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Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the
changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other
neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imag-
ing (fMRI), or magnetoencephalography (MEG), since it can directly measure blood oxygenation level
changes related to neural activation with high temporal resolution. However, fNIRS signals are highly
corrupted by measurement noises and physiology-based systemic interference. Careful statistical analyses
are therefore required to extract neuronal activity-related signals from fNIRS data. In this paper, we provide
an extensive review of historical developments of statistical analyses of fNIRS signal, which include motion
artifact correction, short source-detector separation correction, principal component analysis (PCA)/independent
component analysis (ICA), false discovery rate (FDR), serially-correlated errors, as well as inference techniques
such as the standard t-test, F-test, analysis of variance (ANOVA), and statistical parameter mapping (SPM) frame-
work. In addition, to provide a unified viewof various existing inference techniques,we explain a linearmixed effect
model with restricted maximum likelihood (ReML) variance estimation, and show that most of the existing infer-
ence methods for fNIRS analysis can be derived as special cases. Some of the open issues in statistical analysis are
also described.

© 2013 Elsevier Inc. All rights reserved.
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Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive
method to measure brain activity by measuring the absorption of
the near-infrared light between 650 and 950 nm through the intact
skull (Villringer and Dirnafl, 1995). As the absorption spectra of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) are distinct in
this region, it is possible to determine the concentration changes
of HbO and HbR from diffusely scattered light measurement (Ferrari
et al., 2004; Jobsis, 1977; Kleinschmidt et al., 1996; Villringer et al.,
1993).

fNIRS has many advantages over other neuroimaging modalities.
For example, fNIRS can measure a wide range of functional contrast
such as HbO, HbR, and total hemoglobin (HbT). In contrast to blood-
oxygenation level-dependent (BOLD) response measured by func-
tional magnetic resonance imaging (fMRI), which is a nonlinear func-
tion of oxygen level and cerebral blood flow (Buxton et al., 2004), a
direct measurement of oxygen concentration in fNIRS can provide a
potential way to unveil the mechanism of complicated neurovascular
coupling (Tak et al., 2010, 2011; Yücel et al., 2012). Furthermore,
fNIRS has high temporal resolution that allows us to study the tempo-
ral behavior of the hemodynamic response to neural activation. Such
high temporal resolution is especially useful for functional connectiv-
ity analysis which has become increasingly important as a new brain
imaging paradigm (Hall et al., 2013; Homae et al., 2011; Kozel et al.,
2009; Lloyd-Fox et al., 2010; Medvedev et al., 2011; Mesquita et al.,
2010; Niu et al., 2012; Quaresima et al., 2012; Y. Zhang et al., 2010).
Other advantages of fNIRS include that it requires only a compact
measurement system and is robust to motion artifacts, which allow
brain studies during daily working, exercise, and rehabilitation
(Arenth et al., 2007; Ferrari et al., 2004; Hoshi, 2003; Irani et al.,
2007; Saitou et al., 2000).

However, fNIRS lacks anatomical information, making it difficult to
localize the brain area where the fNIRS signal originated (Ferrari et al.,
2004; Kleinschmidt et al., 1996; Lloyd-Fox et al., 2010; Villringer et al.,
1993).Moreover, fNIRS has poor spatial resolution and limited penetra-
tion depth due to the high level of light scattering within tissue (Ferrari
et al., 2004; Kleinschmidt et al., 1996; Lloyd-Fox et al., 2010; Villringer
et al., 1993). Another important limitation is that the fNIRS signal is
corrupted by measurement noise, motion artifacts, and physiological
noise arising from cardiac pulsation, respiration, and blood pressure
Mayer waves (Boas et al., 2004). Therefore, to improve the sensitivity
and spatial specificity of neuronal activity from fNIRS data, careful
statistical analysis is required (Ferrari et al., 2004; Koh et al., 2007;
Lloyd-Fox et al., 2010; Schroeter et al., 2002; Ye et al., 2009).

In the early ages of fNIRS studies, brain signal detection was usu-
ally attempted through visual inspection or simple thresholding
with some preprocessing steps (Benaron et al., 2000; Murata et al.,
2002). However, such heuristic approaches are prone to error, espe-
cially when the noise and interference levels increase, so more rigor-
ous statistical analyses were called for. Hence, various statistical
Please cite this article as: Tak, S., Ye, J.C., Statistical analysis of fNIRS da
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analysis methods such as t-test or analysis of variance (ANOVA)
have been applied (Germon et al., 1994; Hoshi et al., 2001, 2003;
Isobe et al., 2001; Kleinschmidt et al., 1996; Mehagnoul-Schipper et
al., 2002; Okamoto et al., 2004; Tsujimoto et al., 2004; Young et al.,
2000). These approaches often take average values during the task
period as data to avoid any assumption of the exact shape or timing
of the time course of changes in HbO and HbR in response to stimuli.

However, such an average sample-based statistical test also has lim-
itations in that it does not utilize the time course of data, which is quite
important in fNIRS data. Therefore, many investigators are interested in
understanding the fNIRS time course. The well-known and widely used
method of regression approach in this regard is the general linearmodel
(GLM) (Friston et al., 2011), which assumes that data can be represent-
ed as a linear combination of several sources (regressors). These several
sources consist of task-related regressors and non-task related so-called
nuisance regressors. Schroeter et al. (2004) were the first to apply the
GLM to analyze fNIRS data to overcome the uncertainty of the assumed
differential pathlength factor (DPF), and numerous authors have
employed GLM analysis for a variety of fNIRS experiments (Abdelnour
and Huppert, 2009; Custo et al., 2010; Koh et al., 2007; Minagawa-
Kawai et al., 2011; Plichta et al., 2006, 2007; Shimada and Hiraki,
2006; Singh and Dan, 2006; Ye et al., 2009). Another advantage of
GLM is that group analysis can be implemented relatively simply
using multi-level analysis, as investigated by many authors (Ciftci et
al., 2008; Okamoto et al., 2006; Plichta et al., 2006; Singh and Dan,
2006; Ye et al., 2009).

Having reviewed the historical developments of statistical analysis
briefly, in this paper we are interested in explaining these tools in
more detail in a self-contained manner so that fNIRS practitioners can
easily obtain the required information without searching through
manypapers and textbooks. In particular, rather than describing specific
statistical analysis, such as one sample t-test, paired t-test, ANOVA, GLM,
multi-level analysis, etc. with separate contexts, we show that all these
methods can be derived from a general mixed model with restricted
maximum likelihood (ReML) covariance estimation and hypothesis
testing. Even though most of these materials are not novel and can be
found in standard statistics textbooks, we believe that such a unified
and extensive review can help students understand the existing works
in a more organized way and provide them the opportunity to develop
their own statistical approaches for their specific problems.

In addition, we also provide an overview of the existing data-driven
approaches that have been investigated quite extensively to overcome
the limitations of the classical approaches, and in particular for the
new research area of functional brain connectivity using fNIRS (Hall
et al., 2012; Homae et al., 2011; Kozel et al., 2009; Lloyd-Fox et al.,
2010; Medvedev et al., 2011; Mesquita et al., 2010; Niu et al., 2012;
Quaresima et al., 2012; Y. Zhang et al., 2010).

While this paper is mainly to review the existing works, there are a
few novel contributions. In particular, a complete derivation of group
analysis using multi-level analysis is performed using linear mixed
effect model, which was not available before and will be included in a
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.neuroimage.2013.06.016
http://dx.doi.org/10.1016/j.neuroimage.2013.06.016


3S. Tak, J.C. Ye / NeuroImage xxx (2013) xxx–xxx
new release of NIRS-SPM toolbox (http://bisp.kaist.ac.kr/NIRS-SPM.
html).

This paper is organized as follows. The Imaging physics section
provides the basic physics for fNIRS measurement. Existing signal
processing approach for fNIRS statistical analysis is reviewed in the
Signal processing of fNIRS signals section. The Statistical inferences
for fNIRS signals section describes the mixed effect models and their
basic mathematical tools, and we describe how these tools can be
applied to fNIRS. Multiple comparison problems that are encountered
in fNIRS studies are discussed in The multiple comparison problem in
fNIRS section. The Functional connectivity analysis section reviews
fNIRS functional connectivity analysis, which is followed by the
Conclusion and outlooks section.

Imaging physics

Modified Beer–Lambert law

The modified Beer–Lambert law (Cope and Delpy, 1988), describing
optical attenuation in a highly scattering medium, allows us to quantify
the changes in the concentrations of HbO and HbR from the absorption
of near-infrared light. According to the modified Beer–Lambert law,
a change in optical density ΔOD can be described as

ΔOD rs; rd;λ; tð Þ ¼ − ln
Φ rs; rd;λ; tð Þ
Φo rs; rd;λð Þ ≃Δμa rs; rd;λ; tð ÞBL; ð1Þ

where rs is the source position, rd is the detector position,λ is the illumi-
nation length,Φ(rd,rs;λ,t) is the photon fluence at the detector position
rd at time t, generated by a source located at rs,Φ0(rs,rd;λ) is the incident
photon fluence, Δμa(rs,rd;λ,t) is the absorption coefficient variation, B is
a differential pathlength factor, and L is the distance between the source
and detector. Assuming that the dominant chromophores in tissue for
near-infrared wavelengths of 650 to 950 nm are HbO and HbR, the ab-
sorption coefficient variation is given by

Δμa rs; rd;λ; tð Þ ¼ �HbO λð ÞΔ HbO½ � rs; rd; tð Þ þ �HbR λð ÞΔ HbR½ � rs; rd; tð Þ; ð2Þ

where �HbO(λ) and �HbR(λ) are the extinction coefficients of HbO and
HbR at wavelength of λ, and [HbO](rs,rd;t) and [HbR](rs,rd;t) are the
concentration changes of HbO and HbR, respectively. By measuring
the optical density changes at two wavelengths λ1 and λ2, the concen-
tration changes of HbO and HbR can then be determined by the follow-
ing matrix formulation:

ΔOD rs; rd;λ1; tð Þ
ΔOD rs; rd;λ2; tð Þ

� �
¼ 1

BL
�HbO λ1ð Þ
�HbO λ2ð Þ

�HbR λ1ð Þ
�HbR λ2ð Þ

� �−1 Δ HbO½ � rs; rd; tð Þ
Δ HbR½ � rs; rd; tð Þ

� �
:

ð3Þ

Tomographic mapping

Although the modified Beer–Lambert law (Cope and Delpy, 1988)
has been used extensively in fNIRS studies, this is a first-order ap-
proximation of diffuse light scattering. As a more rigorous approach,
the optical density changes in a scattering medium can be derived
from the photon diffusion equation using the Rytov approximation
(Arridge, 1999; Boas et al., 2002, 2004; Ye et al., 2009):

ΔOD rs; rd;λ; tð Þ
¼ − ln

Φ rs; rd;λ; tð Þ
Φ0 rs; rd;λ; tð Þ≈∫Φ0 rs; r;λð ÞΦ0 r; rd;λð Þ

Φ0 rs; rd;λð Þ Δμa r;λ; tð Þdr: ð4Þ

Using Eq. (2), for given wavelength λ1 and λ2, Eq. (4) can be repre-
sented by

ΔOD rs; rd;λ1; tð Þ
ΔOD rs; rd;λ2; tð Þ

� �
≃A⋅

Δ HbO½ � r; tð Þ
Δ HbR½ � r; tð Þ

� �
; ð5Þ
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where the operator A is given by

A≡
�HbO λ1ð Þ∫drΦ0 r; rd;λ1ð ÞΦ0 rs; r;λ1ð Þ

Φ0 rs; rd;λ1ð Þ
�HbO λ2ð Þ∫drΦ0 r; rd;λ2ð ÞΦ0 rs; r;λ2ð Þ

Φ0 rs; rd;λ2ð Þ

�HbR λ1ð Þ∫drΦ0 r; rd;λ1ð ÞΦ0 rs; r;λ1ð Þ
Φ0 rs; rd;λ1ð Þ

�HbR λ2ð Þ∫drΦ0 r; rd;λ2ð ÞΦ0 rs; r;λ2ð Þ
Φ0 rs; rd;λ2ð Þ

2664
3775:

The concentration changes of HbO and HbR at voxel location r can
then be determined by

Δ HbO½ � rs; tð Þ
Δ HbR½ � rs; tð Þ

� �
¼ A−1⋅ ΔOD rs; rd;λ1; tð Þ

ΔOD rs; rd;λ2; tð Þ
� �

: ð6Þ

The inverse problem is highly nonlinear, somany investigators have
proposed a variety of regularization methods (Boas et al., 2001, 2004;
Culver et al., 2003a, 2003b; Custo et al., 2010; Lee et al., 2011; Pogue
et al., 1999; Ye et al., 1999, 2001). In particular, if we confine the recon-
struction volume to the brain surface, then the inverse mapping A−1

provides an interpolation kernel for topographic mapping, as described
in Ye et al. (2009). In both cases, the location of the channels and the op-
tical properties of the brain are irregular, so the resulting interpolation
kernel is not spatially invariant, providing inhomogeneous noise statis-
tics (Ye et al., 2009).

Signal processing of fNIRS signals

Considering the back-reflection geometry of fNIRS measurements,
the fNIRS signal reflects the hemoglobin oxygenation changes in the
gray matter as well as the physiology-based systemic confounds in
the superficial layers of the head, including the skin and the skull
(Gagnon et al., 2012). These confounds need to be regressed out before
the statistical analysis of fNIRS data, so this section reviews advanced
signal processing techniques to deal with this issue.

Motion artifact correction

Although fNIRS is less susceptible to motion artifacts than other
neuroimaging modalities (Lloyd-Fox et al., 2010), head movement
will cause a shift in the optical coupling between the fiber and the
skin. These motion artifacts typically result in rapid changes (such
as sharp spikes), and increased magnitude in the measured fNIRS sig-
nal, compared with tissue hemodynamics-related changes. Moreover,
the motion artifact may shift the baseline values of fNIRS measure-
ments (Cooper et al., 2012; Robertson et al., 2010).

Numerous approaches have been developed for reducing the motion
artifacts from the fNIRS measurements, and the motion correction
methods can be divided into two main categories: (i) approaches
which use an additional sensor to detect themotion artifact and (ii) signal
processing methods to identify and remove the motion artifact from the
fNIRS data without an external measure of motion. In the first category,
Blasi et al. (2010) used an accelerometer to measure the signal highly
sensitive to motion, and identified the motion event based on the stan-
dard deviation. Motion artifacts were then removed from the fNIRS
data using the recursive least squares (RLS) adaptive filter. Virtanen et
al. (2011) estimated the baselinemotion artifacts using an accelerometer
and corrected those artifacts by scaling the amplitude of fNIRS signal.
Robertson et al. (2010) used co-located channels (source–detector pairs
on the same location) to identify themotion artifacts in the fNIRS signals,
assuming that the detector on the same source mostly measure
motion-related signal, and may not reflect the hemodynamic response.
In the removal of motion artifacts, several methodswere then compared,
including two-input RLS adaptive filtering, wavelet-based filtering, inde-
pendent component analysis (ICA), and multiple channel linear regres-
sion. They suggested that multiple-channel regression and ICA are the
most promising methods to reduce motion artifacts in fNIRS on the
basis of increased signal-to-noise ratio (SNR). We will describe the
ICA-based motion correction method in more detail.
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/
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ICA (Comon, 1994) is a technique that decomposes a linear mix-
ture of signals Y into a set of source signals S, which are maximally
statistically independent: Y = AS, where mixing matrix A specifies
the contribution of source S to measured signal Y. Source S is then
estimated by using a unmixing matrix W such that Ŝ ¼ WY , where
W = A−1 is estimated by several methods, including maximum like-
lihood estimation (Beckmann and Smith, 2004). In the ICA-based mo-
tion correction method (Robertson et al., 2010), the motion-specific
component q in source matrix S was identified and removed if its
contribution to the co-located fNIRS channels was greater than the
mean contribution of q to all channels.

The second category comprises methods for motion artifact re-
moval without requiring additional sensors, and the methods are
based on Wiener filtering (Izzetoglu et al., 2005), Kalman filtering
(Izzetoglu et al., 2010), correlation based signal improvement (Cui
et al., 2010), wavelet-based filtering (Molavi and Dumont, 2012;
Sato et al., 2006), and moving standard deviation with spline interpo-
lation (Scholkmann et al., 2010).More specifically, Cui et al. (2010) found
that head movement causes the correlation between oxy-hemoglobin
and deoxy-hemoglobin to become more positive, although both
signals are generally negatively correlated. By maximizing the nega-
tive correlation between HbO and HbR, spikes were removed and
contrast-to-noise ratio was significantly improved. Wavelet-based
filtering effectively isolated motion artifacts in the form of abrupt
signal changes (e.g., sharp spikes) from the fNIRS data, because the
wavelet transform provides good localization of rapid signal changes
(Molavi and Dumont, 2012; Sato et al., 2006). Scholkmann et
al. (2010) segmented fNIRS signals into motion artifacts and
hemodynamic-related signal by calculating themoving standard devia-
tion, and subtracted the spline interpolation of motion-related seg-
ments from the fNIRS signals. By using the simulated hemodynamic
response function (HRF), Cooper et al. (2012) compared the perfor-
mance of the four motion correction methods, including Kalman fil-
tering (Izzetoglu et al., 2010), wavelet-based filtering (Molavi and
Dumont, 2012), spline interpolation (Scholkmann et al., 2010), and
principal component analysis (Wilcox et al., 2008, 2010; Zhang
et al., 2005). They showed that spline interpolation produces the
largest reduction in mean-squared error (55%) of the recovered
HRF and wavelet-based filtering produces the highest increase in
contrast-to-noise ratio (39%), compared with no motion correction
results.

Short-distance correction

fNIRS signals can be significantly contaminated with global interfer-
ence arising from superficial layers of the scalp, as the back-reflection
measurement of fNIRS makes it more sensitive to the superficial layers
(Gagnon et al., 2011). Short source–detector separation channels is
most sensitive to the superficial layers, and less reflects the neuronal
activity-related signals. Exploiting the short source–detector separation
channels, numerous noise removal approaches have been developed
(Gagnon et al., 2011, 2012, 2013; Saager and Berger, 2005, 2008;
Saager et al., 2011; Umeyama and Yamada, 2009; Yamada et al., 2009;
Zhang et al., 2007, 2009). Umeyama and Yamada (2009) and Yamada
et al. (2009) corrected the scattering and absorption changes arising
from superficial layers using relatively short source–detector channels
(2 cm) and Monte Carlo simulations of layered media. In addition, to
remove the superficial contribution from the fNIRS signals measured
by long source–detector separation channels (generally 3 cm), the
weighting factors for the signal of short source–detector separation
channels in the linear model were estimated using least-squares mini-
mization (Saager and Berger, 2005, 2008) and adaptive filtering
techniques (Zhang et al., 2007, 2009). For visual stimulation responses,
significant improvement of contrast-to-noise ratio and signal-to-noise
ratio in HbO signals was achieved after least-squares minimization-
based noise removal (Saager et al., 2011) and adaptive filtering
Please cite this article as: Tak, S., Ye, J.C., Statistical analysis of fNIRS da
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(Zhang et al., 2009). In more recent studies by Gagnon et al. (2011,
2012, 2013), state-space modeling with Kalman filter estimation was
developed and optimal locations of short source–detector channels
were proposed for recovering the hemodynamic responses with signif-
icant reduction of superficial contamination. We will describe the
state-space modeling with Kalman filter estimation in more detail.

The fNIRS signal in the long source–detector separation channel
yLS was modeled by a linear combination of the signal in the short
source–detector channel ySS and the neuronal activity-related re-
sponse yb (Gagnon et al., 2011):

yLS n½ � ¼ yb n½ � þ aSSySS; ð7Þ

where

yb n½ � ¼
X∞
−∞

h k½ �μ n−k½ �; h n½ � ¼
XNw

i¼1

wibi n½ �: ð8Þ

Here, aSS denotes theweights for the superficial contribution, h[n] de-
note the hemodynamic response, h[n] wasmodeled by a linear combina-
tion of normalized Gaussian functions bi[n],Nw is the number of Gaussian
functions, and wi is the weights for the Gaussian functions. The weights
used to model the hemodynamic response wi and the weight used to
model the superficial signal aSS were simultaneously estimated by using
the Kalman filter followed by the Rauch–Tung–Striebel smoother. The
hemodynamic response ĥ n½ � with reduction of superficial contamina-
tion was then reconstructed using estimated weights wi and temporal
basis function bi[n] in Eq. (8). These superficial contamination removal
approaches, based on short source–detector separation channel
and Kalman filtering, significantly improved the recovery of HbO and
HbR, compared with other approaches (such as adaptive filtering,
least-squares minimum noise removal, and the conventional GLM
technique). Gagnon et al. (2012) suggested that the distance between
short separation channels and the standard fNIRS channels should be
less than 1.5 cm, due to inhomogeneities of superficial contamination
across the surface of scalp. In addition, Gagnon et al. (2013) showed
further improvement of the performance of Kalman filtering in reduc-
tion of superficial contamination, when using two short separation
measurements, one located close to the source and one located close
to the detector (noise reduction of 59% and 47% for HbO and HbR, com-
pared with the conventional GLM method without short separation
measurement).

PCA and ICA for skin blood flow removal

Data-driven approaches, including principal component analysis
(PCA) (Virtanen et al., 2009; Wilcox et al., 2008, 2010; Zhang et al.,
2005) and temporal ICA (Akgül et al., 2006; Katura et al., 2008; Kohno
et al., 2007; Markham et al., 2009; Patel et al., 2011), have been applied
to the fNIRS data, for separating the component of hemodynamic
response fromunwanted sources. PCA and ICAmethods use an assump-
tion of orthogonality and statistical independence between compo-
nents, to decompose the signals, respectively.

Zhang et al. (2005) applied PCA to the baseline of fNIRS signal, for
identifying the dominant spatial eigenvectors of systemic interference.
They assumed that the baseline signal primarily contains spatial pat-
terns of global interference, and the corresponding spatial component
is more global with higher energy. The spatial filtering was then
performed by projecting the stimulus fNIRS data onto the orthogonal
subspace of identified spatial eigenvectors. The results showedmore lo-
calized fNIRS response with improved contrast-to-noise ratio. Kohno et
al. (2007) used temporal ICA to remove the global physiological noise
from fNIRS data. Comparing the mixingmatrix which specifies the con-
tribution of ICA components to measured fNIRS signal, they identified
the most spatially uniform component, and confirmed that the corre-
sponding component signal is significantly correlated with skin blood
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.neuroimage.2013.06.016
http://dx.doi.org/10.1016/j.neuroimage.2013.06.016


5S. Tak, J.C. Ye / NeuroImage xxx (2013) xxx–xxx
flowmeasured with the laser Doppler tissue blood flowmeter. Without
noise components, a more localized activation map was reconstructed.
Temporal ICA was also used to extract the cleaned hemodynamic
response component by comparing the correlation with the canonical
hemodynamic time courses (Akgül et al., 2006; Markham et al., 2009)
and reproducibility of the component over repeated trials (Katura et
al., 2008; Patel et al., 2011).

Removal of baseline fluctuation

A wavelet-based detrending algorithm was used to decompose
fNIRS measurements into global trends, hemodynamic signals, and
uncorrelated noise at distinct scales (Jang et al., 2009; Lina et al.,
2010). The global trendwasmodeled as a signal restricted to a subspace
spanned by coarse scale wavelets, and its contribution was determined
by the maximum likelihood estimates of the GLM framework.

More specifically, the global trend is described using a wavelet basis,
and the wavelet coefficients of global trends and the signal strength of
predicted hemodynamic response were estimated using the maximum
likelihood estimation within a GLM framework. In order to determine
the number of wavelet coefficients that optimally describes the global
trends, the minimum description length (MDL) principle was employed.
By minimizing the MDL cost function, which consists of goodness of
fit and concision of the model, we can estimate the optimal number of
wavelet coefficients.

The wavelet detrending method has several advantages over the
conventional high-pass filtering approaches. As the frequencies of
global trends and hemodynamic responses can be overlapped, a
non-negligible amount of the hemodynamic signal can be filtered
out. However, the wavelet-based detrending method includes the
predicted hemodynamic response in the least-square estimation pro-
cess. Hence, the canonical hemodynamic time series is fully utilized in
the estimation process, and the algorithm is more robust. In addition,
the wavelet-based approach is more effective in removing relatively
fast-varying trends due to the optimality of the wavelet transform
in describing the transient changes of fast varying signals.
a

d

Fig. 1. Optimum time lag map between BOLD response and fNIRS regressor are shown in
area and (e) purple circle area are described, and the z-values with respect to time shift of fN
as follows: (1) GLM analysis of BOLD response was performed, using NIRS signals shifted in
for each voxel was calculated from the concatenated z-statistic maps. The value of time l
response between that voxel location and the site where the fNIRS data were recorded in t
Figure courtesy of Tong et al. (2011a).
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Partitioning of physiological noise signals

Rather than just removing these confounds as artifacts, Tong et al.
(Frederick et al., 2012; Tong and Frederick, 2010; Tong et al., 2011b)
conducted a series of innovative experiments to utilize these confounds.
In Tong and Frederick (2010), to elucidate the physiological origin of
low-frequency oscillations of BOLD responses, they employed simulta-
neous recording of fNIRS and fMRI. Specifically, using the low frequency
oscillations of fNIRS signals measured over the right prefrontal area as a
regressor, they applied the GLM analysis to the BOLD signal. Experi-
mental results showed that the contribution of low-frequency oscilla-
tions of fNIRS to BOLD signal temporally follows the circulation of
blood through the brain, which suggests that one of the major sources
of low-frequency oscillationsmight be the fluctuations in blood and he-
moglobin oxygenation at a global circulatory system level. In Frederick
et al. (2012), to investigate the contribution of various physiological
sources to the BOLD response, they proposed a method to extract a
time-series of low-frequency oscillation, respiration, and cardiac pulsa-
tion from the fNIRS signals, and then visualize its spatio-temporal acti-
vation pattern. Experimental results suggest that the highly correlated
areas between the fNIRS and BOLD signals in the low-frequency oscilla-
tion band overlap the regions of the default mode network, which con-
tains neuronal activity. However, the dynamic evolution of these
activations indicates that at least some part of the low frequency oscil-
lations detected by both modalities is closely correlated with cerebral
blood circulation, not with neuronal activity. In addition, a highly
aliased heartbeat signal existed in the BOLD signal at voxels located
mainly in and around the arteries and large veins (see Fig. 1).

Statistical inferences for fNIRS signals

After the aforementioned signal processing step, statistical infer-
ence are usually performed to detect brain activation.

In the early ages of fNIRS studies such as in Murata et al. (2002), the
authors simply calculated the concentration changes of hemoglobin oxy-
genation during the task period and showed the time-series of cerebral
b

e

c

f

(a) and (d). The BOLD signal and time-shifted regressor on a voxel of (b) green circle
IRS regressors are plotted on (c) and (f), respectively. The time lag map was calculated
a range of −14.4 to 7.2 s as a regressor, and (2) the time index of the maximum z value
ag map at each voxel represents relative arrival times of the systemic hemodynamic
he prefrontal area.
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oxygenation changes for visual inspection. Benaron et al. (2000) detected
increases in hemoglobin oxygenation (HbO / (HbR + HbO)) and hemo-
globin volume in the motor cortex during a finger tapping task of a
healthy subject after subtracting a resting-state signal. Then, increases
in hemoglobin oxygenation greater than 2 SD (standard deviation)
from the mean oxygenation baseline were selected as an indicator of
local activation. However, such heuristic approaches are prone to error,
especiallywhen thenoise and interference level increases. Hence, various
statistical analysis methods have been applied. For example, simple
statistics such as the t-test can be used to test the difference of
means in fNIRS experiments (Germon et al., 1994, 1999; Hoshi
et al., 2003; Matsuo et al., 2003; Schroeter et al., 2002). In addition, a
paired t-test was performed to statistically compare the activation
level between different conditions (Aldrich et al., 1994; Hoshi et al.,
2001; Isobe et al., 2001; Kennan et al., 2002; Kim et al., 2009;
Shibuya-tayoshi et al., 2007; Tachtsidis et al., 2004; Tsujimoto
et al., 2004; Young et al., 2000).

Note that a two sample t-test corresponds to one-way ANOVA that
compares the condition differences with respect to condition vari-
ance. A more general class of statistical tests using multi-way ANOVA
has also been employed for fNIRS studies (Arenth et al., 2007; Bartocci
et al., 2000; Fallgatter and Strik, 1998, 2000; Folley and Park, 2005;
Germon et al., 1994; Herrmann et al., 2003, 2004; Hoshi, 2003; Irani
et al., 2007; Kameyama et al., 2006; Kleinschmidt et al., 1996; Matsuo
et al., 2002; Mehagnoul-Schipper et al., 2002; Okamoto et al., 2004;
Saitou et al., 2000; Suto et al., 2004; Taga et al., 2003; Villringer et al.,
19981993). These approaches often take average values during the
task period as data to avoid any assumption of the exact shape or
timing of the time course of changes in HbO and HbR in response
to the stimuli.

Recall that the time course in fNIRS is directly related to the
hemodynamic response, but in the aforementioned simple statistics,
such information is lost. Therefore, many investigators were interested
in understanding the fNIRS time course, for example, to find the rela-
tionship between the fMRI and fNIRS time course data. To deal with
this, correlation analysis has been employed (Huppert et al., 2006;
Siegel et al., 2003; Strangman et al., 2002).

While these correlation analyses were successful in revealing the
correlation between fMRI and fNIRS time series, it is often difficult
to explain magnitude differences and task-unrelated variations in
the fNIRS stand-alone test. Fourier analysis is another simple way
of comparing time course data (Schroeter et al., 2004; White et al.,
2009).

This analysis assumes that any task should have maximum
power at the task frequency. So if we find a peak at this frequency,
we can assert that this signal correlates with task. This concept
is somewhat equivalent to correlation analysis in the frequency
domain and can also be regarded as a kind of GLM if we use sine
and cosine functions as regressors. For example, Schroeter et al.
(2004) proposed spatially resolved spectral analysis to characterize
the coherence and phase shift of the hemodynamic response. Simi-
lar spectral analysis techniques have been successfully employed
for high resolution retinotopic mapping of the adult human visual
cortex with high-density diffuse optical tomography (Zeff et al.,
2007).

One of the main limitations of Fourier analysis is that it is often
difficult to account for the time course with non-periodic tasks
such as an event-related paradigm. Hence, researchers were inter-
ested in more advanced analysis methods that could overcome
aforementioned weaknesses. The GLM (Friston et al., 2011) as-
sumes that data can be represented as a linear combination of sev-
eral sources (regressors). Schroeter et al. (2004) were the first to
apply the general linear model to analyze the fNIRS data, and
numerous authors have employed GLM analysis for a variety of
fNIRS experiments (Abdelnour and Huppert, 2009; Custo et al.,
2010; Koh et al., 2007; Minagawa-Kawai et al., 2011; Plichta et al.,
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2006, 2007; Shimada and Hiraki, 2006; Singh and Dan, 2006; Ye et
al., 2009).

Inspired by the success of GLM as well as the standard sample-
wise statistical testing, Huppert et al. (2009) introduced the first
public domain fNIRS analysis package, called HomER. HomER is a
MATLAB-based graphical user interface program for dealing with
fNIRS time-series and functional analysis techniques using the afore-
mentioned GLM and standard statistics. Moreover, HomER has vari-
ous signal processing techniques such as subspace-based filtering
for removing physiological, instrumental, and motion-artifact noise
from optical data, Koh et al. (2007) introduced another software
package, fOSA (functional Optical Signal Analysis), which incorpo-
rates the statistical parametric mapping (SPM) method for the analy-
sis of fNIRS data. Several features for physiological removal and
statistical analysis were included. More specifically, to remove the
noise, fOSA incorporated three types of digital filters (elliptic filter,
Chebyshev filter, Butterworth filter). For making inference of brain
activation, fOSA incorporated two different t-statistical approaches:
channel-wise Student t-test and the SPM method.

While these are extensive statistical tools for fNIRS analysis,
several fundamental issues still remain. For instance, even though
stationary Gaussian random field theory has been used and justified
in fOSA as a tool for family-wise error rate (FWER) control during in-
ference, the basic assumption for the stationary Gaussian random
field model breaks down in fNIRS. Recall that SPM for fMRI analysis
assumes that the residuals after the GLM fitting are dense samples
on lattice representations from an underlying continuous Gaussian
random field (Friston et al., 1996) due to the Gaussian kernel smooth-
ing. However, because the distance between each channel of fNIRS
is far and the number of measurements is sparse, it is not reasonable
to use stationary Gaussian random field theory in making inferences
about fNIRS data. To address this issue, Ye et al. (2009) introduced a
new public domain statistical toolbox called NIRS-SPM for the quan-
titative analysis of fNIRS signals. More specifically, they interpolated
fNIRS channel measurements on a topographic surface and statistical-
ly analyzed the interpolated fNIRS data based on the GLM, proposing
a novel theory for making inference using Sun's tube formula for ex-
cursion statistics.

Strangman (2009) recently introduced a software package, called
NinPy, that provides a range of computational tools for an analysis
of fNIRS data. NinPy was developed using the Python programming
language and uniquely offers functions to control the stimulus presen-
tation and data acquisition, compared with other non-commercial soft-
ware packages such as HomER and NIRS-SPM.While those features are
customized for the author's fNIRS instruments, other powerful func-
tions in NinPy, including optical image reconstruction and hierarchical
statistical analysis may contribute to the fNIRS community as one of
reliable analysis tools.

In the following, we are interested in explaining these tools in
more detail in a self-contained manner. In particular, we show that
all these methods can be derived from a general mixed model with
ReML covariance estimation and hypothesis testing.
Generalized linear mixed model (GLMM)

For a matrix A, Tr(A) is the trace of a matrix A, A′ is its adjoint, A†

denotes the Penrose–Moore pseudo-inverse, and for a square matrix
A, A− denotes a generalized inverse. |A| refers to the determinant,
R(A) denotes the range space of A, and PA (or PR(A)) and PA

⊥ (or PR(A)⊥ )
are the projection on the range space and its orthogonal complement,
respectively.

We denote Ia and 1a as a × a identity matrix and a-dimensional
vector with 1's, respectively; similarly, 0a × b and 0a refer to a × b
zero matrix and a-dimensional zero vector, respectively. The notation
E{·} denotes an expectation for random variable or fields.
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/
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In statistics, a general linear mixed model (GLMM) extends a GLM
by allowing a more flexible description of measurement. We use the
following notation for GLMM:

• y: an observation vector (∈RN)
• α: a fixed effect parameters (∈Rp)
• X: a known fixed effect matrix (∈RN�p),
• p*: the degree of freedom for fixed effect, i.e. rank (X) = p* ≤ p b N,
• β: a vector of q unobservable random effects (∈Rq)
• Z: a random effect matrix (∈RN�q)
• ε: an additive noise term (∈RN)
• R: covariance matrix for noise ε (∈RN�N)
• G: covariance matrix for random effect parameter β (∈Rq�q)
• V: covariance matrix for combined random effect and noise
• Ω: empirical Bayesian measurement covariance matrix
• L: contrast matrix (∈Rp1�p)
• S: test statistics.

Then, a general linear mixed model is represented as (SAS Institute,
1985; Searle, 1979)

y ¼ Xαþ Zβþ �: ð9Þ

The GLM is a special case of the general linear mixed effect model
where the random effect matrix Z = 0. Note that we often consider a
rank deficient fixed effect design matrix such that rank (X) = p* b p
(in particular, for ANOVA analysis).

In a general linear mixed effect model, residual error terms and
random effect parameters are assumed to have normal distribution:

�eN 0;Rð Þ; βeN 0;Gð Þ: ð10Þ

(Note that the difference between a generalized linear model and
general linear model is that a generalized linear model extends GLM by
allowing non-Gaussian noise (SAS Institute, 1985)). Our goal is then to
estimate the parameters α, β, R and G from the measurement y. The
estimates for α, β, G, and R are denoted by α̂; β̂; Ĝ and R̂, respectively.

The maximum likelihood (ML) principle is to obtain parameter
estimates as values that yield a large value for the likelihood of the
observed sampled for the chosen probability density functions, there-
by maximizing the likelihood (Searle, 1979). Henderson (1973, 1982)
obtained the estimates of the mixed model parameters by maximizing
the likelihood of the joint distribution: which results in a closed form
estimate for α and β (Henderson, 1973; Henderson, 1982; Robinson,
1991; SAS Institute, 1985; Searle, 1979):

α̂ ¼ X ′V−1X
� �−

X ′V−1y ð11Þ

β̂ ¼ GZ ′V−1 y−Xαð Þ; ð12Þ

where V is given by

V ¼ ZGZ ′þ R: ð13Þ

In practice, the covariances R and G are not known, so they need to
be estimated. To address this issue, Patterson and Thompson (1971)
proposed amethodwhich takes into account the loss in degrees of free-
dom resulting from estimating fixed effects. More specifically, they
restricted their attention to a set of such contrast that is invariant to
the fixed effect parameter and then estimated the covariance for such
restricted cases of maximum likelihood. This idea is the so-called
restricted maximum likelihood (ReML) method (Friston et al., 2011;
Graser et al., 1987; Harville, 1977; Kenward and Roger, 1997; Searle,
1979). More specifically, if we are interested in finding the restricted
maximum likelihood that is invariant to the fixed effect parameter, we
need to find a full rank matrix K∈RN� N−pð Þ such that K′X = 0. Then,
we deal with maximum likelihood for a new variable K′y in the ReML
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method, which can be equivalently represented by

LReML R;Gð Þ ¼ −1
2
log Vj j−1

2
log X ′V−1X

��� ���−1
2
y′Ωy; ð14Þ

where V is defined in Eq. (13) and Ω is defined as:

Ω ¼ V−1−V−1X X ′V−1X
� �−

X ′V−1
: ð15Þ

In a linear mixed effect model, we are often interested in an infer-
ence concerning the fixed effect by considering the following linear
combinations of the fixed effect parameter:

v̂ ¼ L α̂−αð Þ; ð16Þ

where L∈Rp1�p denotes the contrast matrix (SAS Institute, 1985;
Searle, 1979). One of the often discussed issues regarding the contrast
matrix is that not every contrast can be used. More specifically, if X is
rank deficient, non-trivial null space of X exists. Therefore, for some
contrast L, there are chances that Lα lies in the null space of X. How-
ever, if Lα̂ is a linear functions of α̂ such that R(L′) ⊂ R(X′), implying
that L′ = X′A for some matrix A, then we can guarantee that the func-
tion is not in the null space, so it is an estimable function (Rao and
Toutenburg, 1999). Furthermore, for such contrast L, we have

Lα̂ ¼ L X ′V−1X
� �−

X ′V−1y, and the corresponding error covariance

is given by (Rao and Toutenburg (1999))

CV ¼ E α̂−αð Þ α̂−αð Þ′f g ¼ L X ′V−1X
� �

−L′∈Rp1�p1
:

Accordingly, we have the following test statistic (SAS Institute,
1985):

ẑ ¼ C−1
V v̂eN 0; Ip1�p1

� �
: ð17Þ

In practice, the true covariance R and Z are unknown and need to be
estimated using ML or ReML. In this case, the test statistic becomes

S ¼

L α̂−αð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L X′V̂−1X
� �−

L′
r ; p1 ¼ 1

α̂−αð Þ′L′ L X′V̂−1X
� �−

L′
� �−1

α̂−αð Þ
p1

p1 > 1;

8>>>>>><>>>>>>:
ð18Þ

where V̂ denotes the empirical covariance matrix. In this case, the
statistics become tν- and Fp1,ν-statistics, respectively, where ν denotes
the degree of freedom for the denominator (SAS Institute, 1985).

The degree of freedom can be calculated in various ways. For exam-
ple, if the noise is spherically distributed, then we can use the residual
degree of freedom, i.e. ν = N − p⁎. However, when the residual is
not spherical, the denominator is not exactly χ2 distributed, so one
often uses an approximate (effective) degree of freedom (DOF). In
SPM, Friston et al. (2011) proposed the following Sattherthwaite
approximation.

However, there are some concerns that the Sattherthwaite correc-
tion may not correct for fNIRS, because it still grossly overestimates
the degree of freedom in the presence of serially correlated errors
which are very high in fNIRS data due to the high over-sampling rates.
The issue of correct DOF estimation for fNIRS is still an open problem,
and needs to be investigated further. In statistics, the degree of freedom
is very important since it determines the sensitivity of the test. For ex-
ample, as shown in Fig. 2, the tν statistics with lower degree of freedom
has heavier tails, so in hypothesis testing, it provides higher threshold
values for the same statistical significance. This implies that the detec-
tion of activation becomes more conservative.
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In fNIRS analysis, the degree of freedom can increase by various
means. For example, using longer temporal time trace, or group data,
we can increase the degree of freedom.On the other hand, if the tempo-
ral time traces are highly correlated or within subject variation needs to
be considered as in repeated measure ANOVA, the degree of freedom
decreases (Friston et al., 2011).

Derivation of classical statistical analysis for fNIRS

In classical statistics, such as the one sample t-test, two sample
t-test, paired t-test, and ANOVA, which have been extensively used for
fNIRS analysis, the time course data are segmented into different condi-
tion periods, such as baseline and activations, and the averaged values
during this period are used as data for standard statistical analysis.

ANOVA
Extensive applications of ANOVA (Scheffe, 1959) exist for fNIRS

data analysis. A partial list of studies that employ ANOVA includes
Mehagnoul-Schipper et al. (2002), Okamoto et al. (2004), Kleinschmidt
et al. (1996), Suto et al., 2004, Saitou et al. (2000), Irani et al. (2007),
Hoshi (2003), Arenth et al. (2007), Villringer et al. (1993), Kleinschmidt
et al. (1996), Germon et al. (1994), Suto et al. (2004), Fallgatter and
Strik (1998), Herrmann et al. (2003), Bartocci et al. (2000), Fallgatter
and Strik (2000), Herrmann et al. (2004), Kameyama et al. (2006),
Matsuo et al. (2002), Folley and Park (2005) and Taga et al. (2003).

To show how a specific fNIRS data analysis can be mapped into
this framework, we use the study by Fallgatter and Strik (1998) as an
example, where 2 × 2 ANOVAs for repeated measurements [hemi-
spheres (left vs right) × segments (activation vs baseline)] were com-
puted for the parameters HbR and HbO (relative concentrations)
during the Wisconsin Card Sorting Test (WCST). The analyses consider
spatial location (hemisphere, electrode number) to be a factor in a
multi-factorial analysis of variance, and one looks for interactions of
conditions with locations as well as main effects. Here, a two channel
measurement system was used to measure left and right hemisphere
fNIRS data from 10 subjects. For quantification, the average values
of HbR and HbO for prestimulus baseline (−25 to −1 s) and WCST
activation (0–216 s) were computed separately for the left and right
hemispheres.

More specifically, the two-way between-subject ANOVA is described
by

yijl ¼ μ ij þ eijl; i ¼ 1; ⋯; a; j ¼ 1; ⋯; b; l ¼ 1; ⋯;nij;

where yijl denotes the lth data sample at level i of factor A and level j of
factor B, μij is the average for observations at level i of factor A and level
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j of factor B, and nij is the number of observations at that combination
of levels. The saturated model is then given by

μ ij ¼ μ þ αi þ βj þ αβð Þij;

where (αβ)ij denotes a two-way interaction. Here, the notation (·) is a
single symbol for an interaction, not as the product of multiple parame-
ters within the parenthesis (Christensen, 2011).

This model can be mapped to the problem in Fallgatter and Strik
(1998) as follows:

• y11l: lth subject left hemisphere average value for prestimulus base-
line

• y12l: lth subject left hemisphere average value for WSCT activation
• y21l: lth subject right hemisphere average value for prestimulus
baseline

• y22l: lth subject right hemisphere average value for WSCT activation
• αi: main effect from hemispheres (left vs. right)
• βj: main effect from segments (baseline vs. activation)
• (αβ)ij: interaction between hemispheres and segments
• nij: the number of subjects (nij = n = 10).

For a balanced case, where nij = n for all i, j, k and ∑ nij = N,
two-way ANOVA can be represented in the following GLM form
(Christensen, 2011):

y ¼ Xαþ �

where �eN 0;σ2IN
� �

and

y ¼ y111; y112; ⋯; y11N ; y121; ⋯; y12N ; ⋯; yabn½ �′∈RN

α ¼ μ;α1; ⋯;αa;β1; ⋯;βb; αβð Þ11; ⋯; αβð Þab
� 	

′

and a design matrix

X ¼ ½1N ;XA;XB;XC ;XA�B�; ð19Þ

where it can be represented as sub-design matrices:

1N ¼ 1a⊗1b⊗1n
XA ¼ Ia⊗1b⊗1n
XB ¼ 1a⊗Ib⊗1n
XA�B ¼ Ia⊗Ib⊗1n:

Now, to test the main or interaction effect, we need to design
contrast matrix L. To make the test function estimable, we need to
design L by considering the nesting relationship. Indeed, we do not
need to calculate the explicit contrast matrix L since the correspond-
ing test statistic is equivalent to the standard F-statistic to test main
effect of A in ANOVA:

S ¼ α̂L′ L X ′Xð Þ−Lð Þ−1Lα̂
σ2rank Lð Þ

¼
y′ P⊥

X0
−P⊥

X

� �
y

y′P⊥
Xy

N−ab
a−1

¼ SSA= a−1ð Þ
SSE= N−abð Þe Fa−1;N−ab;

ð20Þ

where SSA denotes the factor A sum of squares and SSE is the error
sum of squares (Scheffe, 1959), and X0 denotes the reduced model
by excluding the factor A main effect. Similarly, we can test other
main and interaction effects.

Note that the mean values from each subject can be different
during baseline and WCST activations. Hence, the test should be
done using two-way ANOVA with repeated measurement. Two-way
within-subject ANOVA or two-way repeated measurement ANOVA
is different from two-way between subject ANOVA by modeling the
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/
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mean as

μ ijn ¼ μn þ ai þ βj þ αβð Þij;

where we assume that the mean value μn can be different for each mea-
surement. In this case, from the design matrix of X in Eq. (19) in the
two-way between-subject ANOVA, the first column should be replaced
by 1ab ⊗ In to account for between-subject mean variation. Then, our
test statistic becomes Fa − 1,N − ab − n due to the reduction of the degrees
of freedom to N − ab − n. This implies that, for the same p-value, the
threshold value become higher than between-subject ANOVA, which
makes the hypothesis testing more conservative (Christensen, 2011;
Friston et al., 2011).

For fNIRS studies, two-way ANOVAs with repeated measurement
have been used for various studies. In Herrmann et al. (2003), frontal
activation during a verbal-fluency task was measured by near-infrared
spectroscopy. The data collection was similar to Fallgatter and Strik
(1998), and 2 × 4 (hemisphere × segment) ANOVA for repeated mea-
surements was calculated for the different variables (HbO, HbR), where
segments consist of baseline and activations from “A,” “F,” and “S” char-
acters. In Bartocci et al. (2000), activation of the olfactory cortex in new-
born infants after odor stimulationwas studied. Here, themean values of
each subject during the three different smell conditions (control, colos-
trum, and vanilla) were recorded. A two-way ANOVA for repeated mea-
surements were used to compare the changes of HbO in response to
the three different stimuli, which showed significant effects of the smell
condition. In Fallgatter and Strik (2000), frontal functional asymmetry
in schizophrenia during a cued continuous performance test were
assessed using 2 × 3 repeated measures ANOVA (2 hemispheres × 3
segments) of HbR and 2 × 3ANOVA (2 groups × 3 segments) of the nor-
malized (loge) left/right raw HbR ratios to test group differences in rela-
tive hemisphere activation.

Basic t-test
A one-sample t-test can be used to test the null hypothesis that the

mean ofN = n data is zero. Here, for givenmeasurements {yl}l = 1
n such

that yl = μ + �l, we test the null hypothesis that the mean is zero,
i.e. H0: μ = 0. Assuming that the noise is i.i.d. Gaussian with vari-
ance σ 2, we can easily see that this is zero-way ANOVA by excluding
all interactions and the main effects from the two-way ANOVA.
Therefore, we have

X ¼ 1n; L ¼ 1:

A two-sample t-test allows one to test the null hypothesis that the
means of two groups {ylA}l = 1

n and {ylB}l = 1
n are equal. We can easily

see that this is in fact, one-way between subject ANOVA with a factor
of A = group with a level of a = 2. Therefore, we can see

X ¼ 12⊗1n; I2⊗1n½ �; L ¼ 0;1;−1½ �:

Finally, a paired t-test is an extension of the two-sample t-testmodel
by assuming that the means over pairs are not equal. More specifically,
consider a two group where the measurement ylA,ylB comes in pairs. By
inspection, we can see that this is indeed a one-way within-subject
ANOVA, so the corresponding parameters are

X ¼ 12⊗In; I2⊕1n½ �; L ¼ 0′n;1;−1½ �:

While the resulting test statistics for a two-sample t-test and a
paired t-test appear identical, the main difference between the two
comes from the loss of degrees of freedom in the case of the paired
t-test. This is because the paired t-test takes into account different
means over pairs, whereas the two-sample t-test assumes that the
group mean is the same. This makes the paired t-test more
conservative.
Please cite this article as: Tak, S., Ye, J.C., Statistical analysis of fNIRS da
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The basic t-test has beenwidely used in other fNIRS studies to detect
activation or compare a condition against the control. For instance,
Hoshi et al. (2003) investigated changes of oxy-hemoglobin concentra-
tion in the prefrontal cortex during n-back and random number gener-
ation tasks. Here, the channel-wise student t-test was employed to
statistically compare two different states of the hemoglobin concentra-
tion changes (task vs. control).

In Tsujimoto et al. (2004), to examine the role of the lateral prefrontal
cortex of preschool children in working memory, an item-recognition
taskwith differentmemory-loadswas performed on adult and child sub-
jects. The Student's t-test was employed for finding the significantly acti-
vated channel during the task period. In addition, a paired t-test was
performed to statistically compare the activation level between different
memory-loads.

GLM-based fNIRS time course analysis

In time GLM-based fNIRS time course analysis, tests are repeated
at each spatial location and one plots a map of e.g. condition effects.

In Schroeter et al. (2004), the design matrix was generated with
a boxcar function convolved with a Gaussian kernel. Temporal corre-
lation and effective degrees of freedom were estimated by the meth-
od in Worsley and Friston (1995). To evaluate the methods, they
performed two visual tasks and hypothesized that stimulation with a
checkerboard activates the visual cortex (V1–V3), whereas stimulation
with rotating ‘L’s additionally involves the motion area V5. Analysis
with the general linear model showed that the activated area was local-
ized on the visual cortex for the first paradigm and was a nearby region
to the motion area for the second paradigm. Hofmann et al. (2008) ap-
plied a general linear model to statistically analyze fNIRS data to investi-
gate hemoglobin oxygenation changes during lexical decisionmaking on
words and pseudowords. In a design matrix, the predicted response was
generated by convolving aGaussian functionwith each event, and its first
and second derivative terms were included. To estimate the auto-
correlation matrix, a first-order autoregressive process was performed.
In Plichta et al. (2007), the applicability of the GLM analysis to a rapid
event related-fNIRS design was tested.

SPM-type analysis using GLMwas first proposed by Koh et al. (2007)
for channel-wise analysis. In this paper, they introduced a software
package, fOSA, that incorporates the SPM method for the analysis of
fNIRS data. For making inference of brain activation, fOSA applied the
SPM method to fNIRS signals as follows: 1. configure the fNIRS mea-
sured hemoglobin concentration changes as topographic images such
that each channel can be represented as a pixel in the SPM map and
2. perform the SPM analysis that consists of the general linear model
and random field theory on a two-dimensional patch. Canonical HRF
and the inverse HRF were used for modeling the predicted response
of HbO and HbR, respectively. Furthermore, the ReML was employed
for estimating the error covariance matrix. These have been significant-
ly generalized by Ye et al. (2009), Jang et al. (2009), Tak et al. (2011), Li
et al. (2012) and Tak et al. (2010) for interpolated maps.

In most existing fNIRS literature, two-level analysis using summary
statistics has been extensively used for group analysis. Okamoto et al.
(2006) examined the role of the lateral prefrontal cortex (LPFC) in
taste encoding using a two-level summary statistics approach for
random effects analysis. Specifically, a random effect group analysis
with a one-tailed t-test was performed for making inferences about
the activated channel during the task period. In addition, a paired
t-test was performed to compare the contrast of all subjects between
the encoding and control conditions.

In Plichta et al. (2007), ANOVA was applied at the second level
of GLM. The effects of two factors (parametric factor contrast with
four levels and dichotomous factor region with two levels) were
investigated.

One of the technical issues in fNIRS group analysis is that, unlike
fMRI, where group analysis is usually done after all the individual
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/
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session data are aligned on a global template, only a few optodes exist
and the global alignments of the channel positions between individual
session are often difficult. Hence, rather than using inter-subject align-
ments of optodes, Ye et al. (2009) and Li et al. (2012) proposed a
voxel based global alignment between the interpolated maps before
facilitating group analysis. However, the group analysis on the interpo-
lated map in Li et al. (2012) and Ye et al. (2009) was still incomplete, so
we provide here a more comprehensive derivation of multi-level group
analysis using linear mixed effect model and ReML. This part is novel
and will be included in the next release of NIRS-SPM (http://bisp.kaist.
ac.kr/NIRS-SPM.html).

Suppose there are n subjects in a group. Then, we have

yl rð Þ ¼ Dαl rð Þ þ �l rð Þ; l ¼ 1; ⋯;n;

where yl(r) denotes the lth subject HbO or HbR time series at r location.
Note that r could be either optode number, sensor space location, or
location on the cortical surface depending on whether the analysis
is performed in channel wise, or interpolated maps using topographic
or tomographic mapping. However, for topographic mapping with
random field analysis for inference later as in NIRS-SPM, r should be
interpreted as a location on the cortical surface.

Then, we have the following concatenated expression:

y ¼
y1 rð Þ
⋮

yn rð Þ

24 35 ¼
D
⋮
0

⋯
⋱
⋯

0
⋮
D

24 35 α1 rð Þ
⋮

αn rð Þ

24 35þ �: ð21Þ

If individual variation in a group is modeled as a random effect,
then the regression coefficients are modeled as follows:

αl rð Þ ¼ μ rð Þ þ βl rð Þ; l ¼ 1; ⋯;n; ð22Þ

whereμ(r) denotes the groupmean andβl(r) denotes a between-subject
random effect parameter, respectively. Our goal is then to test whether
the group mean is statistically significant. In fNIRS, activated channels
are usually non-zero mean, so this test corresponds to the group-level
activation detection.

Note that this is basically a 1-sample t-test and can be expressed
as

α ¼
α1 rð Þ

⋮
αn rð Þ

24 35 ¼ 1n⊗Ip
h i

μ rð Þ þ β:

Then, by plugging in Eq. (22) to Eq. (21), we have the following
mixed effect model:

y ¼ ZXGαþ Zβþ � ð23Þ

where β(r) = [β1(r)′,⋯,βn(r)′]′ and

α ¼ μ;XG ¼ 1n⊗Ip
h i

; Z ¼ In⊗D: ð24Þ

By inspection,we know X = ZXG, V = ZGZ′ + R. In a group analysis,
we usually assume that the residual errors are uncorrelated such that
the corresponding covariance matrix is given by

R ¼ E ��′f g ¼
R1
⋮
0

⋯
⋱
⋯

0
⋮
Rn

24 35; ð25Þ

where Rj denotes the jth subject covariance matrix. Using the following
matrix equalities that can be proven using matrix inversion lemma

Z ′V−1 ¼ Z ′R−1Z
� �−1 þ G


 �−1
Z ′R−1Z

� �−1
Z ′R−1 ð26Þ
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Z ′V−1Z ¼ Z ′R−1Z
� �−1 þ G


 �−1
; ð27Þ

we have

X ′V−1X ¼ X ′GV
−1
G XG ð28Þ

X ′V−1 ¼ X ′GV
−1
G Z ′R−1Z

� �−1
Z ′R−1

; ð29Þ

where

VG ¼ Z ′V−1Z
� �−1 ¼ Z ′R−1Z

� �−1 þ G

¼
D′R−1

1 D
� �

⋮
0

⋯
⋱
⋯

0
⋮

D′−1
n Dð Þ−1

264
375þ G:

ð30Þ

Furthermore, using Eq. (11), we have the following estimate of the
fixed effect parameter:

α̂ ¼ X ′GV
−1
G XG

� �−1
X ′GV

−1
G Z ′R−1Z

� �−1
Z ′R−1y: ð31Þ

Note that the form in Eq. (31) allows a multi-level analysis
similar to (Beckmann et al., 2003). More specifically, if we define

β̂ ¼ Z ′R̂
−1

Z
� �−1

Z ′R̂
−1

y, then using the separable variance assump-

tion in Eq. (25), we have

β̂ ¼ Z ′R̂−1Z
� �−1

Z ′R̂−1y ¼
β̂1 rð Þ

⋮
β̂n rð Þ

24 35
where the summary statistics are given by

β̂ l rð Þ ¼ D′R̂−1
l D

� �−1
D′R̂−1

l yl rð Þ: ð32Þ

Therefore, the fixed effect parameter estimate is given by

α̂ rð Þ ¼ X ′GV̂
−1
G XG

� �−1
X ′GV̂

−1
G β̂ rð Þ;

which is equivalent to performing a second level GLM

β̂ rð Þ ¼ XGα rð Þ þ η rð Þ; η eN 0; V̂ G

� �
: ð33Þ

Under the uncorrelated noise assumption in Eq. (25), the group-
level fixed effect parameter estimate is given by performing the first-
level analysis using Eq. (32) and then performing the second level
GLM using Eq. (18). This is another derivation of multi-level analysis
by Beckmann et al. (2003), but the derivation using Eqs. (28) and (29)
using linear mixed effect model is novel, since it can be easily extended
to more general group analysis such as group level t-test or ANOVA.

Specifically, the aforementioned summary statistics approach can be
easily extended for group level two sample t-test to see the difference
between two groups or for general ANOVA analysis. For example, for
two-sample t-test of control and patient groups, we can generalize
Eq. (21) across the groups:

yil rð Þ ¼ Dαil rð Þ þ �il rð Þ; i ¼ 1;2; l ¼ 1; ⋯;n;

where yil(r) denotes the lth subject time series at r location from
the ith group. Then, regression coefficients are modeled as a random
effect:

αil rð Þ ¼ μ rð Þ þ τi rð Þ þ βil rð Þ; ð34Þ
ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/
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where μ(r) denotes the global mean, τi(r) is the group effect, and
βil(r) denotes between the subject random effect parameter, respec-
tively. Then, very similar multi-level analysis can be easily derived,
and we need to perform one-way ANOVA for the summary statistics:

β̂ rð Þ ¼ XGα rð Þ þ η rð Þ; η∼N 0; V̂ G

� �
; ð35Þ

where

α ¼
μ rð Þ
τ1 rð Þ
τ2 rð Þ

24 35;XG ¼ 12⊗1n⊗Ip; I2⊗1n⊗Ip
h i

; Z ¼ I2n⊗D: ð36Þ

and VG is given by

VG ¼ Z ′V−1Z
� �−1 ¼ Z ′R−1Z

� �−1 þ G

¼
D′R−1

11 D
� �−1

⋮
0

⋯
⋱
⋯

0
⋮

D′R−1
2n D

� �
−1

2664
3775þ G;

ð37Þ

where Ril denotes the first-level individual covariance estimation
for the ith group lth subject. Similar multi-level analysis can be
easily derived for multi-way ANOVA, so we will skip the derivation
here.

Single-level versus multi-level approach in SPM-type group analysis
From the previous discussion, we know that, for group analysis,

multi-level analysis appears equivalent to a single-level mixed effect
approach that processes all group data together. This implies that
we only need to store summary statistics from each individual data
for group analysis, which makes the analysis much simpler. Indeed,
this is the standard method in SPM, FSL (FMRIB Software Library),
and FMRIstat for fMRI processing (Beckmann et al., 2003; Friston
et al., 2011; Smith et al., 2004; Woolrich et al., 2009).

However, one should be aware that such equivalence is not a true
equivalence, and indeed the multi-level analysis is an approximation
of the full mixed effect model unless the second-level covariance esti-

mate V̂ G is accurately estimated across the individual and group level.

More specifically, as shown in Eqs. (30) and (37), the estimation of V̂ G

requires the estimation of R̂l (or R̂il) aswell as Ĝ. The technical difficulty

lies in that ReML covariance estimation needs to compute R̂l (or R̂il) as

well as Ĝ simultaneously using the full data, whereas the multi-level

analysis estimates R̂l (or R̂il) without considering other individual
data and transfers them to the second level. Hence, the only estimable

covariance from the second-level analysis is only for Ĝ, which makes
the overall covariance estimation sub-optimal. Aside from the difficulty

of estimating V̂ G for the second level analysis, there exists another im-
portant difference since the degrees of freedom now increase to
nN − p rather than n − p. As described before, this reduces the thresh-
old values for hypothesis testing for the same statistical significance,
which makes the detection more sensitive.

In fMRI analysis, the covariance estimation problem has been
addressed using a few different approaches. For example, in FSL, a Bayes-
ian approach is taken to decouple the first-level and the second-level
covariance estimation (Woolrich et al., 2009). In FMRISTAT (Worsley
et al., 2002), which is the closest to the approach of this review, the sec-
ond term of V̂ G is estimated within ReML framework using expectation-
maximization (EM) algorithm. More specifically, starting with an initial
value of G ¼ β̂ ′P⊥

XG
β̂=ν where ν = n-rank (XG), the updated estimate

is given by

Ĝ ¼ G pþ tr SRVG

� �� �
þ G2β̂ ′R2

VG
β̂

� �
=n; ð38Þ
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where p = rank(XG), S = diag((D′R1−1D)−1,…,(D′Rn−1D)−1), and

RVG
¼ V−1

G −V−1
G XG X ′GV

−1
G XG

� �−1
X ′GV

−1
G : ð39Þ

ReplacingGwith Ĝ in Eq. (30), the processes fromEqs. (38) and (39)
are iterated until it converges. Note that the EM procedure is, however,
still an approximation of ReML, since the first level individual variances
are not updated during EM procedure.

Another simple approach,which has been taken in SPM, is to assumes
homoscedastic variance across subjects. More specifically, let us consider
Eq. (30). If we assume that Rl = σl

2I (which is usually the case after the
prewhitening) and G = σG

2I, then we have

VG ¼
σ2

1 D′Dð Þ−1 þ σ2
1I

⋮
0

⋯
⋱
⋯

0
⋮

σ2
n D′Dð Þ−1 þ σ2

GI

24 35:

In designing the design matrix D for the first level analysis, the
regressors are usually made orthogonal to each other. This is because,
in addition to the constant regressor to regress out the mean, the
other regressors are a canonical hemodynamic response and its first
derivatives; so as long as they are de-trended to have zero mean,
they are nearly orthogonal to each other. Under the orthogonality
condition for the regressors, i.e. D′D ≃ I, VG becomes a diagonal ma-
trix. Furthermore, under the homoscedastic variance assumption
across subjects, we have σ1

2 = ⋯ = σn
2 = σF

2; hence, we have VG =
σ2I for some σ2 = σG

2 + σF
2. Therefore, under the aforementioned

assumptions, we can show that

S ¼
α̂ rð Þ′L ′ L X ′V̂−1X

� −1
L ′

� �−1

Lα̂ rð Þ
p1

¼
α̂ rð Þ ′L ′ L X ′GV̂

−1
G XG

� −1
L ′

� �−1

Lα̂ rð Þ
p1

¼ α̂ rð Þ′L ′ L X ′GXGð Þ−1L ′ð Þ−1
Lα̂ rð Þ

σ2p1

¼
β̂

Τ
P⊥XG;0−P⊥XG

� �
β̂

β̂ΤP⊥
XG

β̂

N−p
p1

eFp1;ν ;

where XG,0 denotes the reduced model by excluding the effect estimat-

ed by contrast L and where β̂ is summary statistics. Here, the second

equality comes from the matrix equality X ′V̂−1X ¼ X ′gV̂
−1
G XG, the

third from V̂ G ¼ σ̂ 2I and σ̂ 2 ¼ β̂TP⊥
XG
β̂= N−pð Þ, the fourth one from

the equivalence relationship in the Equivalence section, which is
another important novel contribution of this paper. Since these
F-statistics are standard statistics for ANOVA analysis, the result indi-
cates that we can perform classical ANOVA analysis using the summary
statistics, and such analysis is equivalent to the inference in a mixed
model as long as our assumption holds. Moreover, we do not need to
perform computationally expensive ReML covariance estimation since
the ReML variance estimation parts are already built-in within the
resulting F-statistics.

In practice, however, the homoscedastic variance assumption can be

easily violated, which often results in σ̂ 2≜β̂T
P⊥
XG
β̂= N−pð Þb σ̂ 2

F≜ 1
n∑iσ2

i

which is contradictory to the basic model σ2 = σG
2 + σF

2 from the ho-
moscedastic variance assumption. In this case, the variance estimation

from the second level should be constrained such that σ̂ 2≥σ̂ 2
F . Under
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the constraint, it is easy to show that the ML estimation of the variance
is given by

σ̂ 2
ML ¼ max

β̂TP⊥
XG
β̂

N−pð Þ ;
1
n
∑
i
σ2

i

( )
: ð40Þ

The constrained form (Eq. (40)) is very important to make the vari-
ance estimation under homoscedastic variance assumption works. Fig. 3
shows the group one-sample t-test results using NIRS-SPM. Datasets
were acquired from 3 subjects performing a finger tapping task. Here,
we used a block design sequence consisting of 15 s of task and 72 s of
rest in one cycle, and the full experimental run consisted of four task
and rest cycles. Activation patterns of HbO and HbR were localized
on the primary motor cortex, which is the main region of interest of
this experiment. Although t-statistic values were decreased under the
homoscedastic variancemodel, overall activation areaswere nearly iden-
tical to those fromReMLmodel with EMprocedure after thresholding for
a given p-value.

The two versions of the variance estimation— one using ReML with
EM procedure and homoscedastic assumption have been implemented
in NIRS-SPM and will be available in the next release of NIRS-SPM.

Standard statistics versus SPM type multi-level group analysis
At a glance, a standard statistic for fNIRS analysis appears very differ-

ent from SPM-type multi-level group analysis. However, a careful obser-
vation reveals that the standard statistics using t-test and ANOVA are
equivalent to the second-level SPM type group analysis using t-test and
ANOVAwhen the first-level designmatrix is composed of a single boxcar
regressor that represents each segment (baseline, conditions) and if
we assume homoscedastic variance across subjects. This is because the
4.312

49.9495

95.5871

a

4.568

27.513

50.4581

c

Fig. 3. Group activation maps estimated from (a, b) HbO and (c, d) HbR responses during fin
based on Lipschitz–Killing curvature). In the left column, restricted maximum likelihood es
second-level covariance estimate V̂ G . In the right column, homoscedastic variance model
on the primary motor cortex, which is the main region of interest of this experiment. M
given p-value.
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boxcar regressors average the data when we apply the ordinary least
square to find the regression coefficients. However, SPM-type multi-
level analysis is more effective than the standard statistics since we can
use nuisance regressors to remove drift, cardiac artifacts, etc. Further-
more, the total degree of freedom for SPM-type analysis is usually larger
than that of standard statistics since the first level degrees of freedom are
transferred to the second-level, which makes the test more sensitive.

The multiple comparison problem in fNIRS

Hypothesis testing

One of main goals of statistical analysis in fNIRS is to decide
whether the statistic represents convincing evidence of the effect
we are interested in. A usual approach is that we test the statistic
against the null hypothesis H0, which is the hypothesis that there is
no fixed effect:

H0: Lα ¼ 0:

Under the null hypothesis, a corresponding random variable for
the test statistics is given by

S ¼
α̂L′ L X ′V̂−1X

� �
−L′

� �−1
Lα̂

p1
; ð41Þ

which becomes Fp1,ν-statistics. Then, to control the type I error for a
given statistical significance α, we should calculate a threshold u
such that

Pr S > uf g ¼ α: ð42Þ
4.28

10.3161

16.3522

b

4.438

6.2007

7.9635

d

ger tapping task (3 subjects, p b 0.001, the expected Euler characteristic (EC) correction
timation (ReML) model with expectation maximization (EM) procedure was used for
was used for estimate of V̂ G . Both activation patterns of HbO and HbR were localized
oreover, two variance models give similar activation regions after thresholding for a

ta: A comprehensive review, NeuroImage (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.neuroimage.2013.06.016
http://dx.doi.org/10.1016/j.neuroimage.2013.06.016


13S. Tak, J.C. Ye / NeuroImage xxx (2013) xxx–xxx
The meaning of this test is that even though there are chances that
no effect exists, the probability that we can erroneously reject the null
hypothesis, is not greater than α (hence, we can control the type I
error to α).

Multiple comparison problems

However, in many statistical fNIRS analyses, multiple comparison
problems are often encountered. In this situation, errors in inference are
more likely to increase when we consider the entire test as a whole.
Therefore, in multiple comparison problems, we generally require a
stronger level of evidence to be observed for each individual comparison
to control the errors in simultaneous inference. This implies thatwe need
to adjust the statistical significance, i.e. p-value, to reduce the type I errors
that occur when statistical tests are performed simultaneously.

One of the intuitive examples of such family-wise error rate (FWER)
control is Bonferroni correction (Dunn, 1961). LetH1,⋯,Hm be a family of
hypotheses, and p1,⋯,pm the corresponding p-values. The family-wise
error rate is then the probability of rejecting at least one of the hypoth-
eses. The Bonferroni correction states that rejecting all hypotheses
using pi b α/m will control the FWER up to α. This can be proven
using Boole's inequality (Miller, 1981). In addition to Bonferroni correc-
tion, there aremany variations of controlling FWER inmultiple compar-
ison problems,which include Least Significant Differences (LSD), Tukey,
Scheffe, random field correction, etc. (Miller, 1981).

The multiple comparison problems have been frequently encoun-
tered in fNIRS studies in both discrete and continuous contexts, so we
review them here.

Multiple comparison in discrete setup
In fNIRS, representative examples of multiple comparison problems

in discrete setup come from ANOVA (Arenth et al., 2007; Bartocci et al.,
2000; Fallgatter and Strik, 1998; Fallgatter and Strik, 2000; Folley and
Park, 2005; Germon et al., 1994; Herrmann et al., 2003, 2004; Hoshi,
2003; Irani et al., 2007; Kameyama et al., 2006; Kleinschmidt et al.,
1996; Matsuo et al., 2002; Mehagnoul-Schipper et al., 2002; Okamoto
et al., 2004; Saitou et al., 2000; Suto et al., 2004; Taga et al., 2003;
Villringer et al., 1993). As a simple example, in one way ANOVA with
at least three levels, an omnibus F-test is first used to assess any of
several possible differences, and then post hoc analysis is performed.
More specifically, if the omnibus F-test rejects the null hypothesis and
concludes that at least one mean is different from the others, then the
next question is how they are different. This is post hoc analysis, and
we tested multiple hypotheses at the same time.

For instance, in Bartocci et al. (2000), to detect the activation
of the olfactory cortex in newborn infants after odor stimulation,
one-way ANOVA was performed with three levels of the stimuli in
the following order: (1) control, (2) colostrum, and (3) vanilla. They
first found a significant difference between all three test conditions
and performed post hoc comparison to test the changes between
each smell. Because post hoc analysis requires multiple comparisons
(control versus colostrum; control versus vanilla; colostrum versus
vanilla), p-value correction is necessary, and they used the Newman–
Keuls method (Keuls, 1952; Newman, 1939). In Herrmann et al.
(2004), to assess bilaterally reduced frontal activation during a verbal
fluency task in depressed patients, two-by-four-by-two (two hemi-
spheres, four task conditions, two diagnostic groups) ANOVA for repeat-
ed measurements was calculated for the variables HbO and HbR. They
first observed statistically significant main effects of the factor “condi-
tion” as well as a significant main effect of the factor “diagnosis” and a
significant interaction between these two variables. They performed
subsequently-conducted post hoc tests and p-value correction to reveal
that the mean HbO concentration in each of the three conditions was
significantly increased in the healthy subjects when compared to the
depressive subgroup.
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Other instances of multiple comparison problems in discrete setup
can be also found in fNIRS analysis, especially when the measure-
ments from each channels are not interpolated but used as a discrete
set of time course data. For example, in Plichta et al. (2006), to
estimate the statistical significance of fNIRS response during task pe-
riods, the Bonferroni correction and the Dubey/Armitage–Parmar
alpha boundary (Sankoh et al., 1997) were used for statistical infer-
ence of activated channels. Hofmann et al. (2008) applied a general
linear model to statistically analyze fNIRS data and applied the partial
Bonferroni correction for making inference of the activation for each
channel using the Dubey/Armitage–Parmar alpha boundary.

Multiple comparison in continuous setup
Rather than using the discrete set of fNIRS channels as they are,

if interpolation (or tomographic inversion) is used to obtain a topo-
graphic (or tomographic) map, then we encounter the multiple com-
parison problem in a continuous setup. More specifically, we need to
test a random process (rather than a random variable) S in Eq. (41)
that is continuously distributed across the volume of interest. In this
case, we need to test the following null hypothesis:

H0: Lα rð Þ ¼ 0; ∀r∈Ψ;

whereΨ denotes a search volume. The meaning of this null hypothesis
is that we consider S rð Þ; r∈Ψf g as a whole; hence, the problem be-
comesmultiple comparison problemswith a continuously indexed infi-
nite number of hypothesis. For such hypothesis testing, we need to
calculate the following statistical significance

Pr max
r∈Ψ

S rð Þ > u
� �

¼ α; ð43Þ

where u denotes a corresponding threshold value.
In general, spatial correlation is very common in fNIRS topographic/

tomographic maps, which need to be exploited for inference. The direct
calculation of Eq. (43) under spatial correlation is, however, extremely
difficult, even for a 1-dimensional random process (Adler and Taylor,
2007), so this problem is usually addressed by the expected Euler char-
acteristic (EC)method (Adler and Taylor, 2007; Friston et al., 2011). The
Euler characteristic of an excursion set is a geometric property of a vol-
ume which can be calculated as the number of connected excursion
set minus the number of holes plus the number of hollows (Worsley,
1995). More specifically, we define the excursion set as follows:

Au ¼ Au S;Ψð Þ ¼ r∈Ψ: S rð Þ≥uf g:

One of the most important discoveries in random field theory is
that for a large u values, the excursion probability can be approximat-
ed using expected EC as follows:

Pr max
r∈Ψ

S rð Þ≥u
� �

≃E φ Au S;Ψð Þð Þf Þg; ð44Þ

where φ(Au) denotes the Euler characteristics of a set Au.
The intuition behind Eq. (44) is the so-called “Possion clumping

heuristics” saying that, for a large threshold value u, the excursion set
usually has one cluster (i.e. EC value becomes one) without holes; so
the mean value is a good approximation of the excursion probability
(Adler, 2000; Adler and Taylor, 2007).

Hence, rather than directly calculating Eq. (43), we are interested
in finding the mean EC density; and for a smooth random field, it has
been shown (Adler and Taylor, 2007) that

E φ Au S;Ψð Þð Þf g ¼
XN
j¼0

ρj uð ÞLj Ψð Þ; ð45Þ

where Lj Ψð Þ is the j-dimensional Lipschitz–Killing curvatures (LKC) of
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the manifoldΨ representing the intrinsic volume ofΨ in a Riemannian
metric, and ρj(·) denotes the j-dimensional EC density function deter-
mined by the type of random fields (Adler and Taylor, 2007).

A method to estimate LKC was developed in Taylor and Worsley
(2007), and we review it here briefly. First, we calculate the least-
square residual η(r):

η rð Þ ¼ P⊥
Xy rð Þ; ð46Þ

where y(r) is the measurement at r ∈ Ψ and X is a fixed effect design
matrix. Then, the corresponding normalized residual is as follows:

η rð Þ ¼ η rð Þ=‖η rð Þ‖2∈RN
:

Then, for example, the 2-dimensional LKC ofΨ can be estimated as
follows:

L̂2 Ψð Þ ¼ ∑
r∈Ψ

∇η rð Þ′∇η rð Þ
��� ���12;

where |·| denotes the determinant and∇ η is a gradient with respect
to r.

Now, let us discuss how these equations relate to a practical anal-
ysis of fNIRS data. For example, let us compare two cases where the
interpolated fNIRS on the cortical surface is similar (CASE I), and
very dissimilar (CASE II). For CASE I, η(r) should be similar and the
coefficient L̂2 Ψð Þ tends to smaller, whereas for CASE II, the resulting
coefficient should be larger. This implies that for the same Type I
error α value in Eq. (43), due to Eqs. (45) and (44), the corresponding
threshold u for CASE I is smaller than that of CASE II.

Estimating the lower dimensional LKC ismore complicated, so a short-
cut method is often used in practice. Specifically, the D-dimensional LKC,
which makes the largest contribution to the p-value approximation, is
first estimated. Then, the lower dimensional terms are estimated by
simply assuming that Ψ is a D-dimensional ball (Adler and Taylor,
2007). In fNIRS topographic mapping, the dimension is D = 2; therefore,
we assume thatΨ is a disk, and then a short-cut calculation of L̂1 Ψð Þ and
L̂0 Ψð Þ can be calculated as follows:

L̂0 Ψð Þ ¼ 1; L̂1 Ψð Þ ¼
ffiffiffiffiffiffiffiffiffi
πL̂2

q
Ψð Þ: ð47Þ

On the other hand, for a Gaussian random field S rð Þ, Sun's formula
can be also used to calculate the excursion probability if the underly-
ing random process can be represented using finite term Karhunen–
Loéve expansion; i.e.

S r;wð Þ ¼
Xl

j¼1

ξj wð Þψj rð Þ:

Then, the excursion probability is given by

Pr sup
e∈Ψ

S rð Þ≥u
� �

≃
XN
j¼0

ρj uð ÞLj ψ Ψð Þð Þð ð48Þ

where

ψ ¼ ψ1;ψ2; ⋯;ψl½ �T : ð49Þ

Note that an excursion probability using the volume of the tube
formula is the same as Eq. (45) except the following two differences:
1) the zeroth order EC density function ρ0(u) (see Theorem 10.6.1 in
Adler and Taylor, 2007), and 2) the LKCLj is now for ψ(Ψ) = [ψ1(Ψ),
⋯,ψl(Ψ)].
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A method to estimate LKC for the tube in the fNIRS problem was
developed in Ye et al. (2009) for the case of fNIRS, and we review it
here briefly. As the degree of freedom is quite large due to the long
time trace, tν converges to the Z statistics asymptotically:

S ¼ Lα̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L X ′V̂−1X
� �−

L′
r →

Lα̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L X ′V−1X
� −L′

q ;

which can be represented as a finite term Karhunen–Loéve expansion:

Lα̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L X ′V−1X
� −L′

q ¼ Z ′ψ rð Þ;

where ZeN 0; Ið Þ and ψ is given by

ψ rð Þ ¼
Σ̂

1=2
b rð Þ⊗Λ̂1=2

� �
L′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b′ rð ÞΣ̂b rð Þ L D′Λ̂−1D
� �−1

L′

 �s : ð50Þ

(Note that this expression is slightly different from the original

derivation in Ye et al. (2009), i.e. D′Λ̂−1D
� �−1

instead of D†′ΛD† since

the original derivation was based on the least square fitting rather
than the maximum likelihood estimation used here.) Then, the corre-
sponding 2-dimensional LKC of ψ(Ψ) can be estimated as follows:

L̂2 ψ Ψð Þð Þ ¼ ∑
r∈Ψ

E ∇S rð Þ′∇S rð Þj j
1
2
; ¼ ∑

r∈Ψ
∇ψ rð Þ∇ψ rð Þ′j j

1
2
:

Again, let us discuss the meaning of Eq. (50). Similar to EC analy-
sis, the spatial similarity of the random field ψ is an important factor
to determine the threshold values for activation detection. Here,
there are three important factors: channel-wise noise variance

P̂
,

channel-by-channel correlation Λ̂ as well as the interpolation kernel
b. This implies that the tube formula tries to find the optimal thresh-
old value for activation detection by considering both geometric fac-
tors as well as noise statistics of measurements.

Lower dimensional LKC can be found similarly as in EC formula.
One of the advantages of using a tube formula is that we often have
an explicit representation of ψ, which makes the resulting computa-
tion simple. Also, for many fNIRS data with large degree of freedom
(i.e. ν ≫ 1), the calculation of t statistics using the EC formula is nu-
merically unstable due to the division by ν. However, the proposed
tube formula is not a function of ν, which makes the calculation nu-
merically stable. Hence, NIRS-SPM exploits the equivalence between
the tube and expected EC formula to switch between tube and EC
formula in calculating the p-value.

Another interesting observation made in Li et al. (2012) is that,
using the equivalence between the tube and EC formula, the authors
identified that the channel-wise variance matrix

P̂
should not be di-

agonal and needs to be estimated by considering the channel-wise
correlation. This is a fundamental departure from fMRI analysis,
where the voxel-wise noise is assumed independent but correlation
is inserted later using Gaussian smoothing (Friston et al., 2011). The
inherent correlation in fNIRS may be due to skin blood flow, intrinsic
connectivity, etc., but with the consideration of that correlation, the
EC and tube formula provides nearly identical p-value correction
despite its very different formula, which indicates the importance of
considering channel-wise correlation in fNIRS analysis (Li et al.,
2012).
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False discovery rate control

Another differentway of approaching themultiple comparison prob-
lem is using false discovery rate control (Benjamini and Hochberg,
1995). Rather than controlling type-I error, false discovery rate (FDR)
controls the expected proportion of falsely declared-active detections
among the total declared-active hypotheses (Benjamini and Hochberg,
1995).

FDR has been applied to channel-wise analysis (Singh and Dan,
2006) and source localization problem (Jung et al., 2012) of fNIRS
data, for making inferences about the activated region. As FDR
approach does not require spatial smoothing process in calculation
of p-value, it might be an optimal method in channel-wise statistics
of fNIRS (Singh and Dan, 2006). In addition, compared with the
Bonferroni correction (Dunn, 1961), FDR approach provides higher
power (defined as average proportion of detected activation) while
still adjusting the balance with specificity. Using the simulated and
real fNIRS data, Singh and Dan (2006) showed that FDR offers more
power and robust against changing number of channels within region
of interest (ROI) than Bonferroni correction. FDR method was also
applied in the study of the lateral prefrontal function during taste
encoding and reliably detected the activation pattern (Okamoto
et al., 2006). Another interesting application of FDR control is a source
localization approach using the multiple signal classification (MUSIC)
algorithm (Jung et al., 2012). They used FDR to find the threshold
values of the MUSIC spectrum for given q-values, and reconstructed
the activated region which is very close (6 mm to 18 mm) to the
Montreal Neurological Institute (MNI) coordinates of target regions
during finger tapping. We will describe the FDR control in more
detail.

The total n voxels are first classified into one of four types, as
shown in Table 1. The FDR is then defined as follows:

FDR ¼ FP
FP þ TP

¼ FP
T1

; ð51Þ

which is the proportion of the false-positives (FP) among only the
rejected null hypotheses (FP + TP).

Inference procedure based on FDR consists of the following three
steps (Benjamini and Hochberg, 1995). First, specify a desired q
value (0 ≤ q ≤ 1), which ensures that the expected FDR is less than
or equal to q:

E FDRf g ≤ n0

n
q ≤ q: ð52Þ

Here, to compute the threshold based on FDR method and associ-
ated q-value, one needs uncorrected p-values, i.e. p1,⋯,pn for the
hypothesis H1,⋯,Hn. Secondly, sort the uncorrected p-values into as-
cending order, p(1) ≤ p(2) ≤ … ≤ p(n), when the subscript (i) denotes
the indices for the reordered sequence. The final step is to evaluate
the following inequality in reverse order:

p ið Þ≤i
q
n
; i ¼ n;n−1;…;1: ð53Þ

Let k be the largest i that satisfies Eq. (53). Then we reject all the
hypotheses, H(1),H(2),…H(k). That is, we threshold at the pk value
Table 1
Voxel classification in multiple testing N hypotheses.

Declared non-significant Declared significant Total

Truly non-significant TN FP n0
Truly significant FN TP n1
Total declared T0 T1 n
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and declare the corresponding voxels active. Hence, we investigate
the significantly active voxels controlling the expectation of FDR
less than q-level.

Functional connectivity analysis

Compared to fMRI, the temporal resolution of fNIRS is significantly
higher. This gives us an opportunity to investigate the functional con-
nectivity of the brain by exploiting the temporal correlations between
multiple channels. In calculating the connectivity maps, two different
approaches exist: seed-based analysis and independent component
analysis. This area of research is still evolving, so we briefly review
some of the representative works.

Seed-based approaches

The simplest seed-based functional connectivity analysis can be
conducted by selecting a specific channel as a seed and calculating
the correlation value between its time series and the time courses
of all other source–detector combinations (Mesquita et al., 2010).
More specifically, to remove the physiology-based systemic con-
founds from fNIRS signals, an auxiliary measure of blood pressure
fluctuations is used as a regressor. Then, a filtered signal is then calcu-
lated by regressing out the confounds. For a correlation analysis, one
channel within a region of interest is selected as a seed, and the
Pearson correlation coefficient r between the time course of the
seed and the time course of all other channels are calculated.

In White et al. (2009), functional connectivity maps over the
motor and visual cortices were investigated using diffuse optical to-
mography (DOT). DOT channel arrays were placed over the visual
and sensory motor cortices. Seed-based correlation maps were calcu-
lated. A 1 cm3 volume was chosen as a seed region and the time
traces within the region were averaged. The correlation coefficient
was then calculated between the seed signal and every other voxel,
using the Pearson correlation coefficient. To examine the significance
of the inter-hemispheric correlations within the motor and visual
networks, two sets of inter-hemispheric r-values (motor-to-motor,
and visual-to-visual) were calculated. The null hypothesis was then
that each inter-hemispheric set was indistinguishable from the back-
ground set. This hypothesis was tested with a paired Student's t-test.
The t-statistics were converted to p-value using the right-tail of the
distribution. Functional connectivities within the visual and motor
networks were observed from DOT measurements during visual
and motor tasks: both visual and motor networks showed high levels
of inter-hemispheric correlation. Moreover, with the resting-state
analysis of DOT, the researchers found high correlations bilaterally
in the same regions as in the task-related responses.

Sasai et al. (2012) tested whether the resting-state networks
constructed by the fNIRS and fMRI measurements are consistent.
Three types of correlations maps were calculated using BOLD signals
and the following different seed signals: 1) fNIRS-measured oxy-
and deoxy-hemoglobin signals of all fNIRS channels positioned over
the bilateral frontal, temporal, and occipital regions, 2) BOLD
time-series extracted from the brain regions corresponding to the
fNIRS channel positions, and 3) fNIRS and BOLD time-series within
the predefined regions of a resting-state network (dorsal attention,
fronto-parietal control, and default mode networks). They observed
that correlation maps calculated with fNIRS signals as a seed were
clearly similar to the correlation maps with BOLD signals. These sug-
gest that fNIRS signals obtained at several cortical regions during the
resting state mainly reflect regional spontaneous hemodynamic fluc-
tuations that originate from spontaneous cortical activity and include
information that characterizes the resting-state networks.

In Sasai et al. (2011), to investigate the frequency-specific characteris-
tics of functional connectivity, they decomposed the oxy-hemoglobin and
deoxy-hemoglobin signals into band-pass filtered signals with narrow
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frequency bands (0.009–0.02, 0.02–0.04, 0.04–0.06, 0.06–0.08, and 0.08–
0.1 Hz). To clarify the coherence of the functional connectivity, the
cross-spectral density andpower spectral density betweenall of the chan-
nel pairs were calculated using Welch's averaged modified periodogram
method.

The results of HbO signals showed that homologous connectivity
is subtended in the broader frequency bandwidth (0.009–0.1 Hz),
while the fronto-posterior connectivity is present in the narrower
bandwidth (0.04–0.1 Hz). Moreover, the averaged coherence of the
homologous connectivity was high over a wide frequency range
(~0.1 Hz), while the coherence of the fronto-posterior connectivity
was high only within a specific frequency range (0.04–0.1 Hz).

Homae et al. (2010) investigated the developmental changes of a
brain network from several days to 6 months after birth by using
spontaneous fluctuation of HbO signals. Here, temporal correlation
between all pairs of measurement fNIRS channels was calculated.
They found that in the temporal, parietal, and occipital regions,
the homologous functional connectivity between and within hemi-
spheres was increased, whereas in the frontal regions, it decreased
progressively (see Fig. 4). To reveal the developmental changes in
functional connectivity, they analyzed the differences among the
infant groups on a channel pair basis. The correlation coefficient r
was converted to z scores by Fisher's z transform. Then, they
a

c

b

Fig. 4. Developmental changes of functional connectivities from neonates to 6 months old
the 94-channel fNIRS system. (b) Representative time courses of HbO measured from a 6 m
from P3 and Fp2. (c) Significant correlations between all pairs of measurement channels f
occipital regions, temporal correlations of HbO signals between the hemispheres were incr
connectivities between the hemisphere were progressively decreased.
Figure courtesy of Homae et al. (2010).

Please cite this article as: Tak, S., Ye, J.C., Statistical analysis of fNIRS da
10.1016/j.neuroimage.2013.06.016
evaluated the individual z scores as random effects and performed
ANOVA analysis with subject groups as a factor.

ICA-based approach

In H. Zhang et al. (2010), ICAwas applied to estimate the resting-state
brain connectivities from fNIRS measurements. As the fNIRS data has a
large number of temporal samples but a relatively small number of chan-
nels, temporal ICA is more suitable.

ICA analysis was separately applied to HbO and HbR time courses for
the sensorimotor and visual systems with the following procedures:
1) the detrending was applied to the data using the first and second
order polynomial functions to remove the linear and bilinear trends,
2) PCA reduction was performed to reduce the data dimensionality for
each subject, and 3) ICA decomposition was applied. From ICA, the
sensory-motor component and visual component were visually identi-
fied. To derive group-level results, the individual ICA results were
transformed into a z-map. A two-tailed one sample t-test was then
performed on the individual z-maps to generate random-effect
group-level analysis. Compared with the conventional seed-based ap-
proach, the superior performance of ICAwith higher sensitivity and spec-
ificity of functional connectivity mapswas observed in the case of higher
noise levels.
infants, characterized by spontaneous fluctuations of HbO signals. (a) Probe settings of
onth old infant. Correlation between HbO signals from P3 and P4 was higher than that
or neonate, 3 months old, and 6 months old. Note that in the temporal, parietal, and
eased as the developmental changes of brain, however in the frontal region functional
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Conclusion and outlooks

In this paper, we have provided an extensive review of statistical
analyses of fNIRS data. Applications of classical statistical analysis
such as t- and F-statistics as well as more advanced SPM-type ap-
proaches have been discussed.

For a unified understanding of various classical statistical analyses,
we provided a linear mixed model with ReML covariance estimation
and showed that most of the classical analyses can be explained with-
in this framework. We also provided a complete derivation of group
analysis using general linear mixed model with ReML framework,
which is novel and was not available before.

As for preprocessing steps for statistical analysis, methods to esti-
mate and remove physiological confounds were discussed. We also
discussed innovative approaches that utilize the confounds to estimate
the various components of fNIRS signal and utilize them to improve
resting-state fMRI analysis.We also provided a brief review of the func-
tional connectivity analysis using fNIRS data. The present works have
mainly focused on verifying that fNIRS analysis can also provide mean-
ingful functional connectivity maps. We reviewed the two representa-
tive approaches: one using seed-based analysis and the other using
ICA analysis. Both of the works provide promising results that confirm
the efficacy of fNIRS for functional connectivity analysis.

Similar to other neuroimaging modalities, one of the exciting
topics in fNIRS research is to develop widely accepted statistical
analysis for functional connectivity analysis. Even though we briefly
reviewed the existing literature, open problems still remain. First,
finding the correct seed is one of the important factors in
seed-based analysis since the connectivity maps are highly depen-
dent on the choice of seeds. Furthermore, unlike the fMRI, the
fNIRS signals are more prone to physiological artifacts, such as
blood-flow, so effectively regressing out the confounds is extremely
important for seed-based analysis. Second, the statistically rigorous
choice of threshold values for the adjacency matrix is still an open
problem, and currently most of the works choose heuristic method
to calculate the threshold-values. One promising direction in this
regards would be to exploit the topological structure of the adja-
cency matrix using the persistent homology (Lee et al., 2012),
which totally removes the necessity of the thresholding.
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Equivalence

Weare only interested in estimable function, sowe assume L′ ⊂ R(X′)
(Rao and Toutenburg, 1999). Then, the test statistics is

S ¼
α̂ ′L′ L X′X

� �−
L

� �−1
Lα̂

σ̂ 2rank Lð Þ

¼
y′X′ X′X

� �−
L′ L X′X

� �−
L

� �−1
L X′X
� �−

X′y

σ̂ 2p1
:

From the definition of the generalized inverse, we can find the full
rankmatrixX⁎ such that R(X⁎) = R(X) and (X′X)− = (X*′X*)−1. There-
fore, using the definition Eq. (15), we can defineΩ such that

Ω ¼ X�′X�� �−1− X�′X�� �−1
L′ L X′X

� �−
L

� �−1
L X�′X�� �−1

¼ P⊥
L′ X�′X�� �−1

P⊥
L′


 �
:
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Then, we have

S ¼ y′X′ X� ′X�ð Þ−1−Ω
X� ′X�

� 
X′y

σ̂ 2p1

¼ y′X′ X′Xð Þ−− P⊥
L′

X′Xð ÞP⊥
L′ð Þ†

� 
X′y

σ̂ 2p1

¼ y′X′ X′Xð Þ−−Q Q ′X′XQð Þ−1
� 

X′y

σ̂ 2p1

¼ y′ PX−PX0

� 
y

σ̂ 2p1

¼ y′ P⊥X0−P⊥X
� 

y

y′P⊥
Xy

N−p1
p1

e Fa−1;N−abc;

where X0 = XQ denotes the reduced model by excluding the effect of
the contrast matrix L.
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