

Abstract — In this paper, we look at two different approaches

used to provide embedded system support for virtualization and
virtual machine monitors for consumer electronics and mobile
devices. We compare the micro-kernel approach, which has been
a popular choice for building embedded operating systems with
the Virtual Machine Monitor (VMM) or hypervisor approach
widely deployed in general purpose computing environments
such as desktops and data center servers. Comparison criteria
are based on virtualization use cases that are typical of Consumer
Electronics (CE) systems such as mobile devices and IPTV. These
approaches are further evaluated based on performance and on
their ability to allow re-use of existing (often real-time) software
as well as modern open operating systems such as Linux while
remaining as transparently as possible. Such transparency can
come through different paths, including: leveraging of hardware
virtualization support, minimal modifications to the original
operating system internals (kernel, device drivers, etc.), and the
ability to use existing operating system applications as-is and
without the need to port them to a new environment. An analysis
of the fundamental principles behind each approach is presented
with a discussion of their impact on existing operating
environments, together with practical performance results based
on existing micro-kernels and real-time hypervisor benchmarks.
We conclude that mapping the VMM (hypervisor) approach used
in data centers to the needs of embedded systems is a better
option for the support of complete operating systems (as guests)
than extending micro-kernels for such functionality.

Keywords—Virtual machine monitors for CE systems such
as mobile devices and IPTV, Virtualization for security
and fault-isolation on CE systems, Embedded operating
system support for virtualization, Virtualization
architecture for real-time applications

Index Terms—Embedded system, hypervisor, micro-kernel,
Operating System (OS), virtualization, Virtual Machine Monitor
(VMM).

I. INTRODUCTION
FTER several years of availability in the enterprise and

server space, virtualization is becoming a hot topic in
embedded systems, particularly for consumer electronics
systems such as mobile devices and IPTV set-top boxes. One

Manuscript received October 10, 2008.
François Armand is with VirtualLogix, 6 avenue Gustave Eiffel, 78180 –

Montigny-le-Bretonneux, France (phone: +33 1 39 44 74 00; fax: +33 1 30 57
00 66; (e-mail: Francois.Armand@VirtualLogix.com).

Michel Gien is with VirtualLogix, 6 avenue Gustave Eiffel, 78180 –
Montigny-le-Bretonneux, France (phone: +33 1 39 44 74 22; fax: +33 1 30 57
00 66; e-mail: Michel.Gien@VirtualLogix.com).

of the main drivers is the need to run new or feature-rich open
system software while maintaining existing legacy software
that has been already tested and validated in their own
operating environment. Such open software commonly
includes Linux and more established operating systems such
as Windows or Symbian where developers want to run the
operating system unchanged while also extending their device
security and manageability at all levels.

Co-existence of several operating environments on the same
hardware platform is one of the main purposes of hardware
virtualization software, made possible by the provision of a
virtual image of the hardware to each operating system, which
believes it is running alone on the underlying hardware.
Mobile phone platform products that are now been deployed
with such virtualized operating environments include the NXP
7210 platform used in the Purple Magic single core Linux
reference phone design [1], [2].

Hardware virtualization is not a new concept. It has been
used in data centers for years. However, its introduction in
embedded systems, in particular mobile devices is relatively
new. Several approaches are being used to provide hardware
virtualization in embedded devices. One extends the data
center Virtual Machine Monitor (VMM) or hypervisor
approach to fit the constraints of embedded systems. Another
approach extends micro-kernels that have traditionally been
used in embedded systems so they can support full operating
system kernels in addition to their own embedded
applications.

This paper examines foundation concepts of each approach
and discusses their implications on the expected benefits of
virtualization in embedded devices. A parallel can be made
with the arguments exchanged in two papers issued by
stakeholders from each “camp”, ie, Xen [3] and L4 [4].

Finally actual measurements and performance benchmarks
of the L4 microkernel and the VirtualLogix VLX hypervisor
illustrate the implications of the two approaches in real-world
scenario.

II. VIRTUAL MACHINE MONITORS AND HYPERVISORS

A. Virtualization in the Data Center
The common term, virtual machine monitor (VMM), refers

to software that controls and virtualizes the system "physical"
hardware and reflects that this software generates and
monitors "virtual machines" in which operating systems (OS)
are executed. An operating system that executes in the context
of a virtual machine is often referred to as a "guest OS," as

A Practical Look at Micro-Kernels and Virtual
Machine Monitors

François Armand, Michel Gien, Member, IEEE

A

978-1-4244-2309-5/09/$25.00 ©2009 IEEE 1

opposed to a "native OS" that has full control over the
hardware resources (i.e. the "real machine"). The VMM may
sometimes be called a "hypervisor" by analogy to the term
"supervisor" used to designate the function of the inner part of
an OS called the OS kernel, which supervises the execution of
applications and their access to hardware resources
(computing, memory, storage, network, etc.). In the case of
"virtualization technology," the hypervisor provides access to
the hardware resources for the operating systems via fully or
partially virtualized interfaces. This adds one layer of
hardware management which multiplexes usage of the “real”
hardware to several operating systems or several instances of
the same operating system, which can thus share that same
hardware.

The first hypervisor, called Control Program 67 (CP-67)
[5], was introduced in the summer of 1966 by IBM in its
famous System/360 family of mainframe computers, the
360/67. It then became VM/370 on the S/370 and was used to
run various operating systems such as "single user" (e.g.
CMS) or "batch" operating systems (e.g. OS 360)
simultaneously and securely on the same computer.
Essentially VM/370 and hardware cooperate so multiple
instances of any operating system, each with protected access
to the full instruction set, can peacefully and concurrently
coexist. This is one of the more successful hypervisors and
still sees wide use in IBM mainframes today.

Since then, hypervisors have gained increasing popularity in
the computing space with many commercial and public
options now available. The most widely used hypervisor on
x86-based computers is VMware [6], which is offered by a
subsidiary of the EMC Corporation. The University of
Cambridge Computer Laboratory has developed a competing
open source project called Xen [7] that is supported by various
computer manufacturers including IBM, Sun Microsystems
and HP to run several instances of Linux and other operating
systems primarily on x86-based servers. Microsoft recently
announced its own hypervisor software named Hyper-V [8].

Hypervisors provide "hardware virtual machines" and
should not be confused with interpreters providing
"application virtual machines." Interpreters isolate the
application used by the user from the computer it is running
on. Because versions of the virtual machine are written as
interpreters for various computer platforms, any application
written for the virtual machine can be operated on any of the
platforms, instead of having to produce separate versions of
the application for each computer and operating system. One
of the best known examples of an application virtual machine
is Sun Microsystem's Java Virtual Machine [9].

B. Virtualization in a Consumer Device
The amount of processing power and memory available in

today’s mobile handsets enable them to run high-level, general
purpose operating systems such as Linux, Windows or
Symbian providing rich sets of services and applications.
Smart phones increasingly resemble laptops in terms of
features that they offer to users. Similar to what happened with
personal computers in past years, today’s convergence of

increased processing power and operating system support
allows virtualization technology to be applied to mobile
handsets and provide them with a software architecture that
allows them to consolidate different operating environments
on the same hardware platform.

Running along side of a feature-rich open operating system,
a real-time operating system (RTOS) is used in mobile
handsets to support deterministic tasks, such as running
wireless protocol stacks and core phone services. Aside from
the operating system choices, mobile handsets present a
further challenge to virtualization solutions in their support for
real-time operating systems and for many peripherals such as
screen, touchpad, keyboard, audio I/O, camera, flash memory,
disk, Bluetooth, USB, WiFi as well as wireless telecom
network protocols.

Emerging from these market and technical requirements is a
new generation of hypervisors, sometimes referred to as using
"real-time virtualization" technology targeting embedded
devices by allowing a guest OS of the hypervisor to be a real-
time operating system (RTOS) without compromising its
native real-time characteristics and behavior. VirtualLogix
VLX is an example of such a “real-time virtualization”
hypervisor [10].

Like other hypervisors in the traditional computing space,
real-time hypervisors ensure strict isolation and secure
communication between multiple virtualized execution
environments. In addition, real-time hypervisors support the
ARM processor family powering the vast majority of mobile
phones and when it is made available by the silicon
manufacturer, these hypervisors are able to leverage hardware
support for virtualization, on Intel VT-based architectures for
example.

"Real-time virtualization" can be used to securely
consolidate a RTOS and a rich operating system – which
would otherwise run on independent processors – on a single
CPU lowering the cost of smart phones and bringing more
functionality into the high-volume mass market. It can also be
used to support a trusted execution environment (TEE),
compliant with the requirement standards of the Open Mobile
Terminal Platform (OMTP) industry organization [11].

Unlike virtualization technologies used in IT servers in the
data center, such as provided by VMware, Xen, or Microsoft,
VirtualLogix VLX has been specifically designed to address
the requirements of devices such as mobile handsets, by
meeting stringent cost, performance and memory constraints.
Such hypervisor-based virtualization products can be
summarized as providing real-time deterministic execution
environments dedicating specific hardware resources to
particular guest OS's for performance reasons, and supporting
embedded processors such as the ARM and low power Intel
Atom processor families.

They support Linux, Windows, Symbian, several
commercial real-time operating systems and a variety of
legacy "home-grown" proprietary embedded OS's. Their real-
time virtualization technology provides a flexible architecture
that enables various tradeoffs between resource isolation and
sharing policies, based upon use case requirements.

2

III. MICRO-KERNELS

A. Operating system complexity
Complexity of operating systems has been increasing in a

rather exponential way during the last 20 years. Using a
measure as simple as the number of lines of code, Unix and
Linux systems have evolved from 10 000 of lines of C code
(Unix V7, in the early 80’s) to more than 8.5 million lines of
code in the Linux 2.6.24 kernel1 [12]. Services provided by an
operating system have extended and cover a much larger
scope than 20 years ago. Peripheral devices are much more
diverse and complex than they used to be and operating
systems needs to abstract an ever larger set of services to their
applications (eg, audio, video, input devices, sensor driven
services).

Systems designers have attempted to address operating
system internal complexity issues using various
modularization approaches. Micro-kernels, exo-kernels and
other similar approaches have been studied and tested to try to
fragment and reduce the overall complexity of systems with
the hope that managing smaller and less complex pieces would
lead to an overall simpler design.

In the late 80’s, the Mach micro-kernel [13] developed at
CMU (Carnegie Mellon University) had a similar approach to
reduce operating system complexity although primarily
towards data center operating systems. A derivative is still
used by Apple as the underpinning of MacOS X.

Between 1980 and 2001, the Chorus micro-kernel [13][14]
has gone thru five major iterations, starting as a research
project at INRIA (Institut National de Recherche en
Informatique et Automatique in France) then evolving as a
software product by Chorus Systems then Sun Microsystems.
It has been used to re-architect the UNIX operating system as
a set of cooperating system services on top of a minimum
micro-kernel, as well as to combine real-time tasks with
general purpose UNIX applications in consumer devices such
as Java terminals and network infrastructure equipment. The
experience gained during the years of applying micro-kernel
technology to combine several operating environments on the
same hardware led the Chorus Systems engineering team to
fund VirtualLogix in 2002. In doing so, they took a different
approach and designed native hardware virtualization software
that allows re-use of existing operating systems with minimum
changes instead of attempting to forcefully merge monolithic
operating system kernel functions along microkernel services.

QNX [15] evolved from an embedded real-time kernel to a
micro-kernel based operating system supporting combinations
of real-time tasks and POSIX processes. It is now used
primarily in the automotive industry and some industrial
systems.

More recently several academic research communities
started to develop a new generation of micro-kernels based
along the L4 concept and APIs originally expressed in the mid
90’s [16]. Several variants are still being developed in
academic research [17] and in industry [18].

1 Today, 10 000 lines of code is the difference between the 2.6.23 and
2.6.24 releases of the Linux kernel.

B. Micro-kernel goals and services
Micro-kernels share the common goal of keeping things as

simple as possible in the micro-kernel, implementing low level
mechanisms only, and isolating operating system servers in
user mode. Inter-process communication (IPC) is usually
provided at the lowest level possible and is widely used as a
general communication paradigm between operating system
servers and between servers and the micro-kernel, and as a
substitute to system traps.

C. Drawbacks
Due to its basic and low-level nature, the micro-kernel API

itself is not suitable to run meaningful applications. Therefore
it must be extended with higher level APIs necessary to run
real-time tasks or UNIX-like applications.

For real-time tasks, micro-kernels frequently introduce new
proprietary interfaces and services, which add to the already
plethoric set of embedded and real-time operating systems in
the market.

For general purpose applications, POSIX is one of the
commonly adopted standards. However, POSIX interfaces
need to be implemented by means of operating system servers
running on top of the micro-kernel and using its low-level
APIs and services. This approach requires significant re-
architecting of operating system kernel components so they
run in different independent system servers communicating by
means of the underlying micro-kernel IPC. The result diverges
significantly from already existing and widely adopted
operating system implementations such as Linux and is
therefore difficult to maintain and evolve. This probably
explains why all projects to re-architect UNIX along a micro-
kernel approach failed so far, both in the industry (Novell’s
UNIX System V/MK based on Chorus, or OSF/1 based on
Mach) and thus far in the open source community,
(GNU/Hurd).

These failures are due to the fact that the multi-layer
operating system architecture proposed by micro-kernels,
although modular and elegant, adds significant complexity to
system designers who need to provide standard APIs to their
application developers, compared to already existing and
widely adopted monolithic implementations, such as existing
real-time operating systems or open systems such as Linux,
Window or Symbian. Performance can be impacted as well
due to multiple interactions between kernel components
running at different levels and communicating by means of the
underlying micro-kernel IPC.

IV. HARDWARE VIRTUALIZATION REQUIREMENTS
The goal of hardware virtualization is to run several existing

operating environments on a single underlying physical
hardware platform. Virtualization requirements that should be
satisfied when applied to embedded system products may be
summarized as follows:

• Run an existing operating system and its supported
applications in a virtualized environment, such that
modifications required to the operating system are
minimized (ideally none), and performance

3

overhead is as low as possible;
• It should be straightforward to move from one

version of an operating system to another one; this
is especially important to keep up with frequent
Linux evolutions;

• Reuse native device drivers from their existing
execution environments with no modifications;

• Support existing legacy often real-time operating
systems and their applications while guaranteeing
their deterministic real-time behavior.

While consumer electronic devices leverage performance
critical software on an RTOS and open operating systems such
as Linux, there is usually little need for a tight integration
between applications running on each environment.
Traditionally, these functions are distributed between different
processors and associated hardware. In today’s devices where
additional hardware is replaced with software virtualization,
the existence of virtualization is not expected to impact the
system interactions even though they run on the same piece of
physical hardware. In some cases however, sharing of
peripheral devices between execution environments can be
required. Typical examples in mobile devices include audio
peripherals, power management and modem access.

V. VIRTUALIZATION APPROACHES

A. Transparent and para-virtualization
There are basically two ways to provide transparent

virtualization, ie run multiple operating systems
simultaneously on the same processor with no modifications:

• Dynamic binary translation where a hypervisor
dynamically rewrites some part of the guest OS,

• Hardware assisted virtualization as supported by
the latest x86 processors from Intel and AMD.

The first approach, as used by VMware requires a large
hypervisor with high overhead. Although suited for a wide
number of uses in the data center, this architecture introduces
non deterministic caching mechanisms which make it
unsuitable for embedded systems products.

The second approach, hardware assisted virtualization, is
used today for deployment within network infrastructure
equipment, when combined with a real-time hypervisor.
However, even though most embedded processor
manufacturers or licensors plan to provide hardware assisted
virtualization features as part of their technology roadmap,
these new processor technologies are not yet widely deployed
in the embedded space.

In order to minimize the performance impact on operating
system performance, “para-virtualization” techniques have
been introduced [19] that require modifications in the
operating system kernel so that it calls the underlying
virtualization software instead of relying on complete
emulation of the hardware. In order to preserve as much
transparency as possible to the guest operating system, such
modifications can be limited to its Hardware Abstraction
Layer (HAL) or Board Support Package (BSP) – hence these
para-virtualization changes are no more than what is required

to adapt an OS to a new hardware board.

B. Hosted versus native virtualization
Although one can think of an operating system as a

virtualization of the hardware, its primary purpose is to
support a higher level of abstraction to facilitate the operation
of applications. Basic hardware features such as processor(s),
physical memory, disks, networks and other peripheral devices
are abstracted by the operating system into processes or tasks,
virtual memory, files, inter-process communication and the
like.

These abstractions could be used in turn to provide an
emulation of the physical hardware on which on can run a
complete operating system kernel. This technique of providing
hardware virtualization is referred to as “hosted” virtualization
software (or Type II Virtual Machines). This is a convenient
approach but it comes at the cost of high memory footprint
and relatively low performance because the system overhead
compared to native operating systems is quite high.

Traditionally a host is a full operating system such as
UNIX, Linux, Windows. With a micro-kernel based operating
system, on might think of using the micro-kernel services to
provide the hardware abstractions necessary to support virtual
machines. However, as we will detail later in this paper, the
level of services provided by the micro-kernel are at the same
time too high-level (tasks or threads, inter-process
communication) and insufficient (memory management,
peripheral devices) requiring additional system services. The
result of implementing virtualization on a micro-kernel host is
a level of complexity similar to fully hosted VMs with high
performance impact.

Hypervisors on the other hand providing “native” hardware
virtualization (or Type I Virtual Machines) have been
designed to emulate the low level features of the hardware that
are expected by an operating system kernel, so they can be run
into virtual machines with no changes.

VI. MICRO-KERNELS VERSUS HYPERVISORS
Para-virtualization techniques have been applied to both

“hosted” and “native” approaches to virtualization. However,
the level of modification required in guest operating systems
depends on how closely the virtualization software
abstractions model the native hardware. Higher level
abstractions require more intrusive modifications. In that
sense, micro-kernels and hypervisor approaches have a quite
different impact on the amount and difficulty of modifications
required to run a guest operating system.

Hypervisors typically know only about virtual machines and
guest operating systems but tend to ignore all of the internal
details of the workload being run in a virtual machine. Hence,
an hypervisor knows only the properties of virtual machines it
manages (memory, devices, scheduling). Such properties are
quite close to those seen by a native operating system running
on bare hardware.

On the other hand, micro-kernels provide higher level
abstractions, such as tasks, threads, memory contexts and IPC
mechanisms which are similar to those already implemented

4

by a complete operating system kernel, thus involving a more

complex mapping.
Table I below outlines some of the differences in para-

virtualization of an operating systems kernel to a micro-kernel
versus a hypervisor.

A. Tasks and Threads
Micro-kernels manage tasks and threads: they offer services

to create, delete and list them. They schedule threads they
have created. As a result, the typical way to run an OS kernel
on top of a micro-kernel is to insure that all processes and
threads managed by the guest OS are known to, and managed
by the underlying micro-kernel. This requires heavy guest OS
modifications to allow this. Creation and deletion of such
objects in the guest OS need to rely on a corresponding
invocation of the micro-kernel. For mostly static embedded
systems, such overhead could be acceptable as it would be
incurred only at initialization time. However, a thread (task) is
now described by two data structures, one in the guest OS and
one in the micro-kernel, which introduces memory footprint
overhead.

Hypervisors on the other hand, do not know about tasks and
threads managed by their guest OSes. This independence
avoids overhead in duplicate task creation and deletion
operations or for managing such objects.

B. Scheduling
Micro-kernels provide services to schedule threads

according to micro-kernel scheduling policies that replace the
existing guest OS processor scheduling policies. The guest OS
must be heavily modified to allow this. When more than one
OS is supported, threads from different OSes are scheduled by
the micro-kernel independently to the OS they belong to thus
creating complex situations to analyze and debug.

Since hypervisors schedule only guest OS, each one keeps
its own scheduling policy, which allow running an OpenOS

with a time share policy and a real-time OS with a fixed
priority scheduling policy with no pain.

C. Memory
Micro-kernels (or dedicated servers) manage physical and

virtual memory for the tasks they support – whether these are
native micro-kernel tasks or guest OS tasks. Each task context
is known by the micro-kernel. The micro-kernel is involved in
every memory context switch and the guest OS must be
heavily modified to allow this. Memory and page faults are
also captured by the micro-kernel and typically forwarded to
the OS by means of the micro-kernel IPC.

Hypervisors know physical memory partition granted to
each virtual machine (guest OS) and check the validity of
memory mappings used by guest OS. Memory and page faults
handler provided by guest OSes are triggered directly by that
guest OS without involving an additional generic IPC
mechanism.

D. Communications
Within a micro-kernel, there is no other way to

communicate between threads running in different tasks of a
guest OS than to use the microkernel IPC.

Hypervisors on the other hand enable communication
between guest OSes by means of very low level mechanisms
such as shared memory used to implement ring buffers to
exchange data and virtual cross-interrupt to signal that some
data is available for consumption. Such mechanisms are not
intended to be used by applications but by OS kernels and
device drivers that can map their existing higher level
communication services and protocols with minimum impact.

E. Device Drivers
Micro-kernels typically catch peripheral interrupts and

forward them using the micro-kernel IPC. Sharing of devices
between multiple guest OS also relies on the micro-kernel
IPC.

Hypervisors for embedded systems enable guest OSes to
run with their native device drivers. Interrupts are
transparently virtualized and delivered as they are expected
and used by a native OS. In addition, some hypervisors
provide a standard framework to share peripheral devices
between several guest OS [20].

F. Virtual Machine Management
Micro-kernels abstractions do not have concepts of a unique

“guest OS”, “virtual machine” or “memory partition”. Hence,
there is no straight-forward way to perform management
operations such as “stop” or “restart” on guest OSes or virtual
machines. Such operations could be implemented as a service
on top of the micro-kernel, but this would add extra
performance and memory overhead. Similarly, accounting for
or limiting how much memory or CPU time is used by a given
guest OS may be quite complex to implement.

VII. MEASUREMENTS
One of the measures of the impact of a micro-kernel versus

hypervisor approach to operating system kernel par-

TABLE I
OS PARA-VIRTUALIZATION ON MICRO-KERNEL VERSUS HYPERVISOR

Services Micro-kernel Hypervisor

Threads
Knows all threads of any
OS and imposes global
scheduling

Knows and schedule only
guest OS

Processes Knows about tasks and OS
processes

Knows only guest OS
partitions. Hypervisor can
easily start, stop, resume
complete OS

Memory

Knows memory context of
tasks and is Involved in
memory context switch,
page faults, etc.

Knows only memory
partitions. Memory
management is done by
guest OS

Communication IPC imposes API and
semantics

IPC services left to guest
OS

Interrupts &
Exceptions Catch and forward as IPC

Virtual Interrupts
forwarded to guest OS.
Exceptions managed by
guestOS

Peripherals Device drivers as
microkernel processes

Core drivers in hypervisor,
peripheral drivers in OS
partitions

Hypervisor approach is less intrusive and closer to what a native operating
system is expecting from physical hardware.

5

virtualization is to look at the number of files that need to be
modified in order to support a guest operating system kernel.
Here, due to the availability of Linux on both the VLX
hypervisor and the L4 microkernel, we provide some
comparative source code modifications information.

On an ARM926 based platform, the Linux 2.6.13 kernel
includes 1200 files and 30 Board Support Packages (BSP) in
the arch/arm and include/asm-arm directory trees. In
order to make it run on the VLX MH 3.1 hypervisor, 51 files
are modified and 40 files added in the ARM architecture tree.
By contrast, the corresponding L4 release 1.6.4
implementation requires the introduction of a new architecture
tree (arch/L4) which includes 202 new files, 108 of which
are ARM specific files. This new arch/L4 source tree
requires that changes to the ARM Linux tree be migrated to
the arch/L4 tree in order to leverage BSPs, ARM processor
enhanced features, and device driver support.

On the performance side, the following diagram illustrates
the overhead of typical LMbench performance tests run on
Linux 2.6.23 with L4RootFS compiled with gcc 3.4.4 on a
Freescale iMX31 ADS board (ARM1136 at 532 MHz with
128MB of RAM) on the VLX MH 3.2 hypervisor and on the
OKL4 release 2.1 “pistachio” (April 15, 2008) micro-kernel
respectively. The diagram shows the overhead factor of
LMBench latency benchmark results obtained on Linux on L4
compared to the same tests results on Linux on VLX. The L4
overhead compared to VLX ranges from a 2x to 20x factor
depending on the Linux system call benchmark.

VIII. CONCLUSION
This paper has outlined different approaches to introducing

virtualization technology into consumer electronics systems
and mobile devices, with a key benefit being to support
several existing execution environments on the same hardware
platform, with no or minimum changes to the existing
software.

Although hardware virtualization software as provided by
hypervisors or virtual machine monitors (VMMs) have been
around for a number of years in general purpose computing

environments, its introduction into embedded systems is quite
new. Light weight hypervisors such as provided by
VirtualLogix VLX have been designed to provide “real-time
virtualization” that fits the needs of such market.

At the same time, virtualization has become a “buzz word”
that is being used to “sell” micro-kernel technology, which has
been designed from the outset as a better way to architect
modern operating systems, and not as a way to share native
hardware between existing operating systems as transparently
as possible.

We have shown that, although the hypervisor and micro-
kernel approaches may seem to address similar concerns, their
design centers are quite opposite. Micro-kernels introduce
virtualization as an extension to operating systems, whereby
hypervisors consider virtualization as an extension to the
hardware, taking advantage of hardware assistance when
available on modern processor architectures.

Performance benchmarks also show that the impact of
micro-kernel based virtualization on native operating system
performance is bigger than with a hypervisor in addition to
being more intrusive to operating system kernels when para-
virtualization techniques are being used.

In conclusion, micro-kernel operating systems should be
used when one can start from a white sheet of paper and
introduce a new operating system into their devices that is able
to run applications as different as real-time tasks and general
purpose Linux processes. On the other hand, a hypervisor that
is providing native hardware abstractions that allows a close to
native existing operating system to run should be used when
one wants to re-use legacy software or extend the capabilities
of devices based on established open operating systems such
as Linux, Windows or Symbian OS.

ACKNOWLEDGMENT
The authors would like to thank the whole VirtualLogix

team and in particular the systems architects who put into
question their years of experience developing micro-kernel
based operating systems and helped shape the design of
VirtualLogix VLX to better address embedded systems needs.

REFERENCES
[1] NXP, “Nexperia Cellular System Solutions for Linux.” Available:

http://www.nxp.com/acrobat_download/literature/9397/75016263.pdf
[2] Purple Labs, “Purple Magic first sub-$100 3G Linux Reference Phone

for Emerging Markets.” Available: http://www.purplelabs.com/product-
purple-magic.php

[3] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, D. Magenheimer, “Are
Virtual Machine Monitors Microkernels Done Right?”. In Proc. 10th
Workshop on Hot Topics in Operating Systems (HotOS X), Sante Fe,
NM, USA, June 2005.

[4] G. Heiser, V. Uhlig, J. LeVasseur, “Are Virtual Machine Monitors
Microkernels Done Right?” NICTA Tech. Rep. PA005103, Sep. 2005.

[5] CP 67, http://en.wikipedia.org/wiki/IBM_System/360_Model_67
[6] VMware. Available: http://www.vmware.com
[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” In Proc. 19th ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, pp. 164–177, Oct. 2003.

[8] Microsoft, “Virtualization and Consolidation with Hyper-V.” Available:
http://www.microsoft.com/windowsserver2008/en/us/virtualization-
consolidation.aspx

0

1

2

3

4

5

6

7

8

9
null call

null IO

read

write

stat

fstat

open/close

sig inst

sig hndl

fork proc

exec proc

sh proc

pipe

AF_UNIX
socket

UDP

TCP

LMBench Latency Benchmarks

Linux on VLX Linux on L4

13

20

6

[9] T. Lindholm, F; Yellin, “The Java Virtual Machine Specification,” Sun
Microsystem, 1999. Available: http://java.sun.com/docs/books/jvms/

[10] VirtualLogix VLX. Available: http://www.virtuallogix.com
[11] OMTP, “OMTP Advanced Trusted Environment: OMTP TR1,” May

2008.Available:http://www.omtp.org/Publications/Display.aspx?Id=dbe
5b79c-216c-4ce6-a0f7-c482ac58f44c#

[12] G. Kroah-Hartman, J. Corbet, A. McPherson, “Linux Kernel
Development.Available:http://www.linuxfoundation.org/publications/lin
uxkerneldevelopment.php

[13] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young, “Mach: A new kernel foundation for UNIX
development.” In Proc. Summer USENIX Conference, June 1986.

[14] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M.
Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, and W.
Neuhauser, “Chorus distributed operating systems”, USENIX Computing
Systems, 1(4), pp. 305–367, 1988.

[15] D. Hildebrand, “An architectural overview of QNX.” In Proc. of the
USENIX Workshop on Microkernels and other Kernel Architectures,
Seattle, WA, USA, pp. 113–126, Apr. 1992.

[16] J. Liedtke, “Towards real microkernels,” Communications of the ACM,
39(9), pp. 70–77, Sep. 1996.

[17] G. Heiser, K. Elphinstone, I. Kuz, G., Klein, S. M. Petters, “Towards
Trustworthy Computing Systems: Taking Microkernels to the Next
Level,” SIGOPS Operating Systems Review, July 2007.

[18] R. Kaiser, S. Wagner, “The PikeOS Concept: History and Design,”
SysGO AG White Paper. Available: http://www.sysgo.com

[19] A. Whitaker, M. Shaw, S. D. Gribble, “Denali: Lightweight Virtual
Machines for Distributed and Networked Applications,” In Proc. of the
USENIX Annual Technical Conference, 2002.

[20] F. Armand, M. Gien, G. Maigné, G. Mardinian, “Shared Device Driver
Model for Virtualized Mobile Handsets,” In Proc. ACM MobiVirt
Workshop held in conjunction with MobiSys 2008, Brekenridge, CO,
USA, June 17, 2008.

7

