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ABSTRACT

Tandem and latent repeats in genome sequences provide
insight into its various structural and functional roles. Such
regions in genome sequences are modeled as cyclosta-
tionary processes, generated by a collection of informa-
tion sources in a cyclic manner. The maximum likeli-
hood (ML) estimates can be easily generated for the cy-
clostationary profiles and for the statistical period of such
subsequences. However, in the presence of insertions and
deletions, the ML estimators suffer greatly in their ability
to accurately identify the periods. This paper extends the
cyclic model to a profile hidden Markov model (PHMM)
to account for insertions and deletions. An iterative algo-
rithm is developed to learn parameters of the PHMM and
Viterbi algorithm is employed to learn the most likely path
through the state space. This reconstructs likely insertions
and deletions in the sequence and results in better esti-
mates of the statistical period and cyclostationary profiles
than the ML approach. Experimental results are provided
with simulated sequences as well as with chromosome 1
sequence from human genome.

1. INTRODUCTION

The sequential structure of a genome has biological impli-
cations. Several regularities and base dependencies have
been observed in DNA and protein sequences and are as-
sociated with various molecular functions. This paper fo-
cuses on repetitions and short-range recurring-statistical-
dependencies in the symbolic sequences.

Genome sequences are symbolic sequences compris-
ing strings of symbols (representing nucleotides or amino
acids) drawn from a finite set (or alphabet), typically with
no algebraic structure. These sequences exhibit various
kinds of repetitions and regularities, and finding such fea-
tures is fundamental to understanding the structure of the
sequences. Latent periodicities in DNA sequences have
been shown to be correlated with several structural and
functional roles [1}, 12, 3]].

Most current approaches to detecting periodicities trans-
form the symbolic sequences into numerical sequences
and compute the Fourier transform [4} 3} |6]. Though this
is computationally convenient, it imposes a mathematical
structure that is not present in the data. In contrast, the
formulation in [7] implies no mathematical structure on

the alphabet and presents a general mapping-invariant ap-
proach to the detection of periodicities. Each symbol of
the sequence is assumed to be generated by an informa-
tion source with some underlying probability mass func-
tion (pmf) on the alphabet. The sequence is assumed to be
generated by drawing symbols from a collection of such
sources in a cyclic manner. This is a simple first-order
Markov process with a trivial transition matrix. The num-
ber of sources is equal to the latent period in the sequence.
This paper extends the cyclic model to a Profile Hid-
den Markov model [8]] to allow for insertions and dele-
tions. An iterative algorithm is proposed for recovering
latent periods by reconstructing likely insertions and dele-
tions in the ancestral cyclostationary sequence. Results
are provided with simulated as well as real DNA sequences.

2. MODELING PERIODICITIES WITH A
MARKOV CHAIN

Let A = {ai1,...,ar} be a finite alphabet of size L.
For DNA sequences, A = {A,C,G, T} where the sym-
bols represent nucleotides Adenine, Cytosine, Guanine
and Thymine respectively. A discrete probabilistic source
is defined to be a sequence of probability mass functions
P p@ . PWN) on the alphabet A. A probabilistic
source is defined to be cyclostationary with period K if
P™(a) = P"+tEK)(qg) for all n and a € A. It can be re-
alized with K information sources (or random variables)
denoted as X7, ..., Xk that generate an n symbol long
sequence s in a cyclic fashion. Consequently, the likeli-
hood of observing the sequence s can be expressed solely
in terms of the emission probabilities of the states. The
emission probabilities of X; are given by probability mass
function P;. Collecting the |.A| x 1 dimensional vectors
P; into a matrix Q*) = [Py, ..., P,] gives a compact de-
scription of the k-periodic cyclostationary source P(™).
Let K denote the true period and k be the hypothe-
sized period. The number of complete statistical periods
in an N-symbol long k-periodic cyclostationary sequence
s are M = |N/k|, where |x] denotes the largest inte-
ger less than or equal to x. Define |i];, = 1+ ((i — 1)
mod k), where (z mod y) denotes the remainder after
division of = by y. Then for 1 < i < N, the symbol s;
is generated by the random variable X|;|,. The search
space for k is the set K = {1,..., Ny}, for some Ny < N



and for corresponding probabilistic source Q(¥) the search
space is the subset Q(¥) C [0, 1]I41** of column stochas-
tic matrices.

2.1. The Maximum Likelihood Estimate
The ML estimate of the cyclostationary source is the column-
stochastic matrix given by %e optimization problem

(k) _ P(X: —s:lk 1

wi = arg Iax 11 (X[ =silk, Q). (D)
For fixed k, the (j, |4]x)*" element of the matrix Ql(vlfg for
j=1,...,]A]|,is given as [7],
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where 1{-} is the indicator function.

2.2. Regularized maximum likelihood estimator

MDL principle avoids overfitting automatically by trading
off complexity with the goodness of fit: Given the data
and a collection of hypotheses Q, it picks the model that
compresses the data most with respect to the description
method. The best estimate of the cyclostationary period
of sequence s is the k£ € KC that minimizes the description

length )

L(s: k) = L(Q®) + L(s|Qy) 3)
where IL(Q™*)) is the description length (in bits) of the hy-
pothesis Q%) and L(S|Ql(vlflz) is the length (in bits) of the
description of the data when encoded by the best ML hy-
pothesis Q\F) € Q). The term L(Q™®) is the paramet-
ric complexity of the model and L(S|Q](VI[€2) is the stochas-
tic complexity of the sequence given the model. The MDL
estimator is given as [7]],

N
KuvpL= argiréilrcl <2 [log k]+k|A| logle —log P(S|Q1(vl[€]z)>
3. EXTENSION TO A PHMM FOR LATENT
PERIODS WITH INDELS
The penalized ML estimator given by the MDL principle
performs well even with severe mutation rates [[7]. But

in face of insertions and deletions the performance of the
estimator degrades severely. Consider the sequence

ACT GCT CT ACT ACGAT ACT ACT ACT 4)

which evolved from the tandem repeats of ACT through
several insertions, deletions and substitutions.  The ML
stochastic matrix Ql(v]fL)» described by equation , is given
by the following simple algorithm:

Algorithm: def Q = cyclo(s,k,.A)

forj=1tok
sj=s(j: k:end)
fora € A
Q(a,j) = #(a € s;)/length(s;, A)
end
end
return Q

where the function length(s;, . A) returns the number of
symbols in s; from the alphabet .A. The correspondence
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Figure 1. Weblogo depicting mutual information between
repeats of 3-periodic DNA sequence (a) given in Equation
(@), (b) gapped sequence in Equation (3).

between different periods is depicted by plotting the We-
blogo [9] which captures the mutual information at each
location of the period. Fig[I[a) shows Weblogo for the se-
quence in (). We develop a method that optimally gaps
the DNA sequence to mark likely insertions and deletions.
The desired output is the optimally gapped sequence

ACT GCT -CT ACT ACG A-T ACT ACT ACT. (5)

Figure [I(b) shows the Weblogo [9] for the gapped se-
quence. The dominant period of the gapped sequence is
ACT. The ML estimate for 3-periodic probabilistic source
for the original and the gapped sequence are respectively

1/9 3/8 3/8 7/8 0 0
@_| 1/9 2/8 0 | @ _|1/8 0 1/9
MLT| 3/9 2/8 3/8 | MLew~ | 0 1 0
4/9 2/8 2/8 0 0 8/9

3.1. The revised model

In order to account for insertions and deletions when look-
ing for statistical periodicities, a profile hidden Markov
model (PHMM) is proposed as shown in Figure [2] for a
3-periodic cyclostationary source. Besides the cyclic tran-
sition between the states (X, X2 ,X3, ...) of the proba-
bilistic source, each state can transition to an insert state
(which models the symbols that are unlikely to be gener-
ated from the sources) or a delete state (which accounts for
possibly skipped states in a cycle). The insert states have a
feedback loop to model variable length block-inserts and
a delete state can transition to the next delete state to ac-
count for multiple skips. The PHMM is parametrized by
transition probabilities: 7 = P(X|;), — X|i+1],),
€ = P(ka — Il_ljk)’ 0 = P(Xl_le — D\_H‘Hk) and
the emission probabilities e;(-) of the insert state and the
probabilistic source Q(*).

The gapped sequence in Figure [T(b) is reconstructed
based on the a priori information that the ancestral se-
quence had tandem repeats of ACT. In the absence of this
prior knowledge, a likely pattern (tandem repeat or a latent
period) has to be learnt from the given sequence.

The next subsection briefly describes the Viterbi algo-
rithm to learn the optimal path of states given the knowl-
edge of the probabilistic source, emission probabilities and
transition probabilities. A Gibbs sampling based method
is outlined in Secto learn the probabilistic source Q(*).

3.2. Learning the optimal path

Let 7 denote a path through the state space of the PHMM
described in the previous section. Let VJC(Z) be the log-



source with period 3.

likelihood of the best path 7* generating the subsequence
s1...; with the symbol s; being emitted by the jth infor-
mation source in the cycle X, ..., X}. Similarly, VjI (7)
denotes the log-likelihood of the best path with s; emitted
by the insert state I; and V;” (i) is the log-likelihood of
the best path ending in the delete state D;. Then

VX(i) = log P(X|;), = i)

V¥ (i —1) +logtx,_, x,
+ max le_l(i —1) +logts,_, x,
V2, —1) +logtp,_,x,

VX (- 1)+ logtx

le(z' —1)+logtr, 1,
i il

Vi7(i—1) +logtp,,

VI(i) = loger(x;) + max

‘/;)51(2) =+ log th—le
V(i) +logts,_,p, (6)
V]D—l(l) + log tDj—le

VP(i) = max

where t,3 denotes the transition probability from state «
to state § and can be expressed in term of the parameters
7,€ and 6. At each update a pointer is created for each
state to the previous state that maximized the likelihood
of transitioning to the current state:

vi(X;) = argmgx [Vﬁl(i—l)+logtgjflxj}
vi(l;) = arg mgx [Vjﬁ(z —1)+log tﬁﬂj}
v(D;) = arg mgx [Vj’g_l(z) + log tﬁjile:| @)

where ( can be any of the insert (/), delete (D) or cyclic
states (X). The most probable state path 7* ends in the
state 77 = argmax; {V;* (N),V/(N),V;”(N)} and is
given by simply tracing back the pointers:

mr_q =~1(r}), fori=1L,...,2. 8)

?

3.3. Learning the probabilistic source

The knowledge of the underlying probabilistic source is
crucial to finding the optimal state path that generated a
given sequence. However, the probabilistic source itself
needs to be learnt from the sequence. And often times
with insertions and deletions, as shown in Figure Qﬁ,’fﬁ
is a rather poor estimate of the true cyclostationary source.
This is due to the mismatch of phase between successive
periods. The estimate can be improved using an adaptive

approach that iteratively reconstructs the insertions and
deletions. The goal is to first introduce gaps in the given
sequence at locations that possibly correspond to inser-
tions and deletions in the sequence. An optimal gapping
would space out symbols in the sequence such that the
total entropy of the cyclostationary source is minimized
or equivalently the mutual information between repeats is
maximized (also see Figure [T). Given the ML estimate
of cyclostationary source from the gapped sequence, the
Viterbi algorithm for HMM profile alignment reconstructs
both insertions and deletions.

Since the actual locations where insertions or dele-
tions took place are hidden, these have to be recovered
from the search space of all possible insertions and dele-
tions. For a sequence of length n and an insertion and
deletion rate of p symbols per base, the search space is of

the order © ((:p)z). Clearly, the search space becomes

un-manageable for long sequences. To address this com-
putational problem, we propose a Gibbs sampling based
approach that is much more efficient and has a search
space that grows linearly in n. At each location in the
sequence, we compute the relative decrease in entropy of
the ML estimate of the cyclostationary source after intro-
duction of &’ < k gaps at that location. Recall that k is the
hypothesized period and any occurrence of k consecutive
gaps can be pruned. The relative gains are normalized to
give a (N+1)x (k—1) dimensional probability mass func-
tion over the cartesian product of sequence indices and the
counts of gaps. Sampling from this distribution gives the
cartesian pair (7, ) and the sequence is updated by intro-
ducing j gaps at location . Note that Gibbs sampling re-
constructs the gaps at one base location at a time. This is
equivalent to taking small steps in the search space, where
the size and the direction of the step are sampled from a
distribution. Also, it should be emphasized that sampling
the maximum of the distribution may lead to the search
algorithm getting stuck at a local maxima.

The algorithm for Gibbs sampling is described below,
with input being the symbolic sequence s = s1,...,Sy
and period k. The output is the probabilistic source for
optimally gapped symbolic sequence.

Algorithm: def perGAP(s, k)
Do
IEfL) = cyclo(s, k)
Compute likelihood L of observing s given QI(\,IFI?
For each position ¢ in s:
For j from1to k — 1:
Insert j gaps in s at position 7 to generate sa
l(vﬁ) = cyclo(sz, k)
Find likelihood L- of observing so given Qf\fg
Calculate the likelihood aj; = L2/ L1
Normalize the weights a to get a distribution.
Sample (js, 5) from the distribution
Update s by introducing j. gaps at location 7,
Until convergence or max iterations.

Return cyclo(s, k).
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GAGTCCG G————— AGTCCGT
TAGTCCC AGTCCGT AGTCCGT
GTATTCC AGTCCCG ATTCCGT
GTGAGTC T AGTC-GT
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Figure 3. (a) Tandem repeats of AGTCCGT with ran-
dom insertions, deletions and substitutions (b) intermedi-
ate gapped sequence with possible insertions marked red
and substitutions marked blue, (c) final sequence recon-
structed by estimating the optimal state path using Viterbi
algorithm. It is clear from the corresponding WebLogos

that repeat pattern is recovered successfully.

The routine perGAP(s,k) estimates the cyclostation-
ary source Ql(\fICIZ,G Ap tor the gapped sequence. This also

minimizes the sum-total entropy of the probabilistic source.

The gapped sequence in Figure [T] was obtained using the
routine perGAP.

4. EXPERIMENTAL RESULTS
4.1. Simulated data

This section discusses experimental results with simulated
DNA sequences. Symbolic sequences with tandem re-
peats were simulated with independent insertions, dele-
tions and substitutions at each base location. Each evolu-
tionary event involves one character at a time. Figure
shows results with the ancestral sequence comprising tan-
dem repeats AGTCCGT. The insertion, deletion and sub-
stitution rates are 0.05, resulting in a total erosion of 15%.
The emission probability of the insert state was chosen
equal for each symbol (e;(a) = 0.25 for a € A).

The performance of the proposed algorithm at identifi-
cation of latent periods is studied for severe insertion and
deletion rates. Figure [] plots the description length (see
Section [2.2)), averaged over 10 simulations (for each pa-
rameter setting), of the estimated cyclostationary source
against the hypothesized periods for various insertion and
deletion rates. The original cyclostationary source in the

simulations corresponds to the tandem repeats of ATGACT.

The period of the cyclostationary source that best fits the
sequence, after reconstruction of likely insertions and dele-
tions, matches the true period. The sequences were 100
symbols long and average substitution rate was 10%.

4.2. Genomic sequences

The proposed method was applied on chromosome 1 of
human genome in a sliding window size of 300 base pairs
with an overlap of 150 base pairs. Various new periods
were discovered and are tabulated in the files uploaded at
[10]. Latent and tandem repeats were also observed in
protein sequences. Some of these sequences are uploaded
in FASTA format at [[10]].
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Figure 4. The description length per base is minimized
when hypothesized period equals the true period. The
curves correspond to various insertion, deletion and sub-
stitution rates.

5. CONCLUSIONS

This paper extends the cyclic Markov model proposed in
[7] for finding latent periods to a profile hidden Markov
model that is robust to insertions and deletions (indels) in
the genome sequences. Extensive simulations show that
the method was effective even with combined insertion
and deletion rate of one in every four base locations.
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