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Abstract—This paper addresses the problem of image align-
ment based on random measurements. Image alignment consist
in estimating the relative transformation between a query inage Euclidean distance query pattern
and a reference image. We consider the specific problem where
the query image is provided in compressed form in terms
of linear measurements captured by a vision sensor. We cast referenc
the alignment problem as a manifold distance minimization pattern s
problem in the linear subspace defined by the measurements. s(n*)
The transformation manifold that represents synthesis of kift,
rotation and isotropic scaling of the reference image can bgiven
in closed form when the reference pattern is sparsely represted
over a parametric dictionary. We show that the objective furction
can then be decomposed as the difference of two convex furmis
(DC) in the particular case where the dictionary is built on
Gaussian functions. Thus the optimization problem becomes
DC program, which in turn can be solved globally by a cutting
plane method. The quality of the solution is typically affeted
by the number of random measurements and the condition
number of the manifold that describes the transformations é the
reference image. We show that the curvature, which is closgl
related to the condition number, remains bounded in our imag &
alignment problem, which means that the relative transformation M CR” L
between two images can be determined optimally in a reduced
subspace.

Manifold distance

transforme
pattern

Transform%{on manifold
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I. INTRODUCTION e
The problem of computing the relative geometric transfo/ '.
mations between visual patterns is of paramount importance .

and enjoys numerous applications in various fields inclgdin

vision sensor neWVQrkSa pattern recognition aljd medmagm Fig. 2. Image alignment is performed in the reduced spaee pfojections.
analysis, to name just a few [1]. The analysis or comparison

of visual patterns is generally only meaningful when images

are aligned and placed in a common referential system. Thg,ensive to deal with the complete image. These limitation
transformed version of a reference pattern can be desca®ed,¢ gither due to the design of sensors or due to importaat con
a point of a low-dimensional manifold in a high dimensionalysints in terms of bandwidth or computational resourtes.
space, which is usually cqlled tieansformation manifold. ;¢ case, the query image may be given in compressed form by
The alignment of a query image can then be performed Byte,y jinear measurements. The analysis of compressed query
computing its projection on the transformation manifoltheT images has recently found applications in wide-area persis

manifold distance (_MD) is defined as.the minimum distancg, ryeillance [2] and fast MR imaging [3], for example. The us
between the query imageand the manifold generated by they jinear measurements permits to reduce the complexity of

reference image, see Fig. 1. the sensing step and the scale of the image alignment problem

In certain applications, we might however not have accegsih;s extends to systems with imperfect settings such as
to the full query image or it might be computationally toq,, complexity vision sensors networks (see, e.g., [4], [5]
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random projections of a sparse (or nearly sparse) signal aage alignment. Finally, experimental results are presgi
sufficient to preserve its salient information. Simultangyg, Sec. VI.

it has been shown that random projections of signal marsfold

result into approximately isometric embeddings, i.e.npiie Il. IMAGE ALIGNMENT PROBLEM

Euclidean distances are nearly preserved in the reduc&e sp& proplem formulation

[71, [8]’ 31 Equped_ with the_se two properties, It becane In this paper, we are interested in estimating the relative
possible to solve the image alignment problem with help of a

transformation manifold in the reduced space that is built éransformatlom that best matches two visual patterns. This

the linear measurements performed by the sensors problem is very common in image processing or computer
We propose a new method for image alignment When tr\]/ision applications that rely on image alignment or matghin

relative transformation consists of a synthesis of trdisia, Of views. In particular, we consider the problem where only

. . . . compressed version of the query pattern is available in the
rotation, and isotropic scaling. The proposed method esfl- ; o

. . orm of linear measurements captured by the vision sensor.
mates the globally optimal transformation between a que

: . . . I%rmally, we consider images that undergo transformations
image and a reference image using a sufficient number

of random measurements. For this purpose, we repreﬁsenqescr'bed by a set of parameteysWe further suppose that

as a sparse linear combination of geometric primitivededal all the transformed versions(n) of the reference pattern

atoms, which are chosen from a parametric, possibly redﬂnd%vsa(;]m?;nsr;arjs?rﬂfg VSZ :S;L?Zf?;r;tau%nhr;:en:%;;
dictionary. This representation permits to build a paraimet '

definition of the transformation manifold, which descrillkes projections of the query patterp, obtained by computing

possible transformations of the reference image. The image e products withn .ra”do”.‘ signalsy, ..., zm. _The image
Ig;nment problem is equivalent to a manifold distance

alignment problem can then be cast as a manifold dIStanCmimization problem in the linear subspace defined by the

minimization problem. Building on our previous work [10],m
. measurement vectors. It can be formulated as a parameter
[11], we then formulate the pattern alignment problem with .~ " .
ﬁ%lmauon problem as follows.

random measurements as a DC program by showing that
objective function can be represented afiference of convex

functions (DC), in a case where the dictionary is composed Transformation estimation problem

of Gaussian atoms. DC programs are non-convex problems n* = argmin f(n), where
that can be solved with efficient globally optimal algorithm . K
by exploiting their special structure. Our approach thanef Fn) = Z (s(n), 2) — (p, 22)] 1)

provides a constructive way to perform image alignment with
random measurements. : _— Lo .

At the same time, the results from [9] suggest that the Th(laarugr:e '?rfatheelr_gO'rsTraltr']o;th%blgfigzergfjgrcrgzntc;Sa(lug?AD
number of measurements necessary for proper alignment E‘gpu In Imag gl '

pends on the condition number of the pattern transformati %;:nthc;f Sf Sno(llrjrtﬁ i(sjlflz?l:)?/\r/]rﬁ?’btseeﬁ)b[ﬁg' t(?l(\)/jtrllie?!ssowt:iafsgt
manifold, which in turn is closely related to its curvature. '

. . . . . ¢chosen to use this norm in the case of random measurements
We perform a geometric analysis of this manifold, showin . :
s well. Moreover, as will be seen below, this norm appears

that it is well conditioned and providing an explicit uppe . oo
bound on the curvature. MoreO\E)er we %stablisrﬁ) an ef?izieﬁ)t b? most suitable for the DC optimization method proposed
0 this paper.

numerical procedure for computing the principal curvatur

. : . . The optimization problem (1) for determining the best
at a certain point on the manifold. These results ConﬂrEPansformation arameters® is typically non-convex [13]
that the required number of measurements is bounded in Quir P s’ ypicatly X

problem, and that image alignment can be solved eﬁicien”t(;y%'s makes it hard to solve using traditional methods, such

in a reduced subspace. In summary, the contribution of t 12 steepest descent or Newton-type methods due to their
ocal convergence property and the presence of an unknown

paper consists of providing (1) a globally optimal approth number of local minima. We show in the next section how the

image alignment with random projections and (2) theorktic . . . . )
g g I | ProJ .( ) ﬁansformatlon manifold could be described in a parametric
as well as numerical insights into the geometric propenxfes

the pattern transformation manifolds, showing that thegmafor:;ni;\glfg :cr:]esct:r;ir:]Sfor;]:]aetlgg'sc;?vzypl}:ﬁ;fnoésr?n;)tée rmtttle
alignment problem can be solved with a finite number &} P 9. J

0 . : A
as a difference of two convex (DC) functions, which in
measurements. ; A
. . . rn permits to formulate the optimization problem as a DC
The rest of this paper is organized as follows. In Sec. ) .
. : rogram and to solve it globally by a cutting plane method [14
we formulate the problem of image alignment from rando

measurements. In Sec. Il we discuss the representation gtm 5.3].

transformation manifolds using sparse geometric expassio S

We then show in Sec. IV that the distance between the québy Geometric insights

pattern and the transformation manifold is a DC function In the above alignment problem, one still has to choose the
of the transformation parameters. In Sec. V we provide rmmber of measurements that leads to efficient transforma-
geometric analysis of transformation manifolds that comdir tion estimation. The optimal number of random projections
that a limited number of measurements is sufficient for accis- hard to define in practice. Suppose that we project the



transformation manifolds spanned by two distinct pattenns [1l. TRANSFORMATION MANIFOLDS
m random vectorszy, ..., z,. In order to make sure that

matching points in the reduced space is close to matching theVisual pattern representation

corresponding points in the original high-dimensionalcepa We show in this section how one could build a parametric
the embedding should be nearly isometric; that is, pairwi%re P

Euclidean distances should be nearly preserved. Only sf thlansformatlon manifold for a reference patternWe first

: . , . . xplain the representation of the pattern as a linear combi-
is the case, one can reliably perform image alignment in thé". . .

: . nation of geometric functions (usually calledoms), taken
reduced space and estimate the unknown transformation.

Recently, Baraniuk and Wakin [7] provide an estimaterof from a structured parame_t ricand P ossibly redundgnt diatip
T . ok . D = {¢,, v € T'} spanning the input space. This represen-

that is linear ind and logarithmic inn, the number of pixels ,_.. ; : :
. . . - . tation aims at capturing the most prominent features of the
in the image. We briefly revisit the main result from [7]. . L

Th 1 Let M b d-di ional ifold pattern. The atoms in parametric dictionary are constructed
. Rne?]rem ' ed't' €a cl:)orppac _I |mer‘1/3|on:zlj marg ol¢ by applying geometric transformations to a generating eroth
N &7 having condition numboe /7, volumeV’, and geodesic function denoted by. A geometric transformation € I" can
covering regularityR. Fix 0 < e <1 and0 < p < 1. Let Z

. o m be represented by the action of an operat¢y) and therefore
be a random orthoprojector frof®™ to R™ and the parametric dictionary takes the form

dlog(nVRrte Y log(p~t) )

mZO( 5

(@) D={¢,=U(7)¢, y€T}. (4)

Supposen < n. Then, with probability exceeding — p, the
following statement holds. For every pair of pointgy € M,
we have

m || Zx — Zyl2 m
(l—e)ﬁﬁwﬁ(l—i—e)\/;. ?3)

€

s(n)
Fig. 3. A larger corresponds to a well conditioned manifold.

@ (b)
(© (d)

Fig. 4. Sample Gaussian atoms; (g) = 0, by = 0, az = 10, ay
In short, Theorem Yis proved by determining a high'fy::o—'l(g,)s;f :100',%1,::05’, Z”:_i)/'él?(’d):bf':“5’:%_2/?'1(()?);1?
resolution sampling on the manifold and then applying thg =5 v = —n/6

Johnson-Lindenstrauss lemma [15] to the sampled points. Th

above theorem implies that besidésand n, the numbermn
depends logarithmically on other properties of the madifol
such as its condition numbdr/r, volume V' and geodesic

covering regularity . Note that R is closely related to ¢ Translation by b; = [biz biy]". U(b;) moves the gen-

=5,
=0,
=10,

A transformationy;, defining theith atom, is composed of
elementary transformations of the following three types.

the condition number [7] and we will omit its definiton. ~ €rating function across the image, i.€/(b;)¢(z,y) =
Intuitively, the condition number of\ is defined asl/r, O(@ — biz, y — biy)- _ _
wherer is the maximum radius of a sphere that, when placeds Rotation by w;. U(w;) rotates the generating function
tangent to any point in\, it intersectsM only at that point by the anglew;, i.e., U(wi)p(z,y) = ¢(cos(wi)x +
(see [16] for a precise definition). This is illustrated draally sin(w; )y, cos(w; )y — sin(w;)x).

in Fig. 3 showing that a large implies a well conditioned ¢ Anisotropic scaling by a; = [aiz a;y] . U(a;) scales the
manifold, which has a low curvature and does not, at least genzerat;ng function anisotropically, i.€/(a;)¢(z,y) =
locally, intersect itself. Therefore, the condition numisean ¢(am7 aiy )-

important property ofM towards characterizing the numberhese elementary transformations yield a transformagjon

m of required random measurements. We show in Section(yhai,wi) e T as a synthesis of translation, anisotropic

that our transformation manifold is well conditioned, wihic scaling, and rotation. It can be observed that applyingrmstra

means that the number of necessary measurements is clefihation to the mother function is equivalent to transfimgn

bounded in the problem of Eq. (1). the coordinate system frorf:,y} to {Z, 4} before applying
¢(-). In particular, theith atom ¢., = U(y;)¢(z,y) with

1Note_that even iff(n) in 1) is_ bas_ed_on the-norm dist_ance in our v = (bi,ai,wi) e T can be regarded as the pullback
formulation, Theorem 1 still provides insights on the regdi number of
measurements, by the equivalence of norms in finite-dimeasispaces (i.e.,

a good match in tha-norm yields a good match in thzznorm). by, (2, y) = (o, (2, ), (5)
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Fig. 5. Progressive OMP approximation of a human face (le$tinwith 20, 50, 80, 110 and 140 Gaussian atoms (from leftgtat):

where(z,9) := ¥, (x,y) satisfies

IS

L 0 cosw;  sinw; T — by

1 o . ) _ b
0 an —sinw; cosw; Y — biy

<

A R(w;) t

The approximation of a pattera with atoms from the
dictionaryD can be obtained in different ways. Even if finding
the sparsest approximation efis generally a hard problem,
effective sub-optimal solutions are usually sufficient aptire
the salient and geometric structure of the pattern with enly
few atoms. In this work, we have chosen to use Orthogonal
Matching Pursuit (OMP) [17, Sec. 9.5.3], which is a simple
yet effective algorithm for computing sparse approxinragio

: . Fig. 7. Random projections in 3D of the rotation manifold o§.F6. The
In practice. samples correspond to rotation angles frono 2z with stepx/500. The
Initially, OMP chooses the residualy = s and then color/shading is a linear map of the rotation angles.

proceeds iteratively by selecting in thgh step the atom
¢, that best matches the residual_, ie., v = ) _
arg. o max|(rx_1, ¢,)|. Then, is removed from the resid- gnd a rotationw. The manifold M of_all such transformed
ual by projection:r, = (I — Py)ri_1, where P, is the images can be expressed mathematically as
orthogonal projector onto spés,, }. After K steps of OMP, _ ,7 _
the patterns is approximated by a sparse linear combination M= {s(n) =Uln)s, n=(b.0,0)}. ©
of K atoms: Although the manifold resides in a high-dimensional spése,
K intrinsic dimensiond is rather small and equal to the number
5~ ka%k' () of transformation parameters, which is 4. Fig. 6 shows a few
k=1 samples from the transformation manifold of a human face,
We propose the use of a dictionary of two-dimensiongith the transformation restricted to a rotation. The rando
atoms capturing the geometric information in an image. Theojections of the resulting manifold are illustrated i F7.
generating functiow of D used in this paper is the Gaussian In general, all possible transformationgorms a group, the
1 so called similitude group SIM(2) of the plane. As in (6), we
P(z,y) = EGXP(—(%2 +9%)). (8) denote

This dictionary has been shown to provide good approxima- cosw  sinw
. ) . R(w) = , 0<w< 27,
tion performances for natural images [18]. Fig. 4 shows a few sinw  cosw
sample Gaussian atoms corresponding to various geometric
transformations. In addition, Fig. 5 illustrates the progressiveas the rotation matrix for the angle. If (b,a,w) and
approximation of a human face from a Gaussian dictionafy, o’,w’) are two elements of the SIM(2) group, then the
using OMP. Observe that already very few atoms are sufficiemoup law [18] is given by
to capture the main geometric characteristics of the patted

ror N / A
that the representation (7) does not need to be very accurath @ w) o (U, o', W) = (b + aR(-w)t', ad, " +w). (10)

to be useful for alignment purposes. In the following, we replace the reference imageby its
approximation (7). Using the pullback interpretation (5) i
B. Transformation manifolds follows that the transformation applied tos results in

In the following, we show how all the geometric transfor- K K
mations of the reference imagebuild a parametric trans-  5(1) = U(m)s = > &UMy, = > &byoy,  (11)
formation manifold. We restrict scalings to be isotropie,,i k=1 k=1
the geometric transformation takes the formy = (b,«,w) wheren o v is a composition of transformations. In other
consisting of a translatiob = [b,, b,], an isotropic scaling, words, the transformation is applied to each constituemat
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Fig. 6. Samples from the transformation manifold of the horface. From left to right, the samples correspond to ratatingles from0 to 27 with step
/4.

individually. Furthermore, the group law (10) can be emplby  In particular, each functiofis(n), z;) = ZkK:lgk(ank,zi)

to determine the updated parameters of the transformedsatooorresponding to a measurement veetomwith 1 < i < m, is
Let us emphasize the importance of equation (11): it pertmitsDC. Note thatf;(n) := (s(n), z;) — (p, z;) remains DC since
express the manifold equation (9) in closed form with respethe second term is constant and does not depend Assume

to the transformation parametefs The definition of the now that the DC decomposition of each functignis given
manifold in (11) is used in the optimization problem (1). Wy f;(n) = gi(n) — h:(n).

show in the next section that the resulting manifold distanc By Proposition 1(b), the absolute value of a DC function is
problem can then be defined as the difference of two conv®BX and hence

functions, which enables the use of the DC programming

methodology. |fi(m)| = 2max{g;, hi} — (g; + hi) = Gi(n) — hi(n),
is also DC. Finally, the objective function in (13) is DC sinc
IV. DC DECOMPOSITION it is simply a sum ofM DC functions:
A. Properties of DC functions m ~
The purpose of this section is to show that the objective f) = Z [fi(m)l = Z (9i(n) = hi(n))
function (1) is DC when the dictionary is built from 2D =1
Gaussian functions. We start with some definitions and basic _ Zgl Z (1) .
properties about DC functions [14], [19], [20]. L&t C R" =
be convex. A functiory : X — R is called DC onX if there H/—’ ~——
exist two convex functiong, 4 : X — R such that 9(m h(n)
F(@) = g(x) — h(z). a2

A representation of this form is calledC decomposition of ¢, DC programs

f. DC decompositions are clearly not unique; for any convex

function ¢(z), the decompositiory(z) = (g(z) + ¢(z)) —

(h(z) 4+ ¢(x)) is also DC. We will make use of the following

two properties. min f(z) = g(x) — h(x), (14)
Proposition 1 (Properties of DC functions [19, Sec 4.2]): N o n .

Let f =g—handf; = g;—h;, i=1...,m be DC functions. St reX={reR":4(z) <0

An optimization problem is called a DC program if it takes
the form

Then the following functions are also DC: whereg,h : X — R are convex functions and: R" — R is
@ X" A= Z{mizo} Nigi — Z{i:ki<0} Aih;| — @aconvex function. The next proposition provides an opfityal
condition for (14).
[Z{i:)\izo} Aihi = 3 (i <0} /\igi]- Proposition 2 ([14]): The pointz* € X is an optimal
(b) |f| =2max{g,h} — (g +h). solution to the DC problem (14) if and only if there exists
t* € R such that
B. DC form of the objective function 0=inf{—h(z)+t: z€ X, t€R, g(z) —t < g(a*) — t*}.

We now combine Proposition 1 with our previous results (15)
[11] to prove the main result of this paper. In this work, we have chosen to solve the DC Program (14)
Theorem 2: The objective functiory in (1) is DC. by the outer approximation cutting plane algorithm propbse
Proof: Recall that in [14, Sec 5.3], for its simplicity and also due to the fact

m that the parameter space in our problem is four-dimensional
Fn) = D 1s(n),z) = (p,z)| However, we should mention that our framework could also be
i=1 combined with other DC solvers such as Branch-and-Bound
m o K schemes [14, Sec 5.1, Sec 5.2] and DCA [21].
= Z ’ Z§k<¢nkazi> — (P, 2i)| (13) The efficiency of the DC solver mainly depends on the
i=1 k=1

overall cost for evaluating DC decompositions. The cost for
where n, = 71 o . In [11] we have shown that (i) the evaluating one DC decomposition grows proportionally with
transformed generating functions,, are DC, (ii) the inner K - n; - ny, where K is the number of atoms and; x n.
products(¢,, , z) between the atoms and a fixed patterare is the resolution of the image. Hence, sparsity directlgctff
DC, and (iii) the inner products(n), z) = Zszl &k(on,, z) the efficiency of our method. This is where the choice of the
is also a DC function of. dictionary becomes important, since it has to capture tha ma



Note thatd = dim7, M = 4 although the transformation
manifold M is a submanifold ofR™. The codimension of

K HCR N; T, M is therefore given by, — 4. Consider the direct sum
f % R" = T,M& T,M*

" and let {Ny,Ns,...,N,_4} be an orthonormal basis of

T, M*. Then any (unit) normal vector can be written as

M CR"?
i n—4 )
N=> (N, (17)
i=1
Fig. 8. The parameter spa@é provides a parametrization of the transfor- ) '

mation manifold M. with coefficients¢’ = (N;, N). Fig. 8 provides a graphical

illustration of the scenario that we consider.
toat ¢ natural i ith a f ¢ v, This is t In what follows, we show how one can compute the linear
eatures of natural images with a few atoms only. This is t eratorL; : T,M — T, M associated with the second
case for the dictionary of 2D Gaussian functions used in t ndamental form. According to the standard definition [22,

paper [18]. 5 enta 1o
The cutting plane method quickly converges to the vicinityrOpOSI lon 2.3,

of the globgl minimizer but then typically_ §aturates.. Hence Le(X) = —(VXN)T, (18)
to obtain high accuracy it is more beneficial to switch to a _ o
local optimization method, such as Newton, once the iteratdere X € 7, M, Vx denotes the covariant derivative Rt

is sufficiently close to the global minimizer, see, e.g.][11 and( - )” denotes the projection on the tangent space. Take
a tangent vectoX =3, 27t;. Then it holds that

V. GEOMETRIC ANALYSIS OF TRANSFORMATION

4
MANIFOLDS ~VxN = _vz4 i N = ZIj(—thN)- (19)
We have seen in Section Il that the condition number of the e j=1
manifold M is an important factor towards characterizing t.hﬁence, it suffices to study the operafgy N. It holds that
numberm of random measurements needed. At the same time, I
it is also known that the condition number is closely related n—4
to classical notions of curvature in differential geometig -Vy,N = =V, (Z Ci]\h—)
the second fundamental form. In particular, P. Niyogi efiral. i=1
[16, Proposition 6.1] show that the condition numhgr is n—4 , n-4
an upper bound of the principal curvature (defined below) at = - Z Vi, ("N — Z 'V, N;.
any point on the manifold. i=1 i=1
In this section, we first derive an upper bound of thglow observe that
principal curvature of parametric transformation mardfaM _—
deﬁned in (9). When there are no (near) self—m.tc_arsectmns, (v, N)T = Zci(_vt_Ni)T' (20)
this upper bound can be used instead of the condition number ’ p ’
for characterizing the manifold. It further indicates ttihe . o
transformation manifold is well conditioned, which meanatt '€ covariant derivativé/;; N; € R can be decomposed as

the number of measurements required to solve the Problem aN 4 4
i k k
Stk PN @
J k=1 k=1

(1) is clearly bounded. Furthermore, based on the obtained ~V, N; = —
developments, we additionally provide an efficient nunadric !
algorithm for computing in practice the principal curvaguat

a certain point onM.

for some coefficientiifj withi=1,...,n—4 andj k =
For notational convenience, we will denote the trang----»4 This directly gives

formation parameters as follows; = (91,72,m3,m4) = 4

(b, by, @, w). The metric tenso6 € R*** is then given by (~Vi,N)T = Zijtk. (22)
k=1

[G] ij = <tiatj>? (16)
_ ) i In what follows, we show how one can compute the
wheret;, t; are theith andjth tangent vectors, defined as coefficientstj in (21), from which we obtain
;. 9s(n) . 4
On; —<a—.i7tz> = L¥gu.
and assumed to be linearly independent. The tangent space M k=1

T, at point is defined as _ . .
nMatp s(n) € M Unfortunately, it is not easy to compu%\;—? in practice, as

Ty M = span{ty, ta, t3,ts}. the normal vector®v;, i = 1,...,n—4 are t]ypically obtained



by a Gram-Schmidt orthogonalization process. Howeves it fAlgorithm 1 Numerical estimation of the principal curvature

known [23] that 1: Input: normal direction¢!, ... ¢»*
2: Output: linear operatorL., estimate\, of the principal
(O 1y =~V ), curvature.
on; 3: Compute the tangent vectots= TS" 1=1,...,4.
. . . o 4: Compute the mixed second order partial derlvat|ves
wheret,; is the mixed partial derivative, i.e., 52
S
825(77) tlj—m, Z,j—l,,4

tyy = ———.
b on0n; . .
5: Compute the metric tensdtz],. = (t;,t;) as well as its

The proof is provided in the appendix for the sake of com- inverseg"/.

pleteness. 6: Build an orthonormal basis{N;, Ny,...,N,_4} of
This has the advantage thaf is much easier to compute ~ 1nM™ using Gr:im45chm|dt orthogonahzauon

in pract|ce thana— Therefore, for fixed, j, the coefficients 7 ComputeN >im1 ¢'N

v k=1,. 4 'can be obtained by solvingax 4 linear g forj=1,...,4do
SJ : fork=1,...,4do
ystem M PR
10: ComputeL? =37, g™ (N, t;1).
L}; (Ni,ti1) 11:  end for
a . _ . 12: end for
- ’ 13: SetLg = [L?]jykzlm»-,‘l'
LY (Ny, tja) 14: Compute the maximum eigenvalue of L.

whereG is the4 x 4 metric tensor defined in (16). In more
compact form: Therefore, the linear operatdr; has the following matrix

representation
Z g NZa tjl (23)

where gk’ = [G~!],, denotes thek, 1) entry of the inverse L? I3 13 L3
of the metric tensor.
Combining equations (20) and (22) yields

™~
~
I

(26)

T .. . . . .
(=Vy;N) It is important to mention at this point that the operafgris

self-adjoint with respect to the induced metric in the tarige
ik LI X space [22] and therefore its eigenvalues are real. The mam®im
Z Z CLij |tk = Z Lite. (24) eigenvalue ofL. is usually called therincipal curvature.
In what follows, we provide an upper bound on the principal
=Lk curvature.
Proposition 3:

I
1M1
3
L~
-
h

o
=
~_—

supy,; ||t

—(VxN)" = Y 2=V, )T = 20 Y Ly, -
j=1 =1 k=1 Proof: It is well known that
4 4
= Z ZEI;IJ th. (25) )\max(LC) < ”LCHQ (28)

In light of (23), the entried® = > | ('LF; of L, satisfy

Ef = Z<Zzg Nzatjl
= 1

The above equation implies that

VxN Zy 172

kl 7
= N’L'a 7]
with components Z g ; ¢ (N tt)

4 4

k 7k g

yt = Lk, = 3 ML), (29)
j=1 =1



where we have used (17). Hendg; = G~' A with

(N, t11) (N, ta1)
N =
(N, ta) (N, taa) @) s(n*) (b) m =20 (©) m = 40
This implies
4
L < |67t < — N, t;
Iz < 16 BNl < s sup [N, 1)}
sl
= O'min(G) l_’jp l] ]
using the fact thatV is a unit vector. | (d) m = 60 (e) m =80 (f) m =100
Observe thallt;; || is finite, since the mother functiahis in
C*. Also, G has full rank, which implies thatmin(G) > 0. Fig. 9.  Transformed images corresponding to the Table I. Thact

Therefore, the upper bound (27) is finite. Assuming thatetheransformed images(n*) is shown in (a). The rest of the panels illustrate

are no (near) self-intersections, this bound on the pri:ﬂciﬁhe estimated transformed imag€d)) along with the corresponding number
. L f measurementsn.

curvature can be used instead of the condition number for

analyzing dimensionality reduction of manifolds with renal

measurements. This implies that the transformation meisifoimagep using (11), by applying the exact transformatipnto
(9), which we consider in this work, cannot be too much Then we use the cutting plane method to estimate the trans-
curved and are generally expected to be well behaved. Thigdgmation for increasing number of random measurements
also verified in practice as we will show in the experiments \we report in Table | the estimatesof the exact transfor-
section below. mation * with respect tom, obtained after 1000 iterations
Based on the developments above, Algorithm 1 providgs the cutting plane method. Fig. 9 shows the corresponding
an efficient numerical procedure for computing the principgansformed images(7) (using 200 atoms for better illus-
curvature at a points(n) on the manifold along a certainyation). One can see that the rotation angleseems to be
normal direction¢. The algorithm makes use of the compaghe toughest parameter to be estimate accurately, since the
equation (29) for computing the entries bf. It is important z|gorithm already provides reasonably good estimateshier t
to stress that the tangent vecteyss well as the mixed partial rest of the transformation parameters as soomas 40 mea-
derivativest;; can be computed analytically (i.e., without anyrements are provided. Observe also that the transfamati
approximation) thanks to the closed-form expression of th&timate; obtained withm = 100 measurements is very close
manifold equation; see (11). Hence, one completely avoig the exact transformation®, which verifies in practice the
the drawbacks arising from a finite difference approxinmtiogiobal optimality properties of the proposed algorithm whe

such as noise sensitivity. The details of the computati@n & suyfficient number of measurements is provided.
given in the Appendix.

m 77*:(6;7 ;704*7“)*) ﬁ:(ézvgyyaﬂ:})
VI. EXPERIMENTAL RESULTS 20 2, 6,08, 3.93) | (2.68, 3.62, 0.85, 0.82
In this section, we evaluate the performance of our image 40 (2, 6, 0.8, 3.93) (2.26, 5.3, 0.79, 0.8)
alignment algorithm in different problems. We first present 60 2. 6, 0.8, 3.93) (2.28, 5.06, 0.76, 0.7)
|Ilgstrat|ve al_lgnment experlments of a faC|a_1I image, @jon 20 2. 6,08, 3.93) (2.26. 5.3, 0.79, 0.80)
with the estimated transformations and their correspandin
illustrations. Second, we provide alignment experimehgs t 100 (2,6, 0.8, 3.93) (1.97, 6.09, 0.73, 3.88
show the alignment performance of the proposed algorithm TABLE |

with respect to the number of measurements. Finally, we fiXzansForMATION ESTIMATES FOR THE FACE MANIFOLD WITH RESPECT
the number of random measurements and we study the behav- TO THE NUMBER OF MEASUREMENTSN.

ior of the proposed approach in the context of facial image

alignment towards transformation-invariant face rectigni

In all experiments, the entries of the measurement mateéces

follow a standard Gaussian distributidvi(0, 1). B. Alignment with random measurements

We provide below systematic alignment experiments, where

A. lllustrative alignment experiments we use the facial image shown in Fig. 5 as well as five addi-

In the first experiments, the pattegnis the facial image
shown in Fig. 5. We considen* = (b*,a*,w*) to be a
synthesis of translatioh; = 2 andb; = 6, isotropic scaling
a* = 0.8 and rotatiorw* = 57/4 =~ 3.93. We build the query

tional images collected from the web (Google image collec-
tion) and from the ETH-80 dataset. Fig. 10 shows the images
on the leftmost panels and their corresponding progressive
approximations obtained using OMP with increasing number



(&) MRI brain image (leftmost) approximated progressiwelyen the number of atoms ranges from 20 to 140 with step 20.

(b) Pear image (leftmost) approximated progressively wihennumber of atoms ranges from 20 to 200 with step 30.

rd

(c) Key image (leftmost) approximated progressively whea number of atoms ranges from 20 to 200 with step 30.

fd B B B D B D R

(d) Cup image (leftmost) approximated progressively whHenrtumber of atoms ranges from 20 to 200 with step 30.

o i e —

(e) Car image (leftmost) approximated progressively whenrtumber of atoms ranges from 20 to 200 with step 30.

Fig. 10. Progressive approximation of the tested imagesguSiaussian atoms.

of Gaussian atoms. Note that for the purpose of alignmeitie exact geometric transformatioyf. We run 40 random
one does not need a very accurate sparse representatios obE#periments with random transformation$ and different
pattern. What is really important, is to obtain a repres@ra random realizations of the measurement ma#ixThen, for

of the pattern, even a crude one, which captures its salie@ch random experiment, 100 iterations of the cutting plane
geometric features. Observe in Fig. 10 that although theethod are employed to align with p. We compute the
tested images have different characteristics, the oldaparse alignment error of the estimated transformatipas follows
representations based on Gaussian atoms are rather gutcess
in capturing the salient geometric features that are crticia

the alignment problem. In all our experiments, the number 6fg. 12 shows the statistics of the alignment error (30) with
Gaussian atoms is set # = 40 (for all images). respect to the numbenr of random projections used for image
alignment, for all images.

We observe that the alignment error drops quickly when

we estimate numerically the principal curvature of the s% : .
) . . . . e number of random measurements increases and then it

transformation manifolds, using the numerical algorithra-p . .
saturates around 0.1. The nonzero alignment error is due

;e;t?gg g;ri;(gltg? s\r/)éc\{/gz:)n |io[r$ éy1(.j5|]scur§itr|129eltgem'i;r:)s:ogo the fact that only 100 iteration_s of the cutting plane are
Lt L employed. Furthermore, the experimental results showftiat
ar!gles .and 1 scalmg. levels respe_zctlyely. Then, for 8! manifolds a few measurements (erg.> 50) are sufficient
o e cemate I el un 9 o cnaie e cuting lane method 0 reach he veiny of
the histogram of the computed curvature values of all imaeé(aCt transfprmatlon n thg v_ast majority of cases. Givan th
gact that all images have similar curvature values, it cotoes

manifolds, as well as the corresponding median value. . . -
P 9 no surprise that the alignment performance of the algorigm

One sees that the curvature values are small, implying t@fiar in all images. This is consistent with Theorem 1. The
the parametric transformation manifolds studied in thlsrlwoomy exception is the brain image. In what follows, we discus

are not very curved, and therefore are well behaved (see alsAher this interesting case.

Proposition 3). Notice that all images have similar cun®tu e see that the pattern geometry of the brain image (see Fig.
values, i.e., of the same scale. One possible explanation {@a)) js almost symmetrical for rotation angles that ditig
this is the common structure of the image transformation Hence, resolving the correct rotation angle requires more
manifolds, i.e., each point on the manifold consists of @din 3ngom measurements. To see why this is the case for the
combination of Gaussians that are very smooth functions. p;4in manifold, we plot the rotation component and the agali

2) Alignment experiments. We consider to be a synthesis component of the alignment error (30) of the brain image
of an isotropic scalingx € [0.5,1.5] and rotationv € [0,27). experiment in two different curves in Fig. 13. Notice that
Each query image is built by image warping ors, using the scaling parameter is estimated rather accurately eitbn w

e =min{27 — |© — ¥, |® — w*|} + |& — 7. (30)

1) Numerical estimation of the principal curvature: First,
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Median:0.56916 Median:0.55491 Median:0.35881

25

1 11 0.4 05 0.6 0.7 0.8 0.9 1 . 0.3 0.4 05 0.6 0.7

(a) face (b) brain (c) cup

Median:0.52234 Median:0.48209 Median:0.34392

0.4 0.5 0.6 0.7 . . . . . . . 0.8

(d) car (e) pear (f) key

Fig. 11. Histogram of the principal curvature values of ated manifolds.

very few measurements. However, the rotation angle pasmet L5
requires more measurements. —o-face
The experiment of the brain manifold implies that, in o
general, there may exist cases where the manifold nearl car
intersects itself, see Fig. 14 for a pictorial illustratiofhsuch a +E§j“
situation. In such cases, estimating the correct transftiom
requires more random measurements, as it imposes stricte
isometry conditions. Note that the definition of the marifol
condition number in [16] does actually take this situatiotoi
account. Therefore, this experiment is also consistenth wit
Theorem 1.
To summarize, the bound of Theorem 1 provides qualitative 2
insights into the alignment behaviour, even though it might =
not admit tight bounds on the nhumber of required measure- 0 ’ w0 - ” 00
ments. Note that empirical algorithms are typically used to number of measurements
determinen directly (see, e.g., [8]). Overall, we have seen that
Tor all image manifolds that have been tested, the C.urvaulu-‘ig- 12. Median of the alignment error (30) of all tested imaganifolds
is bounded; hence a few random measurements are in gengfalfunction of the number of measurements.
sufficient to reach the vicinity of the global minimizer with

the cutting plane method in the image alignment problem.

[N
T

alignment error

0.5r

of the test image from each of the training images and simply
C. Facial image alignment with random measurements predicts the identity of the test image by that of the closest

In these final experiments, we analyze the performance #ining image. Clearly, successful image alignment pter
the image alignment method in the context of invariant facistance computation has a major impact on the recognition
recognition. Baseline face recognition schemes use reaf@formance.
neighbor (NN) classifiers in order to predict the correchiitg We use the ORL database [24], a well known real world
of a novel test facial image, given a set of training facialata set from the face recognition literature. It contaifs 4
images associated with the corresponding people idestitijndividuals with 10 facial images per person. The image set
Typically the NN classifier computes the Euclidean distanag each individual includes variations in facial expressio
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Lar then provides it as an initial guess to the Newton’s method in

—e—erroron order to get a more refined estimate. In the hybrid DC+Newton

12l —*Temoron a method, we use 100 iterations of the cutting plane before
switching to Newton. We use: = 50 random measurements

1t for image alignment in both alignment methods. We note
finally that for computational convenience, the test imagje i
08r aligned with only one training image from each person, adte

of aligning it with all available training images of the same
person. The obtained transformation is then used to align th
test image for comparison with the remaining training insage
of the same person. With this setup, the experiment involves

02l 120 x 40 = 4800 image alignment experiments in total.
Fig. 13. Median of the two error components: rotation angland scaling

a in (30) for the brain image manifold, as a function of the nemiof

measurements. Fig. 15. Samples from the ORL data set.

0.6

0.4r

0 20 40 60 80 100
number of measurements

M We first compare the alignment performance of the proposed
) hybrid method with respect to Newton’s method. let =
min{27 — |& — w*|,|® — w*|} andes, = |& — o*| be the
rotation and scale component respectively of the registrat
s(n;)m @us(n) error (30). Figs. 16 and 17 show the histograms (with 30 bins)
p of e,, ande, for each method. We have observed that when two
facial images fromdifferent persons are aligned, it happens
. quite often that the global minimizer is far from the exact
"""""""""""""" transformation parameters. For this reason, in the hiatogr
computation we have included only the alignment experisment
Fig. 14. A case where the manifoli nearly intersects itself. corresponding to pairs of images of teame individual. As
expected, one can see from the figures above that Newton’s
method is stuck in local minima resulting in high errors. On
(smiling/non smiling) and head pose (see Fig. 15 for afe contrary, the DC+Newton method is successful in finding
illustration). We assign the first seven images from eaghe global minimizer in the large majority of the cases. The
person to the training set and the remaining three to th& outlier cases are due to the fact that we use only 100
test set. Hence, the test set has in tdtak 40 = 120 iterations of the cutting plane method (i.e., before switgh
images. Note that in this setup, the training and test imageNewton) or due to the low number of random measurements
involved in each alignment experiment, correspond to ifié (m = 50 in our experiments).
facial expressions and poses of the same person or differentor the sake of completeness, we finally report the face
persons. This makes their alignment even more challengingeognition performances, although the main purpose sf thi
We compute first the sparse representation of each trainisgpberiment is to study the image alignment performanceef th
image usingk’ = 50 Gaussian atoms. No further processing ifhethods and not their face recognition one. The NN classifier
done on the training images. Each test image is geomericallithout any alignments results in 97.5% misclassificatiaie r
transformed by image warping with a random transformatiaghich is simply the percentage of test images that have been
consisting of scalex and rotationw. Scale and rotation are mis-recognized. This is reasonable given the presencegd la
uniformly distributed in[0.5, 1.5] and [0, 27), respectively.  transformations in the test image set. When standard Neiton
We study the benefit of image alignment in the face recogmployed for alignment, the misclassification rate slighti-
nition problem by comparing two different methods for th@roves to 87.5%. Finally, when the hybrid DC+Newton method
image alignment. We first use a standard Newton algorithisiused for alignment, it dramatically drops to 45.8% sirte t
to solve the optimization problem in Sec. Il. Then, we forntatter is much more effective in image alignment. This figure
a hybrid method coined ‘DC+Newton’ that simply consistshould be compared to a similar experiment performed in, [11]
of the cutting plane method proposed in this paper, followadhere the hybrid method achieves an error rate of 26.6% when
by Newton’s method. This algorithm permits to relax part afising full images instead of random measurements. Thexefor
the complexity of the cutting plane methods by limiting thene could try to increase the number of random measurements
number of iterations and to use a fast Newton method for finesed in the hybrid DC+Newton method, such that its face
alignment. In particular, the hybrid technique first estiesethe recognition performance comes closer to the one reported
unknown transformation using the cutting plane method amd [11]. However, this is out of the scope of the current
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15r

101

(a) DC+Newton (b) Newton

Fig. 16. Facial image alignment experiment: histogram efdbsolute error of the rotation parameter

absolute error
absolute error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 005 01 015 02 025 03 035 04
a a

(a) DC+Newton (b) Newton

Fig. 17. Facial image alignment experiment: histogram efdbsolute error of the scale parameter

work whose main objective is to show that image alignmenéquirements, but it also provides no theoretical guasafae

can be performed from random measurements, and the k& optimality of the attained solution. In contrast, our DC

experiment verifies in practice that successful alignmerst happroach enjoys global optimality guarantees.

a significant impact on the performance of the NN classifier The authors in [8] propose a linear dimensionality redurtio

towards invariant face recognition. methodology based on random projections. They show that a

few random projections are sufficient to estimate the istcin

VII. RELATED WORK dimension of the manifold. They also provide an empirical

grocedure for estimating the number of necessary random pro

Hections in the context of ISOMAP. However, their procedure

is particularly designed for the ISOMAP algorithm and does

thi\szageri tion th hes in 25 4 1261 f not easily extend to other manifold learning algorithms, or
e first mention the approaches in [25] and [26] %hore generally, to other image analysis problems.

image alignment based on random projections. In particular o _
the approach in [26] is used in the context of compressiveAN Upper bound somewhat similar to (27) has been derived
classification, where the images are considered to be geont®t L- Jacques and C. De Vleeschouwer in [27], where it is
rically transformed and the problem is to perform invariartS€d towards alleviating the dictionary discretizatiofeets in
classification based on their random projections. Althotigh Matching Pursuit algorithms. Note, however, that the bound
two approaches in [25] and [26] may look different at a firdD [27] assumes a different deflnl_tlon of curvature and only_
glance, they are both based on exhaustive search, by dﬁscré?_()l‘_js for the case where the manifold represents a parametri
ing the transformation parameter space and estimating gtionary of the form (4).

transformation by nearest neighbor search among the image¥he authors in [28] study the non-differentiability of man-
after random projection. This not only leads to high memoiifolds spanned by natural images. They show that non-

In what follows, we review the most relevant work from th
literature and put it in perspective with the work proposed
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differentiability arises due to the movement of sharp edges X. APPENDIX
(causing global non-differentiability) and due to the asibn ON; N g
(causing local non-differentiability). The manifolds ciered A. Proof of <3m oty = = {Nis )

in this work are differentiable, thanks to their parametigture Proof: Observe first thatv;, g—il) = 0, by definition of
and the smoothness of the Gaussian mother function usedhe normal vector. Therefore,
our framework. 5

Finally, we mention the approach of [29], which has been 0 = i( is §> = <aNi, ﬁ> + (IV;, O
shown to be globally optimal in determining general norierig On; ~ O On; -~ Om Omom;
transformations in the case where one has access to the test _ <‘9Ni7tl> + (Ny, t1),
images, and not only linear measurements. The method em- o
ploys a set of training images and their (known) correspamdi,hich implies the result. -

deformation parameters in order to estimate the deformatio

parameters of a new test image. This is done by iteratively

computing the closest training image in the image space add Computation of ¢;

switching between the deformation parameter space andeim% definition s — ZK €4, , and therefore

space in each iteration. The intuition is that each iteratib =15

the algorithm results in a less deformed image and the asthor 9s K oy

prove that their algorithm is globally optimal, under the as o Z&CT~

sumption that the maximum allowed deformation is bounded. A 1hi

However, in the case of large distortions a very high number geacgjl thate,.,, = ¢(Z,7), wherez,j are the transformed

training images is required, as pointed out in [29, Sec. 8]. Qordinates, and therefore

the contrary, the computational requirements of our method _ _

are independent of the magnitude of the transformation. 99 — 9¢ 9z | 9¢ 9y )
on; 0T 9On; Oy on

In the case thap is Gaussian,

VIIl. CONCLUSIONS

a¢ =, ~2 ~2 a¢ ~ ~2 ~2
We have proposed a globally optimal method for imagéz = ~2Zep(-E+ 7)), 0y 2 exp(~(F +47).
alignment with random projections, when the geometricdran
formation consists of a synthesis of shift, rotation andrtsuic . computation of ti;
scaling. We build on previous work and use sparse geometric
expansions to represent the transformation manifold, mwhidV/e have
describes the transformed versions of a pattern. We fommula 9%¢ 0%¢ 07 0% 0yl o  0¢ %%
the image alignment problem with random projections am - [%5_777 0707 5_773] on; +%amam
a DC program, by proving that the objective function is 826 0 %0 95] 95 0b 9%
DC when the dictionary is built on Gaussian functions. In [aga;z o, o an] s a5 omon;”

addition, we provide theoretical as well as numerical ihtdg
into the geometric properties of transformation manifpltls  In the case thap is Gaussian,
deriving an upper bound on the principal curvature as well as

2
establishing an efficient numerical algorithm for compgtin 6_~f = (43 - 2)exp(—(Z* + 7%)),
it in practice. We show that the transformation manifolds 3§
are well beh_aved, so that the image alignment problem can % = (49% — 2) exp(— (32 + ),
be solved with a bounded number of measurements. This is Y
f:onfirmed by experimental r_esglts_where the propqs_ed_method 3~2¢~ _ 3~2¢~ — (47§) exp(— (32 + 72)).
is shown to be successful in finding the global minimizer in 0107y oyox

practice, even with a small number of random projections.

Finally, the proposed method can be combined with IocBI

optimization in order to refine the estimated transfornmatio™ "

or to cope with more complicated transformation groups suchRecall that; = (b, o, w) denotes transformation parameters

as non-rigid transformations. while v; = (b;, a;,w;) denotes atom parameters. The group
law is given by

i 9% 9y
Computation of By and B

IX. ACKNOWLEDGMENTS noy = (b+ aR(-w)bi, aa;,w + w;). (31)
The authors would like to thank Dr. Xavier Claeys forDenOtlng
insightful discussions on differential geometry and Eliirsl 1/a; 0 cos(ws)  sin(ws)
for very fruitful discussions on the alignment problem andi = e , R(w;) = ! ! ,

helpful comments on the manuscript. 0 1/ay —sin(w;) cos(w;)
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we define the matrixC' := AR(w;), which does not depend [3]
on the transformation parameters. Then the transformed coo
dinates of theith atom are given by

Tl 2 iR
g «
1
e

Differentiation gives

- — aR(—w)
Y by biy
y—by biy

L(cos(w)(x — be) + sin(w)(y — by)) — bie
L(—sin(w)(z — be) + cos(w)(y — by) — biy

(4]

(5]
(6]

(7]

(8]
El

[10]
[11]

[12]
[13]
[14]
[15]

[16]

[17]

(18]
[19]
[20]

] [21]

[22]
[23]
[24]

[25]
[26]
[27]
(28]

[29]

0% /Ow _ %(— sin(w)(x — bg) + cos(w)(y — by))
o5/0w | | L(=cos(w)(@—bs) —sin(w)(y — b)) |’
0%/ Oby ] _ [ —%cos(w)
07/ 0bs B %sin(w) ’
0% /0by ] _ [ —%sin(w)
07/ 0by B —% cos(w) ’
o3/0a | . [ L (— cos(@) (@ — ba) +sin(@)(y — by))
05/0a | B |~ (= sinw)(@ — b) +cos(@)(y — b)) |
E. Computation of 35.252,
023 /0w? | . [ 1(— cos(w)(x — by) — sin(w)(y — by)) _
82ﬂ/6w2 | i %(sin(w)(m — by) — cos(w)(y — by))
8%% /0wdby ] - ¢ [ L sin(w)
8%/ 0wdb,, | a i 1 cos(w) ’
8% /Owdb, ] - ¢ [ -1 cos(w)
8%/ 8wdb, | a i 1 sin(w) '
8%z /dwda ] - ¢ [ 7ai2 —sin(w)(z — bz) + cos(w)(y — by))
82ﬂ/8w6a | i —a% —cos(w)(x — by) — sin(w)(y — by))
oa/on | _
oyt |
0%5/0b,0b, | o
9%5/0b,0b, | o
[ %% /9b, O ] I [ a%cos(w)
| 0%g/ob.0a | | —Lsin(w)
%% /00 I
9%5/ov;, |
| o%/ob,00 | o [ sin(w)
| 9%5/9b,0a | | cos(w) ’
8%/’ 1 - ¢ [ a%(cos(w)(m — bg) + sin(w)(y — by))
824/0a? | | & (—sin(w)(z — ba) + cos(w)(y — by))
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