
 

 

  
Abstract — In this paper, we look at two different approaches 

used to provide embedded system support for virtualization and 
virtual machine monitors for consumer electronics and mobile 
devices. We compare the micro-kernel approach, which has been 
a popular choice for building embedded operating systems with 
the Virtual Machine Monitor (VMM) or hypervisor approach 
widely deployed in general purpose computing environments 
such as desktops and data center servers. Comparison criteria 
are based on virtualization use cases that are typical of Consumer 
Electronics (CE) systems such as mobile devices and IPTV. These 
approaches are further evaluated based on performance and on 
their ability to allow re-use of existing (often real-time) software 
as well as modern open operating systems such as Linux while 
remaining as transparently as possible. Such transparency can 
come through different paths, including: leveraging of hardware 
virtualization support, minimal modifications to the original 
operating system internals (kernel, device drivers, etc.), and the 
ability to use existing operating system applications as-is and 
without the need to port them to a new environment.  An analysis 
of the fundamental principles behind each approach is presented 
with a discussion of their impact on existing operating 
environments, together with practical performance results based 
on existing micro-kernels and real-time hypervisor benchmarks. 
We conclude that mapping the VMM (hypervisor) approach used 
in data centers to the needs of embedded systems is a better 
option for the support of complete operating systems (as guests) 
than extending micro-kernels for such functionality. 
 
Keywords—Virtual machine monitors for CE systems such 
as mobile devices and IPTV, Virtualization for security 
and fault-isolation on CE systems, Embedded operating 
system support for virtualization, Virtualization 
architecture for real-time applications 
 

Index Terms—Embedded system, hypervisor, micro-kernel, 
Operating System (OS), virtualization, Virtual Machine Monitor 
(VMM). 

I. INTRODUCTION 
FTER several years of availability in the enterprise and 

server space, virtualization is becoming a hot topic in 
embedded systems, particularly for consumer electronics 
systems such as mobile devices and IPTV set-top boxes. One 
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of the main drivers is the need to run new or feature-rich open 
system software while maintaining existing legacy software 
that has been already tested and validated in their own 
operating environment. Such open software commonly 
includes Linux and more established operating systems such 
as Windows or Symbian where developers want to run the 
operating system unchanged while also extending their device 
security and manageability at all levels.  

Co-existence of several operating environments on the same 
hardware platform is one of the main purposes of hardware 
virtualization software, made possible by the provision of a 
virtual image of the hardware to each operating system, which 
believes it is running alone on the underlying hardware. 
Mobile phone platform products that are now been deployed 
with such virtualized operating environments include the NXP 
7210 platform used in the Purple Magic single core Linux 
reference phone design [1], [2].  

Hardware virtualization is not a new concept. It has been 
used in data centers for years. However, its introduction in 
embedded systems, in particular mobile devices is relatively 
new. Several approaches are being used to provide hardware 
virtualization in embedded devices. One extends the data 
center Virtual Machine Monitor (VMM) or hypervisor 
approach to fit the constraints of embedded systems. Another 
approach extends micro-kernels that have traditionally been 
used in embedded systems so they can support full operating 
system kernels in addition to their own embedded 
applications.  

This paper examines foundation concepts of each approach 
and discusses their implications on the expected benefits of 
virtualization in embedded devices. A parallel can be made 
with the arguments exchanged in two papers issued by 
stakeholders from each “camp”, ie, Xen [3] and L4 [4]. 

Finally actual measurements and performance benchmarks 
of the L4 microkernel and the VirtualLogix VLX hypervisor 
illustrate the implications of the two approaches in real-world 
scenario. 

II. VIRTUAL MACHINE MONITORS AND HYPERVISORS 

A. Virtualization in the Data Center 
The common term, virtual machine monitor (VMM), refers 

to software that controls and virtualizes the system "physical" 
hardware and reflects that this software generates and 
monitors "virtual machines" in which operating systems (OS) 
are executed. An operating system that executes in the context 
of a virtual machine is often referred to as a "guest OS," as 
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opposed to a "native OS" that has full control over the 
hardware resources (i.e. the "real machine"). The VMM may 
sometimes be called a "hypervisor" by analogy to the term 
"supervisor" used to designate the function of the inner part of 
an OS called the OS kernel, which supervises the execution of 
applications and their access to hardware resources 
(computing, memory, storage, network, etc.). In the case of 
"virtualization technology," the hypervisor provides access to 
the hardware resources for the operating systems via fully or 
partially virtualized interfaces. This adds one layer of 
hardware management which multiplexes usage of the “real” 
hardware to several operating systems or several instances of 
the same operating system, which can thus share that same 
hardware.  

The first hypervisor, called Control Program 67 (CP-67) 
[5], was introduced in the summer of 1966 by IBM in its 
famous System/360 family of mainframe computers, the 
360/67. It then became VM/370 on the S/370 and was used to 
run various operating systems such as "single user" (e.g. 
CMS) or "batch" operating systems (e.g. OS 360) 
simultaneously and securely on the same computer. 
Essentially VM/370 and hardware cooperate so multiple 
instances of any operating system, each with protected access 
to the full instruction set, can peacefully and concurrently 
coexist. This is one of the more successful hypervisors and 
still sees wide use in IBM mainframes today.  

Since then, hypervisors have gained increasing popularity in 
the computing space with many commercial and public 
options now available. The most widely used hypervisor on 
x86-based computers is VMware [6], which is offered by a 
subsidiary of the EMC Corporation. The University of 
Cambridge Computer Laboratory has developed a competing 
open source project called Xen [7] that is supported by various 
computer manufacturers including IBM, Sun Microsystems 
and HP to run several instances of Linux and other operating 
systems primarily on x86-based servers. Microsoft recently 
announced its own hypervisor software named Hyper-V [8].  

Hypervisors provide "hardware virtual machines" and 
should not be confused with interpreters providing 
"application virtual machines." Interpreters isolate the 
application used by the user from the computer it is running 
on. Because versions of the virtual machine are written as 
interpreters for various computer platforms, any application 
written for the virtual machine can be operated on any of the 
platforms, instead of having to produce separate versions of 
the application for each computer and operating system. One 
of the best known examples of an application virtual machine 
is Sun Microsystem's Java Virtual Machine [9]. 

B. Virtualization in a Consumer Device 
The amount of processing power and memory available in 

today’s mobile handsets enable them to run high-level, general 
purpose operating systems such as Linux, Windows or 
Symbian providing rich sets of services and applications. 
Smart phones increasingly resemble laptops in terms of 
features that they offer to users. Similar to what happened with 
personal computers in past years, today’s convergence of 

increased processing power and operating system support 
allows virtualization technology to be applied to mobile 
handsets and provide them with a software architecture that 
allows them to consolidate different operating environments 
on the same hardware platform.  

Running along side of a feature-rich open operating system, 
a real-time operating system (RTOS) is used in mobile 
handsets to support deterministic tasks, such as running 
wireless protocol stacks and core phone services. Aside from 
the operating system choices, mobile handsets present a 
further challenge to virtualization solutions in their support for 
real-time operating systems and for many peripherals such as 
screen, touchpad, keyboard, audio I/O, camera, flash memory, 
disk, Bluetooth, USB, WiFi as well as wireless telecom 
network protocols.  

Emerging from these market and technical requirements is a 
new generation of hypervisors, sometimes referred to as using 
"real-time virtualization" technology targeting embedded 
devices by allowing a guest OS of the hypervisor to be a real-
time operating system (RTOS) without compromising its 
native real-time characteristics and behavior. VirtualLogix 
VLX is an example of such a “real-time virtualization” 
hypervisor [10].  

Like other hypervisors in the traditional computing space, 
real-time hypervisors ensure strict isolation and secure 
communication between multiple virtualized execution 
environments. In addition, real-time hypervisors support the 
ARM processor family powering the vast majority of mobile 
phones and when it is made available by the silicon 
manufacturer, these hypervisors are able to leverage hardware 
support for virtualization, on Intel VT-based architectures for 
example.  

"Real-time virtualization" can be used to securely 
consolidate a RTOS and a rich operating system – which 
would otherwise run on independent processors – on a single 
CPU lowering the cost of smart phones and bringing more 
functionality into the high-volume mass market. It can also be 
used to support a trusted execution environment (TEE), 
compliant with the requirement standards of the Open Mobile 
Terminal Platform (OMTP) industry organization [11].  

Unlike virtualization technologies used in IT servers in the 
data center, such as provided by VMware, Xen, or Microsoft, 
VirtualLogix VLX has been specifically designed to address 
the requirements of devices such as mobile handsets, by 
meeting stringent cost, performance and memory constraints.   
Such hypervisor-based virtualization products can be 
summarized as providing real-time deterministic execution 
environments dedicating specific hardware resources to 
particular guest OS's for performance reasons, and supporting 
embedded processors such as the ARM and low power Intel 
Atom processor families.  

They support Linux, Windows, Symbian, several 
commercial real-time operating systems and a variety of 
legacy "home-grown" proprietary embedded OS's. Their real-
time virtualization technology provides a flexible architecture 
that enables various tradeoffs between resource isolation and 
sharing policies, based upon use case requirements.  
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III. MICRO-KERNELS 

A. Operating system complexity 
Complexity of operating systems has been increasing in a 

rather exponential way during the last 20 years. Using a 
measure as simple as the number of lines of code, Unix and 
Linux systems have evolved from 10 000 of lines of C code 
(Unix V7, in the early 80’s) to more than 8.5 million lines of 
code in the Linux 2.6.24 kernel1 [12]. Services provided by an 
operating system have extended and cover a much larger 
scope than 20 years ago. Peripheral devices are much more 
diverse and complex than they used to be and operating 
systems needs to abstract an ever larger set of services to their 
applications (eg, audio, video, input devices, sensor driven 
services).  

Systems designers have attempted to address operating 
system internal complexity issues using various 
modularization approaches. Micro-kernels, exo-kernels and 
other similar approaches have been studied and tested to try to 
fragment and reduce the overall complexity of systems with 
the hope that managing smaller and less complex pieces would 
lead to an overall simpler design. 

In the late 80’s, the Mach micro-kernel [13] developed at 
CMU (Carnegie Mellon University) had a similar approach to 
reduce operating system complexity although primarily 
towards data center operating systems. A derivative is still 
used by Apple as the underpinning of MacOS X. 

Between 1980 and 2001, the Chorus micro-kernel [13][14] 
has gone thru five major iterations, starting as a research 
project at INRIA (Institut National de Recherche en 
Informatique et Automatique in France) then evolving as a 
software product by Chorus Systems then Sun Microsystems. 
It has been used to re-architect the UNIX operating system as 
a set of cooperating system services on top of a minimum 
micro-kernel, as well as to combine real-time tasks with 
general purpose UNIX applications in consumer devices such 
as Java terminals and network infrastructure equipment. The 
experience gained during the years of applying micro-kernel 
technology to combine several operating environments on the 
same hardware led the Chorus Systems engineering team to 
fund VirtualLogix in 2002. In doing so, they took a different 
approach and designed native hardware virtualization software 
that allows re-use of existing operating systems with minimum 
changes instead of attempting to forcefully merge monolithic 
operating system kernel functions along microkernel services.  

QNX [15] evolved from an embedded real-time kernel to a 
micro-kernel based operating system supporting combinations 
of real-time tasks and POSIX processes. It is now used 
primarily in the automotive industry and some industrial 
systems.  

More recently several academic research communities 
started to develop a new generation of micro-kernels based 
along the L4 concept and APIs originally expressed in the mid 
90’s [16]. Several variants are still being developed in 
academic research [17] and in industry [18]. 
 

1 Today, 10 000 lines of code is the difference between the 2.6.23 and 
2.6.24 releases of the Linux kernel. 

B. Micro-kernel goals and services 
Micro-kernels share the common goal of keeping things as 

simple as possible in the micro-kernel, implementing low level 
mechanisms only, and isolating operating system servers in 
user mode. Inter-process communication (IPC) is usually 
provided at the lowest level possible and is widely used as a 
general communication paradigm between operating system 
servers and between servers and the micro-kernel, and as a 
substitute to system traps.  

C. Drawbacks 
Due to its basic and low-level nature, the micro-kernel API 

itself is not suitable to run meaningful applications.  Therefore 
it must be extended with higher level APIs necessary to run 
real-time tasks or UNIX-like applications.  

For real-time tasks, micro-kernels frequently introduce new 
proprietary interfaces and services, which add to the already 
plethoric set of embedded and real-time operating systems in 
the market.  

For general purpose applications, POSIX is one of the 
commonly adopted standards. However, POSIX interfaces 
need to be implemented by means of operating system servers 
running on top of the micro-kernel and using its low-level 
APIs and services. This approach requires significant re-
architecting of operating system kernel components so they 
run in different independent system servers communicating by 
means of the underlying micro-kernel IPC. The result diverges 
significantly from already existing and widely adopted 
operating system implementations such as Linux and is 
therefore difficult to maintain and evolve. This probably 
explains why all projects to re-architect UNIX along a micro-
kernel approach failed so far, both in the industry (Novell’s 
UNIX System V/MK based on Chorus, or OSF/1 based on 
Mach) and thus far in the open source community, 
(GNU/Hurd).  

These failures are due to the fact that the multi-layer 
operating system architecture proposed by micro-kernels, 
although modular and elegant, adds significant complexity to 
system designers who need to provide standard APIs to their 
application developers, compared to already existing and 
widely adopted monolithic implementations, such as existing 
real-time operating systems or open systems such as Linux, 
Window or Symbian. Performance can be impacted as well 
due to multiple interactions between kernel components 
running at different levels and communicating by means of the 
underlying micro-kernel IPC. 

IV. HARDWARE VIRTUALIZATION REQUIREMENTS 
The goal of hardware virtualization is to run several existing 

operating environments on a single underlying physical 
hardware platform. Virtualization requirements that should be 
satisfied when applied to embedded system products may be 
summarized as follows: 

• Run an existing operating system and its supported 
applications in a virtualized environment, such that 
modifications required to the operating system are 
minimized (ideally none), and performance 
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overhead is as low as possible; 
• It should be straightforward to move from one 

version of an operating system to another one; this 
is especially important to keep up with frequent 
Linux evolutions; 

• Reuse native device drivers from their existing 
execution environments with no modifications; 

• Support existing legacy often real-time operating 
systems and their applications while guaranteeing 
their deterministic real-time behavior. 

While consumer electronic devices leverage performance 
critical software on an RTOS and open operating systems such 
as Linux, there is usually little need for a tight integration 
between applications running on each environment. 
Traditionally, these functions are distributed between different 
processors and associated hardware. In today’s devices where 
additional hardware is replaced with software virtualization, 
the existence of virtualization is not expected to impact the 
system interactions even though they run on the same piece of 
physical hardware. In some cases however, sharing of 
peripheral devices between execution environments can be 
required. Typical examples in mobile devices include audio 
peripherals, power management and modem access. 

V. VIRTUALIZATION APPROACHES 

A. Transparent and para-virtualization  
There are basically two ways to provide transparent 

virtualization, ie run multiple operating systems 
simultaneously on the same processor with no modifications:  

• Dynamic binary translation where a hypervisor 
dynamically rewrites some part of the guest OS, 

• Hardware assisted virtualization as supported by 
the latest x86 processors from Intel and AMD. 

The first approach, as used by VMware requires a large 
hypervisor with high overhead. Although suited for a wide 
number of uses in the data center, this architecture introduces 
non deterministic caching mechanisms which make it 
unsuitable for embedded systems products.  

The second approach, hardware assisted virtualization, is 
used today for deployment within network infrastructure 
equipment, when combined with a real-time hypervisor.  
However, even though most embedded processor 
manufacturers or licensors plan to provide hardware assisted 
virtualization features as part of their technology roadmap, 
these new processor technologies are not yet widely deployed 
in the embedded space.  

In order to minimize the performance impact on operating 
system performance, “para-virtualization” techniques have 
been introduced [19] that require modifications in the 
operating system kernel so that it calls the underlying 
virtualization software instead of relying on complete 
emulation of the hardware. In order to preserve as much 
transparency as possible to the guest operating system, such 
modifications can be limited to its Hardware Abstraction 
Layer (HAL) or Board Support Package (BSP) – hence these 
para-virtualization changes are no more than what is required 

to adapt an OS to a new hardware board. 

B. Hosted versus native virtualization 
Although one can think of an operating system as a 

virtualization of the hardware, its primary purpose is to 
support a higher level of abstraction to facilitate the operation 
of applications. Basic hardware features such as processor(s), 
physical memory, disks, networks and other peripheral devices 
are abstracted by the operating system into processes or tasks, 
virtual memory, files, inter-process communication and the 
like. 

These abstractions could be used in turn to provide an 
emulation of the physical hardware on which on can run a 
complete operating system kernel. This technique of providing 
hardware virtualization is referred to as “hosted” virtualization 
software (or Type II Virtual Machines). This is a convenient 
approach but it comes at the cost of high memory footprint 
and relatively low performance because the system overhead 
compared to native operating systems is quite high.  

Traditionally a host is a full operating system such as 
UNIX, Linux, Windows.  With a micro-kernel based operating 
system, on might think of using the micro-kernel services to 
provide the hardware abstractions necessary to support virtual 
machines. However, as we will detail later in this paper, the 
level of services provided by the micro-kernel are at the same 
time too high-level (tasks or threads, inter-process 
communication) and insufficient (memory management, 
peripheral devices) requiring additional system services. The 
result of implementing virtualization on a micro-kernel host is 
a level of complexity similar to fully hosted VMs with high 
performance impact. 

Hypervisors on the other hand providing “native” hardware 
virtualization (or Type I Virtual Machines) have been 
designed to emulate the low level features of the hardware that 
are expected by an operating system kernel, so they can be run 
into virtual machines with no changes.  

VI. MICRO-KERNELS VERSUS HYPERVISORS 
Para-virtualization techniques have been applied to both 

“hosted” and “native” approaches to virtualization. However, 
the level of modification required in guest operating systems 
depends on how closely the virtualization software 
abstractions model the native hardware. Higher level 
abstractions require more intrusive modifications. In that 
sense, micro-kernels and hypervisor approaches have a quite 
different impact on the amount and difficulty of modifications 
required to run a guest operating system. 

Hypervisors typically know only about virtual machines and 
guest operating systems but tend to ignore all of the internal 
details of the workload being run in a virtual machine. Hence, 
an hypervisor knows only the properties of virtual machines it 
manages (memory, devices, scheduling). Such properties are 
quite close to those seen by a native operating system running 
on bare hardware. 

On the other hand, micro-kernels provide higher level 
abstractions, such as tasks, threads, memory contexts and IPC 
mechanisms which are similar to those already implemented 
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by a complete operating system kernel, thus involving a more 

complex mapping.  
Table I below outlines some of the differences in para-

virtualization of an operating systems kernel to a micro-kernel 
versus a hypervisor. 

A. Tasks and Threads 
Micro-kernels manage tasks and threads: they offer services 

to create, delete and list them. They schedule threads they 
have created. As a result, the typical way to run an OS kernel 
on top of a micro-kernel is to insure that all processes and 
threads managed by the guest OS are known to, and managed 
by the underlying micro-kernel. This requires heavy guest OS 
modifications to allow this. Creation and deletion of such 
objects in the guest OS need to rely on a corresponding 
invocation of the micro-kernel. For mostly static embedded 
systems, such overhead could be acceptable as it would be 
incurred only at initialization time. However, a thread (task) is 
now described by two data structures, one in the guest OS and 
one in the micro-kernel, which introduces memory footprint 
overhead. 

Hypervisors on the other hand, do not know about tasks and 
threads managed by their guest OSes. This independence 
avoids overhead in duplicate task creation and deletion 
operations or for managing such objects. 

B. Scheduling 
Micro-kernels provide services to schedule threads 

according to micro-kernel scheduling policies that replace the 
existing guest OS processor scheduling policies. The guest OS 
must be heavily modified to allow this. When more than one 
OS is supported, threads from different OSes are scheduled by 
the micro-kernel independently to the OS they belong to thus 
creating complex situations to analyze and debug. 

Since hypervisors schedule only guest OS, each one keeps 
its own scheduling policy, which allow running an OpenOS 

with a time share policy and a real-time OS with a fixed 
priority scheduling policy with no pain. 

C. Memory 
Micro-kernels (or dedicated servers) manage physical and 

virtual memory for the tasks they support – whether these are 
native micro-kernel tasks or guest OS tasks. Each task context 
is known by the micro-kernel. The micro-kernel is involved in 
every memory context switch and the guest OS must be 
heavily modified to allow this. Memory and page faults are 
also captured by the micro-kernel and typically forwarded to 
the OS by means of the micro-kernel IPC. 

Hypervisors know physical memory partition granted to 
each virtual machine (guest OS) and check the validity of 
memory mappings used by guest OS. Memory and page faults 
handler provided by guest OSes are triggered directly by that 
guest OS without involving an additional generic IPC 
mechanism. 

D. Communications 
Within a micro-kernel, there is no other way to 

communicate between threads running in different tasks of a 
guest OS than to use the microkernel IPC. 

Hypervisors on the other hand enable communication 
between guest OSes by means of very low level mechanisms 
such as shared memory used to implement ring buffers to 
exchange data and virtual cross-interrupt to signal that some 
data is available for consumption. Such mechanisms are not 
intended to be used by applications but by OS kernels and 
device drivers that can map their existing higher level 
communication services and protocols with minimum impact.  

E. Device Drivers 
Micro-kernels typically catch peripheral interrupts and 

forward them using the micro-kernel IPC. Sharing of devices 
between multiple guest OS also relies on the micro-kernel 
IPC. 

Hypervisors for embedded systems enable guest OSes to 
run with their native device drivers. Interrupts are 
transparently virtualized and delivered as they are expected 
and used by a native OS. In addition, some hypervisors 
provide a standard framework to share peripheral devices 
between several guest OS [20]. 

F. Virtual Machine Management 
Micro-kernels abstractions do not have concepts of a unique 

“guest OS”, “virtual machine” or “memory partition”. Hence, 
there is no straight-forward way to perform management 
operations such as “stop” or “restart” on guest OSes or virtual 
machines. Such operations could be implemented as a service 
on top of the micro-kernel, but this would add extra 
performance and memory overhead. Similarly, accounting for 
or limiting how much memory or CPU time is used by a given 
guest OS may be quite complex to implement. 

VII. MEASUREMENTS 
One of the measures of the impact of a micro-kernel versus 

hypervisor approach to operating system kernel par-

TABLE I 
OS PARA-VIRTUALIZATION ON MICRO-KERNEL VERSUS HYPERVISOR 

Services Micro-kernel Hypervisor 

Threads 
Knows all threads of any 
OS and imposes global 
scheduling  

Knows and schedule only 
guest OS 

Processes Knows about tasks and OS 
processes 

Knows only guest OS 
partitions. Hypervisor can 
easily start, stop, resume 
complete OS 

Memory 

Knows memory context of 
tasks and is Involved in 
memory context switch, 
page faults, etc. 

Knows only memory 
partitions. Memory 
management is done by 
guest OS 

Communication IPC imposes API and 
semantics 

IPC services left to guest 
OS 

Interrupts & 
Exceptions Catch and forward as IPC 

Virtual Interrupts 
forwarded to guest OS. 
Exceptions managed by 
guestOS 

Peripherals Device drivers as 
microkernel processes 

Core drivers in hypervisor, 
peripheral drivers in OS 
partitions 

Hypervisor approach is less intrusive and closer to what a native operating 
system is expecting from physical hardware. 
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virtualization is to look at the number of files that need to be 
modified in order to support a guest operating system kernel. 
Here, due to the availability of Linux on both the VLX 
hypervisor and the L4 microkernel, we provide some 
comparative source code modifications information. 

On an ARM926 based platform, the Linux 2.6.13 kernel 
includes 1200 files and 30 Board Support Packages (BSP) in 
the arch/arm and include/asm-arm directory trees. In 
order to make it run on the VLX MH 3.1 hypervisor, 51 files 
are modified and 40 files added in the ARM architecture tree. 
By contrast, the corresponding L4 release 1.6.4 
implementation requires the introduction of a new architecture 
tree (arch/L4) which includes 202 new files, 108 of which 
are ARM specific files. This new arch/L4 source tree 
requires that changes to the ARM Linux tree be migrated to 
the arch/L4 tree in order to leverage BSPs, ARM processor 
enhanced features, and device driver support. 

On the performance side, the following diagram illustrates 
the overhead of typical LMbench performance tests run on 
Linux 2.6.23 with L4RootFS compiled with gcc 3.4.4 on a 
Freescale iMX31 ADS board (ARM1136 at 532 MHz with 
128MB of RAM) on the VLX MH 3.2 hypervisor and on the 
OKL4 release 2.1 “pistachio” (April 15, 2008) micro-kernel 
respectively. The diagram shows the overhead factor of 
LMBench latency benchmark results obtained on Linux on L4 
compared to the same tests results on Linux on VLX. The L4 
overhead compared to VLX ranges from a 2x to 20x factor 
depending on the Linux system call benchmark. 

 

VIII. CONCLUSION 
This paper has outlined different approaches to introducing 

virtualization technology into consumer electronics systems 
and mobile devices, with a key benefit being to support 
several existing execution environments on the same hardware 
platform, with no or minimum changes to the existing 
software. 

Although hardware virtualization software as provided by 
hypervisors or virtual machine monitors (VMMs) have been 
around for a number of years in general purpose computing 

environments, its introduction into embedded systems is quite 
new. Light weight hypervisors such as provided by 
VirtualLogix VLX have been designed to provide “real-time 
virtualization” that fits the needs of such market. 

At the same time, virtualization has become a “buzz word” 
that is being used to “sell” micro-kernel technology, which has 
been designed from the outset as a better way to architect 
modern operating systems, and not as a way to share native 
hardware between existing operating systems as transparently 
as possible. 

We have shown that, although the hypervisor and micro-
kernel approaches may seem to address similar concerns, their 
design centers are quite opposite. Micro-kernels introduce 
virtualization as an extension to operating systems, whereby 
hypervisors consider virtualization as an extension to the 
hardware, taking advantage of hardware assistance when 
available on modern processor architectures.  

Performance benchmarks also show that the impact of 
micro-kernel based virtualization on native operating system 
performance is bigger than with a hypervisor in addition to 
being more intrusive to operating system kernels when para-
virtualization techniques are being used.  

In conclusion, micro-kernel operating systems should be 
used when one can start from a white sheet of paper and 
introduce a new operating system into their devices that is able 
to run applications as different as real-time tasks and general 
purpose Linux processes. On the other hand, a hypervisor that 
is providing native hardware abstractions that allows a close to 
native existing operating system to run should be used when 
one wants to re-use legacy software or extend the capabilities 
of devices based on established open operating systems such 
as Linux, Windows or Symbian OS. 
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