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Abstract 

 
One of the major issues faced by the semiconductor 

industry today is that of reducing chip yields. As the process 
technologies have scaled to smaller feature sizes, chip yields 
have dropped to around 50% or less. This figure is expected 
to decrease even further in future technologies. To attack 
this growing problem, we develop four yield-aware 
microarchitecture schemes for data caches. The first one is 
called Yield-Aware Power-Down (YAPD). YAPD turns off 
cache ways that cause delay violation and/or have excessive 
leakage. We also modify this approach to achieve better 
yields. This new method is called Horizontal YAPD (H-
YAPD), which turns off horizontal regions of the cache 
instead of ways. A third approach targets delay violation in 
data caches. Particularly, we develop a VAriable-latency 
Cache Architecture (VACA). VACA allows different load 
accesses to be completed with varying latencies. This is 
enabled by augmenting the functional units with special 
buffers that allow the dependants of a load operation to stall 
for a cycle if the load operation is delayed. As a result, if 
some accesses take longer than the predefined number of 
cycles, the execution can still be performed correctly, albeit 
with some performance degradation. A fourth scheme we 
devise is called a Hybrid mechanism, which combines the 
YAPD and the VACA. As a result of these schemes, chips 
that may be tossed away due to parametric yield loss can be 
saved. Experimental results demonstrate that the yield losses 
can be reduced by 68.1% and 72.4% with YAPD and H-
YAPD schemes and by 33.3% and 81.1% with VACA and 
Hybrid mechanisms, respectively, improving the overall 
yield to as much as 97.0%.  
 
1. Introduction 
 

Decreasing yields in modern VLSI chip manufacturing is 
a critical issue faced by the semiconductor industry. In a 
drive to continue to meet the demands of Moore’s Law, 
process technology has continually transitioned to smaller 
sizes with current average feature sizes being as small as 65 
nanometers. Although this scaling trend facilitates more 
gates, and therefore more performance and functionality to 
be packed onto every chip produced, it has made the 
manufacturability of these chips increasingly difficult [24, 

39]. With process technologies scaling from 350 nanometers 
to 90 nanometers, chip yields have dropped from over 90% 
to just above 50% [18]. A recent study on 45 nanometer 
technologies reports yields around 30% [3]. This trend is 
depicted in Figure 1, which shows the expected yield for 
different manufacturing technologies and the factors on 
which the yield loss is attributed to. 

Factors limiting chip yields can be grouped into three 
categories: defect-density related yield loss, lithography 
based yield loss, and parametric yield loss. Defect-density 
related problems are caused by actual errors with the silicon, 
such as when a contaminating particle is introduced during 
fabrication. These are well-controlled as silicon and clean-
room technology becomes more efficient. Lithography based 
failures occur when there are defects on the masks used to 
burn the silicon. These are tied to reticle patterns and are 
controlled as process technologies mature. Parametric yield 
loss, on the other hand, occurs because the manufactured 
chip does not meet a design parameter. For example, a 
microprocessor, which does not meet a frequency constraint 
or consumes too much power, may be tossed away. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Yield factors for different process 
technologies [18] 

As shown in Figure 1, the impact of all the above factors 
has worsened with technology scaling. However, parametric 
losses are the largest inhibitor to chip yields [18] and 
contribute significantly to overall yield losses starting from 
the 0.18 micrometer technology generation [1, 10, 16, 24, 
25]. For sub-180nm technologies, it becomes harder to 
control variations in device parameters such as channel 
length, gate width, oxide thickness, and device threshold 
voltage. Even in a mature technology like 130nm, these 
variations are known to cause a 30% variation in maximum 
allowable frequency of operation, and a fivefold increase in 
leakage power [10]. For newer technologies, these variations 
can be even higher: 20X increases in leakage have been 
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reported for 90nm [6]. As a result of this variation in 
performance and power, an increasingly larger fraction of 
the manufactured chips do not meet their design constraints 
and may have to be tossed away, even if they do not contain 
any functional defects. 

Increased power consumption levels is an important 
factor in reduced yields [26]. At 65nm, sub-threshold 
leakage power constitutes a higher fraction of total power 
compared to switching (dynamic) and short circuit power 
[27]. For each successive technology, this sub-threshold 
leakage increases fivefold, while gate leakage can increase 
up to twenty-fold. Only a 10% variation in a transistor’s 
effective channel length causes as much as three-fold 
difference in sub-threshold leakage current. Gate leakage 
difference is 15-fold for a similar 10% variation in oxide 
thickness [32]. Small variations in device threshold voltage 
result in leakage numbers that differ by a factor of five or 
ten. This, in turn, increases the total power consumption and 
causes increased parametric yield loss. 

On the other side of the spectrum, delay violations also 
cause large yield losses. A frequent practice of chip 
manufacturers is that of frequency- or speed-binning in 
which they test and qualitatively sort working integrated 
circuits according to their maximum frequency of operation 
[10]. The chips that do not meet the very minimum 
frequency constraints are tossed out during this process. 
Since circuit delay and leakage current are inversely 
proportional, this testing also exacerbates parametric yield 
loss because many dies in the high-speed bin are lost when 
they exceed acceptable leakage levels, further narrowing the 
acceptable process window [32]. 

Yield loss affects both the bottom-line of chip 
manufacturers as well as the consumers. Every discarded 
chip increases the cost of those chips that survive the 
fabrication process. Therefore, it is evident that an effort 
must be made in future designs to maximize not only 
performance, but also manufacturability and yields [39]. Our 
goal in this work is to achieve this by developing 
microarchitectural techniques to reduce the yield loss. We 
particularly target the parametric yield loss. Parametric yield 
loss occurs because a processor does not meet performance 
and/or power constraints; therefore, it is natural to assume 
that microarchitectural optimizations can have a significant 
impact on them. In this work, we develop methods to 
achieve this and show that parametric yield losses can be 
significantly reduced. 

Rather than trying to apply our ideas to the whole chip, 
we concentrate on the level 1 data cache. The reasons for 
focusing on the data cache are three-fold. First, caches 
consume a relatively large fraction of the processor area and 
power consumption. Second, level 1 caches have to be built 
for minimum delay; hence they tend to utilize low threshold 
voltages. Finally, SRAM structures have high number of 
independent critical paths and relatively low logic depth in 
those paths, which makes them the dominant source of unit-
to-unit variations [17]. As a result of these three properties, 
the delay and leakage consumption of level 1 caches change 
significantly under process variations. Hence, the probability 

that a chip will not meet the performance/power constraints 
because of its data cache is high. 

To optimize the yield, we aim to reduce losses due to 
both performance and power constraints. First, we develop 
the Yield-Aware Power-Down (YAPD) technique. 
Although the notion of YAPD can be applied to different 
power reduction techniques, in this paper we use a scheme 
that combines Selective Cache Ways [4] and Gated-Vdd 
[30] as the example of a yield-unaware power reduction 
technique. Specifically, we modify this yield-unaware 
scheme with YAPD to investigate how the yield is affected 
by our optimization. The main idea in YAPD is to turn off 
cache ways that cause delay failures. In addition, cache ways 
can be turned off if they consume excessively large leakage 
power. We modify this approach to compensate for 
correlations in process variation parameters. Particularly, we 
develop the Horizontal YAPD (H-YAPD), which turns off 
horizontal regions of a cache, instead of a vertical cache 
way. This optimization reduces the probability of yield loss 
as we will elaborate further in Section 4.2. By making a 
small modification in the decoder, we guarantee that the 
closed regions do not share any common addresses. As a 
result, for any memory address, the associativity of the cache 
is identical. Third, we develop the VAriable-latency Cache 
Architecture (VACA). In a VACA, different cache ways 
can be accessed with different latencies. The main idea is 
similar to NUCA [19], however, since we apply the 
variability to the level 1 data caches, we have to modify the 
architecture to perform the corresponding instruction 
scheduling. In addition, we augment the functional units 
with special buffers that allow an instruction depending on a 
load operation to stall for a cycle if the load operation is 
delayed. As a result, if some accesses take longer than the 
predefined number of cycles, the execution can still be 
performed correctly, and hence yields are improved over 
their current levels. Finally, we analyze a Hybrid scheme, 
which combines YAPD (or H-YAPD) and VACA. By 
combining the advantages of both schemes, the Hybrid 
scheme achieves the best yield optimizations. 

In the next section, we explain how process variations 
affect yield loss. Section 3 illustrates our cache architecture 
and our methodology for modeling the process variations on 
it. Section 4 describes our yield-aware architectures. Section 
5 presents the results and Section 6 summarizes related 
work. We conclude the paper in Section 7 with a summary. 
 
2. Process Variations and Their Effects on 
Parametric Yield Loss 
 

Process variations can be classified into inter-die 
variations and intra-die variations [2, 8]. Inter-die variations 
denote the variations that occur from one die to the next, 
from wafer to wafer, and from wafer lot to another. Inter-die 
variations affect all devices on the same chip similarly, and 
was considered to be the primary source of process 
variations in older technology generations [8]. Intra-die 
variations refer to the variations in device and interconnect 



features that are present within a single die (or chip). This 
implies that two identically designed devices inside a given 
die may have varying feature dimensions. Intra-die 
variations are attributed to equipment limitations or 
statistical effects in the fabrication process, e.g., fluctuations 
in the doping concentration of devices. With the aggressive 
scaling of feature sizes in modern technologies, it is natural 
that this component of process variations is now equally, if 
not more, significant than the former. 

Intra-die variations consist of random and systematic 
components, thereby producing non-uniform electrical 
characteristics across a chip [13]. A random variation is 
defined as the component of a parameter deviation that 
fluctuates and deviates randomly from device to device, i.e., 
has zero correlation between devices. A systematic variation 
is defined as the component of parameter deviation that 
results from a repeatable and governing principal, where the 
correlation between devices is empirically determined using 
a measure of the distance between those devices. This 
component exhibits strong correlations within a given die. 
Therefore, ignoring these correlations may cause significant 
errors in analysis. This spatial correlation is locally layout-
dependent and circuit-specific, i.e., devices with similar 
layout patterns and proximity structures tend to have similar 
characteristics. In addition, the spatial correlation is globally 
location-dependent, i.e., devices located close to each other 
are more likely to have the similar characteristics than those 
placed far away. Designers treat this component of 
variations as correlated random variables during analysis and 
optimization. However, some systematic component of intra-
die variations, such as Chemical Mechanical Polishing 
(CMP) and Optical Proximity Correction (OPC) effects, can 
be directly accounted for during timing or power analysis if 
parasitic extraction tools can consider their effects. 

 
 

 
 
 
 
 

Figure 2. Cross-section of parallel interconnect lines 
above a ground plane: (a) the ideal case, (b) different 
types of variations that can exist in the interconnect 

Process variations affect both interconnect and devices. 
Interconnect variations are attributed to those from three 
components (as shown in Figure 2): metal thickness (T), 
inter-layer dielectric thickness (ILD or H), and line-width 
(W or LW) [23]. Additional geometric effects such as 
sidewall slope or surface and edge roughness may also be of 
concern, but are not considered in this work. Factors that 
contribute to interconnect variations include CMP variations 
from non-uniform metal pattern density, OPC, etching, and 
electrolytic growth. Note that line-space (S or LS) is not an 
independent parameter since a variation in line-width 
automatically causes a change in the line-space. Variation in 
the interconnect parameters results in a change in its 

electrical properties, including the resistance (R) and 
capacitance (C). These electrical parameter variations 
directly affect signal propagation delays through 
interconnects, and thereby the performance of a circuit. 

Device variations are attributed to variations in gate 
length (Lgate), gate width (Wgate), and gate oxide thickness 
(tox). Additional sources of variation include those in the 
drain and source active areas as well as variations in the 
doping concentration during fabrication. These variations 
affect the device properties, and thereby, affect circuit 
performance. The most important sources of device variation 
are Lgate, tox, and Vt (threshold voltage). Since the ratio of 
Wgate/Lgate determines the drain current of a CMOS 
transistor, if Wgate is much larger than Lgate, variation in Wgate 
is usually not considered [23]. 

We next try to qualitatively understand the impact of 
these variations on latency and power. It is intuitive that the 
variations in interconnect and device feature sizes contribute 
to uncertainty in their delays, and therefore, uncertainty in 
path delays of a circuit. We consider some critical path in a 
circuit, with the mean of its delay distributions being equal 
to the required value. The probability that this path satisfies 
the timing constraint is naturally 0.5 (Parametric timing 
yield = 50%). If we consider another independent critical 
path, the probability that the timing constraint of the circuit 
is met is reduced to 0.52 = 0.25 (Parametric timing yield = 
25%). Although critical path delays are correlated in reality, 
this example gives an intuition of how the variations in 
device delays contribute to diminishing yields. To study the 
impact on parametric power yields (that is, the probability of 
chips that satisfy the power consumption constraints), we 
separate total power into static and dynamic power. For 
dynamic power at a specified clock frequency, effective 
device and interconnect capacitance variations act as the 
primary source of variability. Next, the sub-threshold 
leakage is exponentially dependent on the threshold voltage 
(Vt), which in turn strongly depends on the dopant 
concentration, and channel length (Lgate) [22]. Furthermore, 
the exponential dependence causes a large spread in the 
leakage power distribution. For large width transistors, the 
impact of doping variations on Vt is smaller in comparison 
to Lgate. While low Vt devices are commonly used in circuits 
to reduce latency, these devices are most vulnerable to high 
leakage power consumption, leading to large yield loss in 
high performance bins [6]. 

Statistical approaches, where the sources of variations are 
modeled as random variables with known distributions, are 
considered more suitable for process variation modeling. 
Analytical approaches to statistical timing analysis have 
been proposed recently [8, 38], but suffer from inaccuracies 
due to a large number of assumptions. However, these 
approaches are efficient and find use in optimization [36]. 
For accurate analysis, Monte Carlo simulations are widely 
employed. In this technique, random samples of the random 
variables are taken in each simulation. The distribution of 
the final result (could be timing or power) is observed after a 
large number of Monte Carlo runs have been performed. The 
advantage is that a realistic distribution is obtained for the 



output. The disadvantage is that simulation time can be 
excessive. In this paper, we also employ a Monte Carlo 
based simulation framework. Section 5.1 describes how the 
results of these simulations are used to estimate yield. 

 
3. Cache Architecture and Process Variation 
Simulations 
 

To be able to estimate the effects of our architectural 
optimizations on yield, we need to model a cache 
architecture. To achieve this, we build a HSPICE model for 
a 16 KB cache that is based on the model by Amrutur and 
Horowitz [5]. This design is applicable to future generation 
processors where smaller manufacturing technologies will be 
used. We use 45 nm PTM technology models [7]. 

In our model, we implement a 16 KB 4-way set 
associative cache, where each way is further divided into 4 
banks and each memory bank consists of 64x128 bits. To 
reduce the bitline delays, each bitline is also partitioned into 
two. Figure 3 shows the details of a single way in our model. 
To account for the effects of submicron technologies on 
circuit behavior, we added coupling capacitances at three 
places in the cache: between the lines in the address bus 
from driver, parallel wires in decoder, and bit-lines (between 
bit-line and bit-line bar). Furthermore, these lines as well as 
global and local word lines are replaced by distributed RC 
ladders representing the local interconnect wires inside the 
cache. The parasitic values of the interconnect wires are 
based on the interconnect models from PTM [7]. The gate 
sizes are then optimized to minimize the cache latency. 

Once we have the basic cache model, we modified all 
blocks to measure the effects of process variations. In our 
model, we considered variations in metal thickness (T), 
inter-layer dielectric thickness (ILD or H), line-width (W) 
on interconnects, and gate length (Lgate) and threshold 
voltage (Vt) for the MOS devices. For a particular cache, we 
picked different random values for T, H, W, Lgate and Vt for 
the decoder, pre-charge circuits, memory cell arrays, sense 
amplifiers and output drivers using the variation limits given 
by Nassif [29]. The mean and 3σ values for each source of 
variation are listed in Table 1. 

 
 
 
 
 
 
 
 

 
Figure 3. One cache way within the 16 KB, 4 way 

cache model 
To understand the impact of process variations on the 

cache, we have generated process variation parameters for 
all the segments of the cache. However, as we have 
described in Section 2, there is a correlation between entities 
in a die. Therefore, we use a correlation factor, which is a 

number between 0 and 1. Once a set of process variation 
parameters are given, we use these parameters as the new 
mean and scale the range of process variations given in 
Table 1 by the correlation factor. As a result, higher 
correlation factors imply less correlation between two 
random variables. Note that this definition is opposite to that 
of the correlation coefficient, wherein a higher correlation 
coefficient implies more correlation between two random 
variables. The correlation factors are calculated from the 
vertical and horizontal spatial correlation dependences 
presented by Friedberg et al. [15]. For each bit in a cache 
block, we have used a correlation factor of 0.01 and the 
correlation factor between rows is set to 0.05. Assuming that 
the ways are laid out on a 2 by 2 mesh, the way that is on the 
same vertical line with the first way uses the correlation 
factor 0.45; the way that is on the same horizontal line with 
the first way uses a the correlation factor 0.375. Finally, the 
way that is on the same diagonal line with the initial way 
uses the correlation factor 0.7125. 

Table 1. Nominal and 3σ variation values for each 
source of process variations modeled 

 Gate 
Length 
(Leff) 

Thresh.  
Voltage 

(Vt) 

Metal  
Width 

(W) 

Metal  
Thickness 

(T) 

ILD  
Thickness 

(H) 
Nominal 

Value 
45  
nm  

220  
mV 

0.25 
µm 

0.55  
µm 

0.15 
µm 

3σ var. [%] ±10 ±18 ±33 ±33 ±35 
 
4. Yield-Aware Cache Architectures 
 

In this section, we describe our architectural techniques 
to improve yield. There are two important factors that limit 
the yield: excessive leakage and excessive delay. To address 
these two factors, we have developed two types of novel 
schemes, which are explained in the following sections. 
First, we discuss a power-down technique that minimizes the 
leakage consumption and hence increases yield. Then, in 
Section 4.2, we describe how the naïve power-down 
technique can be modified to increase the yield even further. 
This scheme is called the Horizontal Yield-Aware Power-
Down (H-YAPD). Section 4.3 discusses a variable access 
latency cache that aims to minimize yield losses due to delay 
constrains. In Section 4.4, we describe a hybrid scheme that 
employs both techniques to boost the yield even further. 

 
4.1. Yield-Aware Power-Down (YAPD) 

 
The Yield-Aware Power-Down (YAPD) technique is 

based on the Selective Cache Ways (SCW) method [4] 
combined with the Gated-Vdd technique [30]. Although 
SCW is implemented for reducing power, we use a similar 
method for improving yield. Particularly, the YAPD 
technique disables cache ways based on their delay and 
power consumptions. If a cache way violates maximum 
allowed latency constraint, it is turned off. Similarly, if the 
total power consumption of the cache exceeds the limit, the 
way with the highest leakage power consumption is turned 
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off. When a way is disabled, its decoders, pre-charge circuits 
and the sense-amplifiers are turned off using Gated-Vdd. 
This practically eliminates both static and dynamic power. 
Note that once a way is turned off, it will never be used 
throughout the life of the chip. Due to the fact that YAPD 
uses the array partitioning that is already present, only minor 
changes to a conventional cache are required. 

Figuring out the ways that need to be disabled can be 
done during memory testing right after fabrication and/or on 
the field using leakage power sensors [20]. When we 
determine that a particular way consistently fails to return 
data in time, or has excessive leakage, it can be turned off. 
Figure 4 gives a high-level depiction of the YAPD method 
implemented for a 4-way cache. 
 
 

 
 
 
 
 

 
 
 

Figure 4. YAPD implementation on a 4-way cache 

4.2. Horizontal YAPD (H-YAPD) 
 

One problem with the YAPD scheme is the correlation of 
process variation parameters between different cache ways. 
Particularly, since different banks/ways of a cache are 
implemented physically close to each other, they are 
strongly correlated. As a result, if one way fails due to delay 
variation and/or excessive leakage, the remaining ways also 
fail with high probability. It should be apparent that YAPD 
scheme described in the previous section would try to close 
most or all ways. To resolve this limitation, we develop a 
second yield-aware power-down scheme that disables a 
subset of rows in all ways. In other words, we effectively 
turn off a horizontal way, instead of a regular (vertical) way. 
The reasoning behind this scheme lies in the observation that 
different paths in a cache show a similar reaction to the same 
process variation parameters. To understand this behavior, 
assume that all the cache ways observe the same process 
variations. Also, assume that the upper-most row in the bank 
is the critical path, and a second near-critical path is in the 
middle of the same bank. For a particular set of process 
variation parameters, the latency of upper-most rows may 
increase 10%, while the latency of the middle rows will 
increase by 5%. In another variation, the latency of the 
middle rows will increase by 10%, while the latency of the 
upper-most rows will increase by 5%. As a result, for a 
given process variation, either all the upper-most rows of the 
ways or all the middle rows will violate the delay constraint. 
YAPD will then try to turn off all the ways. H-YAPD, on 
the other hand, will only turn off the sections (e.g., upper-
most or middle) of the cache that causes the problem. 
Clearly, this scenario requires all the cache ways to 

experience the same or at least similar process variation 
parameters. Such a behavior is expected, because there is 
strong spatial correlation: the variation parameters changes 
slightly from one way to another (c.f., Sections 2 and 3). 

One important issue with designing such a cache is that 
all the sets corresponding to the same address should not be 
turned off at the same time. To support correct operation, we 
need to change the decoder structures in each way. Figure 5 
shows how we can modify the decoders for each way and 
which lines are enabled/disabled by each cache way select 
signal. In this new configuration, all the blocks in a 
horizontal region corresponds to different addresses. As a 
result, if we turn a horizontal way off, each address will still 
have three possible positions. Consider the case where we 
turn off h-way 0. In that case, a block that is mapped 
between lines 0 and 31 can reside in vertical ways 1, 2, or 3. 
Similarly, an address that is mapped to block address 96 
through 127 may reside in vertical ways 0, 2, and 3. In every 
case, we will search the blocks in exactly three locations. As 
a result, the hit/miss behavior of this architecture will be 
identical to that of a 3-way cache, i.e., H-YAPD and YAPD 
will exhibit identical hit/miss behavior. Such a decoder has 
no area or latency overhead compared to a regular decoder. 
We only change the configurations of the post-decoders. 
Figure 6 shows a cache architecture that implements H-
YAPD for a 4-way cache where each way has 16 lines. 

One disadvantage of the H-YAPD is its increased 
latency. Since the granularity of the power-down is changed, 
we see an increase in the average latency of cache accesses. 
Simulations on the HSPICE model show a 2.5% increase in 
the access latencies on average. In addition, since some parts 
of the decoder as well as pre-charge and sense amplifier 
circuits cannot be turned off completely, the power savings 
may be lower than the YAPD. 
 
 
 
 
 
 
 
 
Figure 5. The high-level view of the decoders in the H-

YAPD implementation 
 
 
 
 
 

 
 
 
 

 
Figure 6. H-YAPD implementation on a 4-way cache 

The disadvantage of both YAPD and H-YAPD is the 
possibility of increased cache miss rates and hence increase 
in application execution time. Although we aim to minimize 



yield loss, we cannot allow unbounded performance 
degradation. Therefore, we set a limit of 2% average 
performance degradation. Our results with the SPEC2000 
applications reveal that we can turn off a single way in our 
16 KB, 4-way set-associative cache within this budget. 

 
4.3. Variable-Latency Cache Architecture  
 

A major problem with the power-down schemes 
described above is that they may have high performance 
degradations due to increased cache miss rates. An 
alternative method is to keep the slower ways enabled, but 
allow them to complete after additional cycles. This 
effectively results in a cache architecture with variable 
access latency capability. 

The idea of variable access latency caches is not new. 
Kim et al. proposed the NUCA [19] architecture to manage 
large on-chip caches. By exploiting the variation in access 
time across subarrays, NUCA allows fast access to close 
sub-arrays while retaining slow access to far subarrays. 
Intel’s Montecito [28] uses a similar approach where each 
core has a shorter access time to its local L2 cache slices and 
a longer delays to remaining L2 cache slices. However, 
previous studies focused on implementing this idea on 
higher level caches. In addition, to the best of our 
knowledge, no existing work employs the variable access 
latency for yield optimization. 

An important issue with implementing a variable latency 
level 1 cache is the capability of forwarding the values that 
are read by the load instruction to the dependent instructions. 
Without a variable latency load operation, the time that the 
loaded data is available is known exactly (assuming a load 
hit). However, with the variable latency cache, the data will 
be available in a window of cycles. Therefore, we need to 
augment the corresponding structures in the datapath such 
that when the data is available from the cache, it is sent to 
the correct destination. 

After a load instruction is scheduled, the dependent 
instructions start executing assuming the load access will 
take shortest possible amount of time, i.e., cache hit latency, 
which is four cycles in our architecture. To avoid these 
instructions from reaching the execute stage before the data 
from the cache is available, we add buffers at the inputs of 
each functional unit. These buffers are called load-bypass 
buffers. Each buffer has entries that will allow the 
instruction to wait until the data is available. These entries 
will be used if a load does not complete in four cycles. In 
our architecture, the load-bypass buffers have a single entry 
to allow accesses of 4 or 5 cycles. It is possible to add more 
buffers to support a larger variation (e.g., ways with 6 or 7 
cycle access latencies), however, our results revealed that 
the additional yield optimizations with this extension are 
minor and the performance degradation can be very high. 
Therefore, we have decided to allow only one additional 
cycle in cache accesses. Once the cache access is complete, 
the destination register number and the data read from the 
cache are forwarded to the load-bypass buffers; where each 
entry compares the stored register number (which is the 

input register for the dependent instruction) with the 
forwarded value. If the two values are identical, the data 
(i.e., the output of the load operation) is latched into the 
buffer. Then, in the next cycle the operation will start 
execution. Figure 7 shows the hardware for this approach. 
Note that we omitted the multiplexers at the inputs of the 
functional unit that selects from different forward values. If 
the input operands of an instruction are ready, i.e., no 
forwarding is needed from the cache; the operation can 
simply skip the buffer and start the execution. However, if 
one of the input operands will be provided by a delayed load 
operation, the instruction will enter the buffer. Once it 
receives the data, it will move to the function unit as 
described above. If there is another instruction depending on 
this stalled operation, it also has to be stalled. This chain 
may continue for more operations depending on the latency 
of operations and the number of pipeline stages between 
scheduling and execution. To illustrate this, consider the 
instructions L1, D1, D2, …, Dn, where D1 is dependent on 
L1 and D2 is dependent on D1, etc. Once the load is 
delayed, D1 is stalled for a cycle in a load-bypass buffer. At 
the same time, the scheduler is informed about this stall; 
hence the scheduling of any direct or indirect dependent 
instructions are delayed for one cycle. However, depending 
on the time between scheduling decision and the start of the 
execution, several operations may already been scheduled to 
execute. These operations will have to use the load-bypass 
buffers to stall for an additional cycle. In such cases, these 
dependent operations will receive their data from a function 
unit rather than the data cache. Therefore, the load-bypass 
buffers have to be connected to not only the data cache, but 
also to all the function units. 

If an instruction is in the load-bypass buffer but does not 
receive its input, it means that the load access missed in the 
cache. Therefore, the dependent instruction needs to be 
flushed and re-executed based on the replay mechanism that 
is employed in the processor. Note that the complexity of 
replay and the miss penalty of the load operations are not 
affected by our variable latency architecture. 

 
 
 
 
 
 
 
 
 
 

 
Figure 7. Implementation of the load-bypass buffer 
and the associated forwarding from the data cache 

To implement VACA, the scheduler in the processor has 
to be modified.  Each instruction that is dependent on a load 
should be marked such that it will enter the buffer rather 
than going to the functional units if the load is delayed. In 
addition, the scheduler needs to stall an instruction if it is 
indirectly dependent on a delayed load. 
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4.4. Hybrid Scheme 
 
YAPD and VACA mainly target different causes of yield 

loss. Therefore, we have devised a hybrid method that aims 
to combine the positive aspects of YAPD and VACA 
architectures. In this scheme, we propose using a hybrid 
cache that implements a YAPD scheme to turn off cache 
blocks in combination with the VACA. This idea can be 
applied to H-YAPD as well. 

Similar to the VACA architecture, we implement a cache 
capable of allowing 4 and 5 cycles of access latency. If there 
are ways that need more than 5 cycles or violate the leakage 
power limitations, they can be disabled with the power-down 
mechanism. One advantage with the Hybrid mechanism is 
that it has many options to implement. For example, if two 
of the ways require 4 cycles and the other two require 5 
cycles of latency, the hybrid scheme can choose to keep both 
5-cycle ways enabled and work as the VACA architecture or 
it can disable them and work as YAPD (or H-YAPD) 
scheme or it can choose to disable one 5-cycle way and have 
a performance level between the two schemes. This choice 
depends on the behavior of the executed application. If the 
application is a memory intensive one, disabling a way 
would hurt the performance more than keeping it enabled 
and accessing it with 5 cycles. On the contrary, for a 
computation intensive application the overhead for turning 
off a single way may be less than accessing that way using 5 
cycles. Although there are several possibilities, in this work, 
we keep a fixed hybrid architecture. Our Hybrid scheme 
chooses to keep the ways on as long as possible. In other 
words, Hybrid scheme turns off a way only if its delay 
exceeds 5 cycles or it has excessive leakage power 
consumption causing a violation. In addition, similar to 
YAPD and H-YAPD, Hybrid scheme can turn off at most a 
single way. Caches that cannot be saved under this 
constraint still cause yield loss. 

 
4.5. Naïve Alternatives 

 
The easiest way to utilize the chips that violate latency 

limitations is to group the fabricated chips into separate bins 
with different performance levels. For instance, if we detect 
that a particular way in the cache requires an extra cycle to 
fetch the data, while all the other ways operate normally 
with 4 cycles of access latency, we could set the instruction 
scheduling logic such that it always expects the result to be 
ready in 5 cycles. Architectural simulations performed using 
SimpleScalar showed that the approach has high 
performance overheads: 6.42% on average for the 
SPEC2000 applications if the accesses require an additional 
cycle and 12.62% if they require two additional cycles for 
correct operation. 

 
5. Experimental Results 

 
To analyze the effectiveness of the proposed schemes, we 

need to analyze two different aspects: their impact on the 
yield and their impact on performance. In the next section, 

we first describe the results analyzing their impact on yield. 
Section 5.2 discusses the performance implications. We must 
note that the proposed schemes are only activated when a 
chip does not meet design criteria, i.e., when a chip would 
otherwise be discarded due to parametric yield loss. 
Therefore, the schemes do not have any performance impact 
on the rest of the chips that pass the testing. 
 
5.1. Yield Results 

 
In the core of the analysis lies our capability to estimate 

yield loss of a particular design. Therefore, we first present 
the methodology used to estimate yield loss. Similar to the 
methodology by Rao et al. [32], we first model 2000 
different caches under process variations. To achieve this, 
we perform HSPICE simulations for 2000 caches, where 
each simulation picks a different set of process variation 
parameters from their respective intervals discussed in 
Section 3. Note that as we have described in Section 3, each 
simulation models 4 different cache ways by considering 
different critical/near-critical paths for that particular way. 
After each simulation, we compare the address-to-data 
output latency of each path in a way and the maximum of 
these numbers gives the access latency for that cache way. 
Similarly, the maximum among all way latencies becomes 
the cache access latency. Using the same simulations, we 
also find the total leakage power consumption of each cache 
by summing over the leakage power consumed by each way. 
Figure 8 shows the distribution of normalized leakage power 
consumption versus distribution of cache access latencies. 

Once the latency versus leakage distribution is found, the 
yield can be calculated by setting power and performance 
limits. Rao et al. [32] analyze an ALU and use mean+sigma 
value for performance limit and 1.75xaverage leakage power 
limit for a 65 nm technology. Similar to their approach, we 
use the same performance limit. However, we picked the 
power limit at 3 times the average leakage power to 
compensate for the increased variation in 45 nm and the 
different component we are studying (cache instead of 
ALU). Table 2 tabulates the distribution of the sources of 
parametric yield loss encountered in the base case and when 
we implement the YAPD, VACA, and Hybrid schemes. The 
total number of chips is 2000. Hence, with this architecture, 
the expected parametric yield loss is 16.9%. Similarly, Table 
3 shows the results when we implement H-YAPD. 

As highlighted in Section 4.2, the cache architecture used 
in the H-YAPD scheme is slightly different than the YAPD 
architecture. Therefore, we have performed a different set of 
HSPICE simulations for 2000 caches representing the new 
architecture. We have applied the same process variation 
parameters used in the previous simulations. On average, we 
see that the delay of the architecture increases by 2.5%. As a 
result, the number of chips that do not meet the delay 
constraint increases. Particularly, for the base case of this 
cache architecture, we see that 18.1% of the chips are lost. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Normalized leakage vs. latency distribution scatter plot of the simulated caches 
 
Table 2. Sources of yield loss for regular power-down 

Losses with Scheme 
Reason of Loss # 

Chips YAPD VACA Hybrid 
Leakage Constraint 138 33 138 33 

Delay Constraint  
(1 Way) 126 0 34 0 

Delay Constraint  
(2 Ways) 36 36 20 7 

Delay Constraint  
(3 Ways) 23 23 19 11 

Delay Constraint  
(4 Ways) 16 16 15 13 

Total 339 108 226 64 
 

Table 3. Sources of yield loss for horizontal power-
down 

Losses with Scheme 
Reason of Loss # 

Chips H-YAPD VACA Hybrid 
Leakage Constraint 138 26 138 26 

Delay Constraint 
(1 Way) 142 0 38 0 

Delay Constraint 
(2 Ways) 33 33 17 6 

Delay Constraint 
(3 Ways) 29 24 21 12 

Delay Constraint 
(4 Ways) 20 17 19 16 

Total 362 100 233 60 
 
Table 4. Total yield losses for relaxed and strict cases 

with regular power-down 
Losses with Scheme  # 

Chips YAPD VACA Hybrid 
Relaxed 184 51 124 25 

Strict 727 234 503 144 
 

 
 

 
Table 5. Total yield losses for relaxed and strict cases 

with horizontal power-down 
Losses with Scheme  # 

Chips H-YAPD VACA Hybrid 
Relaxed 191 51 131 25 

Strict 752 224 516 146 
 

We observe that YAPD and H-YAPD schemes decrease 
the parametric yield loss by 68.1% and 72.4%, respectively. 
Considering the overall yield, YAPD and H-YAPD 
increases the total yield to 94.6% and 95.0%, respectively. 
YAPD and H-YAPD reduces the losses due to leakage by 
76.1% and 81.2%, respectively. They also nullify the losses 
due to a single way delay violations. VACA has a lower 
decrease in yield loss. As discussed in Section 4.3, all the 
chips with 6 or more cycles of cache access latency are 
considered as yield loss with VACA. Furthermore, VACA 
does not improve yield losses due to leakage. Overall, 
VACA reduces the yield loss by 33.3% for regular power-
down and 35.6% for horizontal power-down caches. As 
expected, the Hybrid scheme performs the best in terms of 
yield improvement. Combining the benefits of both schemes, 
the Hybrid scheme reduces the losses due to leakage, 
eliminates all single way delay violation losses, and achieves 
further reduction in losses for multiple-way delay violations. 
The Hybrid scheme results in 81.1% and 83.4% reduction in 
parametric yield loss, for regular and horizontal power-down 
caches, respectively. Using the Hybrid scheme, the yield 
improves to 96.8% and 97.0% for the regular and horizontal 
power-down caches, respectively. 

An important aspect of yield loss modeling is the ability 
to change the constraints. Depending on the architecture, 
manufacturers can change the constraints on their chips. This 
also could be modeled with our approach. Therefore, we 
analyzed the advantages of our schemes while changing the 
yield requirements. Tables 4 and 5 show the cumulated yield 
loss numbers for the 2000 simulation points. For the relaxed 
constraint, we set the power limit at 4 times the average 
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leakage power and the performance limit at 
mean+1.5xsigma. Similarly, the strict case uses 2 times the 
average leakage power for the power limit and 
mean+0.5xsigma as the performance limit. The results show 
that the proposed schemes perform fairly under different 
yield constraints. Particularly, the Hybrid scheme achieves 
98.8% yield for the relaxed constraint and approximately 
92.8% yield for the strict constraint. 
 
5.2. Performance Implications 
 

The yield results for the proposed schemes were 
explained in the previous section. It is important to note that 
for the simulation points that did not need any yield-aware 
technique to perform correctly, our proposed schemes have 
no performance overhead. However, for the cases that are 
converted from yield loss to gain, each scheme has a 
different performance overhead depending on the 
configuration of the cache. For example, a cache with three 
ways of 4 cycle and one way of 5 cycle access latency 
requirement will exhibit a different behavior than a cache 
with a two 4-cycle and two 5-cycle ways. To understand and 
compare the effectiveness and limitations of each scheme we 
must further look into the performance implications caused 
by them for different cache configurations. 

 
Table 6. Performance degradation of SPEC2000 

applications for different cache configurations using 
the YAPD, VACA, and Hybrid schemes. 

Number of 
ways with 

delay 

Performance degradation 
[%] 

4 5 6+ 

Chip 
frequency 

YAPD VACA Hybrid 
3 1 0 91 1.08 1.81 1.81 
2 2 0 16 N/A 3.32 3.32 
1 3 0 4 N/A 5.47 5.47 
0 4 0 1 N/A 6.42 6.42 
3 0 1 35 1.08 N/A 1.08 
2 1 1 13 N/A N/A 3.65 
1 2 1 8 N/A N/A 5.49 
0 3 1 2 N/A N/A 7.39 
4 0 0 105 1.08 N/A 1.08 
Weighted 

Sum 
 1.08 2.20 1.83 

 
The SimpleScalar 3.0 [35] simulator is used to measure 

the effects of the proposed techniques on performance. The 
necessary modifications to the simulator have been 
implemented to perform selective replay, the scheduler, the 
busses between caches, and port contention on caches. We 
have also made changes to SimpleScalar to simulate a 
realistically sized issue queue, and to model the events in the 
issue queue in detail. We simulate 13 floating-point and 11 
integer benchmarks from the SPEC2000 benchmarking suite 
[37]. We simulate 100 Million instructions after fast-
forwarding application-specific number of instructions as 
proposed by Sherwood et al. [34]. 

The base processor is a 4-way processor with an issue 
queue of 128 entries and a ROB of 256 entries. The 
simulated processor has separate level 1 instruction and data 
caches: level 1 instruction cache is 16 KB, 4-way associative 
with 64-byte block size and 2 cycle latency, and the level 1 
data cache is a 16 KB, 4-way associative with 32-byte block 
size and 4 cycle latency. Unified level 2 cache is 512 KB, 8-
way associative cache with 128-byte block size and 25 cycle 
latency. The memory access delay is set to 350 cycles. All 
caches are lock-up free. The simulated architecture 
implements 7 pipeline stages between the schedule and 
execute stages. 

Table 6 lists the different cache way latency 
configurations encountered during HSPICE simulations that 
are converted from yield loss to yield gain along with the 
number of times they are encountered. In addition, it lists the 
average performance degradation for SPEC2000 
applications caused by each of the schemes for a given 
configuration. The configuration 3-1-0 corresponds to the 
case where three out of four ways in a cache has 4-cycle 
access latency, whereas the fourth way requires an additional 
access cycle for correct operation. A configuration 3-0-1, on 
the other hand, corresponds to a cache with three ways 
requiring 4 cycles and another one requiring 6 or more 
cycles. Note that the performance degradations of the YAPD 
and H-YAPD schemes are identical for a given cache 
configuration. If multiple ways require 5 or more cycles, the 
chip is lost with the YAPD schemes. Similarly, the number 
of ways requiring 6 or more cycles of access should be equal 
to zero for VACA and at most one for Hybrid schemes. The 
last configuration, 4-0-0 shows the leakage power limited 
caches that did not violate the timing requirements. In this 
case, we need to shut down a way to reduce the leakage 
power consumption. Since VACA does not disable ways, it 
cannot save any cache with this configuration. The results 
presented in the bottom row of Table 6 correspond to a 
weighted sum of the performance degradation on the chips 
that are saved, i.e., the performance degradation for a 
configuration is multiplied by its fraction within the saved 
chips and summed over all configurations. To illustrate this, 
consider the sum for VACA. This number is achieved by 
first finding the total number of chips saved by it (112). 
Then, the fraction of each saved configuration is found (e.g., 
91/112=0.81 for 3-1-0). We multiply this fraction with the 
corresponding performance degradation (e.g., 
0.81*1.81%=1.46%) and sum over all configurations 
(1.46%+0.47%+0.20%+0.06%=2.20%). This number 
corresponds to average performance degradation for the 
batch of chips that are saved. On average, for the saved 
chips, YAPD, VACA, and Hybrid schemes cause 1.1%, 
2.2%, and 1.8% increase in the CPI, respectively. 

Figures 9 and 10 show the increase in CPI for different 
SPEC2000 applications for two frequent cache 
configurations listed above: 3-1-0 and 2-2-0, respectively. In 
the case of 3-1-0, the hybrid scheme can either choose to 
close the 5-cycle latency way in this case like YAPD or keep 
it enabled where its performance would be equivalent to 
VACA scheme. However, as we have described in Section 
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4.4, a way is turned off only if necessary. Therefore, Hybrid 
scheme behaves identical to the VACA. Note that, YAPD 
can turn off at most a single way. Therefore, it exhibits the 
same performance degradation for each cache configurations 
it saves (3-1-0, 3-0-1 and 4-0-0). Similarly, YAPD and 
Hybrid schemes would have equal performance results for 3-
0-1: each will close a single way and access the remaining 
three ways in 4 cycles. For the 3-1-0 configuration, the CPI 
is increased by 1.1% and 1.8% on average for the YAPD 
and VACA (and hence Hybrid) schemes, respectively. 
Figure 10 shows the performance degradation for SPEC2000 
applications when the cache configuration is 2-2-0. Since 
there are two ways that have 5 cycle access latency, YAPD 
schemes do not operate correctly. The performance 
degradation for both VACA and Hybrid schemes is 3.3% on 
average. The average increases in CPI for other cache 
configurations are presented in Table 6. 
 

 
 
 
 
 
 
 
Figure 9.Increase in CPI for YAPD and VACA for 

cache configuration 3-1-0 
 
 
 
 
 
 
 
 

Figure 10.Increase in CPI for VACA for cache 
configuration 2-2-0 

 
6. Related Work 
 

Due to the effects of process variations, yield 
improvement has been an important problem for circuit 
designers as well as manufacturers since early 1970s. 
Recently, yield losses have become a major concern due to 
aggressive technology scaling. A number of circuit level 
techniques have been proposed to counter the effects of 
process variations [6, 9, 10, 31, 33, 36]. Most of these 
techniques focus on analyzing the design, either statistically 
or by using static timing analysis, and then modifying the 
parts that are more susceptible to variation, e.g., sizing the 
gates on the critical and near-critical paths which are likely 
to violate timing requirements [9, 31, 36]. Although these 
methods help increase the yield, their savings are limited 
since they cannot save any of the chips that violate the 
limitations after fabrication. Also, with increasing process 
variation effects due to smaller technologies, the number of 

candidate elements for sizing increases, complicating the 
application of such enhancements. 

Performance binning is another long-standing approach 
to increase yields [6, 10, 33]. Circuits are placed in separate 
bins depending on their performance and power 
consumption levels and marketed with different prices for 
each bin. As a result, lower performing bins can be sold at a 
lower price instead of merely getting thrown away. In this 
regard, Borkar et al. [6] combine the circuit level approaches 
with frequency binning. They propose a number of circuit 
level techniques to control body bias voltage, supply 
voltage, and temperature to get higher frequency bins. 

There are a number of architectural and system level 
approaches that can impact yield. Datta et al. [11] employs 
gate sizing to optimize individual stages in the processor 
pipeline optimizing yield for a given area constraint or 
minimizing area for a given yield constraint using the 
concept of area borrowing. Kurdahi et al. [21] demonstrates 
analysis techniques to model and improve the yield of 
SRAMs at the system level by proper accounting for the 
coupling between the algorithms targeted for an SoC and the 
performance, power, and yield of SRAMs used in 
implementing them. These studies attack the yield loss 
problem at a lower level compared to our methods. Agarwal 
et al. [3], on the other hand, propose a new cache design 
where individual cache lines can be turned off if they are 
found to be faulty. This approach resembles our yield-aware 
power-down schemes. However, their work concentrates on 
direct mapped caches. Also, their fine-grained approach 
neglects the spatial correlation among different circuit 
elements, making decoder and the cache controller 
unnecessarily complicated. Another work by Datta et al. [12] 
tries to predict the yield of a pipelined circuit with analytical 
models. They observe that introducing imbalances among 
paths in a pipeline stage actually increases the yield of the 
design. Finally, several approaches, such as Razor by Ernst 
et al. [14], can be applied to improve yield. However, to the 
best of our knowledge, the yield impact of such schemes has 
not been studied. 
 
7. Conclusions 
 

Reducing chip yields due to process variations is an 
important problem for circuit designers as well as 
manufacturers. In this work, we propose four 
microarchitectural techniques to minimize the yield loss due 
to power and delay violations in the data cache. We first 
discuss the major sources of process variations and model 
them using HSPICE. Then, we introduce our schemes. The 
first scheme, Yield-Aware Power-Down (YAPD), disables a 
cache way if it violates the delay or power limits. The 
second scheme, Horizontal-YAPD (H-YAPD), modifies the 
approach by turning off horizontal regions of a cache instead 
of the regular (vertical) ways. Due to spatial correlation of 
process variations, turning off segments that exhibit similar 
behavior improves the yield further. The third scheme, 
VAriable-latency Cache Architecture (VACA), allows 
different load accesses to be completed with varying 



latencies with the help of special buffers placed before the 
function units. As a result, if some accesses take longer than 
the predefined number of cycles, the execution can still be 
performed correctly. A final method, Hybrid scheme, 
combines YAPD and VACA. Experimental results 
demonstrate that the yield losses can be reduced by 68.1% 
and 72.4% with YAPD and H-YAPD schemes and by 33.3% 
and 81.1% with VACA and Hybrid mechanisms, 
respectively, improving the overall yield to as much as 
97.0%. 
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