
A New Exercise in Concurrency

John A. Trono
Saint Michael's College

One Winooski Park
Colchester, VT 05439

Abstract

This article presents an exercise to be assigned whenever undergraduates are introduced to
the concepts of concurrency and semaphores. It also presents several possible strategies to solve said
exercise along with a "coded" solution.

Introduction

Most students in the area of computer science experience only the sequential paradigm of
computer programming in their first few years as an undergraduate. The introduction to ideas such as
concurrency, interprocess communication, and process synchronization typically occurs in upper
level courses. That is also when the students become acquainted with the notions of parallel
processing and distributed systems. At St. Michael's College, it is in our junior level operating
systems course that these topics are introduced, using such classic problems as the producers-
consumers, the readers and writers, and the dining philosophers. These problems are contained in
most operating systems texts, along with the typical homework exercises like the sleepy barber
problem, the baboons crossing the bridge problem, and so on. It has been my experience that for
most students, their first few attempts at solving these exercises (utilizing co-operating processes)
suffer from logic errors analogous to beginning programmers; there is a learning curve and students
need many, single problem, assignments over time, to gain proficiency in this area.

Background

Since the operating systems course is the first time that students at St. Michael's College have
been exposed to "systems programming", I follow the traditional approach to this topic, in the order
proscribed in the second edition of the text by Peterson and Silberschatz[8]. Even though currently
popular texts have integrated concurrency into much earlier chapters (chapter 2 in Tanenbaum[11],
and chapter 4 in Silberschatz and Galvin[10]), I feel it is still appropriate for me to discuss
concurrency nearer the middle of the semester.

Along with the examples cited previously, the solution to the readers and writers problem,
where priority is given to the writers[1], instead of the readers, is designed and discussed in class.
This example is more involved than the case where readers are given priority and illustrates several
key points when one is working with semaphores and a large number of autonomous processes.
Also, several articles concerning how to implement counting semaphores, using only the binary
semaphore operations PB and VB, are given to the students[2,3,4,5,7]. After some in-class debate,
the students must select and justify one of the "solutions" in a short paper. While this is occurring in
the lecture, the students are working on the exercises mentioned already, along with the agent and
smokers problem[9,10,11] and the four-of-a-kind problem[6]. Considering the time spent
introducing semaphores and message passing, concurrency comprises a third of the semester, along
with a few quizzes on these topics, and some material on distributed systems.

About four years ago, when the last lecture for operating systems was held (which was a

review for the final), a student asked me to go over another sample concurrency problem, and if
possible, with more than the two types of processes as found in most of the problems covered so far.
Fortunately, with Christmas two weeks away, I decided to attempt an entertaining example
coordinating a Santa Claus process, nine reindeer processes and a large number of elf processes.
Since then, it has always been one more example to use in class, and I share it with you now.

Problem Definition

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties making the toys. One elf's problem
is never serious enough to wake up Santa (otherwise, he may never get any sleep), so, the elves visit
Santa in a group of three. When three elves are having their problems solved, any other elves wishing
to visit Santa must wait for those elves to return. If Santa wakes up to find three elves waiting at his
shop's door, along with the last reindeer having come back from the tropics, Santa has decided that
the elves can wait until after Christmas, because it is more important to get his sleigh ready as soon
as possible. (It is assumed that the reindeer don't want to leave the tropics, and therefore they stay
there until the last possible moment. They might not even come back, but since Santa is footing the
bill for their year in paradise ... This could also explain the quickness in their delivering of presents,
since the reindeer can't wait to get back to where it is warm.) The penalty for the last reindeer to
arrive is that it must get Santa while the others wait in a warming hut before being harnessed to the
sleigh.

A Solution

The solution that has worked best over the years, and also appears to be the simplest, is
written using C statements and pseudo-code. (Constants are also used in case the number of reindeer
were to change, or if the group size of "solution-seeking" elves is modified.) Basically, the reindeer
arrive, update the count of how many have arrived, and the last one wakes up Santa. An elf, upon
discovering a problem, attempts to modify the count for the number of elves with a problem and
either: waits outside Santa's shop if he/she is the first or second such elf; knocks on the door and
wakes up Santa if that elf is the third one; or waits in the elves' shop until the elves currently with
Santa start coming back. (The code for this solution can be found in the Appendix.)

Other Solutions

Without the counting semaphore only_elves, any solution must then either maintain a count of how
many elves are waiting to have a problem solved, or, have the third elf "lock out" other elves until
they leave Santa's shop. These solutions are typically more complicated but can work. One problem
with the former solution approach is that students usually forget to prevent an elf who recently
discovered a problem from sneaking in front of those who have been waiting and now can go to
Santa's shop since the three elves are returning. Using the latter solution approach, students
occasionally have too many elves going to Santa's shop, once the three elves have come back.

Conclusion

A new example for cooperating processes, using semaphores to synchronize their processing and to
maintain mutual exclusion on two shared variables, has been presented. This new example has three

different types of processes instead of the normal two used in most previously cited examples. It also
forces one type (the elf) to monitor the behavior of other processes of that type, as well as "getting in
sync" with a different process (Santa). Hopefully students will enjoy, benefit and remember this
example as much as I enjoyed the dining philosophers example when I was an undergraduate. I hope
this encourages others to share any new and innovative examples/exercises. Perhaps Snow White and
the Seven Dwarves (add the Prince as the third process), and other such "whimsical" examples might
make the material more interesting, our job more fun and most importantly, create an improved
learning environment for our students.

Appendix

/* uses P and V for the wait and signal semaphore operations */

#define REINDEER 9 /* max # of reindeer */
#define ELVES 3 /* size of elf group */

Semaphores
 only_elves = 3, /* 3 go to Santa */
 emutex = 1, /* update elf_ct */
 rmutex = 1, /* update rein_ct */
 rein_wait = 0, /* block early arrivals back from islands */
 sleigh = 0, /* all reindeer wait
 around the sleigh */
 done = 0, /* toys all delivered*/
 santa_signal = 0,/* 1st 2 elves wait on this outside Santa's shop */
 santa = 0, /* Santa sleeps on this blocked semaphore */
 problem = 0, /* wait to pose the question to Santa */
 elf_done = 0; /* receive reply */

Shared integers
 rein_ct = 0; /* # of reindeer back */
 elf_ct = 0; /* # of elves w/problem */

Local Integers
 i; /* for loop variable */

/* Reindeer Process */
for (;;){
 tan on the beaches in the Pacific
 until Christmas is close
 P(rmutex)
 rein_ct++
 if (rein_ct == REINDEER) {
 V(rmutex)
 V(santa)
 }
 else {
 V(rmutex)

 P(rein_wait)
 }
 /* all reindeer waiting to be
 attached to the sleigh */
 P(sleigh)
 fly off to deliver the toys
 P(done)
 head back to the Pacific islands
} /* end "forever" loop */

/* Elf Process */
for (;;){
 P(only_elves) /* only 3 elves "in"*/
 P(emutex)
 elf_ct++
 if (elf_ct == ELVES){
 V(emutex)
 V(santa) /* 3rd elf-wakes Santa */
 }
 else {
 V(emutex)
 P(santa_signal) /* wait outside
 Santa's shop door */
 }
 P(problem)
 ask question /* Santa woke elf up*/
 P(elf_done)
 V(only_elves)
} /* end "forever" loop */

/* Santa Process */

for(;;){
 P(santa) /* Santa "rests" */
 /* mutual exclusion is not needed on
 rein_ct because if it is not equal
 to REINDEER, then elves woke up
 Santa */
 if (rein_ct == REINDEER){
 P(rmutex)
 rein_ct = 0 /* reset while reindeer blocked */
 V(rmutex);
 for (i = 0; i < REINDEER - 1; i++)
 V(rein_wait)
 for (i = 0; i < REINDEER; i++)
 V(sleigh)
 deliver all the toys and return
 for (i = 0; i < REINDEER; i++)

 V(done)
 }
 else { /* 3 elves have arrived */
 for (i = 0; i < ELVES - 1; i++)
 V(santa_signal)
 P(emutex)
 elf_ct = 0
 V(emutex)
 for (i = 0; i < ELVES; i++){
 V(problem)
 answer that question
 V(elf_done)
 }
 }
} /* end "forever" loop */

References

[1] Courtois, P.J., Heymans, F. and Parnas, D.L. Concurrent Control with Readers and Writers,
Communications of the ACM, Vol. 10, # 10, 667-668, 1971.

[2] Hemmendinger, D. A Correct Implementa-tion of General Semaphores, ACM Operating
Systems Review, Vol. 22, #3, 46-48, 1988.

[3] Hemmendinger, D. Comments on "A Correct and Unrestrictive Implementation of General
Semaphores", ACM Operating Systems Review, Vol 23, #1, 7-8, 1988.

[4] Hsieh, C.S. Further Comments on Implementation of General Semaphores, ACM Operating
Systems Review, Vol 23, #1, 9-10, 1989.

[5] Kearns, P. A Correct and Unrestrictive Implementation of General Semaphores, ACM
Operating Systems Review, Vol. 22 #4, 46-48, 1988.

[6] Holt, R.C., Graham, G.S., Lazowska E.D. and Scott, M.A. Structured Concurrent
Programming with Operating Systems Applications, Addison Wesley, 1978. (Exercise #19, page
109.)

[7] Kotulski, L. Comments on Imple-mentation of P and V Primitives with help of Binary
Semaphores, ACM Operating Systems Review, Vol. 22 #2, 53-59, 1988.

[8] Peterson, J.L., and Silberschatz, A. Operating Systems Concepts, Addison Wesley, 1985.

[9] Patil, S.S. Limitations and Capabilities of Dijkstra's Semaphore Primitives for Coordination
Among Processes, MIT Project MAC Computational Structures Group Memo, # 57, 1971.

[10] Silberschatz, A., and Galvin, P. Operating Systems Concepts, Addison Wesley, 1994.

[11] Tanenbaum, A.S. Modern Operating Systems, Prentice Hall, 1992.

