwang, and C. Yoo

4.4 Service Matcher

 Service Matcher finds a suitable widget for services that are required from Service
Discoverer. For example, Service Discoverer in middleware applications requests a
user’s position information service from applications and must understand those
requests, find a suitable widget and bind to it. Service Matcher references the widget
state table as in Table 1 and finds an available widget, which can service position
information. Detailed process steps are explained in Section 4.6.

4.5 Widget Register

Widget Register takes charge of registration and deregistration of a widget. The
widget helps Widget Information Manager by passing the state event to LU when it is
registered/deregistered to the system. Though other research systems receive data
only from pre-registered widget, Widget Register can support dynamic environment
where widgets are registered/deregistered in real time by accepting a new incoming
widget and notifying it to Widget Information Manager. In the result, Widget Register
makes WIF bind a new incoming widget.

4.6 Interaction Diagram Among Components

The components of the WIF run through frequent interaction among them. This
section explains 3 cases to show dynamic binding process using interaction diagrams
[11] below.

(1) Widget registration and deregistration

 (2) Widget assignment by service request (when needed widget was pre-
registered)

Fig. 2. Interaction Diagram among Components

 Widget Integration Framework for Context-Aware Middleware 167

(3) Widget assignment by service request

Fig. 3. (continued)

5 Applying the WIF to Middleware

In this section, we address how to apply WIF to the middleware for a location-based
service to show its usability. We currently developed several widgets including the
Ubisense widget, Fault-Detector with filters for correcting location information, and
implementing remainder parts according to our design. And our WIF is applied to the
group-aware middleware[20] that was developed by ICU[13] to manage low level
widgets. In the following sections, we briefly describe the group-aware middleware.

5.1 Group-Aware Middleware

Group-Aware Middleware(GAM) is researched to make middleware understand
group-context in ubiquitous home. And this middleware infrastructure for Active
Surrounding(a kind of ubiquitous home)[14] that focuses on group-context awareness
and processing is studied by the pervasive computing group of Information and
Communications University[11, 12, 13]. They defined Active Surrounding as a
pervasive environment where entities (devices or services) actively response to user
actions or help users to perform their jobs without intrusion to the users. We tried to
apply our WIF to this GAM implementation so that it manages all sensor-related
works. As a result, GAM with WIF consists of 4-units (Context Manager, Dynamic

168 E.-S. Ryu, J.-S. Hwang, and C. Yoo

Reconfiguration Supporter, Context-aware Service Discoverer and Widget
Integration Framework(WIF)). Each component communicates with other
components in the form of platform and location independence by the Service
Interaction Broker.

Whole group-aware ubiquitous middleware research consists of unification of
research results. The CAService(Context-Aware Service) can merge with required
context information and publish events through the Service Interaction Broker API or
join other events using the Context Management API by Active Surroundings
middleware. Context Management relates to context information registered from the
CAService by various sensor inputs that are input from the WIF. Also, it delivers the
relevant CAService using event appearance context information. The Dynamic
Reconfiguration Framework delivers events drawn from the CAService to
CAServices that join to the events. In this situation, if it cannot find the appropriate
CAService it conducts a semantics search of services through context-aware Service
Discovery, searching for the CAService. Context-aware Service Discovery evaluates
requests from the Dynamic Reconfiguration Framework and the CAService based on
semantic characteristics of registered services. The Service Discover returns, finding
the most suitable service to present context. The WIF focused in this paper integrates
and manages widgets and allocates suitable widgets according to the service request.

5.2 Location-Based Service by Ubisense Widget

This paper explains location-based service by WIF-integrated middleware to show
WIF’s usability. This research uses Ubisense hardware sensor[21] devices to get
context location information and develops Ubisense widgets for controlling those
sensors. The characteristics of our implemented Ubisense widget are as follows.

 Passes location information (ID, timestamp, x, y, z) to the Service Manager
 Supports interaction between Service Manager and widgets
 Supports platform independence using JNI (Java Native Interface)

In the following sections, we examine the Ubisense widget embodied in this
research in detail. For an explanation for the Ubisense marketing product, refer to the
web site, this paper will not handle this in detail. Ubisense could be used regardless of
development language because it supports COM (Component Object Model). Our
middleware was developed using the Java programming language, because of this, we
put a Java-COM wrapper over the Ubisense COM and developed the widget over the
top. This Ubisense widget delivers sensed data to the upper middleware layers using a
requested ratio from the middleware application. The system can achieve
registration/deregistration of specific widget requests. Also, it corresponds to the
Fault-Detector's heartbeat checking which is explained from lower middleware layers
and has functions that transmit live messages. Of course, this ubisense widget
achieves status management and message delivery with interaction using several
components in the WIF. Context information is exchanged with other frameworks of
a group-aware middleware using Service Interaction Broker.

The next figure shows the concept that the Ubisense widget delivers sensing
information to upper middleware layer service manager using the Service Interaction
Broker (SIB) and SOAP (Simple Object Access Protocol) interface.

 Widget Integration Framework for Context-Aware Middleware 169

Fig. 4. The Hierarchical Architecture for Ubisense Widget

The Ubisense widget role is to deliver this context information to the upper layer
by chasing tag-attached person's position from the actual Ubisensor. Therefore, it
supports user's position chase, which is a basic requirement for all ubiquitous
environments. This system was installed and demonstrated with sensors in a practical
'Active Home' implementation. The demonstration scenario is that 'a group-aware
middleware' turns into a TV when user stands in front of it, shows broadcasting what
a user wants and changes indoor temperature and lighting for more than two persons.
The video clip for this demonstration is referenced in this paper [19].

6 Conclusion and Discussion

This paper explained several advantages that context-aware middleware can achieve
by managing widgets that wrap sensors effectively. We describe the process of
designing and implementing framework internals for managing widgets that support
these advantages.

Many current middleware applications support a situation-aware application,
integrating and analyzing primitive sensed information from widgets and delivering
these to the middleware upper layer. However, these middleware applications cannot
correspond properly in situations of widget malfunctioning and registering/deregistering
during their operation. Therefore, we designed and implemented the Widget Integration
Framework (WIF), located in the middleware lower layers. This framework
encapsulates widgets, transmits sensed context information from widget to the upper
middleware layers, registers/deregisters widgets in real time and checks a registered
widget’s state. With this processing, the WIF has exceptional error resilience properties
and widget dynamic binding properties. The framework also has good interoperability
because it communicates context information with other components of entire
middleware applications through the Service Interaction Broker (SIB), using a SOAP
interface. In addition, this framework is independent of middleware platforms and can
be deployed using any development programming language on any operating system.

Service Manager

Service Interaction Broker

Ubisense Widget in WIF

Service Interaction Broker

Java-COM Wrapper

Ubisense COM

UbiSensor

SOAP

170 E.-S. Ryu, J.-S. Hwang, and C. Yoo

References

1. Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H.
Campbell, and Klara Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active
Spaces”, IEEE Pervasive Computing, pp. 74-83, Oct -Dec 2002.

2. Christopher K. Hess, Manuel Roman, and Roy H. Campbell, “Building Applications for
Ubiquitous Computing Environments”, In International Conference on Pervasive
Computing (Pervasive 2002), pp. 16-29, Zurich, Switzerland, August 26-28, 2002.

3. Renato Cerqueira, Christopher K. Hess, Manuel Roman, Roy H. Campbell, “Gaia: A
Development Infrastructure for Active Spaces”, In Workshop on Application Models and
Programming Tools for Ubiquitous Computing (held in conjunction with the UBICOMP
2001), September 2001.

4. David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste, “Project Aura:
Towards Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, special
issue on Integrated Pervasive Computing Environments, Volume 1, Number 2, April-June
2002, pages 22-31.

5. Sousa, J.P., Garlan, D., “Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments”, Proceedings of the 3rd Working IEEE/IFIP
Conference on Software Architecture 2002, Montreal, August 25-31.

6. S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Reconfigurable Context -
Sensitive Middleware for Pervasive Computing” IEEE Pervasive Computing, July-
September 2002, IEEE Computer Society Press, Los Alamitos, USA, pp. 33-40.

7. Sergio Marti and Venky Krishnan, "Carmen: A Dynamic Service Discovery Architecture",
Technical Report, August 2002.

8. Andry Rakotonirainy, Jaga Indulska, Seng Wai Loke, and Arkady Zaslavsky,
“Middleware for Reactive Components: An Integrated Use of Context, Roles, and Event
Based Coordination”, Proceedings of IFIP/ACM International Conference on Distributed
Systems Platforms, pp. 77-98, Heidelberg, Germany, November 12-16, 2001.

9. W. Zhao, H. Schulzrinne, E. Guttman, C. Bisdikian, W. Jerome, IETF RFC 3421, “Select
and Sort Extensions for the Service Location Protocol (SLP)”, November 2002.

10. Anind K. Dey, Daniel Salber and Gregory D. Abowd, “A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications”, Human-
Computer Interaction (HCI) Journal, Volume 16 (2-4), 2001, pp. 97-166.

11. Insuk Park, Soon Joo Hyun, Donman Lee, “Context-Conflict Management for Context-
aware Applications”, Ubiquitous Computing Workshop 2004.

12. Dongman Lee, Soon J. Hyun, Young-Hee Lee, Geehyuk Lee, Seunghyun Han, Sae-Hoon
Kang, Insuk Park, and Jinhyuk Choi, "Active Surroundings: A Group-Aware Middleware
for Ubiquitous Computing Environments", Ubiquitous Computing Workshop 2004.

13. Pervasive Computing Group, “A Middleware Infrastructure for Active Surroundings”, TR-
CSPG-2003-004-28-002. http://cds.icu.ac.kr/druid/res/TR-CSPG-2003-004-28-001.pdf

14. Dongman Lee, “Active Surroundings: A Group-Aware Middleware for Embedded
Application Systems”, Proceedings of the 28th Annual International Computer Software
and Applications Conference (COMPSAC ’04).

15. Gaia, web site: http://choices.cs.uiuc.edu/gaia/
16. Aura, web site: http://www.cs.cmu.edu/~aura/
17. Oxygen, web site: http://oxygen.lcs.mit.edu/
18. Context Toolkit, web site: http://www.cs.berkeley.edu/~dey/context.html
19. WIF, web site: http://os.korea.ac.kr/mediateam/WIF.htm
20. The Final Report of the Operation Digital Media Lab, February 2005.

 Widget Integration Framework for Context-Aware Middleware 171

21. Ubisense Company : http://www.ubisense.net
22. Simple Object Access Protocol (SOAP) : http://www.w3.org/TR/soap/
23. Simple Service Discovery Protocol (SSDP) Internet Draft

 : http://www.upnp.org/download/ draft_cai_ssdp_v1_03.txt
24. Yen-Wen Lin and Hsin-Jung Chang, “Service Discovery in Location Based Services for

Low-Powered Mobile Clients”, http:// jitas.im.cpu.edu.tw/2004-2/5.pdf
25. Anind K. Dey, Daniel Salber and Gregory D. Abowd, “A Conceptual Framework and a

Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications”, Human-
Computer Interaction (HCI) Journal, Volume 16 (2-4), 2001, pp. 97-166

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

