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Optimal image alignment with random projections
of manifolds: algorithm and geometric analysis

Effrosyni Kokiopoulou, Daniel Kressner and Pascal Frossard

Abstract—This paper addresses the problem of image align-
ment based on random measurements. Image alignment consists
in estimating the relative transformation between a query image
and a reference image. We consider the specific problem where
the query image is provided in compressed form in terms
of linear measurements captured by a vision sensor. We cast
the alignment problem as a manifold distance minimization
problem in the linear subspace defined by the measurements.
The transformation manifold that represents synthesis of shift,
rotation and isotropic scaling of the reference image can begiven
in closed form when the reference pattern is sparsely represented
over a parametric dictionary. We show that the objective function
can then be decomposed as the difference of two convex functions
(DC) in the particular case where the dictionary is built on
Gaussian functions. Thus the optimization problem becomesa
DC program, which in turn can be solved globally by a cutting
plane method. The quality of the solution is typically affected
by the number of random measurements and the condition
number of the manifold that describes the transformations of the
reference image. We show that the curvature, which is closely
related to the condition number, remains bounded in our image
alignment problem, which means that the relative transformation
between two images can be determined optimally in a reduced
subspace.

Index Terms—Pattern transformations, transformation mani-
folds, sparse representations, random projections, manifold con-
dition number.

I. I NTRODUCTION

The problem of computing the relative geometric transfor-
mations between visual patterns is of paramount importance
and enjoys numerous applications in various fields including
vision sensor networks, pattern recognition and medical image
analysis, to name just a few [1]. The analysis or comparison
of visual patterns is generally only meaningful when images
are aligned and placed in a common referential system. The
transformed version of a reference pattern can be describedas
a point of a low-dimensional manifold in a high dimensional
space, which is usually called thetransformation manifold.
The alignment of a query image can then be performed by
computing its projection on the transformation manifold. The
manifold distance (MD) is defined as the minimum distance
between the query imagep and the manifold generated by the
reference images, see Fig. 1.

In certain applications, we might however not have access
to the full query image or it might be computationally too
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Fig. 1. Manifold distance is the minimum distance from a query point p to
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Fig. 2. Image alignment is performed in the reduced space after projections.

expensive to deal with the complete image. These limitations
are either due to the design of sensors or due to important con-
straints in terms of bandwidth or computational resources.In
this case, the query image may be given in compressed form by
a few linear measurements. The analysis of compressed query
images has recently found applications in wide-area persistent
surveillance [2] and fast MR imaging [3], for example. The use
of linear measurements permits to reduce the complexity of
the sensing step and the scale of the image alignment problem;
it thus extends to systems with imperfect settings such as
low complexity vision sensors networks (see, e.g., [4], [5],
[6]). When the query image is given by only a few random
projections (see Fig. 2) in the image alignment problem, the
relative geometric transformation between a query and a refer-
ence image is estimated directly from the linear measurements.
According to the theory of compressed sensing (CS), a few
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random projections of a sparse (or nearly sparse) signal are
sufficient to preserve its salient information. Simultaneously,
it has been shown that random projections of signal manifolds
result into approximately isometric embeddings, i.e., pairwise
Euclidean distances are nearly preserved in the reduced space
[7], [8], [9]. Equipped with these two properties, it becomes
possible to solve the image alignment problem with help of a
transformation manifold in the reduced space that is built on
the linear measurements performed by the sensors.

We propose a new method for image alignment when the
relative transformation consists of a synthesis of translations,
rotation, and isotropic scaling. The proposed method esti-
mates the globally optimal transformation between a query
image and a reference images, using a sufficient number
of random measurements. For this purpose, we represents
as a sparse linear combination of geometric primitives, called
atoms, which are chosen from a parametric, possibly redundant
dictionary. This representation permits to build a parametric
definition of the transformation manifold, which describesthe
possible transformations of the reference image. The image
alignment problem can then be cast as a manifold distance
minimization problem. Building on our previous work [10],
[11], we then formulate the pattern alignment problem with
random measurements as a DC program by showing that the
objective function can be represented as adifference of convex
functions (DC), in a case where the dictionary is composed
of Gaussian atoms. DC programs are non-convex problems
that can be solved with efficient globally optimal algorithms
by exploiting their special structure. Our approach therefore
provides a constructive way to perform image alignment with
random measurements.

At the same time, the results from [9] suggest that the
number of measurements necessary for proper alignment de-
pends on the condition number of the pattern transformation
manifold, which in turn is closely related to its curvature.
We perform a geometric analysis of this manifold, showing
that it is well conditioned and providing an explicit upper
bound on the curvature. Moreover, we establish an efficient
numerical procedure for computing the principal curvature
at a certain point on the manifold. These results confirm
that the required number of measurements is bounded in our
problem, and that image alignment can be solved efficiently
in a reduced subspace. In summary, the contribution of this
paper consists of providing (1) a globally optimal approachto
image alignment with random projections and (2) theoretical
as well as numerical insights into the geometric propertiesof
the pattern transformation manifolds, showing that the image
alignment problem can be solved with a finite number of
measurements.

The rest of this paper is organized as follows. In Sec. II
we formulate the problem of image alignment from random
measurements. In Sec. III we discuss the representation of
transformation manifolds using sparse geometric expansions.
We then show in Sec. IV that the distance between the query
pattern and the transformation manifold is a DC function
of the transformation parameters. In Sec. V we provide a
geometric analysis of transformation manifolds that confirms
that a limited number of measurements is sufficient for accu-

rate alignment. Finally, experimental results are presented in
Sec. VI.

II. I MAGE ALIGNMENT PROBLEM

A. Problem formulation

In this paper, we are interested in estimating the relative
transformationη∗ that best matches two visual patterns. This
problem is very common in image processing or computer
vision applications that rely on image alignment or matching
of views. In particular, we consider the problem where only
a compressed version of the query pattern is available in the
form of linear measurements captured by the vision sensor.
Formally, we consider images that undergo transformations
described by a set of parametersη. We further suppose that
all the transformed versionss(η) of the reference pattern
s can be represented by a transformation manifoldM of
low dimensiond. Then we assume that we havem random
projections of the query patternp, obtained by computing
inner products withm random signalsz1, . . . , zm. The image
alignment problem is equivalent to a manifold distance
minimization problem in the linear subspace defined by the
measurement vectors. It can be formulated as a parameter
estimation problem as follows.

Transformation estimation problem

η∗ = argmin
η

f(η), where

f(η) =

m∑

i=1

|〈s(η), zi〉 − 〈p, zi〉|. (1)

The use of the1-norm in the objective function is quite
popular in image registration and often referred to as SAD
(sum of absolute differences), see [12]. Given also the fact
that the L1-norm is known to be robust to outliers, we have
chosen to use this norm in the case of random measurements
as well. Moreover, as will be seen below, this norm appears
to be most suitable for the DC optimization method proposed
in this paper.

The optimization problem (1) for determining the best
transformation parametersη∗ is typically non-convex [13].
This makes it hard to solve using traditional methods, such
as steepest descent or Newton-type methods due to their
local convergence property and the presence of an unknown
number of local minima. We show in the next section how the
transformation manifold could be described in a parametric
form when the transformation is a synthesis of shift, rotation
and isotropic scaling. The objective function can be written
as a difference of two convex (DC) functions, which in
turn permits to formulate the optimization problem as a DC
program and to solve it globally by a cutting plane method [14,
Thm 5.3].

B. Geometric insights

In the above alignment problem, one still has to choose the
number of measurements that leads to efficient transforma-
tion estimation. The optimal number of random projections
is hard to define in practice. Suppose that we project the
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transformation manifolds spanned by two distinct patternson
m random vectorsz1, . . . , zm. In order to make sure that
matching points in the reduced space is close to matching the
corresponding points in the original high-dimensional space,
the embedding should be nearly isometric; that is, pairwise
Euclidean distances should be nearly preserved. Only if this
is the case, one can reliably perform image alignment in the
reduced space and estimate the unknown transformation.

Recently, Baraniuk and Wakin [7] provide an estimate ofm
that is linear ind and logarithmic inn, the number of pixels
in the image. We briefly revisit the main result from [7].

Theorem 1: Let M be a compactd-dimensional manifold
in R

n having condition number1/τ , volumeV , and geodesic
covering regularityR. Fix 0 < ǫ < 1 and 0 < ρ < 1. Let Z
be a random orthoprojector fromRn to R

m and

m ≥ O
(d log(nV Rτ−1ǫ−1) log(ρ−1)

ǫ2

)

. (2)

Supposem < n. Then, with probability exceeding1− ρ, the
following statement holds. For every pair of pointsx, y ∈ M,
we have

(1− ǫ)

√
m

n
≤

‖Zx− Zy‖2
‖x− y‖2

≤ (1 + ǫ)

√
m

n
. (3)

M

τ

s(η)

Fig. 3. A largeτ corresponds to a well conditioned manifold.

In short, Theorem 11 is proved by determining a high-
resolution sampling on the manifold and then applying the
Johnson-Lindenstrauss lemma [15] to the sampled points. The
above theorem implies that besidesd and n, the numberm
depends logarithmically on other properties of the manifold,
such as its condition number1/τ , volume V and geodesic
covering regularityR. Note that R is closely related to
the condition number [7] and we will omit its definition.
Intuitively, the condition number ofM is defined as1/τ ,
whereτ is the maximum radius of a sphere that, when placed
tangent to any point inM, it intersectsM only at that point
(see [16] for a precise definition). This is illustrated graphically
in Fig. 3 showing that a largeτ implies a well conditioned
manifold, which has a low curvature and does not, at least
locally, intersect itself. Therefore, the condition number is an
important property ofM towards characterizing the number
m of required random measurements. We show in Section V
that our transformation manifold is well conditioned, which
means that the number of necessary measurements is clearly
bounded in the problem of Eq. (1).

1Note that even iff(η) in (1) is based on the1-norm distance in our
formulation, Theorem 1 still provides insights on the required number of
measurements, by the equivalence of norms in finite-dimensional spaces (i.e.,
a good match in the1-norm yields a good match in the2-norm).

III. T RANSFORMATION MANIFOLDS

A. Visual pattern representation

We show in this section how one could build a parametric
transformation manifold for a reference patterns. We first
explain the representation of the pattern as a linear combi-
nation of geometric functions (usually calledatoms), taken
from a structured parametric and possibly redundant dictionary
D = {φγ , γ ∈ Γ} spanning the input space. This represen-
tation aims at capturing the most prominent features of the
pattern. The atoms in aparametric dictionary are constructed
by applying geometric transformations to a generating mother
function denoted byφ. A geometric transformationγ ∈ Γ can
be represented by the action of an operatorU(γ) and therefore
the parametric dictionary takes the form

D = { φγ = U(γ)φ, γ ∈ Γ}. (4)

(a) (b)

(c) (d)

Fig. 4. Sample Gaussian atoms; (a)bx = 0, by = 0, ax = 10, ay = 5,
ω = 0, (b) bx = 0, by = 0, ax = 10, ay = 5, ω = −π/6, (c) bx = 0,
by = −10, ax = 10, ay = 5, ω = −π/6 (d) bx = 5, by = −10, ax = 10,
ay = 5, ω = −π/6

A transformationγi, defining theith atom, is composed of
elementary transformations of the following three types.

• Translation by bi = [bix biy]
⊤. U(bi) moves the gen-

erating function across the image, i.e.,U(bi)φ(x, y) =
φ(x− bix, y − biy).

• Rotation by ωi. U(ωi) rotates the generating function
by the angleωi, i.e., U(ωi)φ(x, y) = φ(cos(ωi)x +
sin(ωi)y, cos(ωi)y − sin(ωi)x).

• Anisotropic scaling by ai = [aix aiy ]
⊤. U(ai) scales the

generating function anisotropically, i.e.,U(ai)φ(x, y) =
φ( x

aix
, y
aiy

).

These elementary transformations yield a transformationγi =
(bi, ai, ωi) ∈ Γ as a synthesis of translation, anisotropic
scaling, and rotation. It can be observed that applying a trans-
formation to the mother function is equivalent to transforming
the coordinate system from{x, y} to {x̃, ỹ} before applying
φ(·). In particular, theith atom φγi

= U(γi)φ(x, y) with
γi = (bi, ai, ωi) ∈ Γ can be regarded as the pullback

φγi
(x, y) = φ(Ψγi

(x, y)), (5)
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Fig. 5. Progressive OMP approximation of a human face (leftmost) with 20, 50, 80, 110 and 140 Gaussian atoms (from left to right).

where(x̃, ỹ) := Ψγi
(x, y) satisfies




x̃

ỹ



 =





1
aix

0

0 1
aiy





︸ ︷︷ ︸

A




cosωi sinωi

− sinωi cosωi





︸ ︷︷ ︸

R(ωi)




x− bix

y − biy





︸ ︷︷ ︸

t

= AR(ωi)t. (6)

The approximation of a patterns with atoms from the
dictionaryD can be obtained in different ways. Even if finding
the sparsest approximation ofs is generally a hard problem,
effective sub-optimal solutions are usually sufficient to capture
the salient and geometric structure of the pattern with onlya
few atoms. In this work, we have chosen to use Orthogonal
Matching Pursuit (OMP) [17, Sec. 9.5.3], which is a simple
yet effective algorithm for computing sparse approximations
in practice.

Initially, OMP chooses the residualr0 = s and then
proceeds iteratively by selecting in thekth step the atom
φγk

that best matches the residualrk−1 i.e., γk =
argγ∈Γmax |〈rk−1, φγ〉|. Thenγk is removed from the resid-
ual by projection:rk = (I − Pk)rk−1, where Pk is the
orthogonal projector onto span{φγk

}. After K steps of OMP,
the patterns is approximated by a sparse linear combination
of K atoms:

s ≈
K∑

k=1

ξkφγk
. (7)

We propose the use of a dictionary of two-dimensional
atoms capturing the geometric information in an image. The
generating functionφ of D used in this paper is the Gaussian

φ(x, y) =
1

ρ
exp(−(x2 + y2)). (8)

This dictionary has been shown to provide good approxima-
tion performances for natural images [18]. Fig. 4 shows a few
sample Gaussian atoms corresponding to various geometric
transformationsγ. In addition, Fig. 5 illustrates the progressive
approximation of a human face from a Gaussian dictionary
using OMP. Observe that already very few atoms are sufficient
to capture the main geometric characteristics of the pattern and
that the representation (7) does not need to be very accurate
to be useful for alignment purposes.

B. Transformation manifolds

In the following, we show how all the geometric transfor-
mations of the reference images build a parametric trans-
formation manifold. We restrict scalings to be isotropic, i.e.,
the geometric transformationη takes the formη = (b, α, ω)
consisting of a translationb = [bx, by], an isotropic scalingα,

Fig. 7. Random projections in 3D of the rotation manifold of Fig. 6. The
samples correspond to rotation angles from0 to 2π with stepπ/500. The
color/shading is a linear map of the rotation angles.

and a rotationω. The manifoldM of all such transformed
images can be expressed mathematically as

M =
{
s(η) := U(η)s, η = (b, α, ω)

}
. (9)

Although the manifold resides in a high-dimensional space,its
intrinsic dimensiond is rather small and equal to the number
of transformation parameters, which is 4. Fig. 6 shows a few
samples from the transformation manifold of a human face,
with the transformation restricted to a rotation. The random
projections of the resulting manifold are illustrated in Fig. 7.

In general, all possible transformationsη forms a group, the
so called similitude group SIM(2) of the plane. As in (6), we
denote

R(ω) =




cosω sinω

− sinω cosω



 , 0 ≤ ω < 2π,

as the rotation matrix for the angleω. If (b, α, ω) and
(b′, α′, ω′) are two elements of the SIM(2) group, then the
group law [18] is given by

(b, α, ω) ◦ (b′, α′, ω′) = (b+ αR(−ω)b′, αα′, ω′ + ω). (10)

In the following, we replace the reference images by its
approximation (7). Using the pullback interpretation (5) it
follows that the transformationη applied tos results in

s(η) = U(η)s =
K∑

k=1

ξkU(η)φγk
=

K∑

k=1

ξkφη◦γk
, (11)

where η ◦ γk is a composition of transformations. In other
words, the transformation is applied to each constituent atom
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Fig. 6. Samples from the transformation manifold of the human face. From left to right, the samples correspond to rotation angles from0 to 2π with step
π/4.

individually. Furthermore, the group law (10) can be employed
to determine the updated parameters of the transformed atoms.
Let us emphasize the importance of equation (11): it permitsto
express the manifold equation (9) in closed form with respect
to the transformation parametersη. The definition of the
manifold in (11) is used in the optimization problem (1). We
show in the next section that the resulting manifold distance
problem can then be defined as the difference of two convex
functions, which enables the use of the DC programming
methodology.

IV. DC DECOMPOSITION

A. Properties of DC functions

The purpose of this section is to show that the objective
function (1) is DC when the dictionary is built from 2D
Gaussian functions. We start with some definitions and basic
properties about DC functions [14], [19], [20]. LetX ⊆ R

n

be convex. A functionf : X → R is called DC onX if there
exist two convex functionsg, h : X → R such that

f(x) = g(x)− h(x). (12)

A representation of this form is calledDC decomposition of
f . DC decompositions are clearly not unique; for any convex
function c(x), the decompositionf(x) = (g(x) + c(x)) −
(h(x) + c(x)) is also DC. We will make use of the following
two properties.

Proposition 1 (Properties of DC functions [19, Sec 4.2]):
Let f = g−h andfi = gi−hi, i = 1 . . . ,m be DC functions.
Then the following functions are also DC:

(a)
∑m

i=1 λifi =
[
∑

{i:λi≥0} λigi −
∑

{i:λi<0} λihi

]

−
[
∑

{i:λi≥0} λihi −
∑

{i:λi<0} λigi

]

.

(b) |f | = 2max{g, h} − (g + h).

B. DC form of the objective function

We now combine Proposition 1 with our previous results
[11] to prove the main result of this paper.

Theorem 2: The objective functionf in (1) is DC.
Proof: Recall that

f(η) =
m∑

i=1

|〈s(η), zi〉 − 〈p, zi〉|

=
m∑

i=1

∣
∣
∣

K∑

k=1

ξk〈φηk
, zi〉 − 〈p, zi〉

∣
∣
∣, (13)

where ηk = η ◦ γk. In [11] we have shown that (i) the
transformed generating functionsφηk

are DC, (ii) the inner
products〈φηk

, z〉 between the atoms and a fixed patternz are
DC, and (iii) the inner product〈s(η), z〉 =

∑K
k=1 ξk〈φηk

, z〉
is also a DC function ofη.

In particular, each function〈s(η), zi〉 =
∑K

k=1 ξk〈φηk
, zi〉

corresponding to a measurement vectorzi, with 1 ≤ i ≤ m, is
DC. Note thatfi(η) := 〈s(η), zi〉 − 〈p, zi〉 remains DC since
the second term is constant and does not depend onη. Assume
now that the DC decomposition of each functionfi is given
by fi(η) = gi(η)− hi(η).

By Proposition 1(b), the absolute value of a DC function is
DC and hence

|fi(η)| = 2max{gi, hi} − (gi + hi) = g̃i(η) − h̃i(η),

is also DC. Finally, the objective function in (13) is DC since
it is simply a sum ofM DC functions:

f(η) =

m∑

i=1

|fi(η)| =
m∑

i=1

(g̃i(η) − h̃i(η))

=
m∑

i=1

g̃i(η)

︸ ︷︷ ︸

g(η)

−
m∑

i=1

h̃i(η)

︸ ︷︷ ︸

h(η)

.

�

C. DC programs

An optimization problem is called a DC program if it takes
the form

min
x

f(x) = g(x)− h(x), (14)

s.t. x ∈ X = {x ∈ R
n : δ(x) ≤ 0},

whereg, h : X → R are convex functions andδ : Rn → R is
a convex function. The next proposition provides an optimality
condition for (14).

Proposition 2 ([14]): The point x∗ ∈ X is an optimal
solution to the DC problem (14) if and only if there exists
t∗ ∈ R such that

0 = inf{−h(x) + t : x ∈ X, t ∈ R, g(x)− t ≤ g(x∗)− t∗}.
(15)

In this work, we have chosen to solve the DC Program (14)
by the outer approximation cutting plane algorithm proposed
in [14, Sec 5.3], for its simplicity and also due to the fact
that the parameter space in our problem is four-dimensional.
However, we should mention that our framework could also be
combined with other DC solvers such as Branch-and-Bound
schemes [14, Sec 5.1, Sec 5.2] and DCA [21].

The efficiency of the DC solver mainly depends on the
overall cost for evaluating DC decompositions. The cost for
evaluating one DC decomposition grows proportionally with
K · n1 · n2, whereK is the number of atoms andn1 × n2

is the resolution of the image. Hence, sparsity directly affects
the efficiency of our method. This is where the choice of the
dictionary becomes important, since it has to capture the main
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M ⊂ R
n

H ⊂ R
4

∂
∂ηi

Ni

s(η)

f

η

ηj

ηi

Fig. 8. The parameter spaceH provides a parametrization of the transfor-
mation manifoldM.

features of natural images with a few atoms only. This is the
case for the dictionary of 2D Gaussian functions used in this
paper [18].

The cutting plane method quickly converges to the vicinity
of the global minimizer but then typically saturates. Hence,
to obtain high accuracy it is more beneficial to switch to a
local optimization method, such as Newton, once the iterate
is sufficiently close to the global minimizer, see, e.g., [11].

V. GEOMETRIC ANALYSIS OF TRANSFORMATION

MANIFOLDS

We have seen in Section II that the condition number of the
manifoldM is an important factor towards characterizing the
numberm of random measurements needed. At the same time,
it is also known that the condition number is closely related
to classical notions of curvature in differential geometryvia
the second fundamental form. In particular, P. Niyogi et al.in
[16, Proposition 6.1] show that the condition number1/τ is
an upper bound of the principal curvature (defined below) at
any point on the manifold.

In this section, we first derive an upper bound of the
principal curvature of parametric transformation manifoldsM
defined in (9). When there are no (near) self-intersections,
this upper bound can be used instead of the condition number
for characterizing the manifold. It further indicates thatthe
transformation manifold is well conditioned, which means that
the number of measurements required to solve the Problem
(1) is clearly bounded. Furthermore, based on the obtained
developments, we additionally provide an efficient numerical
algorithm for computing in practice the principal curvature at
a certain point onM.

For notational convenience, we will denote the trans-
formation parameters as follows:η = (η1, η2, η3, η4) =
(bx, by, α, ω). The metric tensorG ∈ R

4×4 is then given by
[
G
]

ij
= 〈ti, tj〉, (16)

whereti, tj are theith andjth tangent vectors, defined as

ti =
∂s(η)

∂ηi

and assumed to be linearly independent. The tangent space
TηM at points(η) ∈ M is defined as

TηM = span{t1, t2, t3, t4}.

Note thatd = dimTηM = 4 although the transformation
manifold M is a submanifold ofRn. The codimension of
TηM is therefore given byn− 4. Consider the direct sum

R
n = TηM⊕ TηM

⊥

and let {N1, N2, . . . , Nn−4} be an orthonormal basis of
TηM

⊥. Then any (unit) normal vector can be written as

N =

n−4∑

i=1

ζiNi, (17)

with coefficientsζi = 〈Ni, N〉. Fig. 8 provides a graphical
illustration of the scenario that we consider.

In what follows, we show how one can compute the linear
operatorLζ : TηM → TηM associated with the second
fundamental form. According to the standard definition [22,
Proposition 2.3],

Lζ(X) = −(∇XN)T , (18)

whereX ∈ TηM, ∇X denotes the covariant derivative inRn

and( · )T denotes the projection on the tangent space. Take
a tangent vectorX =

∑4
j=1 x

jtj . Then it holds that

−∇XN = −∇P

4

j=1
xjtjN =

4∑

j=1

xj(−∇tjN). (19)

Hence, it suffices to study the operator∇tjN . It holds that

−∇tjN = −∇tj

(
n−4∑

i=1

ζiNi

)

= −
n−4∑

i=1

∇tj ζ
iNi −

n−4∑

i=1

ζi∇tjNi.

Now observe that

(−∇tjN)T =
n−4∑

i=1

ζi(−∇tjNi)
T . (20)

The covariant derivative∇tjNi ∈ R
n can be decomposed as

−∇tjNi = −
∂Ni

∂ηj
=

4∑

k=1

Lk
ijtk +

n−4∑

k=1

P k
ijNk (21)

for some coefficientsLk
ij with i = 1, . . . , n − 4 and j, k =

1, . . . , 4. This directly gives

(−∇tjNi)
T =

4∑

k=1

Lk
ijtk. (22)

In what follows, we show how one can compute the
coefficientsLk

ij in (21), from which we obtain

−〈
∂Ni

∂ηj
, tl〉 =

4∑

k=1

Lk
ijgkl.

Unfortunately, it is not easy to compute∂Ni

∂ηj
in practice, as

the normal vectorsNi, i = 1, . . . , n−4 are typically obtained
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by a Gram-Schmidt orthogonalization process. However, it is
known [23] that

〈
∂Ni

∂ηj
, tl〉 = −〈Ni, tlj〉,

wheretlj is the mixed partial derivative, i.e.,

tlj =
∂2s(η)

∂ηl∂ηj
.

The proof is provided in the appendix for the sake of com-
pleteness.

This has the advantage thattlj is much easier to compute
in practice than∂Ni

∂ηj
. Therefore, for fixedi, j, the coefficients

Lk
ij , k = 1, . . . , 4, can be obtained by solving a4× 4 linear

system

G








L1
ij

...

L4
ij







=








〈Ni, tj1〉
...

〈Ni, tj4〉







,

whereG is the 4 × 4 metric tensor defined in (16). In more
compact form:

Lk
ij =

4∑

l=1

gkl〈Ni, tjl〉, (23)

wheregkl =
[
G−1

]

kl
denotes the(k, l) entry of the inverse

of the metric tensor.
Combining equations (20) and (22) yields

(−∇tjN)T =
n−4∑

i=1

ζi

(
4∑

k=1

Lk
ijtk

)

=

4∑

k=1

(
n−4∑

i=1

ζiLk
ij

)

︸ ︷︷ ︸

=:L̃k
j

tk =

4∑

k=1

L̃k
j tk. (24)

Using (24), Equation (19) becomes

−(∇XN)T =

4∑

j=1

xj(−∇tjN)T =

4∑

j=1

xj
4∑

k=1

L̃k
j tk

=
4∑

k=1





4∑

j=1

L̃k
jx

j



 tk. (25)

The above equation implies that

Y = −(∇XN)T =:

4∑

k=1

yktk

with components

yk =

4∑

j=1

L̃k
jx

j .

Algorithm 1 Numerical estimation of the principal curvature

1: Input : normal directionζ1, . . . , ζn−4

2: Output : linear operatorLζ , estimateλζ of the principal
curvature.

3: Compute the tangent vectorsti = ∂s
∂ηi

, i = 1, . . . , 4.
4: Compute the mixed second order partial derivatives

tij =
∂2s

∂ηi∂ηj
, i, j = 1, . . . , 4.

5: Compute the metric tensor
[
G
]

ij
= 〈ti, tj〉 as well as its

inversegij .
6: Build an orthonormal basis{N1, N2, . . . , Nn−4} of

TηM⊥ using Gram-Schmidt orthogonalization
7: ComputeN =

∑n−4
i=1 ζiNi.

8: for j = 1, . . . , 4 do
9: for k = 1, . . . , 4 do

10: ComputeL̃k
j =

∑4
l=1 g

kl〈N, tjl〉.
11: end for
12: end for
13: SetLζ = [L̃k

j ]j,k=1,...,4.
14: Compute the maximum eigenvalueλζ of Lζ.

Therefore, the linear operatorLζ has the following matrix
representation

Lζ =











L̃1
1 L̃1

2 L̃1
3 L̃1

4

L̃2
1 L̃2

2 L̃2
3 L̃2

4

L̃3
1 L̃3

2 L̃3
3 L̃3

4

L̃4
1 L̃4

2 L̃4
3 L̃4

4











. (26)

It is important to mention at this point that the operatorLζ is
self-adjoint with respect to the induced metric in the tangent
space [22] and therefore its eigenvalues are real. The maximum
eigenvalue ofLζ is usually called theprincipal curvature.

In what follows, we provide an upper bound on the principal
curvature.

Proposition 3:

λmax(Lζ) ≤ 4
supl,j ‖tlj‖

σmin(G)
. (27)

Proof: It is well known that

λmax(Lζ) ≤ ‖Lζ‖2. (28)

In light of (23), the entries̃Lk
j =

∑m
i=1 ζ

iLk
ij of Lζ satisfy

L̃k
j =

m∑

i=1

ζi
4∑

l=1

gkl〈Ni, tjl〉

=

4∑

l=1

gkl
m∑

i=1

ζi〈Ni, tjl〉

=

4∑

l=1

gkl〈N, tjl〉, (29)
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where we have used (17). Hence,Lζ = G−1N with

N =








〈N, t11〉 · · · 〈N, t41〉
...

...

〈N, t14〉 · · · 〈N, t44〉







.

This implies

‖Lζ‖2 ≤ ‖G−1‖2‖N‖F ≤
4

σmin(G)
sup
l,j

|〈N, tlj〉|

≤
4

σmin(G)
sup
l,j

‖tlj‖,

using the fact thatN is a unit vector.
Observe that‖tjl‖ is finite, since the mother functionφ is in

C∞. Also, G has full rank, which implies thatσmin(G) > 0.
Therefore, the upper bound (27) is finite. Assuming that there
are no (near) self-intersections, this bound on the principal
curvature can be used instead of the condition number for
analyzing dimensionality reduction of manifolds with random
measurements. This implies that the transformation manifolds
(9), which we consider in this work, cannot be too much
curved and are generally expected to be well behaved. This is
also verified in practice as we will show in the experiments
section below.

Based on the developments above, Algorithm 1 provides
an efficient numerical procedure for computing the principal
curvature at a points(η) on the manifold along a certain
normal directionζ. The algorithm makes use of the compact
equation (29) for computing the entries ofLζ . It is important
to stress that the tangent vectorsti as well as the mixed partial
derivativestij can be computed analytically (i.e., without any
approximation) thanks to the closed-form expression of the
manifold equation; see (11). Hence, one completely avoids
the drawbacks arising from a finite difference approximation,
such as noise sensitivity. The details of the computation are
given in the Appendix.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our image
alignment algorithm in different problems. We first present
illustrative alignment experiments of a facial image, along
with the estimated transformations and their corresponding
illustrations. Second, we provide alignment experiments that
show the alignment performance of the proposed algorithm
with respect to the number of measurements. Finally, we fix
the number of random measurements and we study the behav-
ior of the proposed approach in the context of facial image
alignment towards transformation-invariant face recognition.
In all experiments, the entries of the measurement matricesZ
follow a standard Gaussian distributionN (0, 1).

A. Illustrative alignment experiments

In the first experiments, the patterns is the facial image
shown in Fig. 5. We considerη∗ = (b∗, α∗, ω∗) to be a
synthesis of translationb∗x = 2 and b∗y = 6, isotropic scaling
α∗ = 0.8 and rotationω∗ = 5π/4 ≈ 3.93. We build the query

(a) s(η∗) (b) m = 20 (c) m = 40

(d) m = 60 (e) m = 80 (f) m = 100

Fig. 9. Transformed images corresponding to the Table I. Theexact
transformed images(η∗) is shown in (a). The rest of the panels illustrate
the estimated transformed imagess(η̂) along with the corresponding number
of measurementsm.

imagep using (11), by applying the exact transformationη∗ to
s. Then we use the cutting plane method to estimate the trans-
formation for increasing number of random measurementsm.

We report in Table I the estimateŝη of the exact transfor-
mation η∗ with respect tom, obtained after 1000 iterations
of the cutting plane method. Fig. 9 shows the corresponding
transformed imagess(η̂) (using 200 atoms for better illus-
tration). One can see that the rotation angleω seems to be
the toughest parameter to be estimate accurately, since the
algorithm already provides reasonably good estimates for the
rest of the transformation parameters as soon asm ≥ 40 mea-
surements are provided. Observe also that the transformation
estimatêη obtained withm = 100 measurements is very close
to the exact transformationη∗, which verifies in practice the
global optimality properties of the proposed algorithm when
a sufficient number of measurements is provided.

m η∗ = (β∗

x, β
∗

y , α
∗, ω∗) η̂ = (β̂x, β̂y, α̂, ω̂)

20 (2, 6, 0.8, 3.93) (2.68, 3.62, 0.85, 0.82)

40 (2, 6, 0.8, 3.93) (2.26, 5.3, 0.79, 0.8)

60 (2, 6, 0.8, 3.93) (2.28, 5.06, 0.76, 0.7)

80 (2, 6, 0.8, 3.93) (2.26, 5.3, 0.79, 0.80)

100 (2, 6, 0.8, 3.93) (1.97, 6.09, 0.73, 3.88)

TABLE I
TRANSFORMATION ESTIMATES FOR THE FACE MANIFOLD WITH RESPECT

TO THE NUMBER OF MEASUREMENTSm.

B. Alignment with random measurements

We provide below systematic alignment experiments, where
we use the facial image shown in Fig. 5 as well as five addi-
tional images collected from the web (Google image collec-
tion) and from the ETH-80 dataset. Fig. 10 shows the images
on the leftmost panels and their corresponding progressive
approximations obtained using OMP with increasing number
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(a) MRI brain image (leftmost) approximated progressivelywhen the number of atoms ranges from 20 to 140 with step 20.

(b) Pear image (leftmost) approximated progressively whenthe number of atoms ranges from 20 to 200 with step 30.

(c) Key image (leftmost) approximated progressively when the number of atoms ranges from 20 to 200 with step 30.

(d) Cup image (leftmost) approximated progressively when the number of atoms ranges from 20 to 200 with step 30.

(e) Car image (leftmost) approximated progressively when the number of atoms ranges from 20 to 200 with step 30.

Fig. 10. Progressive approximation of the tested images using Gaussian atoms.

of Gaussian atoms. Note that for the purpose of alignment,
one does not need a very accurate sparse representation of the
pattern. What is really important, is to obtain a representation
of the pattern, even a crude one, which captures its salient
geometric features. Observe in Fig. 10 that although the
tested images have different characteristics, the obtained sparse
representations based on Gaussian atoms are rather successful
in capturing the salient geometric features that are crucial for
the alignment problem. In all our experiments, the number of
Gaussian atoms is set toK = 40 (for all images).

1) Numerical estimation of the principal curvature: First,
we estimate numerically the principal curvature of the six
transformation manifolds, using the numerical algorithm pre-
sented in Section V. We uniformly discretize the transfor-
mation parameter space[0, 2π) × [0.5, 1.5] using 10 rotation
angles and 11 scaling levels respectively. Then, for each
grid point (ω, α) we estimate the principal curve using 40
random realizations of the normal directionζ. Fig. 11 shows
the histogram of the computed curvature values of all image
manifolds, as well as the corresponding median value.

One sees that the curvature values are small, implying that
the parametric transformation manifolds studied in this work
are not very curved, and therefore are well behaved (see also
Proposition 3). Notice that all images have similar curvature
values, i.e., of the same scale. One possible explanation for
this is the common structure of the image transformation
manifolds, i.e., each point on the manifold consists of a linear
combination of Gaussians that are very smooth functions.

2) Alignment experiments: We considerη to be a synthesis
of an isotropic scalingα ∈ [0.5, 1.5] and rotationω ∈ [0, 2π).
Each query imagep is built by image warping ons, using

the exact geometric transformationη∗. We run 40 random
experiments with random transformationsη∗ and different
random realizations of the measurement matrixZ. Then, for
each random experiment, 100 iterations of the cutting plane
method are employed to aligns with p. We compute the
alignment error of the estimated transformationη̂ as follows

e = min{2π − |ω̂ − ω∗|, |ω̂ − ω∗|}+ |α̂− α∗|. (30)

Fig. 12 shows the statistics of the alignment error (30) with
respect to the numberm of random projections used for image
alignment, for all images.

We observe that the alignment error drops quickly when
the number of random measurements increases and then it
saturates around 0.1. The nonzero alignment error is due
to the fact that only 100 iterations of the cutting plane are
employed. Furthermore, the experimental results show thatfor
all manifolds a few measurements (e.g.,m ≥ 50) are sufficient
to enable the cutting plane method to reach the vicinity of the
exact transformation in the vast majority of cases. Given the
fact that all images have similar curvature values, it comesto
no surprise that the alignment performance of the algorithmis
similar in all images. This is consistent with Theorem 1. The
only exception is the brain image. In what follows, we discuss
further this interesting case.

We see that the pattern geometry of the brain image (see Fig.
10(a)) is almost symmetrical for rotation angles that differ by
π. Hence, resolving the correct rotation angle requires more
random measurements. To see why this is the case for the
brain manifold, we plot the rotation component and the scaling
component of the alignment error (30) of the brain image
experiment in two different curves in Fig. 13. Notice that
the scaling parameter is estimated rather accurately even with
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Fig. 11. Histogram of the principal curvature values of all tested manifolds.

very few measurements. However, the rotation angle parameter
requires more measurements.

The experiment of the brain manifold implies that, in
general, there may exist cases where the manifold nearly
intersects itself, see Fig. 14 for a pictorial illustrationof such a
situation. In such cases, estimating the correct transformation
requires more random measurements, as it imposes stricter
isometry conditions. Note that the definition of the manifold
condition number in [16] does actually take this situation into
account. Therefore, this experiment is also consistent with
Theorem 1.

To summarize, the bound of Theorem 1 provides qualitative
insights into the alignment behaviour, even though it might
not admit tight bounds on the numberm of required measure-
ments. Note that empirical algorithms are typically used to
determinem directly (see, e.g., [8]). Overall, we have seen that
for all image manifolds that have been tested, the curvature
is bounded; hence a few random measurements are in general
sufficient to reach the vicinity of the global minimizer with
the cutting plane method in the image alignment problem.

C. Facial image alignment with random measurements

In these final experiments, we analyze the performance of
the image alignment method in the context of invariant face
recognition. Baseline face recognition schemes use nearest
neighbor (NN) classifiers in order to predict the correct identity
of a novel test facial image, given a set of training facial
images associated with the corresponding people identities.
Typically the NN classifier computes the Euclidean distance
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number of measurements
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t e
rr
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face
brain
cup
car
pear
key

Fig. 12. Median of the alignment error (30) of all tested image manifolds
as a function of the number of measurements.

of the test image from each of the training images and simply
predicts the identity of the test image by that of the closest
training image. Clearly, successful image alignment priorto
distance computation has a major impact on the recognition
performance.

We use the ORL database [24], a well known real world
data set from the face recognition literature. It contains 40
individuals with 10 facial images per person. The image set
of each individual includes variations in facial expression
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Fig. 13. Median of the two error components: rotation angleω and scaling
α in (30) for the brain image manifold, as a function of the number of
measurements.

s(ηi)s(ηj)
p

M

Fig. 14. A case where the manifoldM nearly intersects itself.

(smiling/non smiling) and head pose (see Fig. 15 for an
illustration). We assign the first seven images from each
person to the training set and the remaining three to the
test set. Hence, the test set has in total3 × 40 = 120
images. Note that in this setup, the training and test image
involved in each alignment experiment, correspond to different
facial expressions and poses of the same person or different
persons. This makes their alignment even more challenging.
We compute first the sparse representation of each training
image usingK = 50 Gaussian atoms. No further processing is
done on the training images. Each test image is geometrically
transformed by image warping with a random transformation
consisting of scaleα and rotationω. Scale and rotation are
uniformly distributed in[0.5, 1.5] and [0, 2π), respectively.

We study the benefit of image alignment in the face recog-
nition problem by comparing two different methods for the
image alignment. We first use a standard Newton algorithm
to solve the optimization problem in Sec. II. Then, we form
a hybrid method coined ‘DC+Newton’ that simply consists
of the cutting plane method proposed in this paper, followed
by Newton’s method. This algorithm permits to relax part of
the complexity of the cutting plane methods by limiting the
number of iterations and to use a fast Newton method for finer
alignment. In particular, the hybrid technique first estimates the
unknown transformation using the cutting plane method and

then provides it as an initial guess to the Newton’s method in
order to get a more refined estimate. In the hybrid DC+Newton
method, we use 100 iterations of the cutting plane before
switching to Newton. We usem = 50 random measurements
for image alignment in both alignment methods. We note
finally that for computational convenience, the test image is
aligned with only one training image from each person, instead
of aligning it with all available training images of the same
person. The obtained transformation is then used to align the
test image for comparison with the remaining training images
of the same person. With this setup, the experiment involves
120× 40 = 4800 image alignment experiments in total.

Fig. 15. Samples from the ORL data set.

We first compare the alignment performance of the proposed
hybrid method with respect to Newton’s method. Leter =
min{2π − |ω̂ − ω∗|, |ω̂ − ω∗|} and es = |α̂ − α∗| be the
rotation and scale component respectively of the registration
error (30). Figs. 16 and 17 show the histograms (with 30 bins)
of er andes for each method. We have observed that when two
facial images fromdifferent persons are aligned, it happens
quite often that the global minimizer is far from the exact
transformation parameters. For this reason, in the histogram
computation we have included only the alignment experiments
corresponding to pairs of images of thesame individual. As
expected, one can see from the figures above that Newton’s
method is stuck in local minima resulting in high errors. On
the contrary, the DC+Newton method is successful in finding
the global minimizer in the large majority of the cases. The
few outlier cases are due to the fact that we use only 100
iterations of the cutting plane method (i.e., before switching
to Newton) or due to the low number of random measurements
(m = 50 in our experiments).

For the sake of completeness, we finally report the face
recognition performances, although the main purpose of this
experiment is to study the image alignment performance of the
methods and not their face recognition one. The NN classifier
without any alignments results in 97.5% misclassification rate,
which is simply the percentage of test images that have been
mis-recognized. This is reasonable given the presence of large
transformations in the test image set. When standard Newtonis
employed for alignment, the misclassification rate slightly im-
proves to 87.5%. Finally, when the hybrid DC+Newton method
is used for alignment, it dramatically drops to 45.8% since the
latter is much more effective in image alignment. This figure
should be compared to a similar experiment performed in [11],
where the hybrid method achieves an error rate of 26.6% when
using full images instead of random measurements. Therefore,
one could try to increase the number of random measurements
used in the hybrid DC+Newton method, such that its face
recognition performance comes closer to the one reported
in [11]. However, this is out of the scope of the current
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Fig. 16. Facial image alignment experiment: histogram of the absolute error of the rotation parameterω.
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Fig. 17. Facial image alignment experiment: histogram of the absolute error of the scale parameterα.

work whose main objective is to show that image alignment
can be performed from random measurements, and the last
experiment verifies in practice that successful alignment has
a significant impact on the performance of the NN classifier
towards invariant face recognition.

VII. R ELATED WORK

In what follows, we review the most relevant work from the
literature and put it in perspective with the work proposed in
this paper.

We first mention the approaches in [25] and [26] for
image alignment based on random projections. In particular,
the approach in [26] is used in the context of compressive
classification, where the images are considered to be geomet-
rically transformed and the problem is to perform invariant
classification based on their random projections. Althoughthe
two approaches in [25] and [26] may look different at a first
glance, they are both based on exhaustive search, by discretiz-
ing the transformation parameter space and estimating the
transformation by nearest neighbor search among the images
after random projection. This not only leads to high memory

requirements, but it also provides no theoretical guarantee for
the optimality of the attained solution. In contrast, our DC
approach enjoys global optimality guarantees.

The authors in [8] propose a linear dimensionality reduction
methodology based on random projections. They show that a
few random projections are sufficient to estimate the intrinsic
dimension of the manifold. They also provide an empirical
procedure for estimating the number of necessary random pro-
jections in the context of ISOMAP. However, their procedure
is particularly designed for the ISOMAP algorithm and does
not easily extend to other manifold learning algorithms, or
more generally, to other image analysis problems.

An upper bound somewhat similar to (27) has been derived
by L. Jacques and C. De Vleeschouwer in [27], where it is
used towards alleviating the dictionary discretization effects in
Matching Pursuit algorithms. Note, however, that the bound
in [27] assumes a different definition of curvature and only
holds for the case where the manifold represents a parametric
dictionary of the form (4).

The authors in [28] study the non-differentiability of man-
ifolds spanned by natural images. They show that non-
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differentiability arises due to the movement of sharp edges
(causing global non-differentiability) and due to the occlusion
(causing local non-differentiability). The manifolds considered
in this work are differentiable, thanks to their parametricnature
and the smoothness of the Gaussian mother function used in
our framework.

Finally, we mention the approach of [29], which has been
shown to be globally optimal in determining general non-rigid
transformations in the case where one has access to the test
images, and not only linear measurements. The method em-
ploys a set of training images and their (known) corresponding
deformation parameters in order to estimate the deformation
parameters of a new test image. This is done by iteratively
computing the closest training image in the image space and
switching between the deformation parameter space and image
space in each iteration. The intuition is that each iteration of
the algorithm results in a less deformed image and the authors
prove that their algorithm is globally optimal, under the as-
sumption that the maximum allowed deformation is bounded.
However, in the case of large distortions a very high number of
training images is required, as pointed out in [29, Sec. 6]. On
the contrary, the computational requirements of our method
are independent of the magnitude of the transformation.

VIII. C ONCLUSIONS

We have proposed a globally optimal method for image
alignment with random projections, when the geometric trans-
formation consists of a synthesis of shift, rotation and isotropic
scaling. We build on previous work and use sparse geometric
expansions to represent the transformation manifold, which
describes the transformed versions of a pattern. We formulate
the image alignment problem with random projections as
a DC program, by proving that the objective function is
DC when the dictionary is built on Gaussian functions. In
addition, we provide theoretical as well as numerical insights
into the geometric properties of transformation manifolds, by
deriving an upper bound on the principal curvature as well as
establishing an efficient numerical algorithm for computing
it in practice. We show that the transformation manifolds
are well behaved, so that the image alignment problem can
be solved with a bounded number of measurements. This is
confirmed by experimental results where the proposed method
is shown to be successful in finding the global minimizer in
practice, even with a small number of random projections.
Finally, the proposed method can be combined with local
optimization in order to refine the estimated transformation
or to cope with more complicated transformation groups such
as non-rigid transformations.
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X. A PPENDIX

A. Proof of 〈∂Ni

∂ηj
, tl〉 = −〈Ni, tlj〉

Proof: Observe first that〈Ni,
∂s
∂ηl

〉 = 0, by definition of
the normal vector. Therefore,

0 =
∂

∂ηj
〈Ni,

∂s

∂ηl
〉 = 〈

∂Ni

∂ηj
,
∂s

∂ηl
〉+ 〈Ni,

∂2s

∂ηl∂ηj
〉

= 〈
∂Ni

∂ηj
, tl〉+ 〈Ni, tlj〉,

which implies the result.

B. Computation of tj

By definition s =
∑K

k=1 ξkφγk
, and therefore

∂s

∂ηi
=

K∑

k=1

ξk
∂φη◦γk

∂ηi
.

Recall thatφη◦γk
= φ(x̃, ỹ), where x̃, ỹ are the transformed

coordinates, and therefore

∂φ

∂ηi
=

∂φ

∂x̃

∂x̃

∂ηi
+

∂φ

∂ỹ

∂ỹ

∂ηi
.

In the case thatφ is Gaussian,

∂φ

∂x̃
= −2x̃ exp(−(x̃2 + ỹ2)),

∂φ

∂ỹ
= −2ỹ exp(−(x̃2 + ỹ2)).

C. Computation of tij

We have

∂2φ

∂ηi∂ηj
=

[
∂2φ

∂2x̃

∂x̃

∂ηj
+

∂2φ

∂x̃∂ỹ

∂ỹ

∂ηj

]
∂x̃

∂ηi
+

∂φ

∂x̃

∂2x̃

∂ηi∂ηj
+

[
∂2φ

∂ỹ∂x̃

∂x̃

∂ηj
+

∂2φ

∂ỹ2
∂ỹ

∂ηj

]
∂ỹ

∂ηi
+

∂φ

∂ỹ

∂2ỹ

∂ηi∂ηj
.

In the case thatφ is Gaussian,

∂2φ

∂x̃2
= (4x̃2 − 2) exp(−(x̃2 + ỹ2)),

∂2φ

∂ỹ2
= (4ỹ2 − 2) exp(−(x̃2 + ỹ2)),

∂2φ

∂x̃∂ỹ
=

∂2φ

∂ỹ∂x̃
= (4x̃ỹ) exp(−(x̃2 + ỹ2)).

D. Computation of ∂x̃
∂ηi

and ∂y
∂ηi

Recall thatη = (b, α, ω) denotes transformation parameters
while γi = (bi, ai, ωi) denotes atom parameters. The group
law is given by

η ◦ γ = (b+ αR(−ω)bi, αai, ω + ωi). (31)

Denoting

A =




1/aix 0

0 1/aiy



 , R(ωi) =




cos(ωi) sin(ωi)

− sin(ωi) cos(ωi)



 ,
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we define the matrixC := AR(ωi), which does not depend
on the transformation parameters. Then the transformed coor-
dinates of theith atom are given by
2

4

x̃

ỹ

3

5 = C
1

α
R(ω)

2

4

0

@

x

y

1

A

−

0

@

bx

by

1

A

− αR(−ω)

0

@

bix

biy

1

A

3

5

= C

2

4

1

α
R(ω)

0

@

x− bx

y − by

1

A

−

0

@

bix

biy

1

A

3

5

= C

2

4

1

a
(cos(ω)(x− bx) + sin(ω)(y − by))− bix

1

a
(− sin(ω)(x− bx) + cos(ω)(y − by))− biy

3

5 .

Differentiation gives
2

4

∂x̃/∂ω

∂ỹ/∂ω

3

5 = C

2

4

1

a
(− sin(ω)(x − bx) + cos(ω)(y − by))

1

a
(− cos(ω)(x − bx) − sin(ω)(y − by))

3

5 ,

2

4

∂x̃/∂bx

∂ỹ/∂bx

3

5 = C

2

4

− 1

a
cos(ω)

1

a
sin(ω)

3

5 ,

2

4

∂x̃/∂by

∂ỹ/∂by

3

5 = C

2

4

− 1

a
sin(ω)

− 1

a
cos(ω)

3

5 ,

2

4

∂x̃/∂α

∂ỹ/∂α

3

5 = C

2

4

− 1

a2
(− cos(ω)(x − bx) + sin(ω)(y − by))

− 1

a2
(− sin(ω)(x − bx) + cos(ω)(y − by))

3

5 .

E. Computation of ∂2x
∂ηi∂ηj

2

4

∂2x̃/∂ω2

∂2ỹ/∂ω2

3

5 = C

2

4

1

a
(− cos(ω)(x − bx) − sin(ω)(y − by))

1

a
(sin(ω)(x− bx) − cos(ω)(y − by))

3

5 ,

2

4

∂2x̃/∂ω∂bx

∂2ỹ/∂ω∂bx

3

5 = C

2

4

1

a
sin(ω)

1

a
cos(ω)

3

5 ,

2

4

∂2x̃/∂ω∂by

∂2ỹ/∂ω∂by

3

5 = C

2

4

− 1

a
cos(ω)

1

a
sin(ω)

3

5 ,

2

4

∂2x̃/∂ω∂α

∂2ỹ/∂ω∂α

3

5 = C

2

4

− 1

a2
(− sin(ω)(x − bx) + cos(ω)(y − by))

− 1

a2
(− cos(ω)(x− bx) − sin(ω)(y − by))

3

5 ,

2

4

∂2x̃/∂b2x

∂2ỹ/∂b2x

3

5 = 0,

2

4

∂2x̃/∂bx∂by

∂2ỹ/∂bx∂by

3

5 = 0,

2

4

∂2x̃/∂bx∂α

∂2ỹ/∂bx∂α

3

5 = C

2

4

1

a2
cos(ω)

− 1

a
sin(ω)

3

5 ,

2

4

∂2x̃/∂b2y

∂2ỹ/∂b2y

3

5 = 0,

2

4

∂2x̃/∂by∂α

∂2ỹ/∂by∂α

3

5 = C

2

4

1

a2
sin(ω)

1

a2
cos(ω)

3

5 ,

2

4

∂2x̃/∂α2

∂2ỹ/∂α2

3

5 = C

2

4

2

a3
(cos(ω)(x − bx) + sin(ω)(y − by))

2

a3
(− sin(ω)(x− bx) + cos(ω)(y − by))

3

5 .
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