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Abstract. We present a novel approach to concept learning in which
a coevolutionary genetic algorithm is applied to the construction of an
immune system whose antibodies can discriminate between examples and
counter-examples of a given concept. This approach is more general than
traditional symbolic approaches to concept learning and can be applied
in situations where preclassified training examples are not necessarily
available. An experimental study is described in which a coevolutionary
immune system adapts itself to one of the standard machine learning data
sets. The resulting immune system concept description and a description
produced by a traditional symbolic concept learner are compared and
contrasted.

1 Introduction

Concept learning is a task that has been extensively studied by researchers in
the field of machine learning. Much of this work has been in the area of in-
ductive learning from examples using symbolic representation languages such as
predicate calculus [5] and decision trees [9]. In most of the previous efforts to
apply evolutionary computation to concept learning, binary-string representa-
tions have been evolved with a genetic algorithm and mapped into some form
of symbolic representation for evaluation, such as propositional logic. For some
examples of this approach, see [4, 1, 3]. In the work described here, we take a dif-
ferent approach by experimenting with a biologically inspired representation in
which concept descriptions are evolved using a model of the immune system. For
other approaches to evolving models of the immune system, see the pioneering
work of Forrest et al. [2].

The motivation behind applying a model of the immune system to concept
learning lies in its highly developed ability to discriminate between self and non-
self. In biological immune systems, this consists of the discrimination between
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the vast array of molecules that are an integral part of the body of an organism
and foreign molecules that left unchecked could result in disease or death. In
the research described here, we apply the immune system’s power of discrimina-
tion to the problem of differentiating between examples and counter-examples
of a given concept. An advantage of this approach over the traditional symbolic
approaches to concept learning is its generality. We believe that evolved compu-
tational models of the immune system could be successfully applied to a wide
variety of discrimination problems that do not necessarily lend themselves to
the supervised learning methodology typically used by symbolic concept learn-
ing systems. A controller for an autonomous vehicle, for example, may need to
learn to discriminate between navigable terrain and a variety of hazards based
on input from a noisy sensor array. Constructing a set of preclassified training
examples that adequately covers the modalities of this task would probably not
be practical. An evolutionary immune system could learn the necessary concepts
by adapting instead to a simple reinforcement signal that captures the ability of
the autonomous vehicle to move safely through its environment.

2 A Brief Overview of the Immune System

The purpose of an organism’s immune system is to protect it against infec-
tion. This is accomplished by recognizing the molecular signature of microbes
or viruses that attack its body, and once identified, eliminating the foreign
molecules in a variety of ways. The immune system consists of two interre-
lated components: an innate defense component and an adaptive component.
Here we will focus on the adaptive component, which is responsible for acquired
immunity.

Molecules capable of stimulating an acquired immune response are called
antigens. When the immune system is working properly, only foreign molecules
will produce a response. There are a number of ways antigens are recognized,
depending on whether the foreign molecule is inside or outside a cell boundary.
It is the job of antibodies—protein molecules displayed on the surface of a type
of white blood cell produced in the bone marrow called a B-lymphocyte or
B-cell for short—to recognize antigens that are located outside a cell boundary.
Recognition by a B-cell occurs when one of its antibodies comes into contact with
an antigen of complementary shape. Although all the antibodies on an individual
B-cell have the same three-dimensional shape, the human body, for example,
has about 10 trillion of these cells and they collectively have the potential of
recognizing about 100 million distinct antigens at any one time.

One should realize that the immune system is quite complex and is the focus
of much current research. Although we have only provided a brief and somewhat
simplistic overview of one of its processes here, this description should be suffi-
cient for an understanding of the rest of this paper. For more details concerning
the workings of the immune system, see, for example, [10].



3 Coevolving Antibodies for Concept Learning

As in previous evolutionary computation models of the vertebrate immune sys-
tem (cf. [2]), our model is limited to the interaction between B-cells and antigens.
This model is applied to concept learning from preclassified positive and negative
examples by equating the positive examples to foreign molecules and the nega-
tive examples to self. Once the fitness of the immune system evolves to a point
where all the foreign molecules and none of the self molecules are recognized,
the antibodies represent a description of the concept 3. This model can easily be
generalized to learn more than one concept by simply evolving a separate family
of B-cells for each.

The B-cells in our model consist of antibody and a real-valued activation
threshold that represents the binding strength required to initiate an immune
response. Rather than represent antibodies and antigens as three-dimensional
shapes, we use a binary schema representation for the antibodies and represent
the antigens as simple binary strings. A linear matching function that returns the
percentage of matching bits in the antibodies and antigens is used to compute the
binding strength. The locations at which the antibody schema contains a “don’t
care” are ignored. This abstraction greatly simplifies the matching process be-
tween antibodies and antigens while still exhibiting some of the key properties
of the biological entities. One important property that is captured by this rep-
resentation is the ability of some antibody shapes to match a wider range of
antigens then others. This enables us to model a continuum of antibodies from
specialists, that can only bind to a specific antigen, to more general antibodies
that can bind to whole families of antigens sharing common characteristics.

The genotype to phenotype mapping of B-cells in our model is shown in
Figure 1. We produce an antibody schema from binary pattern and mask genes.
A mask bit of one generates a schema value equal to the corresponding pattern
bit, while a mask bit of zero produces a “don’t care” schema value. This many-
to-one mapping is an abstraction of another property of real proteins—dissimilar
chains of amino acids may fold into the same basic three-dimensional shape. The
length of the pattern and mask genes depends on the complexity of the antigens
the antibody must recognize. The real-valued activation threshold of the B-cell
in the range [0, 1] is produced from an 8-bit threshold gene.

If we were to evolve a population of B-cells with a standard genetic algorithm,
the population would converge into a collection of very similar cells. However, it
is important to maintain enough diversity in the B-cells to adequately recognize
many different types of foreign molecules. Earlier evolutionary immune system
models solved this dilemma through the use of a diversity preserving algorithm
called emergent fitness sharing. We take a different approach by evolving B-
cells with a coevolutionary genetic algorithm in which individuals from multiple
non-interbreeding species collaborate to solve the target problem [8, 7]. Each
species represents only a partial solution—in this case, a collection of B-cells

3 Given noisy examples, the immune system would be evolved until most of the foreign
molecules and few of the self molecules were recognized.
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Fig. 1. Mapping from B-cell genome to activation threshold and antibody

having similar antibodies. The fitness of a B-cell is computed by adding it to
a “serum” consisting of the current best B-cells from each of the other species
in the ecosystem. Foreign and self molecules are then presented to the serum.
A particular B-cell is considered to have recognized an antigen if the binding
strength between its antibody and the antigen exceeds its activation threshold
and the antigen binds to its antibody more strongly than to any other antibody
in the serum. The fitness of the B-cell is defined to be the number of foreign
molecules recognized by all the antibodies in the serum, minus the number of
false-positives, that is, self molecules flagged as foreign. Therefore, each B-cell
is rewarded based on how well it collaborates with B-cells from each of the
other species to cover only the collection of foreign molecules. The final solution
consists of the best B-cell from each species.

4 The AQ Approach to Concept Learning

We will compare the solutions produced by our coevolutionary immune system
with those produced by AQ15, a symbolic inductive learning system developed
by Michalski et al. [6]. This system is one of the latest in a series of AQ sys-
tems that constructs conjunctive descriptions from preclassified examples using
an enhanced propositional calculus representation language. Each AQ concept
description consists of a disjunction of conjunctive descriptions. Once a concept
description has been constructed for each class of examples the system has been
presented with, the system uses a conflict resolution procedure to discriminate
between unclassified examples of one concept or another based on the strength
of the match with the learned descriptions and the prior probability of the con-
cepts. See [6] for more details concerning AQ conflict resolution and its method
for constructing concept descriptions.

5 Experimental Study

5.1 Congressional Voting Records Data Set

In this experimental study we evolve a political party classification system for
members of the U.S. House of Representatives given their voting records. The



objective, therefore, is to learn to discriminate between the concepts Republican

and Democrat. This is a supervised learning task in which we are given a number
of preclassified training examples. The data set from which the training examples
are drawn consists of 267 Democrat and 168 Republican voting records. Each
record gives the vote cast by an individual on 16 different issues. Although the
actual voting records are somewhat more complex, each vote in the compiled data
set has been simplified to either a yea, nay, or abstain. For compatibility with
the coevolutionary immune system, the symbolic voting records were converted
into 32-bit strings (antigens) using the following two-bit codes: 00 for abstain,
01 for yea, and 10 for nay. Depending on one’s political orientation, the foreign
molecules to be targeted by the immune system could represent either examples
of Republicans or Democrats. The symbolic data set was originally used in a
machine learning study by Schlimmer [11] and was compiled from actual voting
records from the 98th Congress.

5.2 Experimental Setup

AQ15 is run with its default settings. Rather than simply learning a description
for one of the two concepts, say Democrats, and interpreting non-conforming
examples as members of the Republican party as suggested earlier in the section
on coevolving antibodies, AQ learns a separate description for each concept. For
example, it will first learn a description for Republicans using the Republican
instances in the training set as positive examples and the Democrat instances as
negative examples, and then learn a description for Democrats using the opposite
orientation.

To provide a more fair comparison, our evolutionary immune system also uses
this technique by coevolving two distinct classes of B-cells. One class recognizes
Democrats and ignores Republicans, while the other class ignores Democrats and
recognizes Republicans. As species are created, half are assigned to the Democrat
class and the other half to the Republican class. Each species has a population
size of 100, is initialized randomly, recombined with uniform crossover at a rate of
0.6, mutated by flipping bits at a rate of twice the reciprocal of the chromosome
length, and evolved using scaled fitness-proportionate selection. Since AQ is
strongly biased towards learning general solutions, the immune system is also
given a generality bias by initializing approximately 90 percent of the alleles
of each mask gene to zero. We begin the evolution of the system with only a
single species of B-cells. New species are created and poor performing species
are eliminated when evolutionary improvement stagnates.

5.3 Results

We first look at the quality of solutions produced by the immune system and
AQ in terms of how well they are able to discriminate between Republicans and
Democrats. Solution quality is compared using the predictive accuracy metric.
Given the size of our data set, the tenfold cross-validation method is the rec-
ommended procedure for computing this metric [12]. One performs tenfold cross



Table 1. Final predictive accuracy of learning methods

Learning method Predictive accuracy

Immune System 0.964 ± 0.018
AQ System 0.956 ± 0.023

validation by randomly dividing the complete set of positive and negative exam-
ples into ten partitions of approximately equal size. Ten runs are then performed,
each using a different set of nine partitions as the training set and the remaining
partition as the testing set. During each run, the concept learner will use the
training set to construct a concept description. Once the run is complete, the
concept description is applied to the testing set and the percentage of testing in-
stances classified correctly is computed. The predictive accuracy is computed by
averaging the percentage of correct classifications produced from the ten runs.

Each of the ten AQ runs was terminated when it produced a concept descrip-
tion capable of correctly classifying all the instances of Republican and Democrat
voting records in the training set. Each run of the immune system was termi-
nated after 100 generations of adaptation to the training set; however, learning
flattened out after only a couple of generations. The predictive accuracy results
are summarized in Table 1. The table includes 95-percent confidence intervals
computed from the t -statistic. A t -test was also performed on these results and
it was determined that there is not a statistically significant difference between
the predictive accuracy of the methods.

In Table 2 we compare the number of elements in the concept descriptions
produced by the two methods, specifically, the number of B-cells versus the
number of conjunctive descriptions required to cover the voting record train-
ing examples. Over ten runs, the immune system consistently produced smaller
descriptions than AQ. As shown in the table, on average the immune system
evolved 7.0 B-cells while AQ generated 15.1 conjunctive descriptions. The ta-
ble includes 95-percent confidence intervals on the mean computed from the
t -statistic and a t -test was used to verify that there is a statistically significant
difference between the number of cover elements produced by the methods.

To compare and contrast the roles played by these cover elements, the re-
sults from both methods were converted into a rule-based representation using a
straightforward mapping by which each antibody and conjunctive description is
converted into a separate rule. Specifically, to produce a rule from an antibody,
the first length-two antibody schema is mapped to a test of the first vote, the
second length-two schema is mapped to a test of the second vote, and so on.
Table 3 gives our schemata interpretation. The table reflects that half credit is
given for partial matches. Rules are activated when their match strength exceeds
a rule-specific threshold as described in Section 3. In contrast, AQ normally only
activates perfectly matching rules. It will use a combination of the strength of the



Table 2. Required number of cover elements (conjunctive descriptions or antibodies)

Learning Method Cover Elements

Mean Min Max

Immune System

Democrat 3.80 ± 0.30 3 4
Republican 3.20 ± 0.74 1 4

Total 7.00 ± 0.67 5 8

AQ System

Democrat 8.30 ± 0.68 6 9
Republican 6.80 ± 0.81 5 9

Total 15.10 ± 1.37 11 18

Table 3. Interpretation of antibody schema

Schema Interpretation

00 abstain or yea (half credit) or nay (half credit)
01 yea or abstain (half credit)
10 nay or abstain (half credit)
11 yea (half credit) or nay (half credit)
0# abstain or yea
1# nay
#0 abstain or nay
#1 yea
## ignore

match and the prior probability of the concepts to activate partially matching
rules if no perfectly matching ones exist.

The rules for recognizing Democrats produced by the first run of the immune
system and AQ are shown in Figures 2 and 3. To further visualize the roles played
by these rules, the number of training set examples covered and classified by each
is shown in Figures 4 and 5. By covered, we mean that the rule was activated
but not actually chosen by the conflict resolution procedure.

The first observed difference between these rule sets is that, as previously
noted, significantly fewer rules were produced by the immune system than by
AQ. Furthermore, the total number of tests in the immune system rule set is
smaller—the AQ rule set contains 29 tests while the immune system rule set
contains only 20 tests. The second difference between the rule sets is that the



Rule 1

Thresh: 0.08
If vote4: abstain or nay

vote9: yea
Then Democrat

Rule 2

Thresh: 0.78
If vote1: abstain or nay

vote5: abstain or nay
vote7: nay
vote8: abstain or nay
vote9: abstain or yea
vote10: nay
vote12: abstain or nay
vote15: yea
vote16: yea

Then Democrat

Rule 3

Thresh: 0.85
If vote2: abstain or yea

vote3: yea
vote11: abstain or yea
vote16: abstain or nay

Then Democrat

Rule 4

Thresh: 0.77
If vote3: abstain or yea

vote4: abstain or yea
vote5: yea (half credit) or nay (half credit)
vote7: abstain or nay
vote10: nay

Then Democrat

Fig. 2. Rule-based interpretation of Democratic B-cells from immune system

Rule 1

If vote4: abstain or nay
vote3: yea

Then Democrat

Rule 2

If vote4: nay
vote12: yea or nay
vote6: yea

Then Democrat

Rule 3

If vote15: yea
vote14: yea or nay
vote2: abstain or yea

Then Democrat

Rule 4

If vote3: abstain or yea
vote11: abstain or yea
vote9: yea or nay
vote7: abstain or nay

Then Democrat

Rule 5

If vote3: yea
vote16: abstain
vote13: yea

Then Democrat

Rule 6

If vote5: nay
vote15: yea
vote3: nay

Then Democrat

Rule 7

If vote13: nay
vote2: yea
vote3: nay

Then Democrat

Rule 8

If vote12: nay
vote11: abstain or yea
vote16: abstain
vote3: abstain or nay

Then Democrat

Rule 9

If vote11: yea
vote2: nay
vote1: nay
vote16: nay

Then Democrat

Fig. 3. Rule-based interpretation of Democratic AQ conjunctive descriptions
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AQ rules are all at about the same level of generality4 while the immune system
rules vary from very general to quite specific. This is a possible explanation for
the smaller number of rules produced by the immune system. By being more
flexible in constructing rules with a wide range of generality, the immune system
is able to learn a more concise description of the concept.

The rule sets also have a number of similar characteristics. First, the initial
rules produced by both the immune system and AQ are very similar; specifically,
they both consider an abstain or nay on issue number four to be strong evidence
that the voting record belongs to a Democrat. This also happens to be the most
general rule produced by both methods, and from Figures 4 and 5 one can see
that this rule classifies most of the examples. In other words, both methods have
discovered that the vote on issue number four is the most important discrimi-
nator. The second similarity is that the concept descriptions produced by both
methods must rely on rules that match only a few examples to cover the training
set adequately.

6 Summary and Conclusions

In summary, we have presented a novel approach to concept learning in which
a coevolutionary genetic algorithm is applied to the construction of an artifi-
cial immune system whose antibodies can discriminate between examples and
counter-examples of a given concept. The results from the adaptation of this
immune system to one of the standard machine learning data sets is compared
and contrasted with the results from AQ15—a sophisticated symbolic inductive
learning system. The immune system approach produced a description of the
concepts significantly more concise than that produced by AQ, while its pre-
dictive accuracy was just as high. These preliminary results suggest that the

4 Although the first AQ rule classifies most of the examples, all of its rules are fairly
general.



immune system approach is able to produce such a concise description by being
more flexible than AQ in constructing discriminator elements with a wide range
of generality.

But perhaps the most significant advantage of the coevolutionary immune
system model is that it can be applied to other machine learning problems, such
as acquiring task-oriented behaviors. In such cases it is necessary to recognize
appropriate situations, or concepts, required to perform a task well without being
explicitly trained on each. Rather, feedback is in the form of a reinforcement
signal from which important concepts must be indirectly learned.

What we have described in this paper is admittedly an extremely loose model
of an actual vertebrate immune system. We emphasize that the focus of this
paper is to explore a new method for concept learning inspired by the immune
system—not to accurately model the complex biology of immunology. It is our
belief, however, that there is a potential for building more biologically faithful
coevolutionary models of the immune system that may lead, not only to better
machine learning systems, but also to greater insight into the workings of actual
biological systems.
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