
Outsourcing Privacy-Preserving Social Networks to
a Cloud

Guojun Wang†, Qin Liu∗†‡, Feng Li§, Shuhui Yang¶, and Jie Wu‡
†School of Information Science and Engineering, Central South University, P. R. China

‡Department of Computer and Information Sciences, Temple University, USA
§Computer and Information Technology, Indiana University-Purdue University Indianapolis, USA

¶Department of Math, Computer Science, and Statistics, Purdue University Calumet, USA
∗Correspondence to: gracelq628@yahoo.com.cn

Abstract—In the real world, companies would publish social
networks to a third party, e.g., a cloud service provider, for
marketing reasons. Preserving privacy when publishing social
network data becomes an important issue. In this paper, we
identify a novel type of privacy attack, termed 1*-neighborhood
attack. We assume that an attacker has knowledge about the
degrees of a target’s one-hop neighbors, in addition to the target’s
1-neighborhood graph, which consists of the one-hop neighbors
of the target and the relationships among these neighbors. With
this information, an attacker may re-identify the target from
a k-anonymity social network with a probability higher than
1/k, where any node’s 1-neighborhood graph is isomorphic with
k− 1 other nodes’ graphs. To resist the 1*-neighborhood attack,
we define a key privacy property, probability indistinguishability,
for an outsourced social network, and propose a heuristic indis-
tinguishable group anonymization (HIGA) scheme to generate
an anonymized social network with this privacy property. The
empirical study indicates that the anonymized social networks
can still be used to answer aggregate queries with high accuracy.

Index Terms—Cloud computing, social networks, privacy,
probability indistinguishability.

I. INTRODUCTION

As social networks have developed rapidly, recent research
has begun to explore social networks to understand their struc-
ture, advertising and marketing, and data mining [1]. Cloud
computing [2], [3], as an emerging computing paradigm, is
expected to reshape the information technology processes in
the near future. Cloud services, which are available in a pay-
as-you-go manner, promise ubiquitous 24/7 access at a low
cost. Due to the overwhelming merits of cloud computing,
e.g., flexibility and scalability, more and more organizations
that host social network data choose to outsource a portion of
their data to a cloud environment [4]. Preserving privacy when
publishing social network data becomes an important issue.

Social networks model social relationships with a graph
structure using nodes and edges, where nodes model individual
social actors in a network, and edges model relationships
between social actors [5]. The relationships between social
actors are often private, and directly outsourcing the social
networks to a cloud may result in unacceptable disclosures.
For example, publishing social network data [6] that describes
a set of social actors related by sexual contacts or shared
drug injections may compromise the privacy of the social

Fig. 1. 1-neighborhood attacks in a social network.

actors involved. Therefore, existing research has proposed to
anonymize social networks before outsourcing.

A naı̈ve approach is to simply anonymize the identity of
the social actors before outsourcing. However, an attacker that
has some knowledge about a target’s neighborhood, especially
a one-hop neighborhood, can still re-identify the target with
high confidence. This attack, termed 1-neighborhood attack,
is proposed by Zhou et al. [7].

Consider a synthetic social network of “co-authors”, as
shown in Fig. 1-(a), where a node denotes an author, and
an edge that links two authors denotes that they previously
cooperated on a paper. In the neighborhood attack, an attacker,
who knows Bob’s one-hop neighbors and the connections
between them, i.e., Bob’s 1-neighborhood graph, as shown
in Fig. 1-(b), can still re-identify Bob from an anonymized
graph, Fig. 1-(c), where all user identities are removed.

This is because Bob’s 1-neighborhood graph is unique. To
mitigate this attack, Zhou et al. defined a k-anonymity social
network, where an attacker, with the knowledge of any target’s
1-neighborhood graph, cannot re-identify the target with confi-
dence higher than 1/k. Their basic idea is to make any node’s
1-neighborhood graph isomorphic with at least k − 1 other
nodes’ graphs by adding noise edges. Given k isomorphic 1-
neighborhood graphs, everyone has a probability of 1/k to the
target. For example, by adding an edge between Eda and Fred,
Fig. 1-(d) becomes a 2-anonymity social network.

In this paper, we identify a novel type of privacy attack,
termed 1*-neighborhood attack, where an attacker is assumed
to know the degrees of the target’s one-hop neighbors, in
addition to the structure of the 1-neighborhood graph. We
call this kind of background knowledge the 1*-neighborhood

graph. This assumption is reasonable, since once the attacker
knows the identities of the target’s one-hop neighbors, he
will be very likely to collect more information about the
one-hop neighbors, rather than only collecting the connection
information between them. With this assumption, the attacker
may re-identify the target from a k-anonymity social network
with a probability higher than 1/k.

To illustrate, let us assume that the attacker knows the
degrees of Bob’s one-hop neighbors, Alice, Clark, Donland,
and Harry, say 4, 2, 3, 3, respectively. In Fig. 1-(d), the degrees
of Alice’s one-hop neighbors, Bob, Clark, Eda, and Fred, are
4, 2, 2, 2, respectively. Since Ref. [7] only adds edges to make
1-neighborhood graphs isomorphic, Alice can be excluded
from the target candidate set, and the probability to re-identify
Bob is 1. To deal with the 1*-neighborhood attack, Ref. [7]
requires the addition of more edges, so that the degrees of the
k isomorphic graphs are the same. For example, by adding
edges between Grace and Fred, and between Grace and Eda,
the degrees of Alice’s one-hop neighbors are the same as that
of Bob’s. However, as more edges are added, the usage of the
social networks will be further compromised.

To permit useful analysis on the social networks, while
preserving the privacy of the social actors involved, we define
a key privacy property, probabilistic indistinguishability, for
an outsourced social network. To generate an anonymized
social network with such a property, we propose a heuristic
indistinguishable group anonymization (HIGA) scheme. Our
basic idea consists of four key steps: Grouping, we group
nodes whose 1*-neighborhood graphs satisfy certain metrics
together, and provide a combination and splitting mechanism
to make each group size at least equal to k; Testing, in a
group, we use random walk (RW) [8], [9] to test whether
the 1-neighborhood graphs of any pair of nodes approxi-
mately match or not; Anonymization, we propose a heuristic
anonymization algorithm to make any node’s 1-neighborhood
graph approximately match those of other nodes in a group, by
either adding or removing edges [10], [11]; Randomization, we
randomly modify the graph structure with a certain probability
to make sure each 1*-neighborhood graph has a certain
probability of being different from the original one.

Our contributions are threefold:
1) We identify a novel attack, 1*-neighborhood attack, for

outsourcing social networks to a cloud.
2) We define the probabilistic indistinguishability property

for an outsourced social network, and propose a heuristic
indistinguishable group anonymization scheme (HIGA)
to generate social networks with this privacy property.

3) We conduct experiments on both synthetic and real data
sets to verify the effectiveness of the proposed scheme.

The remainder of this paper is organized as follows: We
describe technique preliminaries in Section II. Then, we pro-
vide an overview of our work in Section III and describe the
proposed scheme in Section IV. We analyze the privacy and
performance of the proposed scheme in Section V, and con-
duct evaluations in Section VI. Finally, we introduce related
work in Section VII, and conclude this paper in Section VIII.

II. PRELIMINARIES

A. System Model

We consider a system that consists of a publisher, a cloud
service provider, an attacker, and many users. The publisher,
such as Facebook or Twitter, outsources a social network to
a cloud. In our system, a social network is modeled as an
undirected and unlabeled graph G = (V (G), E(G)), where
V (G) is a set of nodes, and E(G) ⊆ V (G)× V (G) is a set of
edges. The node identities are assumed to be removed.

The attacker has certain background knowledge about the
target and he tries to re-identify the target by analyzing
the outsourced social network. To protect the privacy of the
social actors in the network from the attacker, the publisher
anonymizes G to G′ = (V (G′), E(G′)) before outsourcing. As
in [7], we assume that each node in G exists in G′, and no fake
nodes are added in G′ to preserve the global structure of the
social network. As previous work [10], [11], we allow edges
{(u, v)} ∈ E(G) to be removed from E(G′).

The cloud service provider, such as Google or Amazon,
maintains the cloud infrastructures, which pool the bandwidth,
storage space, and CPU power of many cloud servers to
provide 24/7 services. We assume that the cloud infrastructures
are more reliable and more powerful than personal computers.
The users can perform data analysis on the outsourced social
networks with more convenience.

The users are assumed to be more interested in aggregate
queries on the social networks, e.g., the average number of co-
authors. While many types of queries on social networks are
important, we are particularly interested in aggregate queries
in this paper. We believe that the usability of a social network
can be examined in a meaningful way using aggregate queries.

B. Attack Model

In this paper, we assume that the attacker is more interested
in the privacy of social actors. Before launching an attack,
the attacker needs to collect some background knowledge
about the target victim. We assume that an attacker may have
background knowledge about the 1*-neighborhood graphs of
some targets. Informally, a target’s 1*-neighborhood graph
consists of both the 1-neighborhood graph of the target and the
degrees of the target’s one-hop neighbors. Following the work
in [7], for each node u ∈ V (G), the related 1-neighborhood
graph, denoted as Gu, is defined as follows:

1-Neighborhood Graph. Gu = (Vu, Eu), where Vu denotes
a set of nodes {v|(u, v) ∈ E(G) ∨ (v = u)}, and Eu denotes
a set of edges {(w, v)|(w, v) ∈ E(G) ∧ {w, v} ∈ Vu}.

For each node u ∈ V (G), the related 1*-neighborhood
graph, denoted as G∗

u, is defined as follows:

1*-Neighborhood Graph. G∗
u = (Gu, Du), where Gu is the

1-neighborhood graph of node u, and Du is a sequence of
degrees of u’s one-hop neighbors.

We focus on 1*-neighborhood attack since it tends to be
much more difficult for an attacker to collect information

Fig. 2. Analogue of the HIGA scheme.
beyond a one-hop neighborhood [7], and the detailed neighbor-
hood information about a target’s directed neighbors is more
difficult to collect comparing to their degree information. For
example, it may be easy to know that Alice has 100 neighbors,
but hard to know the detailed information (ID, name, or age)
about these 100 neighbors. For a social actor u, if an attacker
can re-identify u from an outsourced social network with a
high probability, then the privacy of the social actor is leaked.

C. Random Walk (RW) based Approximate Matching

Inspired by the work in [12], we use random-walk-based
approximate matching as the building block of our HIGA
scheme. The random walk (RW) [8] is known as a useful tool
to obtain the steady state distribution for a graph, referred
to as the topological signatures, which provide the founda-
tion for the approximate matching. Specifically, given graph
G = (V (G), E(G)), where V (G) = {u1, . . . , u|V (G)|}. A RW
on G allows the probability puj (t) of a node uj ∈ V (G) being
located at time t to be computed with Eq. 1:

puj (t) =
∑

ui∈V (G)

1

|V (G)| · (1− d) · pui(t− 1)

+
∑

ui∈N(uj)

1

|N(ui)| · d · pui(t− 1)
(1)

where |V (G)| is the number of nodes in G, |N(uj)| is the
number of one-hop neighbors for node uj , and d is the damp-
ing factor which defines the probability of directly jumping or
traversing. For Eq. 1, the first part relates to the probability of
moving from node ui to uj by jumping directly, while node
ui is not a one-hop neighbor of uj ; the second part relates
to the probability by traversing the edge from ui to uj , while
node ui is a one-hop neighbor of uj .

Therefore, the probability distribution on all nodes in G,
denoted as a vector p(t) = [pu1(t), . . . , pu|V (G)|(t)], can be
calculated with Eq. 2:

p(t) =
(1− d)

N
· I+ d ·W · p(t− 1) (2)

where W = (θA)′, A being the adjacency matrix of the graph
and θ the diagonal matrix whose diagonal element is 1

|N(ui)| ;
I is a vector whose entries are all equal to one.

The steady state distribution of the RW, defined by Eq. 2,
can be expressed as:

p� =
(1− d)

|V (G)| ·
∞∑
k=0

dkW k · I (3)

where
∑∞

k=0 d
kW k is used to denote (1 − dW)−1. In the

our anonymization scheme, the testing step is based on the

approximate matching using the above topological signatures.

D. Design Goals

The main design goal of our work is to reduce the prob-
ability of a social actor being re-identified while publishing
social networks to a cloud. Specifically, given a social graph
G, we want to generate an anonymized graph G′, so that the
following requirements are satisfied:

• Privacy. Given any target’s 1-*neighborhood graph, the
attacker cannot re-identify the target from an anonymized
social network with confidence higher than a threshold.

• Usability. The anonymized social networks can be used
to answer aggregate queries with high accuracy.

III. SCHEME OVERVIEW

A. Definitions

To preserve privacy, previous research proposed to make any
node’s 1-neighborhood graph be isomorphic with at least k−1
others. In many cases, isomorphism is a strong condition that
is not necessary for anonymizing the graph. In this paper, we
define the concept of probabilistic indistinguishability, which
can preserve privacy at a lower anonymization cost.

Let G∗
u and G′∗

u denote the 1*-neighborhood graph of node
u in the original social network G and in the anonymized social
network G′, respectively. Probabilistic indistinguishability can
be defined in a hierarchical way as follows:

Node Indistinguishability. Nodes u and v are indistinguish-
able if an observer cannot decide whether or not G∗

u �= G∗
v

in the original graph G, by comparing G′∗
u and G′∗

v in an
anonymized graph G′.

Here, “cannot decide” means that the observers’ confidence
level will be below a pre-determined threshold. In our scheme,
we achieve node indistinguishability by introducing the ran-
domness into the published graph. If there is no limit on
the randomness, node indistinguishability is easy to achieved.
However, we hope to preserve the usability of the published
graph, and hence, need to minimize the anonymization cost.
Thus, we need to have a more sophisticated design.

Group Indistinguishability. For a group of nodes g = {v|v ∈
V (G)} and |g| ≥ k if for each pair of nodes {〈u, v〉|u, v ∈ g},
u and v are indistinguishable in the published graph G′, group
g is an indistinguishable group.

Probabilistic Indistinguishability. A published social net-
work G′ achieves probabilistic indistinguishability, if all nodes

{v|v ∈ V (G′)} can be classified into m ≥ 1 groups, where
each group has the property of group indistinguishability.

Problem Definition. Given a network graph G =
(V (G), E(G)) and a positive integer k, derive an anonymized
graph G′ = (V (G′), E(G′)) to be published, such that (1)
V (G′) = V (G); (2) G′ is probabilistic indistinguishable with
respect to G; (3) the anonymization from G to G′ has minimal
anonymization cost.

The problem of generating a social network with above
three properties is NP-hard. The proof lies in reducing the NP-
complete problem of Partition into Triangles [13]. As limited
by space, we omit the details here.

B. Intuition

The basic idea of the heuristic indistinguishable group
anonymization (HIGA) scheme consists of four steps:

• Step 1: Grouping. We classify nodes whose 1*-
neighborhood graphs satisfy certain metrics into groups,
where each group size is at least equal to k.

• Step 2: Testing. We use random walk (RW) to test
whether the 1-neighborhood graphs of nodes in a group
approximately match or not.

• Step 3: Anonymization. We use a heuristic anonymiza-
tion algorithm to make the 1-neighborhood graphs of
nodes in each group approximately match.

• Step 4: Randomization. We randomly modify the
graph with certain probability to make each node’s 1*-
neighborhood graph be changed with certain probability.

We use the example shown in Fig. 2 as the analogue of the
HIGA scheme: We first classify the nodes that are the closest
into groups with size at least equal to k, so that the moving
distance in the third step can be reduced, e.g., in Fig. 2-(A),
nodes are classified into four groups. Then, we test whether
the distance between each pair of nodes in a group is shorter
than a threshold value α. If not, in each group, we choose a
random node as the seed and move other nodes toward the
seed, until it passes testing. For example, in Fig. 2-(B), we
first choose node A as the seed, and then choose node D as
the seed for group 2, where B1, C1, and D1 are the positions
of nodes B, C, D after the first round, and A1, B2, and C2 are
the positions of nodes A, B, C after the second round. In the
last step, we randomly move each node for a short distance.
In Fig. 2-(C), the black nodes and the pale nodes denote node
positions before and after randomization, respectively.

Probabilistic indistinguishability is achieved as follows:
Steps 1 through 3 enable all nodes in the network to be
classified into multiple groups, where any pair of nodes are
very close. After Step 4, each pair of nodes in a group are still
close, but they will deviate from the original position with a
high probability. In a group, from the current positions of any
pair of nodes, the attacker cannot decide whether or not they
are in the same position as they were in the original graph, i.e.,
node indistinguishability is achieved. Since each group size is
at least equal to k, group indistinguishability is achieved.

TABLE I
EFFECTIVENESS OF METRICS FOR GROUPING

Nodes Edges Percentage
100 ∼ 200 1, 000 ∼ 2, 000 47%
500 ∼ 1, 000 5, 000 ∼ 10, 000 61%

IV. HEURISTIC INDISTINGUISHABLE GROUP
ANONYMIZATION SCHEME

A. Grouping

We group nodes by using the following metric: number of
one-hop neighbors, in-degree sequence, out-degree sequence,
total number of edges, and betweenness. Although other met-
rics, e.g., closeness centrality and local clustering coefficient,
also can be used for grouping, we only consider the above
metrics. The concepts of “number of one-hop neighbors” and
“total number of edges” are easily understood. Therefore, we
only provide the definitions for the other metrics. For a node
v ∈ V (G), whose 1*-neighborhood graph G∗

v = (Gv, Dv),
where Gv = (Vv, Ev), we have the following definitions:

In-degree sequence. Iv = {|E+
u |}u∈Vv , where E+

u =
{(u,w)|w ∈ Vv}, and |E+

u | is the number of edges in E+
u .

Out-degree sequence. Ov = {|E−
u |}u∈Vv , where E−

u =
{(u,w)|w �∈ Vv}, and |E−

u | is the number of edges in E−
u .

Betweenness. Bv = |V ∗
v |/|V +

v |, where V ∗ = {〈u,w〉|u, v ∈
Vv ∧ (u,w) �∈ Ev}, and V +

v = {〈u,w〉|u, v ∈ Vv}.

For a node v, the in-degree sequence is a sequence of in-
degrees for v’s one-hop neighbors, where the in-degree for
v’s one-hop neighborhood u is the number of edges that are
connected between u and other v’s one-hop neighbors; the out-
degree sequence is a sequence of out-degrees for v’s one-hop
neighbors, where the out-degree for v’s one-hop neighborhood
u is the number of edges that are connected between u and
the nodes outside v’s 1-neighborhood graph; the betweenness
is the ratio of the number of paired nodes whose shortest path
must go through node v to the total number of node pairs in
v’s 1-neighborhood graph.

To test the effectiveness of the metrics for grouping, we
first randomly generate a set of graphs where the node degree
follows the power-law distribution, and we use the above
metrics to classify nodes into groups. Then, we calculate the
percentage of graphs that are isomorphic in a group.

In Table I, in social networks with 100 ∼ 200 nodes
and 1, 000 ∼ 2, 000 edges, the percentage of isomorphic
1*-neighborhood graphs is about 47%. As the scale of the
social networks increases to 500 ∼ 1, 000 nodes and 5, 000 ∼
10, 000 edges, the percentage increases to around 61%. There-
fore, these metrics are helpful for grouping.

B. Testing

In the testing step, we analyze each pair of nodes u and v
by computing the steady states of their 1-neighborhood graphs
Gu = (V (Gu), E(Gu)) and Gv = (V (Gv), E(Gv)) with the

RW tool and Eq. 3. We determine the approximate matching of
Gu and Gv by performing bipartite graph matching as follows:

If |V (Gu)| < |V (Gv)|, we should add virtual nodes in
V (Gu) to make |V (Gu)| = |V (Gv)|, and vice versa. Let
cost(x,w) be the cost of matching nodes x ∈ V (Gu) and
w ∈ V (Gv), V be the set of virtual nodes, and p�

x and p�
w

denote the steady states of nodes x and w, respectively. If
x,w �∈ V, the cost function calculates the Euclidean distance
between the topological signatures of the nodes as follows:

cost(x,w) =
√

(p�
x − p�

w)
2 (4)

If either x or w is a virtual node, cost(x,w) is set to a fixed
value β. The cost of matching V (Gu) and V (Gv), which is
the sum of the costs of matching all nodes in V (Gu) and
V (Gv), can be calculated with Eq. 5:

cost(Gu, Gv) =

√ ∑
x,w �∈V

(p�
x − p�

w)
2 + (|V| ∗ β) (5)

We define graph approximate matching as follows:

Approximate matching. Let Gu = (V (Gu), E(Gu)) and
Gv = (V (Gv), E(Gv)) be two graphs. Gu and Gv approx-
imately match, denoted as Gu ≈ Gv , if an optimal bipartite
graph matching exists between V (Gu) and V (Gv), such that
the cost(Gu, Gv) is smaller than a threshold value α.

Therefore, given a pair of nodes u and v, if their 1-
neighborhood graphs approximately match, we say that node
u and node v approximately match, denoted as u ≈ v. The
key problem lies in determining the threshold value α. If
this value is too large, then the two dissimilar graphs will
be deemed approximately matching. If this value is too small,
then approximate matching may be equal to isomorphic. Since
α relates to the number of nodes in Gu and Gv , we find
a reasonable threshold value by conducting experiments in
Section VI-(A). To enrich the topological signatures, we can
compute the steady states with different damping factors.
Suppose that we choose n distinct damping factors D =
[d1, . . . , dn], the topological signatures associated with node
w can be defined as p�

w = [p�
w(d1), . . . ,p

�
w(dn)].

C. Anonymization

Suppose that there are m groups, g1, . . . , gm, where each
group size is assumed to be at least equal to k. For each group,
if any pair of nodes are not approximately matching, we use
a heuristic anonymization algorithm (Alg. 1) to make the 1-
neighborhood graphs approximately match as follows:

Initially, the candidate group set (CGS) consists of m
groups. We sort groups in descending order of the number
of neighbors, pick the first one as the processing group,
and remove it from CGS. For each node in the processing
group, we construct its 1-neighborhood graph, and use RW to
calculate related topological signatures. Then, for any pair of
nodes u and v, we use Eq. 5 to calculate the cost of matching
their 1-neighborhood graphs. For any pair of nodes, if this
cost is smaller than a threshold value α, we choose the next
grouping in CGS as the processing group and do it again.

Algorithm 1 Heuristic Anonymization Algorithm
{Given m groups g1, . . . , gm as CGS}
Sort CGS in descending order of the number of neighbors
while CGS is not empty do

Choose the first group in CGS as the processing group
g∗ and remove g∗ from CGS
for each node u in g∗ do

Construct 1-neighborhood graph Gu

Use Eq. 3 to calculate Gu’s topological signatures
for each pair of nodes (u, v) in g∗ do

Use Eq. 5 to calculate cost of matching Gu and Gv

while exists a cost larger than α do
Randomly choose a node u ∈ g∗ as the group seed
for each node v ∈ g∗ do

if cost(Gu, Gv) > α then
Approach Gu to Gv with probability q
Approach Gv to Gu with probability 1− q

Otherwise, we modify 1-neighborhood graphs of the nodes
in the processing group as follows: We first choose a random
node u in the group as the group seed. For any other node
v in this group, if the related cost cost(Gu, Gv) is larger
than α, we approach the structure of Gu to that of Gv with
probability q, and approach the structure of Gv to that Gu

with probability 1−q. This process will continue until, for any
pair of nodes in the processing group, the cost for matching
their 1-neighborhood graphs is equal to or smaller than α. The
anonymization process may be recursive, since some changes
may impact the groups that have been processed previously.
However, due to the power-law node distribution, and the
small world phenomenon [14], this process will rapidly stop.

To approach the structure of Gv = (Vv, Ev) to that of Gu =
(Vu, Eu), we first obtain the optimal matching of nodes in two
graphs with the method discussed in Section IV-(B). In the
optimal matching, for any pair of nodes x ∈ Vv and w ∈ Vu,
if cost(x,w) > α, we make u’s connections the same as those
of v. During the approaching process, we make sure that the
structure of Gu will not be modified.

For example, in Fig. 3-(B), the optimal matching for graphs
G1 and G2 is A1, B2, C3, D4, E5. Suppose α = 0, we approach
G1 to G2. For all pairs of nodes, only the cost of matching
D ∈ G1 and 4 ∈ G2 is larger than 0. Therefore, we change
the connection of node 4 to the same as that of node D. In
the first round, node D only connects to node C in G1, but
node 4 connects to both nodes 3 and 5. Therefore, we remove
the edge between nodes 4 and 5, and test the cost again. In
this round, cost(E, 5) > α, and node E connects to C in G1,
but node 5 has no connections. Therefore, we add an edge
between nodes 3 and 5, and test the cost again. In this round,
the related cost of matching G1 and G2 is equal to α, and the
anonymization completes.

D. Randomization

Consider a graph G = (V (G), E(G)) and a randomization
probability p. We first randomly remove p(|E(G)|) edges from
G, and then for two nodes that are not linked, we add an

Fig. 3. Working process of the heuristic approach algorithm. The righthand graph is G1 and the lefthand graph is G2.
edge with probability p. This randomization process closely
follows that in [15]. The key problem lies in determining p
to randomize the graph. To obtain a reasonable parameter, we
conduct experiments in Section VI-(A).

E. Combining and Splitting Groups

In the previous section, we simply assume that the size
of each group is equal to k. However, during the empirical
study, we found that the group size also follows the power-law
distribution: most groups contain only one or two members,
and a small number of the groups have thousands of members.
Therefore, we provide a combining and splitting mechanism
to make each group have an appropriate size.

We first sort groups in descending order of the number of
neighbors associated with its members. The sorted groups are
denoted as g′1, g

′
2, . . . , g

′
m. For i > m, if g′i’s size is smaller

than k, we combine the members in g′i+1 into g′i as follows: if
|g′i|+ |g′i+1| < k, we simply combine two groups; otherwise,
we should group k − |g′i| nodes in g′i+1 to |g′i|. If the size
of the last group is equal to or larger than k, then let it be.
Otherwise, we combine it to the previous group. Therefore,
each group, except for the last one, has exactly k members,
and the last group may have [k, 2k) members.

V. ANALYSIS

A. Anonymization Strength

Theorem 1. From the anonymized graph G′, an attacker, with
the knowledge of any target’s 1*-neighborhood graph, cannot
re-identify the target with confidence higher than 1/k.

Proof: The attacker will try to re-identify a target from
the published graph G′ by using the target t’s 1*-neighborhood
graph G∗

t in the original graph (attacker’s knowledge). There
are two possible consequences after searching G′:

• Case 1. Attacker found at least an exact match of target.
• Case 2. Attacker cannot find an exact match of target.
Here, we assume an intelligent attacker who knows the

uniform random noise probability p. We also assume that the
intelligent attacker will not give up even if the exact match
cannot be found.

For Case 1, after the exact matching, the attacker has two
possible strategies: 1. Consider an exact match u as the re-
identified target; 2. Consider other nodes as the re-identified
target t. The latter strategy will be combined in the discussion
of Case 2. Let us first consider Case 1 with the first strategy.
Based on the uniform random noise, the probability that

the target t’s 1*-neighborhood graph Gt was not changed is
P (G∗

u = G∗
t ∧G′∗

u = G′∗
t) = (1− p)|E(G∗

t)|.
Besides this factor, we also know that the exact match of

G∗
t must belong to an indistinguishable group g with |g| ≥ k.

For each node v in g, we know that an observer cannot decide
whether or not G∗

v �= G∗
t in the original graph G by comparing

G′∗
v and G′∗

t in G′. Therefore, we have P (G∗
v �= G∗

t ∧G′∗
v =

G′∗
t) ≥ (1 − p)|E(G∗

t)| (otherwise, v and t will violate the
indistinguishability requirement in g).

Let τ = (1 − p)|E(G∗
t)|. Therefore, under Case 1 with the

first strategy, the probability that an exact match node u is the
correctly identified target t is:

P (u = t) =
τ

τ +
∑

v∈g,v �=u

P (G∗
v �= G∗

t ∧G′∗
v = G′∗

t) (6)

Since P (G∗
v �= G∗

t ∧ G′∗
v = G′∗

t) ≥ τ and |g| ≥ k, it is
clear that P (u = t) ≤ τ/(k · τ) = 1/k.

Case 2 and the remaining part of Case 1 can be proven in
a similar manner.

Corollary 1. The anonymization strength of the heuristic
indistinguishable group anonymization scheme ≥ k-anonymity
social network defined in [7].

Proof: The proof of Corollary 1 is obvious. First, the
k-anonymity social network defined in [7] assumes that the
attacker only knows a target’s 1-neighborhood, which con-
tradicts the reality since the attacker usually collects more
information about the one-hop neighbors, rather than only
collecting the connection information between them. With the
1*-neighborhood knowledge, the attacker can further narrow
down the target in the blend-in group and re-identify it.

Second, even if we assume that the k-anonymity social
network can be extended to the 1*-neighborhood case (it will
significantly increase the anonymization cost due to the exact
matching), the k-anonymity social network only guarantees
that the attacker cannot identify the target with confidence
higher than 1/k. According to Theorem 1, our scheme will
produce equal or greater anonymization strength.

B. Anonymization Cost

Our solution anonymizes a graph by adding and removing
edges, which will lead to some information loss. Consider
a social network graph G. We first classify the nodes into
m groups g1, . . . , gm. For each group gi, we transfer a set
of original 1*-neighborhood graphs {G∗

u|u ∈ gi} to a set of
anonymized 1*-neighborhood graphs {G′∗

u |u ∈ gi}.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

Th
re

sh
ol

d
va

lu
e

p*=0.1
p*=0.05

Fig. 4. Threshold Values α.

1000 2000 3000 4000 5000
0.5

0.6

0.7

0.8

0.9

1

1.1

Nodes
P

p=0.05
p=0.1
p=0.15

Average Node Degree = 7

Fig. 5. Probability p.

Let mi and ni denote the numbers of added edges and
removed edges. The related anonymization cost CG(gi)→G′(gi)
for transferring gi to g′i can be calculated with Eq. 7:

CG(gi)→G′(gi) = ami/Li + bni/Li (7)
where a and b are the weights associated with each component,
and Li is the number of edges in {Gu|u ∈ gi}. The cost
consists of two parts: the first part is the normalized cost
measuring the information loss of adding edges, and the
second part is the normalized cost measuring the information
loss of removing edges. Therefore, given m groups of graphs,
the total cost is:

CG→G′ =

m∑
i=1

CG(gi)→G′(gi) (8)

VI. EVALUATION

In this section, we evaluate our anonymization method on
both synthetic and real data sets. Experiments are conducted
with MATLAB R2010a running on the local machine with an
Intel Core 2 Duo E8400 3.0 GHz CPU and 8 GB Linux RAM.

A. Parameter Setting

The following parameters need to be determined before
conducting experiments:

• The threshold value α that determines whether or not two
1-neighbor graphs approximately match.

• The probability p for randomizing the graph.
To obtain a reasonable threshold value, we conduct exper-

iments with respect to different sizes of 1-neighbor graph-
s as follows: Given N , we first randomly generate a 1-
neighborhood graph Gv with N nodes, and then generate
a similar graph G′

v by randomly modifying p∗ percentage
of edges. Finally, with n different damping factors D =
[d1, . . . , dn], we calculate the cost for optimal matching Gv

and G′
v , denoted as cost(Gv, G

′
v). The above process will be

conducted for multiple rounds, and the average value c̃ is used
as the threshold value α.

In our experiments, we set p∗ = [0.1, 0.05] and β = 0.1/N
for matching nodes in the virtual node set, and choose damping
factors D = [0.7, 0.8, 0.9]. Fig. 4 shows the threshold value α
with different p∗ values, while N ranges from 4 to 100. We
know that α will decrease as N increases, e.g., when N = 4,
α = 0.22, and when N = 100, α = 0.0158.

To obtain a reasonable randomization probability p, we first
randomly generate a graph with N nodes and M edges. Then,

we randomize the graph with different p values, and calculate
the percentage P of 1*-neighborhood graphs being changed
in the randomized graph. This process will be done multiple
times, and the average percentage P will be used to measure
the impact of p. Fig. 5 shows the value of P with respect
to different p under a graph with average node degree 7.
We know that p = 0.05 is appropriate for a network with
such settings. For a network with average node degree 3, the
changing percentage P is about 47% when p = 0.05.

B. Synthetic Data Set

We use the Barabái-Albert algorithm [16] (B-A algorithm
for short) to generate synthetic data sets. The basic idea of
the B-A algorithm is to first generate a network of a small
size, and then use that network as a seed to build a larger-
sized network, continuing this process until the actual desired
network size is reached. The node degree follows the power-
law distribution. In our experiments, the initial seed size
contains 5 interconnected nodes, and the generated networks
contain 1,000, 2,000, 3,000, 4,000, and 5,000 nodes.

Figs. 6 and 8 show the percentage of modified edges with
respect to different k values and different graph settings. We
know that as k increases or p∗ decreases, the number of
modified edges increases, e.g., when k = 5 and p∗ = 0.1, for a
network that has 5,000 nodes with average node degree 5, the
HIGA scheme needs to change 350 edges to pass testing, but
as k increases to 20, the number of modified edges increases
to 559; when k = 10 and p∗ = 0.1, for a network that has
5,000 nodes with average node degree 5, the HIGA scheme
needs to change 420 edges to pass testing, but as p∗ decreases
to 0.05, the number of modified edges increases to 680.

Figs. 7 and 9 show the related anonymization costs calcu-
lated with Eq. 8, where parameters a and b are set to 0.6
and 0.4. We consider that removing edges will lose most of
the information, and treat this setting default in the remainder
of experiments. We know that as the number of nodes in
a network increases, the anonymization cost decreases; as k
increases, the anonymization cost increases.

C. Real Data Set

To validate the effectiveness of our anonymization method,
we conduct experiments on a real social network, Arxiv
ASTRO-PH (Astro Physics) collaboration network1, which
is from the e-print arXiv and covers scientific collaborations
between authors, submitted papers to Astro Physics category,
in the period from January 1993 to April 2003, and contains
18,772 nodes and 396,160 edges. In Astro Physics collabora-
tion network, if an author i co-authored a paper with author
j, the graph contains an undirected edge from i to j.

First, we classify nodes, whose 1*-neighborhood graphs
satisfy certain metrics, into different groups. After grouping,
nodes are classified into 7,029 groups, where the group size
ranges from 1 to 1,632, and the average group size is 3.
Therefore, we execute a splitting and combining process to
make each group size at least equal to k.

1http://snap.stanford.edu/data/ca-AstroPh.html

1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

Nodes

M
od

ifi
ed

 E
dg

es

k=5
k=10
k=15
k=20

Average Node Degree=5

1000 2000 3000 4000 5000
200

300

400

500

600

700

Nodes
M

od
ifi

ed
 E

dg
es

k=5
k=10
k=15
k=20

Average Node Degree=7

Fig. 6. Number of modified edges on synthetic data sets. p∗ = 0.1.

1000 2000 3000 4000 5000

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Nodes

A
no

ny
m

iz
at

io
n

C
os

t

k=5
k=10
k=15
k=20

Average Node Degree=5

1000 2000 3000 4000 5000
0.02

0.04

0.06

0.08

0.1

Nodes

A
no

ny
m

iz
at

io
n

C
os

t

k=5
k=10
k=15
k=20

Average Node Degree = 7

Fig. 7. Anonymization costs on synthetic data sets. p∗ = 0.1.

1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

Nodes

M
od

ifi
ed

 E
dg

es

k=5
k=10
k=15
k=20

Average Node Degree =5

1000 2000 3000 4000 5000
0

500

1000

1500

Nodes

M
od

ifi
ed

 E
dg

es

k=5
k=10
k=15
k=20

Average Node Degree = 7

Fig. 8. Number of modified edges on synthetic data sets. p∗ = 0.05.

1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

Nodes
A

no
m

ym
iz

at
io

n
C

os
t

k=5
k=10
k=15
k=20

Average Node Degree =5

1000 2000 3000 4000 5000
0.02

0.04

0.06

0.08

0.1

0.12

Nodes

A
no

ny
m

iz
at

io
n

C
os

t

k=5
k=10
k=15
k=20

Average Node Degree = 7

Fig. 9. Anonymization costs on synthetic data sets. p∗ = 0.05.

5 10 15 20
0

0.5

1

1.5

2x 104

k

M
od

ifi
ed

 E
dg

es

p*=0.05
p*=0.1

1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

k

A
no

ny
m

iz
at

io
n

C
os

t

p=0.05
p=0.1

Fig. 10. Results on Real Data Set.

To obtain reasonable threshold value α and randomization
probability p, we conduct experiments as in Section VI-(A).
For α, we choose D = [0.7, 0.8, 0.9] and p∗ = [0.05, 0.1]. For
p, we find that 97% of 1*-neighborhood graphs are changed
when we set p = 0.05, which increases to 99% as we set
p = 0.15. Therefore, p = 0.05 is enough for randomization.

Fig. 8 shows the percentage of modified edges and the
anonymization costs with respect to different k values and
p∗ values. We know that as k increases or as p∗ decreases,
the number of modified edges increases. However, even when
k = 20 and p∗ = 0.05, the number of modified edges is only
15,802, which is less than 4% of the total number of edges.

To test the usability of the anonymized social network, we
conduct aggregate queries on both the original social network
and the anonymized one. The anonymized graph is generated
with parameter p∗ = 0.05 and p = 0.01. We first test
the differences between two social networks on the maximal
node degree (MAX), the minimal node degree (MIN), and the
average node degree (AVE). From Table II, we know that even
when k = 20, the results are still useful.

Then, we conduct experiments to test whether the
anonymized graph can be used to answer shortest distance
queries. We randomly choose a pair of nodes u and v, and
test the shortest distances between them in the original graph
G and the anonymized graph G′, denoted as dist1 and dist2,

TABLE II
USABILITY OF THE ANONYMIZED SOCIAL NETWORK

Max MIN AVE Error Rate
Original 505 2 22.1 0
k=5 505 2 22.4 2.9%
k=10 496 2 22.6 6.4%
k=15 485 2 22.9 8.1%
k=20 476 2 23.3 8.3%

1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

k

M
od

ifi
ed

 E
dg

es

Base Line
p=0.1
p=0.05

Fig. 11. Comparison with the results in [7].

respectively. If dist1 �= dist2, then we consider this is a query
error. The above process will be repeated multiple times, and
the ratio of the number of query errors to the total number of
queries will be used as the error rate. From Table II, we know
that the error rate is relatively small, even when k = 20.

To compare our results with those of [7], we also conduct
experiments on KDD cup 2003 co-authorship data set. To
fairly perform comparisons, we extract 120,640 edges from the
data set, so that our experiment setting is the same as theirs.
For the ease of comparison, the results of [7] are denoted as
the base line. In Fig. 10, our scheme outperforms [7] in terms
of the number of modified edges while keeping the same level
of privacy. Therefore, our scheme allows less information loss,
and hence, high usability. Our current implementation does re-
quire more computation time for edge modification (about one
magnitude higher). However, the process of edge modification
usually is done off-line. As part of our future extensions, we

will improve the efficiency of the implementation.

VII. RELATED WORK

Our work is on outsourcing privacy-preserving social net-
works to a cloud environment. Research in this area is still in
its infancy. To the best of our knowledge, the work by [4] is
the first to address this problem. The work that is closest to
our work can be found in publishing privacy-preserving social
networks [7], [13], [15], [17]–[22].

As a pioneering work, Backstrom et al [17] discussed two
re-identification attacks in naı̈ve anonymized social networks.
In active attacks, an attacker intentionally embeds a subgraph
into a social network before publishing and uses such kinds
of background knowledge to re-identify nodes and edges in
the published network. In passive attacks, an attacker with
the knowledge of a target’s subgraph can infer the identity of
nodes in the published network. However, they do not provide
a solution to counter these attacks.

To defend the re-identification attacks, the work in [18]
advocated the k-anonymity model, where every node should be
indistinguishable with at least k other nodes in terms of both
the attributes and the associated structural information, such as
neighborhood and node degree. To preserve the scale and the
local structures of the original graph, existing anonymization
approaches [7], [13], [15], [19]–[22] try to locally modify the
graph structure to achieve the privacy preservation require-
ment. For example, the work in [13] proposed the guarantee
of k-anonymity on node degrees, so that for every node v,
there are at least k other nodes that have the same node
degrees as v. The work in [7] provided a heuristic solution
against the 1-neighborhood attack. The work in [15] quantified
the privacy risks associated with different kinds of attacks on
social networks. The work in [19] anonymized the data graph
by adding edges and nodes so that the resulting graph is k-
automorphic. The work in [20] identified two realistic targets
of attacks, NodeInfo and LinkInfo, and proposed a solution to
form k pairwise isomorphic subgraphs.

Most of the above work aims at node re-identification,
e.g., in the published data the attacker cannot re-identify any
individual to a node with a high confidence. Most of the
solutions target k-anonymity. In our work, we identify a more
realistic attack model, and our solution targets probabilistic
indistinguishability.

VIII. CONCLUSION

In this paper, we identify a novel 1*-neighborhood attack.
To resist this attack, we define a key property, probabilistic
indistinguishability for outsourced social networks, and we
propose a heuristic anonymization scheme to anonymize social
networks with this property. The empirical study indicates
that the anonymized social networks can still be used to
answer aggregate queries with high accuracy. For our future
work, we will conduct a thorough theoretical study of risks
on the outsourcing social networks to a cloud, and try to
introduce other privacy mechanisms to our scheme, e.g., by
combining with l-diversity, we enable the nodes in a group to

be associated with at least l different attributes. Furthermore,
the average node degree is 22 in the evaluation. However,
in many social networks, the average node degree is much
higher which may make the proposed anonymization scheme
inefficient. Therefore, we will conduct more experiments on
larger social graphs with higher node density.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under grant numbers 61272151
and 61073037, the Ministry of Education Fund for Doc-
toral Disciplines in Higher Education under grant number
20110162110043; and by NSF grants ECCS 1231461, ECCS
1128209, CNS 1065444, CCF 1028167, and CNS 0948184.

REFERENCES

[1] L. Getoor and C. Diehl, “Link mining: A survey,” ACM SIGKDD
Explorations Newsletter, 2005.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, 2010.

[3] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services,” in Proceedings
of ACM CCS, 2010.

[4] J. Gao, J. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang, “Neighborhood-
privacy protected shortest distance computing in cloud,” in Proc. of ACM
COMAD, 2011.

[5] B. Zhou, J. Pei, and W. Luk, “A brief survey on anonymization
techniques for privacy preserving publishing of social network data,”
ACM SIGKDD Explorations Newsletter, 2008.

[6] J. Potterat, L. Phillips-Plummer, S. Muth, R. Rothenberg, D. Woodhouse,
T. Maldonado-Long, H. Zimmerman, and J. Muth, “Risk network
structure in the early epidemic phase of HIV transmission in Colorado
springs,” Sexually Transmitted Infections, 2002.

[7] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in Proc. of IEEE ICDE, 2008.

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[9] M. Diligenti, M. Gori, and M. Maggini, “A unified probabilistic frame-
work for web page scoring systems,” IEEE Transactions on Knowledge
and Data Engineering, 2004.

[10] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relation-
ships in graph data,” in Proc. of ACM PinKDD, 2007.

[11] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the
degree distribution of private networks,” in Proc. of IEEE ICDM, 2009.

[12] M. Gori, M. Maggini, and L. Sarti, “Exact and approximate graph
matching using random walks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2005.

[13] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in
Proc. of ACM SIGMOD, 2008.

[14] J. Scott, “Social network analysis,” Sociology, 1988.
[15] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing

social networks,” Tech. Rep., 2007.
[16] A. Barabási and R. Albert, “Emergence of scaling in random networks,”

Science, 1999.
[17] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganog-
raphy,” in Proc. of ACM WWW, 2007.

[18] A. Campan and T. Truta, “A clustering approach for data and structural
anonymity in social networks,” in Proc. of PinKDD, 2008.

[19] L. Zou, L. Chen, and M. Özsu, “K-automorphism: A general framework
for privacy preserving network publication,” in Proc. of the VLDB, 2009.

[20] J. Cheng, A. Fu, and J. Liu, “K-isomorphism: privacy preserving net-
work publication against structural attacks,” in Proc. of ACM COMAD,
2010.

[21] X. Ying and X. Wu, “On link privacy in randomizing social networks,”
Knowledge and Information Systems, 2011.

[22] C. Tai, P. Yu, D. Yang, and M. Chen, “Privacy-preserving social network
publication against friendship attacks,” in Proc. of ACM KDD, 2011.

