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NOTE ON HADWIGER–FINSLER’S INEQUALITIES

D.Ş. MARINESCU, M. MONEA, M. OPINCARIU AND M. STROE

(Communicated by S. Segura Gomis)

Abstract. In this article we present a new proof of the Finsler-Hadwiger inequality, we prove
some consequences and one Finsler-Hadwiger type inequality. Finally we use the geometric
inequalities that we obtain in this paper to present some algebraic applications.

1. Introduction

In [6] and [8], Finsler and Hadwiger proved the following inequality:

In any triangle ABC, the following inequalities hold:

4S
√

3+Q � a2 +b2 + c2 � 4S
√

3+3Q, (1)

where S is the triangle area and Q = (a−b)2 +(b− c)2 +(c−a)2 . Equality occurs
when triangle ABC is equilateral.

This result can be used to prove other known inequalities. We shall present a few
such results and a new proof of the inequality (1). Finally we show another Finsler-
Hadwiger type inequality and some algebraic applications.

2. Inequalities derived from Finsler-Hadwiger inequality

For next results, we shall consider a triangle with side lengths a,b,c and area S .

2.1. WEITZENBÖCK’S INEQUALITY (1919). [11] In any triangle we have in-
equality

a2 +b2 + c2 � 4S
√

3.

Proof. We have a2 +b2 + c2 � 4S
√

3+Q � 4S
√

3.

2.2. GORDON’S INEQUALITY(1966). [7] In any triangle we have inequality

ab+bc+ ca� 4S
√

3.

Proof. a2 + b2 + c2 � 4S
√

3 + Q is equivalent to ab + bc + ca � 4S
√

3 + a2 +
b2 + c2−ab−bc− ca . Using algebraic inequality a2 +b2 + c2−ab−bc− ca � 0, we
conclude that ab+bc+ ca� 4S

√
3.
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2.3. TSINTSIFAS’S INEQUALITY(1986). [10] Let m,n, p be real numbers with
m+n, n+ p and p+m strictly positive. In any triangle we have

m
n+ p

a2 +
n

m+ p
b2 +

p
m+n

c2 � 2S
√

3.

Proof. Inequality in the statement is equivalent with

(m+n+ p)
(

a2

n+ p
+

b2

m+ p
+

c2

m+n

)
� 2S

√
3+a2 +b2 + c2. (2)

But
a2

n+ p
+

b2

m+ p
+

c2

m+n
� (a+b+ c)2

2(m+n+ p)

from Cauchy inequality. Also

a2 +b2 + c2−Q � 4S
√

3

is equivalent with

a2 +b2 + c2 +2ab+2bc+2ac� 4S
√

3+2a2 +2b2 +2c2.

Then

(m+n+ p)
(

a2

n+ p
+

b2

m+ p
+

c2

m+n

)
� (m+n+ p)

(a+b+ c)2

2(m+n+ p)

=
(a+b+ c)2

2
� 2S

√
3+a2 +b2 + c2,

which conclude (2).

2.4. CURRY’S INEQUALITY(1966). [3] In any triangle, we have

9abc
a+b+ c

� 4S
√

3.

Proof. For the first, we prove algebraic inequality

9xyz � (x+ y+ z)
(
2xy+2yz+2zx− x2− y2− z2) (3)

for all x,y,z > 0
This is equivalent with

9xyz � x2y+ x2z+ xy2 + y2z+ xz2 + yz2 +6xyz− x3− y3− z3

⇔ x3 + y3 + z3 +3xyz � x2y+ x2z+ xy2 + y2z+ xz2 + yz2

⇔ (
x3 − x2y− x2z+ xyz

)
+

(
y3− y2x− y2z+ xyz

)
+

(
z3 − z2y− z2x+ xyz

)
� 0

⇔ x(x− y) (x− z)+ y(y− x) (y− z)+ z(z− x) (z− y) � 0
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which is true from Schur inequality.
Now, (3) is equivalent with

9xyz
x+ y+ z

� 2xy+2yz+2zx− x2− y2− z2

⇔ 9xyz
x+ y+ z

� x2 + y2 + z2− (x− y)2− (y− z)2− (z− x)2 .

This result and Finsler-Hadwiger inequality solve the problem.

2.5. HADWIGER’S INEQUALITY(1939). [8] In any triangle the following in-
equalities hold

12S
√

3+2Q � (a+b+ c)2 � 12S
√

3+8Q.

Proof. It is an equivalent form of (1).

3. Proof of Finsler-Hadwiger’s inequalities

Proof. If a,b,c are the side lengths of triangle ABC , then there exist three real
numbers x,y,z > 0 so that a = y+ z , b = x+ z and c = x+ y . With this notations, we
have

S =
√

xyz(x+ y+ z).

Inequality (1) is equivalent with

a2 +b2 + c2−3Q � 4S
√

3 � a2 +b2 + c2−Q.

Then
a2 +b2 + c2−3Q � 4S

√
3

⇔ (y+ z)2+(x+ z)2+(x+ y)2−3(x− y)2−3(y− z)2−3(z− x)2 � 4
√

3xyz(x+ y+ z)

⇔ 2xy+2yz+2zx− x2− y2− z2 �
√

3xyz(x+ y+ z). (4)

But

2xy+2yz+2zx− x2− y2− z2 � 9xyz
x+ y+ z

from (3) and
9xyz

x+ y+ z
�

√
3xyz(x+ y+ z)

because is equivalent with
27xyz � (x+ y+ z)3

⇔ 3
√

xyz � x+ y+ z
3

which is Arithmetic and Geometric mean inequality. Thus, (4) is valid.
Next

4S
√

3 � a2 +b2 + c2−Q
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⇔ 4
√

3xyz(x+ y+ z) � (y+ z)2 +(x+ z)2 +(x+ y)2− (x− y)2 − (y− z)2− (z− x)2

⇔
√

3xyz(x+ y+ z) � xy+ yz+ zx

⇔ 3xyz(x+ y+ z) � (xy+ yz+ zx)2

⇔ (xy) (xz)+ (xy) (yz)+ (xz)(yz) � (xy)2 +(xz)2 +(zy)2

which is true. Now, the proof is complete.

THEOREM 3.1. Let u,v ∈ R . If the inequalities

4S
√

3+uQ � a2 +b2 + c2 � 4S
√

3+ vQ (5)

are true for any triangle, then u � 1 and v � 3 .

Proof. Let triangle ABC with a = b = 1 and c = t ∈ (0,2) . Then

4S
√

3+uQ � a2 +b2 + c2

⇒ t
√

3(4− t2)+2u(1− t)2 � 2+ t2.

With condition t → 0 we obtain 2u � 2, so u � 1.
From

a2 +b2 + c2 � 4S
√

3+ vQ,

we obtain

2+ t2 � t
√

3(4− t2)+2v(1− t)2 .

Condition t → 2 goes to 6 � 2v , so 3 � v .
Given the Finsler-Hadwiger inequality, we deduce that the maximum value of

number u from (5) is 1 and the minimum value of v is 3 and these constants are best
possible.

4. A Finsler-Hadwiger type inequality

Let the triangle ABC and set M = (|a−b|+ |b− c|+ |c−a|)2 . Then:

THEOREM 4.1. In any triangle, we have:

4S
√

3+
1
2
M � a2 +b2 + c2 � 4S

√
3+

3
2
M. (6)

Proof. In this proof we consider a � b � c . In these conditions we have M =
4(a− c)2 . For inequality 4S

√
3+ 1

2M � a2 + b2 + c2 , let x,y,z > 0 with a = y + z ,
b = x+ z and c = x+ y . Then inequality is equivalent with

4
√

3xyz(x+ y+ z)+2(x− z)2 � 2x2 +2y2 +2z2 +2xy+2xz+2yz

⇔ 2
√

3xyz(x+ y+ z) � y2 + xy+ yz+3xz
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⇔ 2
√

3xz · y(x+ y+ z) � y(x+ y+ z)+3xz,

which is true because it is the Arithmetic and Geometric mean inequality.
For a2 +b2 + c2 � 4S

√
3+ 3

2M we prove the first inequality

(a−b)2 +(b− c)2 +(c−a)2 � 1
2
M. (7)

This is equivalent with

2a2 +2b2 +2c2−2ab−2bc−2ca� 2(a− c)2

⇔ b2−ab−bc+ac� 0

⇔ (b−a)(b− c) � 0,

which is true because a � b � c. Then

a2 +b2 + c2 � 4S
√

3+3
[
(a−b)2 +(b− c)2 +(c−a)2

]
� 4S

√
3+

3
2
M

which concludes the proof.

THEOREM 4.2. Let u,v ∈ R . If the inequalities

4S
√

3+uM � a2 +b2 + c2 � 4S
√

3+ vM (8)

hold for any triangle then u � 1
2 and v � 3

2 .

Proof. Let the triangle ABC with a = b = 1 and c = t ∈ (0,2) . Then

4S
√

3+uM � a2 +b2 + c2

⇒ t
√

3(4− t2)+4u(1− t)2 � 2+ t2.

With t → 0, we obtain 4u � 2, so u � 1
2 .

Next
a2 +b2 + c2 � 4S

√
3+ vM

⇒ 2+ t2 � t
√

3(4− t2)+4v(1− t)2 .

Condition t → 2 goes to 6 � 4v and v � 3
2 .

Given the inequality (6), we deduce that the maximum value of number u from
(8) is 1

2 and the minimum value of v is 3
2 , so this constants are best possible.

REMARK 1. Given the Finsler-Hadwiger’s inequality, inequalities of proposition
4.1 and relation (7), we obtain following sequence of inequalities valid for any triangle,

4S
√

3+Q � 4S
√

3+
1
2
M � a2 +b2 + c2 � 4S

√
3+3Q � 4S

√
3+

3
2
M,

where Q = (a−b)2 +(b− c)2 +(c−a)2 and M = (|a−b|+ |b− c|+ |c−a|)2 .

REMARK 2. We have equality in (1) if and only if triangle is equilateral. But
the inequalities from 2.1, 2.2, 2.4 and 2.5 are consequences of the Finsler-Hadwiger’s
inequality and equality holds in same conditions. Supplementary, the equality from 2.3
holds with the conditions m = n = p . In same mode, the inequality from Theorem 4.1
is equality if and only if the triangle is equilateral.
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5. Applications

Applications that we present below are algebraic inequalities. With the results
included in the next lemmas, we can use some geometric arguments to prove these
inequalities. These arguments are based on the existence of a triangle with given side
lengths and on the inequalities for a triangle.

LEMMA 5.1. For all real numbers x,y,z > 0, the following inequality holds
√

x+ y <
√

x+ z+
√

y+ z.

Proof.
√

x+ y <
√

x+ z+
√

y+ z
⇔ x+ y < x+ z+2

√
(x+ z)(y+ z)+ y+ z

⇔ 0 < 2z+2
√

(x+ z) (y+ z) which is true.

LEMMA 5.2. For all real numbers x,y,z > 0 , there exists a triangle with side
lengths

√
x+ y ,

√
x+ z ,

√
y+ z whose area is

S =
1
2

√
xy+ xz+ yz.

Proof. Lemma 5.1 ensures the existence of a triangle. Its area is

S =
1
2

√
x+ y

√
x+ zsinα

where α is the angle of the sides of length
√

x+ y and
√

x+ z . Then

cosα =
x+ y+ x+ z− y− z

2
√

(x+ y) (x+ z)
=

x√
(x+ y)(x+ z)

and

sinα =
√

1− cos2 α =
√

xy+ xz+ yz√
(x+ y)(x+ z)

.

Now, we obtain

S =
1
2

√
xy+ xz+ yz.

APPLICATIONS 1. For all real numbers x,y,z > 0, the following inequality holds

∑
cyclic

√
(x+ y)(x+ z) � x+ y+ z+

√
3(xy+ xz+ yz).

Proof. We use 5.2 and inequality (1) for the triangle with side lengths
√

x+ y ,√
x+ z and

√
y+ z . We obtain

∑
cyclic

(√
x+ y

)2 − ∑
cyclic

(√
x+ y−√

x+ z
)2 � 4

√
3
1
2

√
xy+ xz+ yz

and
2 ∑

cyclic

√
(x+ y)(x+ z)−2(x+ y+ z) � 2

√
3(xy+ xz+ yz)

and this concludes the proof.
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APPLICATIONS 2. For all real numbers x,y,z > 0 , the following inequality holds

3 ∑
cyclic

√
(x+ y) (x+ z) � 5x+5y+5z+

√
3(xy+ xz+ yz).

Proof. We use Lemma 5.2 and other part of inequality (1) for the triangle with
side lengths

√
x+ y ,

√
x+ z and

√
y+ z . We obtain

∑
cyclic

(√
x+ y

)2−3 ∑
cyclic

(√
x+ y−√

x+ z
)2 � 4

√
3
1
2

√
xy+ xz+ yz

which is equivalent with

6 ∑
cyclic

√
(x+ y)(x+ z)−10(x+ y+ z) � 2

√
3(xy+ xz+ yz)

and this concludes the proof.

APPLICATIONS 3. (T. Andreescu, G. Dospinescu) [1] For all real numbers a,b,c >
0 and x,y,z > 0 , the following inequality holds

a
b+ c

(x+ y)+
b

a+ c
(x+ z)+

c
a+b

(y+ z) �
√

3(xy+ xz+ yz).

Proof. We apply Lemma 5.2 and inequality from 2.3 for triangle with side lengths√
x+ y ,

√
x+ z and

√
y+ z .

APPLICATIONS 4. For all real numbers a,b,c > 0 , the following inequality holds

ab
a+ c
b+ c

+bc
b+a
c+a

+ac
b+ c
a+b

�
√

3abc(a+b+ c).

Proof. The inequality is equivalent with

a
b+ c

(ab+bc)+
b

a+ c
(ac+bc)+

c
a+b

(ab+ac) �
√

3(ab ·ac+ab ·bc+ac ·bc).

This is true by using the Lemma 5.2 for the real numbers ab,ac and bc and the in-
equality from 2.3.

APPLICATIONS 5. For all real numbers x,y,z > 0 satisfying x + y + z = 1 , the
following inequality holds

1
x

+
1
y

+
1
z

�
√

3
xyz

.

Proof. We have 1
x ,

1
y ,

1
z > 0, so numbers

√
1
x + 1

y ,
√

1
x + 1

z and
√

1
y + 1

z could be

the side lengths of a triangle. The area of this triangle is

1
2

√
1
xy

+
1
xz

+
1
yz

=
1
2

√
z+ y+ z

xyz
=

1
2
√

xyz
.
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Apply inequality from (2.1) and obtain

1
x

+
1
y

+
1
x

+
1
z

+
1
y

+
1
z

� 2

√
3

xyz

and this concludes the proof.
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