
Yield Factors

Parametric

Lithography-
based

Defect Density

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.35
micron

0.25
micron

0.18
micron

0.13
micron

0.09
micron

Process Technology

N
om

in
al

 Y
ie

ld
s

Defect Density
Lithography-based
Parametric
Yield

Yield-Aware Cache Architectures

Serkan Ozdemir Debjit Sinha* Gokhan Memik Jonathan Adams Hai Zhou
EECS Department, Northwestern University

{soz463, debjit, memik, jra760, haizhou}@ece.northwestern.edu

Abstract

One of the major issues faced by the semiconductor

industry today is that of reducing chip yields. As the process
technologies have scaled to smaller feature sizes, chip yields
have dropped to around 50% or less. This figure is expected
to decrease even further in future technologies. To attack
this growing problem, we develop four yield-aware
microarchitecture schemes for data caches. The first one is
called Yield-Aware Power-Down (YAPD). YAPD turns off
cache ways that cause delay violation and/or have excessive
leakage. We also modify this approach to achieve better
yields. This new method is called Horizontal YAPD (H-
YAPD), which turns off horizontal regions of the cache
instead of ways. A third approach targets delay violation in
data caches. Particularly, we develop a VAriable-latency
Cache Architecture (VACA). VACA allows different load
accesses to be completed with varying latencies. This is
enabled by augmenting the functional units with special
buffers that allow the dependants of a load operation to stall
for a cycle if the load operation is delayed. As a result, if
some accesses take longer than the predefined number of
cycles, the execution can still be performed correctly, albeit
with some performance degradation. A fourth scheme we
devise is called a Hybrid mechanism, which combines the
YAPD and the VACA. As a result of these schemes, chips
that may be tossed away due to parametric yield loss can be
saved. Experimental results demonstrate that the yield losses
can be reduced by 68.1% and 72.4% with YAPD and H-
YAPD schemes and by 33.3% and 81.1% with VACA and
Hybrid mechanisms, respectively, improving the overall
yield to as much as 97.0%.

1. Introduction

Decreasing yields in modern VLSI chip manufacturing is
a critical issue faced by the semiconductor industry. In a
drive to continue to meet the demands of Moore’s Law,
process technology has continually transitioned to smaller
sizes with current average feature sizes being as small as 65
nanometers. Although this scaling trend facilitates more
gates, and therefore more performance and functionality to
be packed onto every chip produced, it has made the
manufacturability of these chips increasingly difficult [24,

39]. With process technologies scaling from 350 nanometers
to 90 nanometers, chip yields have dropped from over 90%
to just above 50% [18]. A recent study on 45 nanometer
technologies reports yields around 30% [3]. This trend is
depicted in Figure 1, which shows the expected yield for
different manufacturing technologies and the factors on
which the yield loss is attributed to.

Factors limiting chip yields can be grouped into three
categories: defect-density related yield loss, lithography
based yield loss, and parametric yield loss. Defect-density
related problems are caused by actual errors with the silicon,
such as when a contaminating particle is introduced during
fabrication. These are well-controlled as silicon and clean-
room technology becomes more efficient. Lithography based
failures occur when there are defects on the masks used to
burn the silicon. These are tied to reticle patterns and are
controlled as process technologies mature. Parametric yield
loss, on the other hand, occurs because the manufactured
chip does not meet a design parameter. For example, a
microprocessor, which does not meet a frequency constraint
or consumes too much power, may be tossed away.

Figure 1. Yield factors for different process
technologies [18]

As shown in Figure 1, the impact of all the above factors
has worsened with technology scaling. However, parametric
losses are the largest inhibitor to chip yields [18] and
contribute significantly to overall yield losses starting from
the 0.18 micrometer technology generation [1, 10, 16, 24,
25]. For sub-180nm technologies, it becomes harder to
control variations in device parameters such as channel
length, gate width, oxide thickness, and device threshold
voltage. Even in a mature technology like 130nm, these
variations are known to cause a 30% variation in maximum
allowable frequency of operation, and a fivefold increase in
leakage power [10]. For newer technologies, these variations
can be even higher: 20X increases in leakage have been

* Debjit Sinha is currently with IBM Microelectronics, USA

reported for 90nm [6]. As a result of this variation in
performance and power, an increasingly larger fraction of
the manufactured chips do not meet their design constraints
and may have to be tossed away, even if they do not contain
any functional defects.

Increased power consumption levels is an important
factor in reduced yields [26]. At 65nm, sub-threshold
leakage power constitutes a higher fraction of total power
compared to switching (dynamic) and short circuit power
[27]. For each successive technology, this sub-threshold
leakage increases fivefold, while gate leakage can increase
up to twenty-fold. Only a 10% variation in a transistor’s
effective channel length causes as much as three-fold
difference in sub-threshold leakage current. Gate leakage
difference is 15-fold for a similar 10% variation in oxide
thickness [32]. Small variations in device threshold voltage
result in leakage numbers that differ by a factor of five or
ten. This, in turn, increases the total power consumption and
causes increased parametric yield loss.

On the other side of the spectrum, delay violations also
cause large yield losses. A frequent practice of chip
manufacturers is that of frequency- or speed-binning in
which they test and qualitatively sort working integrated
circuits according to their maximum frequency of operation
[10]. The chips that do not meet the very minimum
frequency constraints are tossed out during this process.
Since circuit delay and leakage current are inversely
proportional, this testing also exacerbates parametric yield
loss because many dies in the high-speed bin are lost when
they exceed acceptable leakage levels, further narrowing the
acceptable process window [32].

Yield loss affects both the bottom-line of chip
manufacturers as well as the consumers. Every discarded
chip increases the cost of those chips that survive the
fabrication process. Therefore, it is evident that an effort
must be made in future designs to maximize not only
performance, but also manufacturability and yields [39]. Our
goal in this work is to achieve this by developing
microarchitectural techniques to reduce the yield loss. We
particularly target the parametric yield loss. Parametric yield
loss occurs because a processor does not meet performance
and/or power constraints; therefore, it is natural to assume
that microarchitectural optimizations can have a significant
impact on them. In this work, we develop methods to
achieve this and show that parametric yield losses can be
significantly reduced.

Rather than trying to apply our ideas to the whole chip,
we concentrate on the level 1 data cache. The reasons for
focusing on the data cache are three-fold. First, caches
consume a relatively large fraction of the processor area and
power consumption. Second, level 1 caches have to be built
for minimum delay; hence they tend to utilize low threshold
voltages. Finally, SRAM structures have high number of
independent critical paths and relatively low logic depth in
those paths, which makes them the dominant source of unit-
to-unit variations [17]. As a result of these three properties,
the delay and leakage consumption of level 1 caches change
significantly under process variations. Hence, the probability

that a chip will not meet the performance/power constraints
because of its data cache is high.

To optimize the yield, we aim to reduce losses due to
both performance and power constraints. First, we develop
the Yield-Aware Power-Down (YAPD) technique.
Although the notion of YAPD can be applied to different
power reduction techniques, in this paper we use a scheme
that combines Selective Cache Ways [4] and Gated-Vdd
[30] as the example of a yield-unaware power reduction
technique. Specifically, we modify this yield-unaware
scheme with YAPD to investigate how the yield is affected
by our optimization. The main idea in YAPD is to turn off
cache ways that cause delay failures. In addition, cache ways
can be turned off if they consume excessively large leakage
power. We modify this approach to compensate for
correlations in process variation parameters. Particularly, we
develop the Horizontal YAPD (H-YAPD), which turns off
horizontal regions of a cache, instead of a vertical cache
way. This optimization reduces the probability of yield loss
as we will elaborate further in Section 4.2. By making a
small modification in the decoder, we guarantee that the
closed regions do not share any common addresses. As a
result, for any memory address, the associativity of the cache
is identical. Third, we develop the VAriable-latency Cache
Architecture (VACA). In a VACA, different cache ways
can be accessed with different latencies. The main idea is
similar to NUCA [19], however, since we apply the
variability to the level 1 data caches, we have to modify the
architecture to perform the corresponding instruction
scheduling. In addition, we augment the functional units
with special buffers that allow an instruction depending on a
load operation to stall for a cycle if the load operation is
delayed. As a result, if some accesses take longer than the
predefined number of cycles, the execution can still be
performed correctly, and hence yields are improved over
their current levels. Finally, we analyze a Hybrid scheme,
which combines YAPD (or H-YAPD) and VACA. By
combining the advantages of both schemes, the Hybrid
scheme achieves the best yield optimizations.

In the next section, we explain how process variations
affect yield loss. Section 3 illustrates our cache architecture
and our methodology for modeling the process variations on
it. Section 4 describes our yield-aware architectures. Section
5 presents the results and Section 6 summarizes related
work. We conclude the paper in Section 7 with a summary.

2. Process Variations and Their Effects on
Parametric Yield Loss

Process variations can be classified into inter-die
variations and intra-die variations [2, 8]. Inter-die variations
denote the variations that occur from one die to the next,
from wafer to wafer, and from wafer lot to another. Inter-die
variations affect all devices on the same chip similarly, and
was considered to be the primary source of process
variations in older technology generations [8]. Intra-die
variations refer to the variations in device and interconnect

features that are present within a single die (or chip). This
implies that two identically designed devices inside a given
die may have varying feature dimensions. Intra-die
variations are attributed to equipment limitations or
statistical effects in the fabrication process, e.g., fluctuations
in the doping concentration of devices. With the aggressive
scaling of feature sizes in modern technologies, it is natural
that this component of process variations is now equally, if
not more, significant than the former.

Intra-die variations consist of random and systematic
components, thereby producing non-uniform electrical
characteristics across a chip [13]. A random variation is
defined as the component of a parameter deviation that
fluctuates and deviates randomly from device to device, i.e.,
has zero correlation between devices. A systematic variation
is defined as the component of parameter deviation that
results from a repeatable and governing principal, where the
correlation between devices is empirically determined using
a measure of the distance between those devices. This
component exhibits strong correlations within a given die.
Therefore, ignoring these correlations may cause significant
errors in analysis. This spatial correlation is locally layout-
dependent and circuit-specific, i.e., devices with similar
layout patterns and proximity structures tend to have similar
characteristics. In addition, the spatial correlation is globally
location-dependent, i.e., devices located close to each other
are more likely to have the similar characteristics than those
placed far away. Designers treat this component of
variations as correlated random variables during analysis and
optimization. However, some systematic component of intra-
die variations, such as Chemical Mechanical Polishing
(CMP) and Optical Proximity Correction (OPC) effects, can
be directly accounted for during timing or power analysis if
parasitic extraction tools can consider their effects.

Figure 2. Cross-section of parallel interconnect lines
above a ground plane: (a) the ideal case, (b) different
types of variations that can exist in the interconnect

Process variations affect both interconnect and devices.
Interconnect variations are attributed to those from three
components (as shown in Figure 2): metal thickness (T),
inter-layer dielectric thickness (ILD or H), and line-width
(W or LW) [23]. Additional geometric effects such as
sidewall slope or surface and edge roughness may also be of
concern, but are not considered in this work. Factors that
contribute to interconnect variations include CMP variations
from non-uniform metal pattern density, OPC, etching, and
electrolytic growth. Note that line-space (S or LS) is not an
independent parameter since a variation in line-width
automatically causes a change in the line-space. Variation in
the interconnect parameters results in a change in its

electrical properties, including the resistance (R) and
capacitance (C). These electrical parameter variations
directly affect signal propagation delays through
interconnects, and thereby the performance of a circuit.

Device variations are attributed to variations in gate
length (Lgate), gate width (Wgate), and gate oxide thickness
(tox). Additional sources of variation include those in the
drain and source active areas as well as variations in the
doping concentration during fabrication. These variations
affect the device properties, and thereby, affect circuit
performance. The most important sources of device variation
are Lgate, tox, and Vt (threshold voltage). Since the ratio of
Wgate/Lgate determines the drain current of a CMOS
transistor, if Wgate is much larger than Lgate, variation in Wgate
is usually not considered [23].

We next try to qualitatively understand the impact of
these variations on latency and power. It is intuitive that the
variations in interconnect and device feature sizes contribute
to uncertainty in their delays, and therefore, uncertainty in
path delays of a circuit. We consider some critical path in a
circuit, with the mean of its delay distributions being equal
to the required value. The probability that this path satisfies
the timing constraint is naturally 0.5 (Parametric timing
yield = 50%). If we consider another independent critical
path, the probability that the timing constraint of the circuit
is met is reduced to 0.52 = 0.25 (Parametric timing yield =
25%). Although critical path delays are correlated in reality,
this example gives an intuition of how the variations in
device delays contribute to diminishing yields. To study the
impact on parametric power yields (that is, the probability of
chips that satisfy the power consumption constraints), we
separate total power into static and dynamic power. For
dynamic power at a specified clock frequency, effective
device and interconnect capacitance variations act as the
primary source of variability. Next, the sub-threshold
leakage is exponentially dependent on the threshold voltage
(Vt), which in turn strongly depends on the dopant
concentration, and channel length (Lgate) [22]. Furthermore,
the exponential dependence causes a large spread in the
leakage power distribution. For large width transistors, the
impact of doping variations on Vt is smaller in comparison
to Lgate. While low Vt devices are commonly used in circuits
to reduce latency, these devices are most vulnerable to high
leakage power consumption, leading to large yield loss in
high performance bins [6].

Statistical approaches, where the sources of variations are
modeled as random variables with known distributions, are
considered more suitable for process variation modeling.
Analytical approaches to statistical timing analysis have
been proposed recently [8, 38], but suffer from inaccuracies
due to a large number of assumptions. However, these
approaches are efficient and find use in optimization [36].
For accurate analysis, Monte Carlo simulations are widely
employed. In this technique, random samples of the random
variables are taken in each simulation. The distribution of
the final result (could be timing or power) is observed after a
large number of Monte Carlo runs have been performed. The
advantage is that a realistic distribution is obtained for the

output. The disadvantage is that simulation time can be
excessive. In this paper, we also employ a Monte Carlo
based simulation framework. Section 5.1 describes how the
results of these simulations are used to estimate yield.

3. Cache Architecture and Process Variation
Simulations

To be able to estimate the effects of our architectural
optimizations on yield, we need to model a cache
architecture. To achieve this, we build a HSPICE model for
a 16 KB cache that is based on the model by Amrutur and
Horowitz [5]. This design is applicable to future generation
processors where smaller manufacturing technologies will be
used. We use 45 nm PTM technology models [7].

In our model, we implement a 16 KB 4-way set
associative cache, where each way is further divided into 4
banks and each memory bank consists of 64x128 bits. To
reduce the bitline delays, each bitline is also partitioned into
two. Figure 3 shows the details of a single way in our model.
To account for the effects of submicron technologies on
circuit behavior, we added coupling capacitances at three
places in the cache: between the lines in the address bus
from driver, parallel wires in decoder, and bit-lines (between
bit-line and bit-line bar). Furthermore, these lines as well as
global and local word lines are replaced by distributed RC
ladders representing the local interconnect wires inside the
cache. The parasitic values of the interconnect wires are
based on the interconnect models from PTM [7]. The gate
sizes are then optimized to minimize the cache latency.

Once we have the basic cache model, we modified all
blocks to measure the effects of process variations. In our
model, we considered variations in metal thickness (T),
inter-layer dielectric thickness (ILD or H), line-width (W)
on interconnects, and gate length (Lgate) and threshold
voltage (Vt) for the MOS devices. For a particular cache, we
picked different random values for T, H, W, Lgate and Vt for
the decoder, pre-charge circuits, memory cell arrays, sense
amplifiers and output drivers using the variation limits given
by Nassif [29]. The mean and 3σ values for each source of
variation are listed in Table 1.

Figure 3. One cache way within the 16 KB, 4 way

cache model
To understand the impact of process variations on the

cache, we have generated process variation parameters for
all the segments of the cache. However, as we have
described in Section 2, there is a correlation between entities
in a die. Therefore, we use a correlation factor, which is a

number between 0 and 1. Once a set of process variation
parameters are given, we use these parameters as the new
mean and scale the range of process variations given in
Table 1 by the correlation factor. As a result, higher
correlation factors imply less correlation between two
random variables. Note that this definition is opposite to that
of the correlation coefficient, wherein a higher correlation
coefficient implies more correlation between two random
variables. The correlation factors are calculated from the
vertical and horizontal spatial correlation dependences
presented by Friedberg et al. [15]. For each bit in a cache
block, we have used a correlation factor of 0.01 and the
correlation factor between rows is set to 0.05. Assuming that
the ways are laid out on a 2 by 2 mesh, the way that is on the
same vertical line with the first way uses the correlation
factor 0.45; the way that is on the same horizontal line with
the first way uses a the correlation factor 0.375. Finally, the
way that is on the same diagonal line with the initial way
uses the correlation factor 0.7125.

Table 1. Nominal and 3σ variation values for each
source of process variations modeled

 Gate
Length
(Leff)

Thresh.
Voltage

(Vt)

Metal
Width

(W)

Metal
Thickness

(T)

ILD
Thickness

(H)
Nominal

Value
45
nm

220
mV

0.25
µm

0.55
µm

0.15
µm

3σ var. [%] ±10 ±18 ±33 ±33 ±35

4. Yield-Aware Cache Architectures

In this section, we describe our architectural techniques
to improve yield. There are two important factors that limit
the yield: excessive leakage and excessive delay. To address
these two factors, we have developed two types of novel
schemes, which are explained in the following sections.
First, we discuss a power-down technique that minimizes the
leakage consumption and hence increases yield. Then, in
Section 4.2, we describe how the naïve power-down
technique can be modified to increase the yield even further.
This scheme is called the Horizontal Yield-Aware Power-
Down (H-YAPD). Section 4.3 discusses a variable access
latency cache that aims to minimize yield losses due to delay
constrains. In Section 4.4, we describe a hybrid scheme that
employs both techniques to boost the yield even further.

4.1. Yield-Aware Power-Down (YAPD)

The Yield-Aware Power-Down (YAPD) technique is

based on the Selective Cache Ways (SCW) method [4]
combined with the Gated-Vdd technique [30]. Although
SCW is implemented for reducing power, we use a similar
method for improving yield. Particularly, the YAPD
technique disables cache ways based on their delay and
power consumptions. If a cache way violates maximum
allowed latency constraint, it is turned off. Similarly, if the
total power consumption of the cache exceeds the limit, the
way with the highest leakage power consumption is turned

de
co

de
r

address

16

64

global word linelocal word line

64 cells

128
cells bitline partition

64 cells

Enable
way 1

Way 0

Vdd-gating a row
of memory cells

Cache Way Select

Way 3

Data ArrayData Array Ta
g

de
co

de
r

de
co

de
r

Ta
g

Cache
Controller

tag index offset

Turning off a
decoder row

Enable
way 0

Enable
way 3

Enable
way 2

St
at

us

St
at

us

Way 0Turning off
the whole
decoder

Vdd-gating all
rows (data
and tag)

Way 3

Data ArrayData Array

St
at

us

Ta
g

St
at

us

de
co

de
r

de
co

de
r

Ta
g

Cache
Controller

tag index offset
Address

Cache Way Select

Enable
way 0

Enable
way 1

Enable
way 2

Enable
way 3

off. When a way is disabled, its decoders, pre-charge circuits
and the sense-amplifiers are turned off using Gated-Vdd.
This practically eliminates both static and dynamic power.
Note that once a way is turned off, it will never be used
throughout the life of the chip. Due to the fact that YAPD
uses the array partitioning that is already present, only minor
changes to a conventional cache are required.

Figuring out the ways that need to be disabled can be
done during memory testing right after fabrication and/or on
the field using leakage power sensors [20]. When we
determine that a particular way consistently fails to return
data in time, or has excessive leakage, it can be turned off.
Figure 4 gives a high-level depiction of the YAPD method
implemented for a 4-way cache.

Figure 4. YAPD implementation on a 4-way cache

4.2. Horizontal YAPD (H-YAPD)

One problem with the YAPD scheme is the correlation of
process variation parameters between different cache ways.
Particularly, since different banks/ways of a cache are
implemented physically close to each other, they are
strongly correlated. As a result, if one way fails due to delay
variation and/or excessive leakage, the remaining ways also
fail with high probability. It should be apparent that YAPD
scheme described in the previous section would try to close
most or all ways. To resolve this limitation, we develop a
second yield-aware power-down scheme that disables a
subset of rows in all ways. In other words, we effectively
turn off a horizontal way, instead of a regular (vertical) way.
The reasoning behind this scheme lies in the observation that
different paths in a cache show a similar reaction to the same
process variation parameters. To understand this behavior,
assume that all the cache ways observe the same process
variations. Also, assume that the upper-most row in the bank
is the critical path, and a second near-critical path is in the
middle of the same bank. For a particular set of process
variation parameters, the latency of upper-most rows may
increase 10%, while the latency of the middle rows will
increase by 5%. In another variation, the latency of the
middle rows will increase by 10%, while the latency of the
upper-most rows will increase by 5%. As a result, for a
given process variation, either all the upper-most rows of the
ways or all the middle rows will violate the delay constraint.
YAPD will then try to turn off all the ways. H-YAPD, on
the other hand, will only turn off the sections (e.g., upper-
most or middle) of the cache that causes the problem.
Clearly, this scenario requires all the cache ways to

experience the same or at least similar process variation
parameters. Such a behavior is expected, because there is
strong spatial correlation: the variation parameters changes
slightly from one way to another (c.f., Sections 2 and 3).

One important issue with designing such a cache is that
all the sets corresponding to the same address should not be
turned off at the same time. To support correct operation, we
need to change the decoder structures in each way. Figure 5
shows how we can modify the decoders for each way and
which lines are enabled/disabled by each cache way select
signal. In this new configuration, all the blocks in a
horizontal region corresponds to different addresses. As a
result, if we turn a horizontal way off, each address will still
have three possible positions. Consider the case where we
turn off h-way 0. In that case, a block that is mapped
between lines 0 and 31 can reside in vertical ways 1, 2, or 3.
Similarly, an address that is mapped to block address 96
through 127 may reside in vertical ways 0, 2, and 3. In every
case, we will search the blocks in exactly three locations. As
a result, the hit/miss behavior of this architecture will be
identical to that of a 3-way cache, i.e., H-YAPD and YAPD
will exhibit identical hit/miss behavior. Such a decoder has
no area or latency overhead compared to a regular decoder.
We only change the configurations of the post-decoders.
Figure 6 shows a cache architecture that implements H-
YAPD for a 4-way cache where each way has 16 lines.

One disadvantage of the H-YAPD is its increased
latency. Since the granularity of the power-down is changed,
we see an increase in the average latency of cache accesses.
Simulations on the HSPICE model show a 2.5% increase in
the access latencies on average. In addition, since some parts
of the decoder as well as pre-charge and sense amplifier
circuits cannot be turned off completely, the power savings
may be lower than the YAPD.

Figure 5. The high-level view of the decoders in the H-

YAPD implementation

Figure 6. H-YAPD implementation on a 4-way cache

The disadvantage of both YAPD and H-YAPD is the
possibility of increased cache miss rates and hence increase
in application execution time. Although we aim to minimize

yield loss, we cannot allow unbounded performance
degradation. Therefore, we set a limit of 2% average
performance degradation. Our results with the SPEC2000
applications reveal that we can turn off a single way in our
16 KB, 4-way set-associative cache within this budget.

4.3. Variable-Latency Cache Architecture

A major problem with the power-down schemes
described above is that they may have high performance
degradations due to increased cache miss rates. An
alternative method is to keep the slower ways enabled, but
allow them to complete after additional cycles. This
effectively results in a cache architecture with variable
access latency capability.

The idea of variable access latency caches is not new.
Kim et al. proposed the NUCA [19] architecture to manage
large on-chip caches. By exploiting the variation in access
time across subarrays, NUCA allows fast access to close
sub-arrays while retaining slow access to far subarrays.
Intel’s Montecito [28] uses a similar approach where each
core has a shorter access time to its local L2 cache slices and
a longer delays to remaining L2 cache slices. However,
previous studies focused on implementing this idea on
higher level caches. In addition, to the best of our
knowledge, no existing work employs the variable access
latency for yield optimization.

An important issue with implementing a variable latency
level 1 cache is the capability of forwarding the values that
are read by the load instruction to the dependent instructions.
Without a variable latency load operation, the time that the
loaded data is available is known exactly (assuming a load
hit). However, with the variable latency cache, the data will
be available in a window of cycles. Therefore, we need to
augment the corresponding structures in the datapath such
that when the data is available from the cache, it is sent to
the correct destination.

After a load instruction is scheduled, the dependent
instructions start executing assuming the load access will
take shortest possible amount of time, i.e., cache hit latency,
which is four cycles in our architecture. To avoid these
instructions from reaching the execute stage before the data
from the cache is available, we add buffers at the inputs of
each functional unit. These buffers are called load-bypass
buffers. Each buffer has entries that will allow the
instruction to wait until the data is available. These entries
will be used if a load does not complete in four cycles. In
our architecture, the load-bypass buffers have a single entry
to allow accesses of 4 or 5 cycles. It is possible to add more
buffers to support a larger variation (e.g., ways with 6 or 7
cycle access latencies), however, our results revealed that
the additional yield optimizations with this extension are
minor and the performance degradation can be very high.
Therefore, we have decided to allow only one additional
cycle in cache accesses. Once the cache access is complete,
the destination register number and the data read from the
cache are forwarded to the load-bypass buffers; where each
entry compares the stored register number (which is the

input register for the dependent instruction) with the
forwarded value. If the two values are identical, the data
(i.e., the output of the load operation) is latched into the
buffer. Then, in the next cycle the operation will start
execution. Figure 7 shows the hardware for this approach.
Note that we omitted the multiplexers at the inputs of the
functional unit that selects from different forward values. If
the input operands of an instruction are ready, i.e., no
forwarding is needed from the cache; the operation can
simply skip the buffer and start the execution. However, if
one of the input operands will be provided by a delayed load
operation, the instruction will enter the buffer. Once it
receives the data, it will move to the function unit as
described above. If there is another instruction depending on
this stalled operation, it also has to be stalled. This chain
may continue for more operations depending on the latency
of operations and the number of pipeline stages between
scheduling and execution. To illustrate this, consider the
instructions L1, D1, D2, …, Dn, where D1 is dependent on
L1 and D2 is dependent on D1, etc. Once the load is
delayed, D1 is stalled for a cycle in a load-bypass buffer. At
the same time, the scheduler is informed about this stall;
hence the scheduling of any direct or indirect dependent
instructions are delayed for one cycle. However, depending
on the time between scheduling decision and the start of the
execution, several operations may already been scheduled to
execute. These operations will have to use the load-bypass
buffers to stall for an additional cycle. In such cases, these
dependent operations will receive their data from a function
unit rather than the data cache. Therefore, the load-bypass
buffers have to be connected to not only the data cache, but
also to all the function units.

If an instruction is in the load-bypass buffer but does not
receive its input, it means that the load access missed in the
cache. Therefore, the dependent instruction needs to be
flushed and re-executed based on the replay mechanism that
is employed in the processor. Note that the complexity of
replay and the miss penalty of the load operations are not
affected by our variable latency architecture.

Figure 7. Implementation of the load-bypass buffer
and the associated forwarding from the data cache

To implement VACA, the scheduler in the processor has
to be modified. Each instruction that is dependent on a load
should be marked such that it will enter the buffer rather
than going to the functional units if the load is delayed. In
addition, the scheduler needs to stall an instruction if it is
indirectly dependent on a delayed load.

Functional
Unit

Pi
pe

lin
e

R
eg

is
te

r

P
ip

el
in

e
R

eg
is

te
r

D
at

a

Reg #

D
at

a

Reg #

D
at

a

Reg #

Level 1 Data
CacheAddress Data

4.4. Hybrid Scheme

YAPD and VACA mainly target different causes of yield

loss. Therefore, we have devised a hybrid method that aims
to combine the positive aspects of YAPD and VACA
architectures. In this scheme, we propose using a hybrid
cache that implements a YAPD scheme to turn off cache
blocks in combination with the VACA. This idea can be
applied to H-YAPD as well.

Similar to the VACA architecture, we implement a cache
capable of allowing 4 and 5 cycles of access latency. If there
are ways that need more than 5 cycles or violate the leakage
power limitations, they can be disabled with the power-down
mechanism. One advantage with the Hybrid mechanism is
that it has many options to implement. For example, if two
of the ways require 4 cycles and the other two require 5
cycles of latency, the hybrid scheme can choose to keep both
5-cycle ways enabled and work as the VACA architecture or
it can disable them and work as YAPD (or H-YAPD)
scheme or it can choose to disable one 5-cycle way and have
a performance level between the two schemes. This choice
depends on the behavior of the executed application. If the
application is a memory intensive one, disabling a way
would hurt the performance more than keeping it enabled
and accessing it with 5 cycles. On the contrary, for a
computation intensive application the overhead for turning
off a single way may be less than accessing that way using 5
cycles. Although there are several possibilities, in this work,
we keep a fixed hybrid architecture. Our Hybrid scheme
chooses to keep the ways on as long as possible. In other
words, Hybrid scheme turns off a way only if its delay
exceeds 5 cycles or it has excessive leakage power
consumption causing a violation. In addition, similar to
YAPD and H-YAPD, Hybrid scheme can turn off at most a
single way. Caches that cannot be saved under this
constraint still cause yield loss.

4.5. Naïve Alternatives

The easiest way to utilize the chips that violate latency

limitations is to group the fabricated chips into separate bins
with different performance levels. For instance, if we detect
that a particular way in the cache requires an extra cycle to
fetch the data, while all the other ways operate normally
with 4 cycles of access latency, we could set the instruction
scheduling logic such that it always expects the result to be
ready in 5 cycles. Architectural simulations performed using
SimpleScalar showed that the approach has high
performance overheads: 6.42% on average for the
SPEC2000 applications if the accesses require an additional
cycle and 12.62% if they require two additional cycles for
correct operation.

5. Experimental Results

To analyze the effectiveness of the proposed schemes, we

need to analyze two different aspects: their impact on the
yield and their impact on performance. In the next section,

we first describe the results analyzing their impact on yield.
Section 5.2 discusses the performance implications. We must
note that the proposed schemes are only activated when a
chip does not meet design criteria, i.e., when a chip would
otherwise be discarded due to parametric yield loss.
Therefore, the schemes do not have any performance impact
on the rest of the chips that pass the testing.

5.1. Yield Results

In the core of the analysis lies our capability to estimate

yield loss of a particular design. Therefore, we first present
the methodology used to estimate yield loss. Similar to the
methodology by Rao et al. [32], we first model 2000
different caches under process variations. To achieve this,
we perform HSPICE simulations for 2000 caches, where
each simulation picks a different set of process variation
parameters from their respective intervals discussed in
Section 3. Note that as we have described in Section 3, each
simulation models 4 different cache ways by considering
different critical/near-critical paths for that particular way.
After each simulation, we compare the address-to-data
output latency of each path in a way and the maximum of
these numbers gives the access latency for that cache way.
Similarly, the maximum among all way latencies becomes
the cache access latency. Using the same simulations, we
also find the total leakage power consumption of each cache
by summing over the leakage power consumed by each way.
Figure 8 shows the distribution of normalized leakage power
consumption versus distribution of cache access latencies.

Once the latency versus leakage distribution is found, the
yield can be calculated by setting power and performance
limits. Rao et al. [32] analyze an ALU and use mean+sigma
value for performance limit and 1.75xaverage leakage power
limit for a 65 nm technology. Similar to their approach, we
use the same performance limit. However, we picked the
power limit at 3 times the average leakage power to
compensate for the increased variation in 45 nm and the
different component we are studying (cache instead of
ALU). Table 2 tabulates the distribution of the sources of
parametric yield loss encountered in the base case and when
we implement the YAPD, VACA, and Hybrid schemes. The
total number of chips is 2000. Hence, with this architecture,
the expected parametric yield loss is 16.9%. Similarly, Table
3 shows the results when we implement H-YAPD.

As highlighted in Section 4.2, the cache architecture used
in the H-YAPD scheme is slightly different than the YAPD
architecture. Therefore, we have performed a different set of
HSPICE simulations for 2000 caches representing the new
architecture. We have applied the same process variation
parameters used in the previous simulations. On average, we
see that the delay of the architecture increases by 2.5%. As a
result, the number of chips that do not meet the delay
constraint increases. Particularly, for the base case of this
cache architecture, we see that 18.1% of the chips are lost.

Figure 8. Normalized leakage vs. latency distribution scatter plot of the simulated caches

Table 2. Sources of yield loss for regular power-down

Losses with Scheme
Reason of Loss #

Chips YAPD VACA Hybrid
Leakage Constraint 138 33 138 33

Delay Constraint
(1 Way) 126 0 34 0

Delay Constraint
(2 Ways) 36 36 20 7

Delay Constraint
(3 Ways) 23 23 19 11

Delay Constraint
(4 Ways) 16 16 15 13

Total 339 108 226 64

Table 3. Sources of yield loss for horizontal power-
down

Losses with Scheme
Reason of Loss #

Chips H-YAPD VACA Hybrid
Leakage Constraint 138 26 138 26

Delay Constraint
(1 Way) 142 0 38 0

Delay Constraint
(2 Ways) 33 33 17 6

Delay Constraint
(3 Ways) 29 24 21 12

Delay Constraint
(4 Ways) 20 17 19 16

Total 362 100 233 60

Table 4. Total yield losses for relaxed and strict cases

with regular power-down
Losses with Scheme #

Chips YAPD VACA Hybrid
Relaxed 184 51 124 25

Strict 727 234 503 144

Table 5. Total yield losses for relaxed and strict cases

with horizontal power-down
Losses with Scheme #

Chips H-YAPD VACA Hybrid
Relaxed 191 51 131 25

Strict 752 224 516 146

We observe that YAPD and H-YAPD schemes decrease
the parametric yield loss by 68.1% and 72.4%, respectively.
Considering the overall yield, YAPD and H-YAPD
increases the total yield to 94.6% and 95.0%, respectively.
YAPD and H-YAPD reduces the losses due to leakage by
76.1% and 81.2%, respectively. They also nullify the losses
due to a single way delay violations. VACA has a lower
decrease in yield loss. As discussed in Section 4.3, all the
chips with 6 or more cycles of cache access latency are
considered as yield loss with VACA. Furthermore, VACA
does not improve yield losses due to leakage. Overall,
VACA reduces the yield loss by 33.3% for regular power-
down and 35.6% for horizontal power-down caches. As
expected, the Hybrid scheme performs the best in terms of
yield improvement. Combining the benefits of both schemes,
the Hybrid scheme reduces the losses due to leakage,
eliminates all single way delay violation losses, and achieves
further reduction in losses for multiple-way delay violations.
The Hybrid scheme results in 81.1% and 83.4% reduction in
parametric yield loss, for regular and horizontal power-down
caches, respectively. Using the Hybrid scheme, the yield
improves to 96.8% and 97.0% for the regular and horizontal
power-down caches, respectively.

An important aspect of yield loss modeling is the ability
to change the constraints. Depending on the architecture,
manufacturers can change the constraints on their chips. This
also could be modeled with our approach. Therefore, we
analyzed the advantages of our schemes while changing the
yield requirements. Tables 4 and 5 show the cumulated yield
loss numbers for the 2000 simulation points. For the relaxed
constraint, we set the power limit at 4 times the average

0

1

2

3

4

5

6

7

8

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3
Sigma Variation in Cache Access Latency

N
or

m
al

iz
ed

 T
ot

al
 C

irc
ui

t L
ea

ka
ge

Reject
(Too Leaky)

Reject
(Too Slow)

leakage power and the performance limit at
mean+1.5xsigma. Similarly, the strict case uses 2 times the
average leakage power for the power limit and
mean+0.5xsigma as the performance limit. The results show
that the proposed schemes perform fairly under different
yield constraints. Particularly, the Hybrid scheme achieves
98.8% yield for the relaxed constraint and approximately
92.8% yield for the strict constraint.

5.2. Performance Implications

The yield results for the proposed schemes were
explained in the previous section. It is important to note that
for the simulation points that did not need any yield-aware
technique to perform correctly, our proposed schemes have
no performance overhead. However, for the cases that are
converted from yield loss to gain, each scheme has a
different performance overhead depending on the
configuration of the cache. For example, a cache with three
ways of 4 cycle and one way of 5 cycle access latency
requirement will exhibit a different behavior than a cache
with a two 4-cycle and two 5-cycle ways. To understand and
compare the effectiveness and limitations of each scheme we
must further look into the performance implications caused
by them for different cache configurations.

Table 6. Performance degradation of SPEC2000

applications for different cache configurations using
the YAPD, VACA, and Hybrid schemes.

Number of
ways with

delay

Performance degradation
[%]

4 5 6+

Chip
frequency

YAPD VACA Hybrid
3 1 0 91 1.08 1.81 1.81
2 2 0 16 N/A 3.32 3.32
1 3 0 4 N/A 5.47 5.47
0 4 0 1 N/A 6.42 6.42
3 0 1 35 1.08 N/A 1.08
2 1 1 13 N/A N/A 3.65
1 2 1 8 N/A N/A 5.49
0 3 1 2 N/A N/A 7.39
4 0 0 105 1.08 N/A 1.08
Weighted

Sum
 1.08 2.20 1.83

The SimpleScalar 3.0 [35] simulator is used to measure

the effects of the proposed techniques on performance. The
necessary modifications to the simulator have been
implemented to perform selective replay, the scheduler, the
busses between caches, and port contention on caches. We
have also made changes to SimpleScalar to simulate a
realistically sized issue queue, and to model the events in the
issue queue in detail. We simulate 13 floating-point and 11
integer benchmarks from the SPEC2000 benchmarking suite
[37]. We simulate 100 Million instructions after fast-
forwarding application-specific number of instructions as
proposed by Sherwood et al. [34].

The base processor is a 4-way processor with an issue
queue of 128 entries and a ROB of 256 entries. The
simulated processor has separate level 1 instruction and data
caches: level 1 instruction cache is 16 KB, 4-way associative
with 64-byte block size and 2 cycle latency, and the level 1
data cache is a 16 KB, 4-way associative with 32-byte block
size and 4 cycle latency. Unified level 2 cache is 512 KB, 8-
way associative cache with 128-byte block size and 25 cycle
latency. The memory access delay is set to 350 cycles. All
caches are lock-up free. The simulated architecture
implements 7 pipeline stages between the schedule and
execute stages.

Table 6 lists the different cache way latency
configurations encountered during HSPICE simulations that
are converted from yield loss to yield gain along with the
number of times they are encountered. In addition, it lists the
average performance degradation for SPEC2000
applications caused by each of the schemes for a given
configuration. The configuration 3-1-0 corresponds to the
case where three out of four ways in a cache has 4-cycle
access latency, whereas the fourth way requires an additional
access cycle for correct operation. A configuration 3-0-1, on
the other hand, corresponds to a cache with three ways
requiring 4 cycles and another one requiring 6 or more
cycles. Note that the performance degradations of the YAPD
and H-YAPD schemes are identical for a given cache
configuration. If multiple ways require 5 or more cycles, the
chip is lost with the YAPD schemes. Similarly, the number
of ways requiring 6 or more cycles of access should be equal
to zero for VACA and at most one for Hybrid schemes. The
last configuration, 4-0-0 shows the leakage power limited
caches that did not violate the timing requirements. In this
case, we need to shut down a way to reduce the leakage
power consumption. Since VACA does not disable ways, it
cannot save any cache with this configuration. The results
presented in the bottom row of Table 6 correspond to a
weighted sum of the performance degradation on the chips
that are saved, i.e., the performance degradation for a
configuration is multiplied by its fraction within the saved
chips and summed over all configurations. To illustrate this,
consider the sum for VACA. This number is achieved by
first finding the total number of chips saved by it (112).
Then, the fraction of each saved configuration is found (e.g.,
91/112=0.81 for 3-1-0). We multiply this fraction with the
corresponding performance degradation (e.g.,
0.81*1.81%=1.46%) and sum over all configurations
(1.46%+0.47%+0.20%+0.06%=2.20%). This number
corresponds to average performance degradation for the
batch of chips that are saved. On average, for the saved
chips, YAPD, VACA, and Hybrid schemes cause 1.1%,
2.2%, and 1.8% increase in the CPI, respectively.

Figures 9 and 10 show the increase in CPI for different
SPEC2000 applications for two frequent cache
configurations listed above: 3-1-0 and 2-2-0, respectively. In
the case of 3-1-0, the hybrid scheme can either choose to
close the 5-cycle latency way in this case like YAPD or keep
it enabled where its performance would be equivalent to
VACA scheme. However, as we have described in Section

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

six
tra

ck
sw

im
tw

ol
f

vo
rte

x
vp

r
wu

pw
ise

av
er

ag
e

In
cr

ea
se

 in
 C

PI
 [%

]

YAPD VACA

0

1

2

3

4

5

6

7

8

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k

six
tra

ck
sw

im
tw

ol
f

vo
rte

x
vp

r
wu

pw
ise

av
er

ag
e

In
cr

ea
se

 in
 C

PI
 [%

]

VACA

4.4, a way is turned off only if necessary. Therefore, Hybrid
scheme behaves identical to the VACA. Note that, YAPD
can turn off at most a single way. Therefore, it exhibits the
same performance degradation for each cache configurations
it saves (3-1-0, 3-0-1 and 4-0-0). Similarly, YAPD and
Hybrid schemes would have equal performance results for 3-
0-1: each will close a single way and access the remaining
three ways in 4 cycles. For the 3-1-0 configuration, the CPI
is increased by 1.1% and 1.8% on average for the YAPD
and VACA (and hence Hybrid) schemes, respectively.
Figure 10 shows the performance degradation for SPEC2000
applications when the cache configuration is 2-2-0. Since
there are two ways that have 5 cycle access latency, YAPD
schemes do not operate correctly. The performance
degradation for both VACA and Hybrid schemes is 3.3% on
average. The average increases in CPI for other cache
configurations are presented in Table 6.

Figure 9.Increase in CPI for YAPD and VACA for

cache configuration 3-1-0

Figure 10.Increase in CPI for VACA for cache
configuration 2-2-0

6. Related Work

Due to the effects of process variations, yield
improvement has been an important problem for circuit
designers as well as manufacturers since early 1970s.
Recently, yield losses have become a major concern due to
aggressive technology scaling. A number of circuit level
techniques have been proposed to counter the effects of
process variations [6, 9, 10, 31, 33, 36]. Most of these
techniques focus on analyzing the design, either statistically
or by using static timing analysis, and then modifying the
parts that are more susceptible to variation, e.g., sizing the
gates on the critical and near-critical paths which are likely
to violate timing requirements [9, 31, 36]. Although these
methods help increase the yield, their savings are limited
since they cannot save any of the chips that violate the
limitations after fabrication. Also, with increasing process
variation effects due to smaller technologies, the number of

candidate elements for sizing increases, complicating the
application of such enhancements.

Performance binning is another long-standing approach
to increase yields [6, 10, 33]. Circuits are placed in separate
bins depending on their performance and power
consumption levels and marketed with different prices for
each bin. As a result, lower performing bins can be sold at a
lower price instead of merely getting thrown away. In this
regard, Borkar et al. [6] combine the circuit level approaches
with frequency binning. They propose a number of circuit
level techniques to control body bias voltage, supply
voltage, and temperature to get higher frequency bins.

There are a number of architectural and system level
approaches that can impact yield. Datta et al. [11] employs
gate sizing to optimize individual stages in the processor
pipeline optimizing yield for a given area constraint or
minimizing area for a given yield constraint using the
concept of area borrowing. Kurdahi et al. [21] demonstrates
analysis techniques to model and improve the yield of
SRAMs at the system level by proper accounting for the
coupling between the algorithms targeted for an SoC and the
performance, power, and yield of SRAMs used in
implementing them. These studies attack the yield loss
problem at a lower level compared to our methods. Agarwal
et al. [3], on the other hand, propose a new cache design
where individual cache lines can be turned off if they are
found to be faulty. This approach resembles our yield-aware
power-down schemes. However, their work concentrates on
direct mapped caches. Also, their fine-grained approach
neglects the spatial correlation among different circuit
elements, making decoder and the cache controller
unnecessarily complicated. Another work by Datta et al. [12]
tries to predict the yield of a pipelined circuit with analytical
models. They observe that introducing imbalances among
paths in a pipeline stage actually increases the yield of the
design. Finally, several approaches, such as Razor by Ernst
et al. [14], can be applied to improve yield. However, to the
best of our knowledge, the yield impact of such schemes has
not been studied.

7. Conclusions

Reducing chip yields due to process variations is an
important problem for circuit designers as well as
manufacturers. In this work, we propose four
microarchitectural techniques to minimize the yield loss due
to power and delay violations in the data cache. We first
discuss the major sources of process variations and model
them using HSPICE. Then, we introduce our schemes. The
first scheme, Yield-Aware Power-Down (YAPD), disables a
cache way if it violates the delay or power limits. The
second scheme, Horizontal-YAPD (H-YAPD), modifies the
approach by turning off horizontal regions of a cache instead
of the regular (vertical) ways. Due to spatial correlation of
process variations, turning off segments that exhibit similar
behavior improves the yield further. The third scheme,
VAriable-latency Cache Architecture (VACA), allows
different load accesses to be completed with varying

latencies with the help of special buffers placed before the
function units. As a result, if some accesses take longer than
the predefined number of cycles, the execution can still be
performed correctly. A final method, Hybrid scheme,
combines YAPD and VACA. Experimental results
demonstrate that the yield losses can be reduced by 68.1%
and 72.4% with YAPD and H-YAPD schemes and by 33.3%
and 81.1% with VACA and Hybrid mechanisms,
respectively, improving the overall yield to as much as
97.0%.

8. References

[1] "EDA Tools Aim at Improving Yield,"
http://www.eurosemi.eu.com/front-end/features-full.php?id=6762
[2] Agarwal, A., D. Blaauw, and V. Zolotov. "Statistical Timing
Analysis for Intra-die Process Variations with Spatial Correlations," in
Proc. Intl. Conf. on Computer-Aided Design. 2003. San Jose, CA.
[3] Agarwal, A., et al., "A Process-Tolerant Cache Architecture for
Improved Yield in Nanoscale Technologies," IEEE Trans. Very Large
Scale Integrated Systems, 2005. 13(1): p. 27-38.
[4] Albonesi, D. "Selective Cache Ways: On-demand Cache Resource
Allocation," in Intl. Symposium on Microarchitecture. Nov. 1999.
Haifa, Israel.
[5] Amrutur, B.S. and M.A. Horowitz, "Speed and Power Scaling of
SRAM's," IEEE Trans. on Solid-State Circuits, Feb. 2000. 35: p. 175-
185.
[6] Borkar, S., et al. "Parameter Variations and Impact on Circuits and
Microarchitectures," in Proc. of the Design Automation Conference.
2003. Anaheim, CA.
[7] Cao, Y., et al. "New Paradigm of Predictive MOSFET and
Interconnect Modeling for Early Circuit Design," in Custom Integrated
Circuits Conference. 2000. Orlando, FL. http://www.eas.asu.edu/~ptm
[8] Chang, H. and S.S. Sapatnekar. "Statistical Timing Analysis
Considering Spatial Correlations Using a Single PERT-like Traversal,"
in Proc. Intl. Conf. on Computer-Aided Design. 2003. San Jose, CA.
[9] Choi, S.H., B.C. Paul, and K. Roy, "Novel Sizing Algorithm for
Yield Improvement Under Process Variation in Nanometer
Technology," in Proc. of the Design Automation Conference. 2004: San
Diego, CA. p. 454-459.
[10] Datta, A., et al. "Speed Binning Aware Design Methodology to
Improve Profit Under Parameter Variations," in Proc. of the Conf. on
Asia South Pacific Design Automation. 2006. Yokohama, Japan.
[11] Datta, A., et al., "Delay Modeling and Statistical Design of
Pipelined Circuit Under Process Variation," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 2006.
[12] Datta, A., et al. "Yield Prediction of High Performance Pipelined
Circuit with Respect to Delay Failures in Sub-100nm Technology," in
IEEE Intl. On-Line Testing Symposium. 2005. France.
[13] Duvall, S.G. "Statistical Circuit Modeling and Optimization," in
Intl. Workshop on Statistical Metrology. 2000.
[14] Ernst, D., et al. "Razor: A Low-Power Pipeline Based on Circuit-
Level Timing Speculation," in Proc. of the Intl. Symposium on
Microarchitecture. 2003. San Diego, CA.
[15] Friedberg, P., et al. "Modeling Within-Die Spatial Correlation
Effects for Process-Design Co-Optimization," in Proc. of the Intl.
Symposium on Quality of Electronic Design. 2005. San Jose, CA.
[16] Goering, R. "90-, 65-nm Yields Prey to Leakage,"
http://vlsicad.ucsd.edu/leakage.htm
[17] Humenay E., D. Tarjan, K. Skadron. "Impact of Parameter
Variations on Multi-Core Chips," in the Workshop on Architectural
Support for Gigascale Integration. 2006. Boston, MA.
[18] Jones, H.H. "A Delayed 90-nm Surprise,"
http://www.designchain.com/column.asp?id=2&issue=fall04
[19] Kim, C., D. Burger, and S.W. Keckler. "An Adaptive, Non-uniform
Cache Structure for Wire-delay Dominated On-chip Caches," in Proc. of

the Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems. 2002. San Jose, CA.
[20] Kim, C.H., et al. "An On-Die CMOS Leakage Current Sensor For
Measuring Process Variation in Sub-90nm Generations," in VLSI
Circuits Symposium. 2004. Honolulu, HI.
[21] Kurdahi, F.J., et al. "System-Level SRAM Yield Enhancement," in
International Symposium on Quality Electronic Design, Mar. 2006. San
Jose, CA.
[22] Mani, M., A. Devgan, and M. Orshanksky. "An Efficient
Algorithm for Statistical Minimization of Total Power Under Timing
Yield Constraints," in Proc. of the Design Automation Conference,
2005, Anaheim, CA.
[23] Mehrotra, V. "Modeling the Effects of Systematic Process
Variation on Circuit Performance," PhD Thesis, Dept. of EECS, MIT,
2001.
[24] Miller, M. "Manufacturing-aware Design Helps Boost IC Yield,"
http://www.eetimes.com/news/design/features/showArticle.jhtml;?articl
eID=47102054
[25] Miller, M. "Nanometer Yield Enhancement Begins In The Design
Phase,"
http://www.elecdesign.com/Articles/Index.cfm?AD=1&AD=1&ArticleI
D=9494
[26] Mudge, T. "Low Power System's on a Chip - Today's Challenge,"
in Intl. Seminar on Application-Specific Multi-Processor SoC. Jul.
2004. http://tima.imag.fr/mpsoc/2004/slides/Mudge.pdf
[27] Mui, M.L., K. Banerjee, and A. Mehrotra. "Power Supply
Optimization in Sub-130 nm Leakage Dominant Technologies," in Proc.
of the Intl. Symposium on Quality Electronic Design. 2004. San Jose,
CA.
[28] Naffziger, S., et al., "The Implementation of a 2-core, Multi-
Threaded Itanium Family Processor," IEEE Journal of Solid-State
Circuits, 2006. 41(1): p. 197-209.
[29] Nassif, S.R. "Modeling and Analysis of Manufacturing Variations,"
in IEEE Conference on Custom Integrated Circuits. May 2001. San
Diego, CA.
[30] Powell, M., et al. "Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories," in ACM/IEEE Intl.
Symposium on Low Power Electronics and Design. 2000. Rapallo,
Italy.
[31] Raj, S., S.B.K. Vrudhula, and J. Wang. "A Methodology to
Improve Timing Yield in the Presence of Process Variations," in Proc.
of the Conf. on Design Automation. 2004. San Diego, CA.
[32] Rao, R.R., et al., "Modeling and Analysis of Parametric Yield
under Power and Performance Constraints," IEEE Des. Test, 2005.
22(4): p. 376-385.
[33] Raychowdhury, A., et al. "A Novel On-chip Delay Measurement
Hardware for Efficient Speed Binning," in Intl. Online Testing
Symposium. Jul. 2005. France.
[34] Sherwood, T., E. Perelman, and B. Calder. "Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation Points
in Applications," in Proc. of the Intl. Conf. on Parallel Architectures and
Compilation Techniques. 2001.
[35] SimpleScalarLLC, "The SimpleScalar Tool Set." 2001.
[36] Sinha, D., N.V. Shenoy, and H. Zhou. "Statistical Gate Sizing for
Timing Yield Optimization," in Proc. Intl. Conf. on Computer-Aided
Design. 2005. San Jose, CA.
[37] SPEC, "Spec CPU2000: Performance Evaluation in the New
Millennium v1.1." Dec. 2000.
[38] Visweswariah, C., et al. "First-Order Incremental Block-Based
Satistical Tming Aalysis," in Proc. of the Design Automation
Conference. 2004. San Diego, CA.
[39] Wilson, D. "NVIDIA's Tiny 90nm G71 and G73: GeForce 7900
and 7600 Debut,"
http://www.anandtech.com/video/showdoc.aspx?i=2717

