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Abstract

Despite the emergence of speech controlled computers and direct manipula-
tion that both have diminished the need to operate computers with textual
commands, manual text entry remains one of the dominant forms of human-
computer interaction. This is because textual communication is one of the
main reasons for using computers. We use computers to write rather than
write to use computers.

Mobile and pervasive computing have been popular research areas recently.
Concordantly, these issues have a major part in the thesis at hand. Most of
the text entry methods that are discussed are for mobile computers. The
architecture that is one of the three main contributions of the work is a mid-
dleware system intended to support personalized text entry in an environment
permeated with mobile and non-mobile computers.

The two other main contributions in this thesis are experimental work on
text entry methods and models of user performance in text entry tasks.

The text entry methods tested in experiments were the minimal device
independent text entry method (MDITIM), two methods for entering num-
bers using a touchpad, Quikwriting in a multi-device environment, and a
menu-augmented soft-keyboard. MDITIM was found to be relatively device-
independent, but not very efficient. The numeric entry experiment showed
that the clock metaphor works with a touchpad, but with a high error rate.
An improved “hybrid” system exhibited a lower error rate. Quikwriting was
tested to evaluate the claims on its performance made in the initial publica-
tion. The claims were found to be exaggerated, but Quikwriting worked well
with the three tested input devices (stylus, game controller, and a keyboard).
The menu augmented soft keyboard was compared to a traditional QWERTY
soft keyboard to verify modeling results that show significant performance
advantages. No performance advantage was observed during the 20 session
experiment. However, extrapolations of the learning curves cross suggesting
that with enough practice the users might be able to write faster with the
menu augmented keyboard.

The results of the modeling part are two-fold. The explanatory power of
a simple model for unistroke writing time was measured and a model that
combines two previously known models for text entry rate development was
constructed.
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II Poika Isokoski and Mika Käki, Comparison of Two Touchpad-
based Methods for Numeric Entry. CHI2002, Human Factors
in Computing Systems, CHI Letters, 4(1), ACM Press, 2002,
25-32. [Isokoski and Käki, 2002]
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Chapter 1

Introduction

1.1 Context

This thesis is about entering text into computers. In the sense that it is
understood in the field of human-computer interaction, text entry began with
the emergence of computers during the later part of the 20th century. At
about the same time it became a field of technological innovation and topic
of scientific study. There have been two waves of text input research activity.
One began in the 1970s and another in the 1990s. According to MacKenzie
[2002a] the first wave concentrated on desktop computing and the second on
pen-based and mobile computing. This thesis belongs to the second wave.

In this thesis I will discuss details of some of the recent developments in
text entry. Before that, however, I will briefly introduce some themes that will
recur later in the thesis.

One of these recurring issues is the long history of writing and the effects
that the established traditions have on text entry research. Writing in general
is as old as history itself. The time before writing as we all know is called
prehistoric. Throughout times writing systems have interacted with other
technology and the societies that have used them. For example the Sumerian
cuneiform writing was tightly interwoven with the clay tablet and reed stick
technology as well as with the needs of the society. It seems apparent that in
this case the writing system evolved to fit the technology. Other cases, such
as the Egyptian use of papyrus, exemplify a situation where a whole industry
is set up to manufacture material suitable for writing. When a new piece of
technology comes along, sooner or later somebody will try to use it for writing.
Similarly, when a new writing task emerges, people will try to find the most
suitable tools for accomplishing it.

The most influential new piece of technology in our days is the computer.
In the light of the historical tendency of trying out new things, it was likely
that somebody would try to use the computer for writing. This has indeed
happened.

Generally speaking the work in this thesis consists of experiments on how
to use computers for writing. Because computers are well established writing
tools it could be argued that the whole work is pointless. This is not the
case because the recent proliferation of embedded and mobile computers has

1



1.1 CONTEXT

led to many situations where traditional text entry systems are ineffective
and difficult to use. A persistent skeptic could still argue that although new
devices and usage situations have emerged, developing text entry methods for
them is relatively simple. Based on the mature knowledge of coding schemes
developed in computer science and engineering one should be able to develop
optimal systems without much trouble. The counter-argument in this case is
the same as in most user interface issues: text entry would indeed be trivial if
people were as easily programmed as computers are. Because this is not the
case, we need to resort to laborious methods such as experiments to find out
how things work when humans are involved.

Branches of science dealing with humans are, of course, not purely exper-
imental. Based on experimental results we can build models and construct
theories that can then be used to formulate new questions that can be an-
swered experimentally. A suitably simple and robust theory can also be used
to find answers to questions without doing expensive experiments. Some hope
that in the future HCI theory can be developed to a level where building user
interfaces would indeed be a trivial engineering exercise [Scutliffe, 2000]. We
are still far away from that goal. Years of experimental work lay before us.

Although computers offer new possibilities for writing, they do not change
everything. The human body is the same as it was 6000 years ago when first
writing systems were developed. The motivation for writing is also the same.
The need for writing arises when people need to remember things precisely over
long periods of time or to communicate over distance [Woolley, 1963]. Deals
have to be written down so that all parties can agree on what was agreed upon
even after circumstances have changed over time. Records on prices and debts
have to be kept in writing when the economy gets complex enough.

Once writing emerges for a reason or another, it tends to spread to other
areas of human activity. Serving as a memory for economic activities is just
one example. People start writing letters for their loved ones, they write down
stories for others to enjoy, and decorate their tombs and other monuments
with words that they want to be remembered with.

1.1.1 Language Issues

All writing is not equal. Character sets and writing systems interact with
languages in complicated ways. The importance of the language and its effect
on the writing systems is exemplified by the chase of Chinese. Writing down
the pronunciation of Chinese words in the Latin alphabet simply does not
suffice. Chinese has many words that produce the same Latin transliteration,
but have different meanings that the Chinese writing system conveys, but
the European does not [Sacher, 1998, Wang et al., 2003]. Language issues are
important and should be considered in work related to writing. However, a
researcher must also recognize his limitations. Verifying that everything in
this thesis applies to all languages is clearly beyond my capabilities. Thus, I
mostly ignore language issues and confine the discussion within the languages
that can conveniently be written with the Latin alphabet. The reader should
be aware that generalizing beyond this scope may lead to false conclusions.
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INTRODUCTION

1.1.2 History of the Latin Alphabet

Of a particular interest for writers of modern western European languages
is the history of the Latin alphabet. The early part, which is the devel-
opment of the proto semitic script, happened roughly simultaneously with
the development of the Chinese writing systems [Gaur, 1987, Woolley, 1963,
Grimberg, 1967]. The sites where early semitic texts have been found are close
enough to both Mesopotamia and Egypt to make it safe to assume that these
older systems were not completely unknown to early developers of the Semitic
scripts. Semitic scripts were phonemic, that is the sounds were written instead
of ideas or words. They were also consonantal, which means that vowels were
not written at all.

The next step after the proto Semitic scripts was the Phoenician trade
empire that spread their version of the north semitic script throughout the
Mediterranean. Later the Greek added some vowels and adapted the script to
their use giving it in turn to the Romans who left the alphabet in the hands
of the christian church that was the main practitioner of writing in Europe for
much of the middle ages. The use of printing press and the industrialization
finally lifted the Latin alphabet to the position that it has today in the western
industrialized world.

The name of the Latin alphabet comes from the Latin speaking Roman
culture. The monumental script that can be observed in Roman ruins still
lives in the capital letters of the Roman family of computer fonts. Sometimes
the term Roman alphabet is used instead of Latin and it is not uncommon to
see people speaking using modern day associations such calling it the English
alphabet.

1.1.3 Terminology

By text entry I mean the activity performed to transfer text from the user’s
brain to computer memory. Text input is synonymous with text entry and
often used interchangeably. A text entry method is the abstract description of
how to accomplish text entry. A text entry system is a concrete implementation
of a text entry method. As is apparent, text entry is a subset of the activities
that are usually referred to by the term writing.

Text entry does not include the language related issues of syntax, neither
are semantics of the text an issue in text entry. Error correction, however is a
part of text entry by necessity. The way that humans operate always produces
errors. This is somewhat analogous to a generic information transmission
channel in engineering. There is always noise that must be coped with. The
way that human users cope with the noise is first to keep the text entry rate
slow enough not to exceed the channel capacity. Secondly, when an error
occurs, it is noticed through the feedback channel and corrected unless there
is an error in the feedback channel in which case the error goes unnoticed, or
in some cases unnecessary correction activity is launched.

3



1.2 METHOD

1.1.4 Separation of input, storage, and output

The reason for text entry being a more interesting topic than some other writ-
ing technology such as the ballpoint pen is that computers are different in
so many ways. They can take many shapes and sizes and be operated with
different input devices. The short history of computers shows both develop-
ment of input devices for easier writing with a given text entry method and
development of text entry methods for easier writing with a given input de-
vice. The peculiar thing about computers is that the physical writing motion is
separated from the shape of the resulting characters. Mechanical typewriters
and the printing press have similar qualities, but in the case of computers the
separation is cleanest. Finger motion in pressing the “H” key on the keyboard
is very similar to pressing any other key and very different from the shape of
the letter “H”. In handwriting the pen motion is exactly the same as the shape
of the resulting character and consequently different for all characters. The
separation of input activity and character shapes is a powerful feature of com-
puterized writing that could, if utilized properly, solve the problem of having
to learn many writing systems that bothered the ancient Egyptian scribes and
still burdens us.

On the other hand, the separation means that any physical activity can be
translated to text. Computer manufacturers have utilized this opportunity and
developed computers with very different input devices. Commonly keyboards
such as desktop-sized ones, telephone keypads and mini QWERTY keyboards
are used for text input. In addition styli and even speech can be used. These
all require different skills from the user. The benefit gained from learning some
of these skills is added efficiency. For example it is not uncommon for people
to touch-type twice as fast as they can write with a pen.

One of the issues that a thesis in this field should address is how individual
users can cope with the multitude of writing systems and input devices. My
position is that neither computers nor manual text entry are passing flings.
Both are likely to persist until the end of our civilization. Consequently ev-
erybody must develop a text entry strategy. Text entry method developers
should strive to make this as easy as possible.

1.2 Method

The work reported in the following chapters is done within the paradigms of
constructive and empirical research. Because something is being constructed,
the work is applied rather than pure science. Constructive research happens
in cycle with two phases. One phase is the construction of a system and the
other the evaluation of that system. The order and breadth of these phases
may vary, but the idea is to develop artefacts with potential practical value and
knowledge on these artefacts. In human-computer interaction the artefacts are
user interfaces and the targeted knowledge is knowledge on human performance
with these interfaces. Most of the work has a heavy empirical emphasis. The
reason for this is that I agree with the title of Shumin Zhai’s recent outburst on
the state of the affairs in human computer interaction. Because, “Evaluation

4
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is the worst form of HCI research except all those other forms that have been
tried” [Zhai, 2003], I too have to evaluate my systems in order to learn useful
things about them.

Within this overall framework I have used snippets of what other branches
of science call the scientific method. These include building thorough descrip-
tions such as taxonomies to understand the problem area, doing evaluations
following the experimental research methods largely developed by psycholo-
gists, and most importantly use of common sense for example in recognizing
situations where an experiment or a prototype cannot solidify knowledge be-
yond what can be achieved through carefully explained reasoning.

One central methodological issue in applied work is the time perspective
that is used to motivate the work. Dealing with this issue is a balancing act
between aiming for results with lasting value and aiming for results that are
immediately useful. Results that may be found very useful or theoretically
interesting in the future are not necessarily immediately useful in practice.
On the other hand results that are not immediately useful may indeed be
completely useless. Because text entry methods are so tightly interwoven in
the culture and technology of a time and geographcal region, any significant
change will take a long time. This makes it very difficult to see how the
change could happen at all. In retrospect, however, we can observe historical
developments that have changed writing systems completely. A recent example
of a surprising development is the widespread use of the telephone keypad for
text entry. Such changes are likely to continue in the future.

However, placing a particular piece of work in the context of long term
developments is challenging. I have attempted this in the case of the notion
of device independence addressed in papers I, III, and VII. Faced with that
argumentation some people say “maybe” and others say “rubbish”. Each
according to their present mindset regarding the time perspective. “Maybe”
is really the best we can hope for given the general difficulty of predicting the
future. In the other end of the scale are the experimental results such as those
in papers I, II, III, and IV. They are useful immediately. By producing both
immediately applicable results and long reaching theoretical observations, I
have hoped to keep the center of mass of the whole body of work in the right
place. That is, beyond product development work done in the industry, but
with enough ties to reality not to get lost in potentially useless visions.

1.3 Overview of the Thesis

The main content of this thesis consists of seven papers that have been pub-
lished in various scientific forums. The other parts fill in the gaps between
the papers and provide more extensive introductory material than what could
be included in the papers themselves. Most importantly Chapter 2 gives an
overview of the current state of manual text entry including a new framework
of classifying and combining text entry techniques.

In the papers I present three kinds of results. First, the results of evaluations
of text input systems, second, models that describe human performance in
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certain situations, and third software that solves certain practical problems.
The papers are woven together in chapters 3, 4, and 5 that each concentrate
on one type of contributions.

The text entry method evaluations in Chapter 3 include four systems. First,
a minimal device independent text input method that was an attempt in build-
ing a text entry system that can be operated with almost any input device while
maximizing skill transfer between the input devices. Second, a comparison of
two touchpad based systems for entering numbers. Third, the evaluation of
Quikwriting in a multi-device environment, and fourth an evaluation of menu-
augmented soft keyboards.

The modeling part in Chapter 4 includes a model for unistroke writing time
and work on a combined model of text entry rate development in longitudinal
experiments.

The software part (Chapter 5) consists of the components of the Text Input
Architecture (TIA). The architecture supports text input methods that follow
the user rather than the device.

In Chapter 6 I describe and discuss the general limitations of the work. Fi-
nally, conclusions concerning the whole body of work are presented in Chapter
7.

1.4 Division of labor

Because most of the publications were made in cooperation with other re-
searchers, it is necessary to give details on the division of labor in order to
satisfy the requirement that the thesis demonstrates capability in independent
research. Below I list those parts in the publications that were significantly
contributed to by others. Participation in the writing process means discussing
the most effective ways of presenting the material that I had generated and
editing the paper to realize the chosen presentation.

Paper I is based on my Master’s thesis. Professor Roope Raisamo super-
vised the thesis and the writing of this publication.

Paper II was written on the course for Scientific Writing in Human-
Computer Interaction given by Professor Kari-Jouko Räihä. The writing pro-
cess was influenced by Professor Räihä and some participants of the course.
Mika Käki wrote the program for analyzing the results of the experiment and
participated in the writing of the paper after the course.

Paper III was written with the participation of Professor Roope Raisamo.

Paper IV was written in two phases. The modeling part was written for
a course given by Professor Scott MacKenzie (Research in Advanced User
Interfaces: Models, Methods, Measures, University of Tampere, spring 2003).
Prof. MacKenzie’s comments on that part influenced the final presentation as
well as the decision to undertake the experimental part of the work. Some of
the ideas were developed based on discussions with Dr. Grigori Evreinov.

Paper V was written on the Advanced Course on Human Computer Interac-
tion given by Professor Kari-Jouko Räihä. The writing process was influenced
by Professor Räihä and some participants of the course.

6
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Paper VI was written in cooperation with Professor Scott MacKenzie who
suggested model 1 and participated in the writing process.

Paper VII was written with Professor Raisamo.

7



Chapter 2

Current state of manual text
entry

There is only one way to enter text into computers. All text entry methods can
be conceptually reduced to a menu of choices and the user selecting these in
the desired sequence. Sometimes the process is implicit or obfuscated beyond
recognition. For example an artificial neural network that recognizes hand-
written words is a complicated intermediary between the user and the list of
words. The user does not see the list, nor is she aware of its existence, but
the list exists and interpreting the user’s selection is the very purpose of the
whole system. So, with some faith the selection abstraction can be seen to
hold generally.

Description of the current state of manual text entry has no practical value
if it consists of a classification of only one class. Therefore it makes sense to dif-
ferentiate between two types of text entry methods. Those that show the menu
explicitly and those where the user is under the illusion that the computer rec-
ognizes more freely formatted input. To give the conceptual framework even
more practical power, a class for language models is added. Language models
are employed in conjunction with either selection or recognition based inter-
action techniques to improve the system. Recognition systems use language
models to improve their accuracy in guessing what the user is writing. Se-
lection based systems typically try to utilize the redundancy in language to
reduce the number of selections that need to be made through disambiguation
and word completion. These main building blocks of text entry systems are
shown in Figure 2.1.

The following description of the known text entry systems aims to be com-
prehensive regarding the different types of systems. While being comprehen-
sive regarding individual systems would be an even worthier goal, it turns
out to be very difficult. For example there are hundreds, if not thousands
of publications on handwriting recognizers that appear rather similar to the
user, but work internally in different ways. Describing all these systems is
an effort that does not serve a purpose in this thesis. Instead, the reader
is directed to surveys that specifically address the issue [Tappert et al., 1990,
Steinherz et al., 1999, Plamondon and Srihari, 2000, Vinciarelli, 2002].

Another goal of this chapter is to serve as an introduction to some of the

8



CURRENT STATE OF MANUAL TEXT ENTRY

Figure 2.1: Main building blocks of text entry methods.

problems that are addressed later in the book. I list the best practices of
handling the various text entry methods theoretically when modeling user
performance. This information serves as an introduction to the work reported
in the three papers (IV,V, and VI) that deal with user modeling and is given
at the end of the discussion on each class of systems. Modeling is an important
tool in HCI design and research in general, but particularly so in text entry.
Text entry skills are practiced often and for extended periods of time. This
is why experts can develop skills that are well beyond what can be measured
in an experiment with users that in the case of a new text entry method are
necessarily beginners. Thus, it is of great value to be able to model expert
user performance as accurately as possible to find those text entry methods
that are worth teaching to users.

In addition, this overview discusses two aspects of text entry methods. The
first of these aspects is the modularity of composite methods. Composite
methods that consist of separable components are good for architectures like
the one presented in paper VII because the components need to be imple-
mented only once and then used in many methods. The opposite of modular
composites are composites where the parts are so intertwined that clear and re-
usable interfaces between them are more time consuming to implement than a
purpose-built complete re-write of the whole method. The second emphasized
aspect is the multi-device compatibility of text entry methods that is a central
theme in papers I and III. The reasoning behind multi-device methods is that
if the same text entry method can be used on many devices, some learning
is saved because the user only needs to adapt to the new device instead of
learning a whole text entry system.

2.1 Keyboards

Keyboards are pure selection interfaces. The user is presented with a matrix of
keys and he or she is to select them sequentially to produce text. There are two
kinds of keyboards: hardware keyboards and soft keyboards. The terms virtual

9
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keyboards, soft(ware) keyboards, and on-screen keyboards are synonymous in
this thesis. I prefer the term soft keyboard because it emphasizes the fact
that the keyboard is software rendered in contrast to hardware keyboards that
are physical objects. An important difference between physical keyboards and
soft keyboards is that they offer different approaches to user interface design.
Physical keyboards are largely immutable. The keys are where they are and
function the way they were constructed to function. The user interface designer
can do very little to change these things. A new keyboard can be designed,
but as there usually is no more than one keyboard in each device, the design
must be a compromise that serves all applications and users. The shape and
size of soft keyboards on the other hand is entirely software controlled as is
the visual appearance of the keys. Soft keyboards can change according to the
application, user, or even depending on the usage context.

2.1.1 Physical Keyboards

Buttons and keys exist in many shapes, sizes and arrangements. However,
a collection of keys is a keyboard worth mentioning in the context of text
entry only if it is used for entering text. This rules out light switches and
other isolated buttons and switches connected to non-digital devices. However,
many household appliances such as alarm clocks, TV-sets, microwave ovens etc.
nowadays contain a small computer that every now and then needs textual
input. Mostly this happens infrequently such as setting the time on an alarm
clock after changing the batteries, but nevertheless the activity concerns a set
of keys and a string of text (in this case numbers) that need to be entered.
While delving into the intricacies of these user interfaces might be interesting,
I will, to stay in par with the other sections, limit the following discussion to
keyboards that are used for more extensive text entry tasks such as taking
notes or writing an email message.

Desktop Keyboards

The design for desktop keyboards is inherited from the typewriter era. The
QWERTY character layout and its language-specific adaptations dominate
the market. It has been observed that the QWERTY layout is not optimal for
typing the languages that it is used for. Difficult finger movements are needed
more often than is necessary. Also, long stretches of text are often written
using only one hand. Presumably a layout that relies mostly on the keys on
the home row and distributes consequent characters to left and right hands
more equally could be better.

One of the somewhat successful attempts at developing a better layout for
the English language is the Dvorak layout [Potosnak, 1988]. The reason for
the limited usage of Dvorak and other non-QWERTY layouts is the fact that
despite its shortcomings, the QWERTY layout actually makes pretty good use
of the human hands. While one finger is pressing a key, others can prepare
for their work by moving over the following keys. This kind of typing skill
takes a while to develop, but once learned, it is fast enough for most practical
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purposes. Indeed, attempts to demonstrate the benefits of Dvorak layout have
shown only slim success in improving text entry rate [Potosnak, 1988]. Speed
is not the only important criterion. Increased user comfort and lessened risk for
stress injuries with the Dvorak layout have also been c laimed [Brooks, 2000].

Besides key arrangement, other aspects of the design space have been ex-
plored. Laptop computers often have slightly smaller keyboards that are some-
times curved to reduce wrist angles. Many of the currently available desktop
keyboards are of the split design. The keyboard is divided at the middle to
allow straighter wrist posture. Keys have also been painted on flat surfaces
that can sense one or many points of contact allowing simultaneous keying and
gesturing [Potosnak, 1988, FingerWorks, 2003].

Desktop keyboards without the actual keyboard have also been constructed.
They operate by sensing the finger movements by some other means such as
cameras [Roeber et al., 2003] or pressure sensors [Goldstein et al., 1999]. The
keyboard can be projected on the desktop [Roeber et al., 2003] or typing can
occur without any visual guide [Senseboard, 2003, Goldstein et al., 1999].

Telephone keypad and disambiguation

Because each key in a telephone keypad is associated with several charac-
ters, a software layer that transforms the keypress stream into text is needed.
Because the software turns ambiguous keypresses to unambiguous charac-
ters, the process is known as disambiguation. The paper by Rau and Skiena
[Rau and Skiena, 1994] is a good source for information on the state of the art
in telephone keypad disambiguation preceding the mobile phone era. What is
now considered the traditional disambiguation algorithm associates the first
consecutive press on a key with the first character on the key, the second with
the second and so on. When two characters on the same key need to be en-
tered consecutively, the user needs to wait for a pre-determined amount of
time (usually 1.5 seconds), or press a special timeout-cut key. This algorithm
is known as the multi-press disambiguation algorithm.

The multi-press system can be configured in many ways. The standard way
is the configuration A in figure 2.2. The alphabetical order presumably facil-
itates novice performance if novices are familiar with the alphabetical order.
The problem with the alphabetical layout is that the frequent characters may
end up in the end of the list requiring more keypresses than some less frequently
needed characters. Overall this increases the number of needed keypresses and
unnecessarily slows down expert text entry rates. A natural reaction is to sug-
gest re-arranging the characters within each key according to their frequency.
Pavlovych and Stuerzlinger [2003] have done exactly this and labeled their
technique Less-Tap. The Less-Tap character layout is shown under B in Fig-
ure 2.2. A more comprehensive re-organization can be done disregarding the
alphabetical order alltogether. Layout C in Figure 2.2 is an adaptation of
the JustType keyboard (C) as reported by MacKenzie and Soukoreff [1999].1

Layout D is the result of my own experimentation in the area.

1The eight-key layout reported by King et al. [1995] is different.

11



2.1 KEYBOARDS

Figure 2.2: Four ways to map the alphabet in a telephone keypad.

The JustType layout was optimized for a specific word level disambigua-
tion algorithm (See below for discussion on disambiguation). Layout D was
constructed by starting from the most frequent character in English and as-
signing a character for each key (except 1) until all keys had three characters
in decreasing frequency order. The remaining characters were assigned to the
keys with the lowest overall usage frequency. Re-arranging is fairly effective.
According to Pavlovych and Stuerzlinger most of the advantage can be gained
by within-key re-arrangement. The average number of keypresses per charac-
ter for writing English with the standard multi-tap arrangement is 2.03. The
Less-Tap arrangement manages 1.52. My own computations for layout D indi-
cated 1.472. Although the optimization goal for the JustType keyboard may
appear different, it turns out to be pretty much the same. For word level dis-
ambiguation characters need to be distributed so that the maximum number
of different keys are pressed for each word. The end result is that each key
must have roughly the same sum of frequencies of assigned characters. Thus,
the number of keypresses needed per character in multi-tap use of layout C
would not differ significantly from layouts B and D.

Despite the keypress efficiency of these optimized key arrangements no im-
plementations are widely available. Now that the covers (including key covers)
of mobile phones are user changeable, it would not be impossible to have mul-
tiple multi-press systems with the correct printing on the key caps so that even
novices could quickly pick up the more efficient systems. However, the choice
of device manufacturers remains to be the support of visual personalization
instead of functional. Given that some of the publications (for example the
Less-Tap paper) are relatively new, such devices may be in the development
pipeline. Whether that is the case remains to be seen.

The most popular improvement over the multi-press disambiguation is the
T9 disambiguation [AOL, 2003]. A T9 user presses each key only once thus
saving some keypresses. The T9 algorithm uses a word frequency dictionary
to determine the most likely interpretation of the word. If, at the end of a

2these computations are done using different English language corpora, so the numbers
are not necessarily comparable down to the last decimal place.

12



CURRENT STATE OF MANUAL TEXT ENTRY

word, T9 guesses wrong, the user must press the “next” key to scroll through
a list of the less frequent words that match the entered key sequence.

In addition to T9 other algorithms with similar properties have been pro-
posed and used in phones. The simplest of these competitors is the system
known as LetterWise [MacKenzie et al., 2001]. It uses a n-gram (a sequence
of n characters) frequency table instead of a word frequency table.3 The user
is required to monitor the entered text and press a “next” key if LetterWise
guesses wrong.4 More complicated approaches such as EzType and EzText
[Zi Corporation, 2003] iTap [Motorola, 2003] add word prediction to the sys-
tem allowing text entry with even smaller number of keypresses, but with the
added cost of monitoring the system output and reacting to it while writing.

Disambiguation algorithms generalize to all situations where the number of
available input actions is smaller than the number of different tokens that need
to be entered. The input actions do not need to be keypresses. For example,
the octave text input system that was marketed by a French company e-acute
used a word-level disambiguation algorithm with an eight-armed star on which
one moved a stylus. One arm of the star was selected for each character and
when the stylus was lifted, the system computed its best guess for the word.

In addition to language models, explicit user input can be used for disam-
biguating the keypresses. With the traditional layout one needs four “shift”
keys to disambiguate the input. Three shifts suffice if more than one are
pressed at the same time [Wigdor and Balakrishnan, 2004]. Another alterna-
tive is to install an accelerometer into the device and tilt it while pressing the
keys [Partridge et al., 2002, Wigdor and Balakrishnan, 2003].

Other keyboards for mobile use

Keyboards can be seen as a continuum of the number of keys
[MacKenzie, 2002b]. At one end the keyboard consists of one key and at
the other the number of keys is unlimited. The number of keys is in inverse
relationship to the number of keypresses needed for entering one character.
Consequently one-key text input is necessarily awkward and time consuming.
Useful systems have been constructed for the use of the disabled who can-
not conveniently operate more than one button. The approach is usually to
use scanning. Scanning means that the possible selections are highlighted se-
quentially and the user is to press the button when the desired selection is
highlighted. Another classic one-button compatible technique is the use of
morse code which is based on sequences of carefully timed key presses and
pauses.

Two keys can be used in many ways. For example so that one key moves
the selection and the other confirms the selection. Starting from three buttons
the variety of approaches increases. All the techniques that work with fewer

3My impression based on personal communications with eatoni representatives is that
trigram frequencies are good enough and actually used in their products. However, the
approach is not limited to three character sequences. Therefore, the n-gram expression.

4In contrast the output of T9 is often not correct before the word is finished and tends
to change as the entry proceeds, it is actually beneficial not to look at the entered text until
at the end of the word.
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keys are of course available. In addition multiple selection schemes can be
envisioned. The design space has been explored at least by MacKenzie [2002c]
and Sandnes et al. [2003]. Work on techniques for four keys includes the Bin-
Scroll [Lehikoinen and Salminen, 2002], four key adaptation of our MDITIM
work (Paper I) and other direction based systems. Using five keys adds the
ability to select in addition to moving along two orthogonal axes. An example
of a movement and selection interface with five keys is explored by Bellman
and MacKenzie [1998]. Five keys is also a natural number for chord keyboards
[Gopher and Raij, 1988] because it allows allocating one button for each fin-
ger. Because of the widespread use of mobile phones for text messaging, the
telephone keypad is a major milestone in the continuum between five and 27
keys. 27 is an important number because 27 keys have often been used in sim-
plified models and experiments pertaining to “full” keyboards that have a key
for each character. Keyboards with more than 27 keys belong in this sense to
the same class that generally tends to aim for one keypress per character op-
eration with minor deviations such as the production of upper case characters.
Below we will concentrate on chord keyboards and full keyboards.

Originally mobile phones inherited their keyboard layout from desktop tele-
phones. Only recently mobile phones with keypads other than the 3 by 4 key
matrix have become available5. Devices that do not have such historical bag-
gage have used other keyboard designs. A popular solution is a very small
keyboard with QWERTY layout. Small QWERTY keyboards have appeared
many devices including PDAs, two-way pagers and even mobile phones.

Although the QWERTY layout remains the most popular full miniature
keyboard design, other designs have been proposed. For example, the Fastap
design where alphabetically arranged keyboard is combined with the telephone
keypad as shown in Figure 2.3 [Digit Wireless, 2003]. The round telephone
keys are not real keys. They are just indentations in the keyboard base plate.
The smaller angular alphabet keys are real keys that can be pressed. They
are clearly higher than the base plate. When a user tries to press his or her
finger into one of the indentations, several of the alphabet keys surrounding
the indentation are pressed. The keyboard interpets this as a press of the
telephone key. The alphabet keys can be pressed individually. The inventors
claim that the key arrangement allows packing more keys per unit of base plate
area without making the keys too small to press even with large fingers.

Cockburn and Siresena [2002] tested a Fastap prototype device against
multi-tap with a traditional mobile phone keyboard and T9 with another tradi-
tional phone model. The experiment consisted of a initial test for determining
walk-up usability, six 10-minute practice sessions on different days, and a final
test to determine expert6 performance. Walk up performance with Fastap was
found to be superior to both multi-tap and T9. Experts were faster with T9
except when entering abbreviations. Unfortunately the test did not include
a QWERTY keyboard with the same physical dimensions as the Fastap pro-

5for example Nokia 3650, 5510, 6800, 6910, and 7600.
6In comparison to many other studies an hour of practice does not seem like much time

to become an expert. The definition of an expert has not solidified in text entry research.
In the existing literature it is used for pretty much anything except for absolute novices.
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Figure 2.3: The Fastap keyboard design [Digit Wireless, 2003]
.

totype. Including this comparison would have allowed evaluating the claims
that Fastap improves the text entry user interface over previous miniature full
keyboard designs.

A miniature QWERTY keyboard has many buttons which means that the
buttons tend to be rather small. Approaches with fewer and larger keys in-
clude the various chording keyboards. Chording means pressing more than
one key simultaneously to enter a character. Early work on chord keyboards
was done in the context of mail sorting [Noyes, 1983]. Later work has con-
centrated on text entry. Experiments with chord keyboards have shown that
the interfaces tend to be rather easy to learn. In some cases even easier than
traditional touch-typing [Gopher and Raij, 1988]. However, even well trained
chord typist cannot reach QWERTY touch typing speeds because chording is
more sequential whereas touch-typists can prepare for the following strokes in
parallel with the execution of the preceding ones. However, chord keyboards
can have a very large character set. Chord stenography machines that allow
entering more than one character per chord can be operated very rapidly. Also,
it should be noted that learning to be a fully trained QWERTY touch-typist
takes years of practice. Most people never reach speeds over 100 words per
minute. In fact in my experiments typical QWERTY typing rates have been in
the order of 40 wpm. At these speeds chording would be competitive if people
were to find it otherwise appealing. This does not seem to be the case. The
need to memorize the chords seems to deter most potential users. Some chord
keyboard manufacturers do manage to survive in this niche market. Currently
available chord keyboards include Twiddler2 [Handykey Corporation, 2003],
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Bat [Infogrip Inc., 2003] and CyKey [Bellaire Electronics, 2003]7

Skill transfer from a system known to the users can aid users to learn the
use of a new device. The success of mini-QWERTY keyboards and the fail-
ure of chord keyboards to enter the market is just one example of this. The
Half-QWERTY system is an interesting design that aims to utilize the user’s
familiarity with the desktop QWERTY keyboard. The Half-QWERTY key-
board is a half of the QWERTY keyboard. The characters of the missing half
are located mirrored on the existing half. The space key is used for shifting
the active half. Matias et al. tested the design and found that people can
transfer some of their two-handed touch-typing skill to half-QWERTY use
[Matias et al., 1993, Matias et al., 1996].

Physical keyboard theory

User populations exhibit very large spread of keyboarding skills. Some users
can barely type while others are proficient touch-typists reaching speeds up to
100 words per minute (wpm)8.

Thus modeling the performance of the general user population is necessarily
a guesswork. One might assume that it takes on average 500 milliseconds to
type one character or that it takes 250 milliseconds and both guesses could be
correct. For the same reason detailed psycho-motor models of typing perfor-
mance cannot be of much value if the user population is not well known. If
the user population is known, the best way to estimate user performance is
to take a sample of the population and measure the performance. In short,
research over the last 20 years has not added much to the performance figures
listed by Card et al. [1983].

Despite the difficulties, models for typing with full-sized desktop keyboard-
ing can be constructed. Such work has been summarized at least by Barber
[1997] and Potosnak [1988]. The models can explain some aspects of the typing
activity and produce estimates for the efficiency of different keyboard layouts.
While important for understanding the activity, such models have little value
in keyboard design. The reason for this is that when both hands and all
fingers are used for typing, performance differences for well-trained users are
small. Consequently keyboard redesign has been comparatively dormant area
of research in recent years.

Because mobile telephones tend to be so small, only a few fingers can be used
for entering text using the telephone keypad. Models for expert performance
with one finger and two thumbs have been developed [Silfverberg et al., 2000,
MacKenzie and Soukoreff, 2002a]. These models are based on the work on soft
keyboarding models that are discussed below.

By large, the recent work on physical keyboards has been dominated by
the effort of minimizing the number of keypresses in the context of limited

7a descendant of the MicroWriter often mentioned in earlier chord keyboard reviews
8Words per minute remains the dominant unit for reporting text entry speed despite its

shortcomings. Word lengths vary and therefore, instead of words, five character chunks are
counted. So, one word per minute is equal to five characters (including spaces, punctuation,
and other non alphabet characters) per minute. The more standard and intuitively clear unit
of characters per second is emerging, but has not been favored by reviewers until recently.
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keyboards. There are at least two reasons for this. Firstly the number of
keypresses is a concrete measure that is easy to understand and handle in
optimization computations. This makes it very attractive to researchers aiming
for academic publication or hoping to attract capital in order to set up a
company. Secondly, there has been an opportunity to make real improvements
especially in the case of the telephone keypad that has been an important
platform due to the explosive growth of SMS messaging that took most device
manufacturers by surprise.

The emphasis on keystrokes per character (KSPC) [MacKenzie, 2002b] has
left other aspects of text entry activity with much less attention. Different text
entry systems can demand different cognitive and perceptual behavior from
the user. Sometimes these issues can be even more important than KSPC in
judging the suitability of a particular method for a particular use.

One attempt at describing the differences between disambiguation algo-
rithms was made by Kober et al. [2001] in an unpublished paper. Their main
concern was the effect that errors have in dictionary-based disambiguation.
When a word contains one wrong button press, the whole word or a sub-
stantial part of it is disambiguated in a wrong way . Kober et al. call this
phenomenon error amplification. Multi-press disambiguation does not suffer
from error amplification because errors made on one character do not affect
other characters in the word. The main result in the paper is that under
certain assumptions the throughput of a dictionary based disambiguation al-
gorithm like T9 will degrade below the level of multi tap when keypresss error
rate exceeds 8%. In addition Kober et al. modeled their own disambiguation
algorithm known as WordWise. WordWise uses a shift key to explicitly dis-
ambiguate eight characters thus making 45% of English input unambiguous on
a telephone keypad. Because unambiguous characters are encountered often
within a word, WordWise is not as sensitive to key press errors as T9.

The work of Kober et al. could be expanded to include other disambiguation
methods. While error amplification is not as big a problem with many other
text entry methods, the cost of correcting an error may vary making modeling
the effect of errors on text entry rate a valuable exercise. The work of Kober
et al. is the only example of this kind of error modeling with disambiguation
algorithms, but including errors in performance models in general has been
done before. For example Barber [1997] reviews work on using Markov models
and task-network models for computing performance of systems like speech
recognizers under different error rates. These models could be adapted to
describe manual text entry activity just as well.

Other attempts at including the cognitive and perceptual aspects of text
entry systems includes the application of the Keystroke Level Model (KSL) by
Card et al. [1983] to the use of word completion systems. The results of this
work are discussed in more detail in section 2.4.2.

2.1.2 Soft Keyboards

Unlike in 1988 when Potosnak [1988] concluded that virtual keyboards would
not be covered in the Handbook of Human-Computer interaction due to lack
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of research in the area, we now have a wealth of information. Soft keyboards
are an attractive way to enter text on touch-screens and stylus operated com-
puters. Reasons for the attractiveness include the simplicity of the needed
software, the self-revealing nature of the user interface, and skill transfer from
physical keyboards. Experiments have shown that in addition to all these good
properties, soft keyboards are very fast and error free in comparison to many
other stylus-based text entry methods.

In practice the most popular soft keyboard design is the QWERTY layout
and its language-specific adaptations. Practically all pen-operated computing
devices are equipped with a QWERTY soft keyboard. In addition they may
have other text entry methods, but a soft keyboard is always available as the
last resort.

Various alternative layouts have been proposed over the years
[Textware Solutons, 2003, MacKenzie and Zhang, 1999, Zhai et al., 2002a]
but none of these have gained much popularity. The main reason for this
is that although the software-rendered layout is easy to alter, it takes a sig-
nificant amount of effort to learn to use the new layout. This, together with
the relatively small amount of text being entered with soft keyboards, makes
users rather conservative in adopting new layouts.

Unlike with physical keyboards, with soft keyboards the key layout has
a large effect on the text entry performance. This is because typing is
strictly sequential. To type a character one has to move the stylus from
a key to the next one and during this time no preparation for the fol-
lowing key can happen. Thus, minimizing the distance to be traveled
can greatly enhance text entry speed. This can be done more or less
through intuition as in the Fitaly keyboard [Textware Solutons, 2003], and
the result can be verified with a detailed model of pointing performance
as with the OPTI [MacKenzie and Zhang, 1999] and OPTI II [Zhang, 1998,
MacKenzie and Soukoreff, 2002b] layouts. Alternatively a suitable algorithm
can be used to do the optimization work using the same efficiency metrics that
are used for evaluation [Zhai et al., 2002a].

Soft Keyboard Theory

Soft keyboard modeling is one of the areas of text entry research that have
received the largest amount of attention in recent years. There are at least
two reasons for this. First, soft keyboards are widely used making research on
them well justified. Second, the task lends itself well to modeling because of
the limited and predictable role that the user has.

Work on soft keyboards has been reviewed in considerable detail in three
papers in the recent special issue of the Human-Computer Interaction journal
[MacKenzie and Soukoreff, 2002b, Zhai et al., 2002a, Hughes et al., 2002]. I
will not duplicate this effort. Instead, I give only a short overview with some
emphasis on issues that are most relevant regarding the work presented later
in this thesis.

The basic idea in the dominant soft keyboard models is that because the
user is typing with only one finger (or a stylus), the typing activity is actually
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a series of discrete pointing tasks. A pointing task can be modeled using Fitts’
law [Fitts, 1954, Card et al., 1983, Soukoreff and MacKenzie, 1995]. The mod-
els describe the kind of behavior where the motor act of pointing and tapping
on the keys is the bottleneck that is limiting the text entry speed. This kind
of behavior occurs when people have a lot of experience in the task and no si-
multaneous cognitive tasks that slow down their performance. In practice this
kind of behavior can usually be observed only in bursts between slower pas-
sages where the writers thoughts are occupied by something else than the act
of typing. However, if the Fitts’ law parameters are measured from real usage
situation, the model can produce realistic estimates for user performance even
when some cognitive deays are present in addition to the motor performance.
In this case, however, the modeling assumptions are being stretched. The con-
sequence is that the results are estimates based on the motor performance and
an implicit correction for time spent on other activity. Both issues should be
considered when comparing such models.

The original model by Soukoreff and MacKenzie [1995] included a compo-
nent for modeling novice performance with soft keyboards. A person new to a
particular soft keyboard needs to scan the keyboard visually and look for the
key to press. Soukoreff and MacKenzie used Hick-Hyman law 9 to describe the
visual scanning time. Sears et al. [2001] have argued that Hick-Hyman law
is not suitable for describing visual scanning time because it describes choice
reaction time. They also re-defined novices in a more practical manner that
does not require them to be completely new to the keyboard layout under ques-
tion. With this definition it is clear that previous experience is another factor
that needs to be included in the model. Unfortunately, no workable model has
ensued leaving the modeling of novice soft keyboarding performance a gray
area. Luckily novice performance does not need to be modeled because it can
be measured. Expert performance, on the other hand, is expensive to measure
because training users in the use of a new soft keyboard can take years of
time. The Fitts’ Law based upper bound component of the model by Souko-
reff and MacKenzie remains the best tool for finding an estimate for expert
performance. The alternative method by Hughes et al. [2002] requires exten-
sive data collection and is therefore somewhat more laborious at least if the
quality of the data needs to be good enough to exceed the accuracy of results
attainable by the Fitts’ law model.

2.2 Menus and Menu Hierarchies

There is no essential difference between a stationary menu and a soft keyboard.
Both are selection-based interfaces. However, both are a well known user
interface components that are usually conceptualized separately for historical
reasons. This is why I discuss keyboards and menus separately.

There are two kinds of menus in user interfaces: stationary and pop-up
menus. These are usually managed so that some space on a display is used for

9The Hick-Hyman law states that the time from a stimulus to selection of one of N known
targets is equal to c + dlog2(N) where c and d are constants.
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a small stationary menu that pops up larger pop-up menus. Context-sensitive
pop-up menus that contain options pertaining to the object that was clicked to
launch the menu are another commonly used technique. All these approaches
can be used in text entry. Menu items can be individual characters, prefixes
or suffixes, words or entire phrases.

A large vocabulary can be arranged into a tree form and displayed as hier-
archical menu system. A menu system like this can be navigated using a very
constrained input device. In the extreme only one switch is needed. Menu
items are then highlighted automatically in sequence and selections are done
by activating the switch while the desired item is highlighted.

Systems like this are used for text entry especially by people with disabilities
that prevent the use of other input devices. The menu systems can be context
sensitive so that the tree is pruned of branches that cannot fit the phrase being
written.

Hierarchical menus have also been proposed for stylus-based text entry for
able-bodied users. The T-Cube system [Venolia and Neiberg, 1994] used a
two-level circular menu structure. The first level menu had eight items in a
doughnut arrangement around a central ninth item. Landing the stylus on
any of these nine items popped up a further eight-item menu. Characters were
selected in the second level menu by moving the stylus to the direction of the
desired item and lifting it.

The difference between menus and interfaces sometimes labeled “selection-
based” or “gesture-based” is not entirely clear. The selection-based tech-
niques such as Cirrin [Mankoff and Abowd, 1998], Quikwriting [Perlin, 1998],
EdgeWrite, [Wobbrock et al., 2003] and Weegie [Coleman, 2001] all have an
input area that is divided into zones that are selected in specific sequences.
Whether we call these sequences selections, menu selections, or gestures does
not make that much difference. Herein all these systems are considered menu
selection techniques. Systems that claim to be gesture recognizers or character
recognizers but work using a similar zone-based algorithm should be considered
recognizers. The difference is, as stated above, whether the user is supposed
to be aware of the selection nature of the system or not.

2.2.1 Menu Theory

The theory to apply to menu-based text entry interfaces depends on the
nature of the interface. If the user does not know the menu system or
if the menu system is dynamic and therefore requires the user to observe
the display and make decisions, the best way to go is an appropriate
adaptation of the Goals, Operators, Methods, and Selection rules (GOMS)
[John and Kieras, 1996] methodology taking into account the lessons learned
in the use of menus outside text entry [Norman, 1991, Aaltonen et al., 1998,
Byrne et al., 1999, Shen et al., 2002, Kurtenbach and Buxton, 1993]. If the
system is to be learned so that using it requires only limited cognitive involve-
ment and feedback processing, models of motor performance such as Fitts’ law
[Fitts, 1954, MacKenzie, 1992] or Steering law [Accot and Zhai, 1997] should
be used instead of time constants for the motor parts of the usage. A sim-
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ple model for a text entry method involving pointing and menu selection is
developed in Paper IV.

2.3 Text Recognition

Initially teaching computers to read the same text representations that are in-
tended for human use may seem like a good idea. From the human perspective
it indeed is a good idea. However, from the perspective of computing it is a
horrible idea. Text on paper whether it is machine or hand written is not a
suitable way to present information for computers. Decades of research has
been invested on developing text recognition algorithms and the results are
still far from perfect. The capabilities of the currently available systems are
impressive for anyone who has ever tried to construct such a system, but for a
layman user they are still too error prone. At least if the user is expecting per-
fection, which is reasonable if the attitude is that computers should not make
mistakes. According to studies [Frankish et al., 1995, LaLomia, 1994] users
may be expecting perfection, but do not absolutely require it. The required
recognition accuracy depends on task and application [Frankish et al., 1995]
but 97% accuracy is a good rule of thumb [LaLomia, 1994].

Given the nature of the recognition task, 97% recognition rate is a tall or-
der. The difficulties stem from the fact that when looked at a low level, text
on paper is ambiguous. The same shape may mean different things in different
places. A circle may be “.”, “o”, “O”, “0”, or even the dot on “i”, “ä”, “ö”
or more likely on “̊a”. In handwriting the text is not precisely formatted and
different shapes may mean the same thing. People make use of the semantic,
and other redundancies in the text to fill in the blanks and resolve the ambi-
guities. In order for computers to do the same, they would need roughly the
same level of language skills that humans have. Despite the ongoing work on
language technology and artificial intelligence, this is unlikely to be reality in
the foreseeable future.

Regardless of the computational challenges, many text recognition systems
are in use. According to the convention in the area, I have divided these
methods and systems in two main classes: off-line recognition and on-line
recognition. On-line recognition is by far the more important regarding this
thesis as it is the desired method in interactive text entry situations.

2.3.1 Off-line

Off-line text recognition means that text is generated first and recognized later.
There are several reasons for why this is a good idea. Firstly computing power
used to be very limited. When the algorithms could run as long as they needed
it was possible to get better results. Another reason for using off-line recogni-
tion is that there is more information available because the whole text can be
used as a context of recognizing a particular character or word. The last reason
for off-line recognition is that it is specifically what is needed. For example
scanning and converting texts from paper to computerized form using optical
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character recognition is a task that employs off-line recognition naturally. The
need for doing this emerges for example when sorting mail or processing checks
automatically [Vinciarelli, 2002, Plamondon and Srihari, 2000].

2.3.2 On-line

On-line recognition means recognizing text under some sort of real-time re-
quirement. Usually the requirements are of soft nature such as not keeping
the user waiting for too long. A fundamental difference to off-line methods is
that the recognition algorithm can use only past events to help its recognition.
For example a character recognizer does not know whether a vertical stroke
will be followed by another stroke or not. Dealing with this limitation has led
to a variety of solutions.

In the context of handwriting recognition on-line recognition usually means
having access to data on the dynamic characteristics of the writing. This
means that the order of strokes, pen tip velocity, pen tilt, and pen tip pressure
can be used to aid recognition.

In addition to the on-line/off-line continuum, text recognizers are different in
the use of the context in the recognition. There is a whole range of possibilities
from recognizing each character in isolation to recognizing words or phrases
with and without a language model for resolving ambiguities. Language models
can be simple rules derived out of usage context or more complete systems that
include knowledge of grammar and other patterns typical to writing in general
or in a specific domain.

Character Recognition

At one end of the range of context use are character recognizers that true to
their name recognize text one character at a time. These systems need to deal
with the character segmentation problem mentioned above. Solutions include
time delays after each stroke in anticipation of another stroke belonging to
the same character, boxed recognition where each character must be drawn in
its own box, and tentative recognition where the recognizer can take back its
earlier guess if new information makes it unlikely to be correct.

Off-line recognition using on-line information

Because character segmentation is difficult especially for cursive handwriting,
and recognizing some characters in isolation even after perfect segmentation is
sometimes impossible, it makes sense to gather longer passages of input and
then recognize words or phrases instead of individual characters. This kind
of approach leads to a recognizer that essentially works off-line concerning
the real-time requirements, but has access to all of the information produced
by a pointing device including timing of the movements. A widely available
example of a recognized that utilizes this technique is included in the Microsoft
TabletPC platform.
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Unistrokes

Ambiguity and segmentation are two significant problems in on-line handwrit-
ing recognition. If all characters are drawn with a single stroke and the strokes
are designed to be as unambiguous as possible, these problems can be elimi-
nated. The advantage is a greatly simplified recognition algorithm with higher
recognition accuracy. The downside is that people cannot use their familiar
handwriting, but need to learn a new character set.

Avoiding the segmentation problem is an old trick that could not have gone
unnoticed by the developers of the early handwriting recognizers. Similarly
it must have been clear that designing a character set to fit a recognition
algorithm is easier than designing a recognition algorithm that can recognize
traditional handwriting. However, these ideas were not put forward as a goal
to strive for until Goldberg and Richardson published their unistroke paper in
1993.

Unistrokes are characters that are drawn with a single stroke. This makes
character segmentation trivial because each stylus lift signals the end of a
character. The original unistrokes utilized four shapes that were drawn in
different directions and orientations to produce all of the English alphabet.
Unlike with pen and paper, the direction of stylus movement is a good way to
distinguish between characters in on-line handwriting recognition.

Soon after the paper by Goldberg and Richardson, Palm computing 10 be-
gan work on their PDA platform that utilized a text input system called Graf-
fiti [3Com, 1997]. Graffiti characters are mostly drawn with a single stroke.
The exception being accented characters that are drawn with two strokes so
that the base character is drawn first and the accent with the next stroke.
This one stroke per character approach resembles Goldberg and Richardson’s
Unistrokes. The shapes of the characters, however, are usually closer to Latin
hand printing than the shapes proposed by Goldberg and Richardson. Al-
though some people find Graffiti cumbersome and dislike it from the bottom
of their hearts, it has been a commercial success11. Palm PDAs still have a
large market share and even the recognizer in the Microsoft TabletPC platform
includes a mode for Graffiti-like characters.

Originally Unistrokes were argued to be faster than traditional handwriting.
The claim makes sense because the strokes can be simpler thanks to the added
dimension of stroke direction. This issue is discussed further in Chapter 4
where a simple model for the relationship of stroke complexity and drawing
time is developed.

10In keeping with the dynamic years of the IT bubble Palm was soon acquired by US-
Robotics that was then bought by 3com. Around this time some of the Palm veterans left
the company and set up a competing company called Handspring. A few years later 3Com
expunged Palm that then bought Handspring thus completing the circle.

11Recently Palm has abandoned their old Graffiti system and bundled a version of JOT
by CIC with their PDAs. The new system is called Graffiti 2. One of the reasons for this
solution is that Xerox, the owner of the Unistroke patent, won the long running dispute
over whether the patent applies to Graffiti. Instead of lisencing Unistroke technology from
Xerox, Palm found it better to abandon Graffiti.
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2.3.3 Recognition interface theory

Research on handwriting recognition has largely focused on the recognition
technology. Work on other aspects of the user interface is more rare. Notable
exceptions of this trend are the character set re-design efforts discussed above.
Another departure from the mainstream is work on interaction techniques for
dealing with situations when recognizers cannot resolve ambiguities without
help from the user. This work is summarized and extended by Mankoff et al.
A typical technique is to present the user with a list of possible interpretations
so that he or she can choose the intended one. In other words when recognition
fails the user interface falls back to explicit selection. [Mankoff et al., 2000]

Because the design of the characters and handwriting practices in general
has been taken as a given and immutable starting point of recognition interface
design, there has been little need for models and theories that aid the design
of character sets and the recognition interface. One exception is the work on
gesture design and gesture design tools by Long et al.[1999, 2000]. Although
the original context of the work is gesture recognition rather than character
recognition, the findings apply to character recognizers as well.

2.4 Composite Systems

Usually classification efforts run into trouble at some point. One of the trou-
blesome points in previous overviews have been systems that are combinations
of two or more basic technologies. Which class does a system with a soft key-
board and handwriting recognizer belong?[Zhai and Kristensson, 2003] Is it a
soft keyboard or a handwriting recognizer? My solution is to call it a com-
posite system and place it in its own class. The Composite system class is an
umbrella class that covers all combinations of the basic technologies discussed
above. In terms of Figure 2.1 this means introducing a category of systems
that overlaps two or more of the other categories. Figure 2.4 shows a more de-
tailed version of the category visualization including the major sub-categories
described above.

The components of composite methods can be configured in different ways.
Parallel and serial configurations are shown in Figure 2.5. In the soft keyboard
and handwriting recognizer example above the configuration is parallel. Both
components function as independent sources of text. The input is routed to
one of them depending on the type of stylus activity that is taking place. The
other obvious configuration is serial. In this case the output of one method is
the input of another. The chain could in theory be longer than two methods,
but real-world examples are difficult to find.

Typically the first method is a text entry system that can be used on its
own and the second method in the chain adds some useful functionality. Word
completion algorithms, abbreviation engines, and other language models are
popular second layer methods.

Word completion aims to guess the word as the user writes it. If it guesses
right, the user can accept the completion and move on to the next word. This
technique works well if words are long and the word endings do not vary much.
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Figure 2.4: Text entry building blocks revisited.

Figure 2.5: The basic composite configurations.
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This is the case in some languages but not in all.
Abbreviation expansion engines have an abbreviation dictionary that they

use to expand the abbreviations that the user enters. This kind of a system
can be useful when a user needs to enter long phrases or words frequently.

Systems with more than one basic language model operates simultaneously
are possible. For example, the EzText system by Zi Corporation combines dis-
ambiguation and word prediction for mobile phone use [Zi Corporation, 2003].

In addition to the serial-parallel dimension of organizing the components of
text entry methods it is useful to think of the level of modularity of composite
systems. In a clear parallel configuration the different methods do not need
to communicate. Both can produce text as they see fit. In a clear-cut serial
configuration the situation is similarly simple. One method produces a stream
of text or other tokens and another processes that stream. In these cases the
methods can be implemented quite independently of each other. This is the
case for most word completion products. They are relatively independent of
the underlying text entry scheme. It can be a hardware keyboard, software
keyboard or handwriting recognizer. All the word completion package cares
about is receiving character events to use for the prediction.

Sometimes such modularity is not equally easy to realize. For example, if we
want to configure a soft keyboard to have a pop-up menu that is dynamically
updated to contain the most probable characters following the last character
entered (in a fashion reminiscent of [Shandbhag et al., 2002] and paper IV),
we cannot easily separate the menu and the keyboard into generic modules.
The operating logic and the shared display area of the two systems are inter-
twined in a way that necessitates shared control logic. The control logic can be
mediated with systems like Microsoft COM/DCOM that allow control to pass
from one process to another, but this does not change the fact that function
calls need to be made and somebody has to make them. Therefore, the parts
cannot be truly independent. Arguments for the usefulness of independent
text entry modules are included in paper VII.

To illustrate the richness of composite systems that can be generated around
any given basic text input technology I will take a closer look at soft keyboard
composites. Because soft keyboards have been under widespread interest dur-
ing the recent years, the number of different composite methods with a soft
keyboard component is rather large. A nice feature of the soft keyboard com-
posites is that most of them make some kind of sense and could prove useful
in some potential situation.

2.4.1 Soft keyboard composites

Disambiguation systems, abbreviation engines, and word and phrase comple-
tion systems can be used with any text input system including soft keyboards.
However, because soft keyboards with approximately one key for each charac-
ter are relatively fast, the utility of some of these techniques is questionable.
However, there are other ways to use language models with soft keyboards.

Goodman et al. [2002] have proposed using a language model to reduce
the error rate of soft keyboard text entry. This is a useful approach because
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assuming that the user is writing in the language that the model knows, the
model will correct errors in the background so that the user does not even
notice its existence. However, as we know based on experience with word
processors with automatic spelling correction, if the language of the model
and the user do not match, the use of the model can actually slow down work
and seriously frustrate the user in the process. The basic rules of language
specific systems apply. Making one for every language is expensive. On the
other hand, a few systems for the major languages go a long way.

Besides adapting the size of the keys based on language model and usage
context (this is essentially what the system by Goodman et al. does), key-
boards can adapt in other ways. These keyboards are composites consisting
of the keyboard functionality and the adaptation functionality. At least one
such system has been constructed [Himberg et al., 2003]. This system adapted
the layout of a soft-keyboard according to the pointing coordinates so that the
buttons moved and changed their size to better match the user’s typing mo-
tions. The keyboard that Himberg et al. experimented with was the traditional
nine-key numeric keypad. It was used on a flat touch-screen with the thumb
so that the other fingers were behind the screen. In the experiment the key-
board performed in a stable manner and the adaptation seemed to make sense
in terms of the movement capabilities of the thumb. However, sometimes the
system produced fast and large changes in the keyboard layout leading to key
placement that was clearly undesirable. The adaptation algorithm needs to be
improved. It is unclear if this kind of system would be useful in general.

Soft keyboards and menus have been combined in many ways. The two
main goals have been to save space and increase text entry speed. Space can
be saved by placing infrequently needed characters in a menu that pops up
in convenient places. Shanbhag et al. [2002] constructed a soft keyboard and
menu composite for entering the Devangari script. In this approach the 50
Devangari script primitives are arranged to groups that are accessed by se-
lecting one of 21 keys showing “group leader” primitives. The initial selection
changes the key assignments so that the surrounding keys contain the other
characters in the group. Thus, characters are entered with taps and menu se-
lections. Similar approach has been used in some soft keyboards for languages
that use supersets of the Latin alphabet. For example the Fitaly soft keyboard
[Textware Solutons, 2003] includes a “sliding” feature that allows entering an
upper case version or an accented version of a character by doing a menu
selection after landing on a key. The feature can also be customized to fit
user preferences. Use of this kind of technique for speeding up text entry is
examined in paper IV.

The shorthand aided rapid keyboarding (SHARK) system is an interesting
composite system. It combines two kinds of language modeling with a recog-
nition and selection based text entry methods. The soft keyboard component
is the ATOMIC keyboard [Zhai et al., 2002a]. The key positions have been
optimized to minimize key distances when entering English text. The soft
keyboard can be used in the normal manner by tapping the keys. Addition-
ally, when the user draws on the keyboard with the stylus, the trajectory is
recognized using a handwriting recognizer. The recognizer knows the shapes
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that connect the keys of the most frequent words in the language (the second
application of language modeling). So, the user can lift the stylus between
each key or drag it from a key to the other and both behaviors result in the
entry of the same word. Additionally, the recognizer does not mind if the
size of the stroke changes. It is still recognized correctly. The shape of the
stroke can change within limits giving the user some freedom to cut corners in
order to achieve faster strokes. The goal is to let the user use the recognition
part for rapid entry of the frequent words and the tapping part for sequences
that he or she does not know well enough to draw. Zhai and Kristensson con-
ducted an experiment and showed that the trajectories can be taught to both
the handwriting recognizer and the users. Final conclusions on the usefulness
of the system are yet to be made because long term trials with the system
have not been conducted to measure the user and recognizer performance.
[Zhai and Kristensson, 2003]

While methods for text enty in non-european languges in general are out-
side the scope of this thesis, I will mention one system as an example of more
complicated composite systems. The Predictive cOmposition Based On eX-
ample (POBox) system [Masui, 1998a, Masui, 1998b] is mainly intended for
input of east asian languages such as Japanese and Chinese that have very
large number of characters. It can also be used for European languages, but
the advantages of using it are more limited. POBox contains a soft keyboard, a
handwriting recognizer, an abbreviation expansion engine, a word completion
system, a stationary (but dynamically updated) menu, and a popup menu.
For a detailed description of the system, we refer the reader to Masui’s articles
[1998a, 1998b, 1999] on it. Here it suffices to say that the components have
both parallel and serial relationships. Because of the large character set of the
Japanese language POBox is an efficient way to enter Japanese into pen-based
computers despite the congnitive and perceptual demands it places upon the
user. Consequently, it is more widely used than the other systems discussed in
this section. Many implementations are available for download in the Internet.
Additionaly adaptations of POBox have been used by Sony in mobile phones
in the Japanese market12.

2.4.2 Composite system theory

The notion of composite systems emerges from the classification effort. It is
an useful notion for understanding the structure of text entry systems and
identifying the proper context of the different features of the components, but
it is not especially useful in modeling user performance. Additionally, most
composite systems are marginal in the real world. Thus it is not surprising
that no general theory or tools for modeling user behavior with composite
methods exists. The way that user modeling is done in these cases is to use
ad-hoc composite models that combine the models of the component methods.
While I am not aware of any examples, it would be relatively easy to combine
for example the Keystroke Level model (KSL) [Card et al., 1983] as employed

12According to personal communications with Toshiyuki Masui and on press releases by
Sony and Sony Ericsson.
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Figure 2.6: Limits for the usefulness of word completion with different number
of characters saved per completion. In the area below each line some time can
be saved by using word completion. The lowest curve is for one saved character
and the highest for eight saved characters per completion.

by Dunlop and Grossan [2000] and the Fitts’ digram model by Soukoreff and
MacKenzie [1995] into a new model that could be used for modeling soft key-
board composites that do require significant cognitive effort.

While it may be difficult to construct accurate models for user performance
with complex composite systems, it is sometimes easy to find limits within
which the user performance must be.

For example we can estimate whether word completion will be helpful if the
speed of the underlying text entry method and the time needed for selecting
or accepting the completion are known. Figure 2.6 shows an adaptation of
Figure 1 in by Zagler [2002] 13. The curves show the borders where use of
word completion starts to pay off. Below and to the left of any given curve
word completion can save some time. Above and to the right using word
completion is slower than not using it. The factors accounted for in Figure 2.6
are the speed of the text entry technique being used (horizontal axis), the time
needed for each word completion (vertical axis), and the number of characters
entered through a completion (curves from 1 to 8).

If we have a text entry system that can produce about 40 words per minute
and selecting a word completion takes on average one second, we can see that
each completion has to save us from entering seven or more characters in order
to speed up text entry. Such a system is very difficult to construct because the
average word length in English is less than seven characters. On the other hand
if selecting a completion still takes the same amount of time but we are using

13That may have been inspired by Koester and Levine [1994].
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a very slow text entry system such as a gaze-operated keyboard (10 wpm), we
can see that if the system saves more than two characters per completion, it
can be helpful.

2.5 Multi-device methods

Some text entry methods are designed for use with a specific device. This
makes sense because many devices have unique capabilities that can be ex-
ploited to make the method faster and more pleasant to use. However, having
a different method for each device creates the need to learn many methods.
The idea of multi-device text input methods is to design methods that can be
used with as many input devices as possible. This idea is in use for example
when the QWERTY layout is used on a soft keyboard. The designer of the soft
keyboard has decided to utilize skill transfer from physical desktop keyboards
instead of requiring the user to learn a new keyboard layout.

Designing a good multi-device text input system is a difficult task because
maximal device independence tends to produce systems that use only those
features that all of the compatible devices share. This set of features tends
to be very small. Some devices are not used optimally making it difficult to
match the performance of device specific methods.

Dasher by Ward et al. [2000] is an example of a multi-device method. It can
be used with any input device that allows reasonably good two-dimensional
pointing. This includes mice, styli, joysticks and eye trackers.

Dasher is used by pointing characters that appear from the right edge of the
display. Each character has its own area within which the pointer has to be in
order for the character to be selected. The character areas close to the pointer
grow in size until they fill the whole display. the following characters then grow
within the area of the preceding ones. The growing speed of a character area
is controlled with the pointer. The closer the pointer is to the right edge of
the display, the faster it grows. This dynamic animation is orchestrated by a
variation of a data compression algorithm so that the most probable following
characters are given the largest initial sizes. Entering “typical” text can be
done very fast because the typical strings are present most prominently and
therefore they are easy to see and select.

In empirical tests by Ward [2001] Dasher proved to be competitive in both
speed and error rate against traditional stylus based text entry techniques such
as handwriting and soft keyboard tapping, but not as fast as touch typing on a
desktop keyboard. In eye tracker use Ward claims the highest text entry rates
ever recorded on an eye tracker (up to 20 wpm).

The disadvantages of Dasher include the relatively large display area that
it requires and potentially stressful operation as the user needs to control the
cursor continuously. Taking a break requires a conscious decision to withdraw
the cursor on the central area so that the animation stops.

Multi-device text entry methods are discussed in more detail in Chapter 3
where two experiments on such systems are reported.
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2.5.1 Multi-device Theory

Like with hybrid systems, the use of multi-device systems is problematic to
model accurately. The reasons for the difficulty are somewhat different. Hybrid
systems themselves can be complicated and therefore their interactions with
the user very varied necessitating complicated models. The interactions with
multi-device systems tend to be simple because they utilize only a limited set
of input primitives that are common to all compatible input devices. The
existence of multiple input devices is the factor that complicates the situation.
Because the input devices can be different, one model most likely cannot handle
them all accurately in a generic model. Device-specific modeling can be more
fruitful. The appropriate methodology depends on the implementation on the
particular device. Suitable models can be found in the earlier sections.

2.6 Performance of the different methods

Comparing the performance of different text entry methods is almost impossi-
ble to do accurately. Because of the long learning path of many methods, users
exhibit a wide variety of skills. Even empirical pairwise within-subject com-
parisons are influenced by the earlier experience that the users have. Despite
these difficulties there are good reasons for doing performance comparisons.
Improved performance is by large the only objective reason for choosing one
text entry method over another.

Using information throughput measures commonly used in engineering for
modeling human performance has been a long running undercurrent in HCI.
Examples of such work include some uses of Fitts’ law that are based on
the analogy between Fitts’ equation and Shannon’s theorem for information
transfer over a noisy channel [Ward, 2001]. Shannon’s concept of information
is sometimes directly applicable to user interfaces. For example in a commu-
nications system for disabled people the user is often actually selecting one
object among many. This is the very task that Shannon used for his defini-
tion of information [Shannon and Weaver, 1949]. Consequently in this area
there have been calls for using bits per second as the measure of user interface
efficiency [Wolpaw et al., 2002].

There is nothing wrong with these endeavors. Shannon’s theory is sound
and consequently does describe information transfer between a computer and
a user. However, just like in engineering, the theory only sets the limits un-
der which the systems operate. Exact information transmission rates depend,
within these limits, on the practical implementations of the apparatus that
are used for the information transmission. Conclusions such as those drawn
by Ward [2001] should, therefore, be taken with the caution that while this or
that transmission rate is theoretically possible, it may not be so in practice.

The performance figures given below are based on experimental results avail-
able in the literature. In some cases modeling results have been used to fill in
blanks in the experimental work. Overall the numbers have been selected to
reflect the best available knowledge and to give a coherent view of the state
of the art without going into the intricacies of each system, experiment and
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model. Consequently the given numbers are unlikely to be strictly accurate.
The purpose is to give an overview, not to replace more detailed comparisons.

Keyboards

Full keyboards are by far the fastest text entry methods in common use. World
records of over 200 wpm over short periods of time have been set. Highly
proficient typists can maintain speeds of over 100 wpm for several minutes.
Typical non-professional typists reach speeds between 40 and 80 wpm.

Often comparison between a desktop keyboard and a text entry method
intended for mobile use is not really fair because some mobile devices are
used with just one hand. I have been unable to find reports on one-handed
typing. Therefore I, in the context of work reported in paper III, measured
one-handed text entry rates. The results indicate a rate of about 20-25 wpm
with a desktop QWERTY keyboard. This corresponds to about 70% of the
two-handed performance of the same participants who were not particularly
fast averaging only 36 wpm. With faster typists the difference may be created
even if, unlike my participants, they take some time to train their one-handed
skill. Whether to compare the performance of other text entry methods to one
or two-handed typing does not depend only on the one- or two-handedness of
the method being compared, but also on whether two handed keyboarding is
a realistic alternative. In mobile use this is rarely the case.

Because miniature QWERTY keyboards are too small to fully allow the
parallelism that makes desktop-sized keyboards so fast, they are somewhat
slower. The results of the Dom Perignon speed contest organized by Textware
Solutions [2002] give an indication of the kind of performance that is pos-
sible with highly trained users and limited text passages. The highest rate
measured in the third contest was 84 wpm. Due to extreme training with
the short text passage used in the context, this result exceeds the upper
limit estimate of 60.74 wpm produced by the model for two-thumb text entry
[MacKenzie and Soukoreff, 2002a]. Typical expert text entry rates with full
miniature keyboards are likely to be in the order of 20-40 wpm.

Text entry rates with the telephone keypad have been measured in ex-
periments and estimated with models. Novice performance with multi-tap
disambiguation is typically around 7 wpm. The longest experiment with
multi-tap was in the LetterWise study by MacKenzie et al.. By the 20th
25-minute session the participants reached the average rate of 15.5 wpm.
Models predict that the human motor system allows speeds up to 27 wpm
[MacKenzie et al., 2001]. Disambiguating language models reduce the number
of necessary key presses. MacKenzie et al. measured average text entry rate
of 21 wpm with the LetterWise algorithm. Theoretically 38 wpm should be
possible [MacKenzie et al., 2001].

Chord keyboards seem to be relatively fast. Speeds up to 36 wpm with
one-handed chording and up to 42 wpm with two-handed chording have been
reported after 35 hours of training [Gopher and Raij, 1988]. These rates would
undoubtedly increase with further training. Due to the scarcity of chord key-
board users information on highly trained users is not available. However, we
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can safely assume that chording cannot be as fast as touch typing on regular
keyboards. This is because chording is more serial than ten-finger typing. The
whole hand is committed to the entry of one character and no preparation for
the following ones can happen. Two-handed keyboards allow parallel operation
of two input streams, but this is still far from what can be achieved with ten
somewhat independent fingers. A reasonable estimate for the range of expert
text entry rates possible with chord keyboards is in the order of 40-70 wpm.

The crucial difference between physical keyboards and soft keyboards is that
soft keyboards usually allow only one point of contact. This makes the motor
activity in text entry strictly serial. Consequently soft keyboards are not quite
as fast as physical miniature keyboards. Dom Perignon III Speed Contest
recorded the highest soft keyboard rate of 78 wpm. This rate was recorded
with the the Fitaly keyboard that has been modeled to be capable of about 42
wpm [MacKenzie, 2002a]. Again, the modeling result attempts to reflect the
average performance of a well trained population of normally talented users,
whereas the record rate has been set by an apparently exceptional individual.
In an experiment with the OPTI layout that has modeled performance roughly
equal to the Fitaly layout, the participants achieved an average text entry rate
of 45 wpm. Overall, text entry rates with soft keyboards are in the order of
15-50 wpm depending on the key organization and user skill level.

Menus and Menu hierarchies

Scanning menu systems intended for communications aids for the disabled
tend to be slow. Text entry rates are at best in the order of 10 wpm. With
more expressive input devices scanning can be replaced with direct selection.
yielding higher rates. The next obstacle is overcoming the need to use the
visual feedback loop for guiding the selection. This can happen if the user’s
learn the menu layout so that they do not need to see and comprehend it in
order to use it. This can happen for example in T-Cube where the second level
menus can be learned. Only the initial selection in the first menu needs to be
visually guided. The second selection can happen instantly after it in one fluid
motion. A longitudinal pilot experiment with T-Cube yielded text entry rates
between 12 and 21 wpm [Venolia and Neiberg, 1994]. At the end text entry
rates were still growing suggesting that with practice the rate would improve.
It is likely that efficient menu systems yield text entry rates only slightly lower
than soft keyboards. That is, experienced users can enter text at rates between
20 and 40 wpm.

Handwriting Recognition

Text entry rate with handwriting recognition is slightly lower than traditional
handwriting speed. The fastest shorthand systems are mostly unsuitable for
text entry because they rely heavily on abbreviations effectively increasing the
number of strokes to be recognized enough to make constructing a reliable
recognizer nearly impossible. Even regular handwriting tends to deteriorate
as speed increases. Realistically we can expect fluent recognition to happen
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with text that is written somewhat slowly and taking into account some of the
special needs of the particular recognizer being used. Alternatively one can
write fast and spend time on correcting errors. The end result is that effective
text entry rate is less than 25 wpm [Ward, 2001, Chang and MacKenzie, 1994,
MacKenzie et al., 1994].

Composite methods

As explained above in the context of word completion systems, composite
methods that employ a language model to reduce the number of input actions
in selection based text entry methods can increase text entry speed. Due
to the need of visual feedback and cognitive effort related to processing the
suggestions made by the language model these techniques are effective only if
the underlying text entry method is slow enough. Other composite methods
such as the SHARK [Zhai and Kristensson, 2003] system and my work in paper
IV claim to offer speed advantages, but have so far not demonstrated significant
improvements. Consequently composite systems tend to perform no faster than
the fastest one of the component methods.

Multi Device methods

The known multi-device methods achieve their input device compatibility
through using some form of two dimensional pointing that degrades grace-
fully when the performance of the pointing device diminishes. For example
MDITIM uses a touchpad or a mouse but extracts only four movement direc-
tions and a button press from the input. These can just as well be entered
with five keys. Similarly the nine tokens used for Quikwriting input can be
entered by pointing or with nine keys. Due to its extreme simplification and
unfamiliar character shapes MDITIM is slow: only 7.5 wpm after five hours of
practice. Quikwriting and Dasher on the other hand are somewhat competitive
in comparison to other systems that can be used with the same input devices.
With eye trackers Dasher is the fastest known system allowing expert text
entry rates of over 25 wpm [Ward, 2001]. Highest joystick-based text entry
rate of 13 wpm is reported for Quikwriting (Paper III). Although there are no
empirical results available, Dasher is likely to be faster in joystick use. Overall
multi-device methods are likely to be slower than the fastest device-specific
methods with each device.
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Chapter 3

Experiments

This and the following two chapters introduce and discuss the papers that
contain the main contributions of this thesis. For each subject matter in the
papers there are two subsections: introduction and discussion. It makes sense
to read the introduction before the relevant paper and the discussion after the
paper.

The breadth and depth of the treatment in these chapters varies depending
on the amount of relevant work that has been left out of the papers due to space
constraints involved in conference publication. In some cases new material is
introduced based on feedback received after the publication.

The work is divided between this chapter and Chapter 4 on models based
on the content. Some papers contain both experiments and models. Here
the experiment is the main focus. Discussion on the central modeling part of
Paper IV is left for Chapter 4.

3.1 MDITIM

3.1.1 Introduction

One of the main themes in this thesis is coping with the variety of input devices
that are available. Paper I presents the idea of designing text input methods
that can be used with many devices in the context of a text entry method
designed for the purpose. Paper II examines the suitability of clock metaphor
previously applied with pen input for touchpad-based entry of numbers. Paper
III extends the use of another text entry method originally designed for pen-
based computers to joysticks and keyboards. Finally, Paper VII discusses
another approach to the issue. Namely, an architecture that automatically
selects suitable text entry system based on user preferences and the available
input devices.

3.1.2 Discussion

Statistical tests are missing from paper 1. I re-analyzed the data from the
experiment and present the results here to patch paper I to the form that has
been followed in the later experimental papers.
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Two issues should have been tested. First, we claimed that participants can
learn to use the text entry system. A repeated Measures ANOVA confirmed
what is obvious based on Figures 4 and 5. The session (i.e. practice) has a
significant effect on the text entry rate (F9,36 = 22.698, p < 0.000000001).

The second issue was the existence of skill transfer from touchpad to the
other devices. This claim seems valid based on Figure 7, but its statistical
justification is more difficult based on the collected data. The weakness is that
we did not do the same measurements with all devices. The missing piece of
information is user performance with other devices than the touchpad before
the 5-hour touchpad training. We can assume that the performance would not
have been any better than with the touchpad, but we do not really know based
on the collected data. Additionally, in the Discussion section we claim to have
found differences in text entry rate with the different devices.

The best we could do to examine these issues was to run 15 paired samples
t-tests to compare the six productive text entry rates (first touchpad session,
last touchpad session, trackball, mouse, joystick, and keyboard). The only
significant (at p < 0.05 level) differences were between the first touchpad
session and everything else. Thus, we have no statistical grounds for claiming
that the devices exhibited different text entry rates in the end test. However,
such differences are likely to exist. The power of our test was low due to the
small number of participants. More powerful experiment would be likely to
reveal statistically significant differences.

The data does seem to support the belief that there was significant skill
transfer. The first touchpad session was slower than all other tested condi-
tions. The differences were highly significant (p < 0.005). Differences between
the first touchpad session and the final text entry rate with touchpad and
joystick were significant enough to withstand the bonferroni adjustment for
5% family-wise type I error probability for 15 comparisons (α = 0.003). In
other words it seems that the participants were faster with all devices after the
practice with the touchpad than they were with the touchpad without prac-
tice. This suggests skill transfer, but does not show its existence because we
did not measure user performance with the other devices before the practice
with the touchpad. A sensible interpretation is that most of the learning that
occurred during the experiment was in learning the character shapes. This
knowledge can be transferred between devices. Thus, skill transfer is likely to
have happened.

All in all, our original conclusions seem correct, but not entirely justified.

3.2 Touchpad-based Number Entry

3.2.1 Introduction

Having recently finished work on MDITIM, I was listening a presentation by
Professor MacKenzie on the work that he and his colleagues had done on the
PiePad system [McQueen et al., 1994, McQueen et al., 1995]. PiePad used the
clock metaphor for easy remembering of the menu locations of numbers. The
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main problem with it was that the error rate tended to be high. This is
understandable because the menu slices were only 30 degrees wide. The two-
segment characters in MDITIM were easy to draw and recognized robustly.
These two pieces of information were combined in what is referred to as the
hybrid design in paper II.

3.2.2 Discussion

The publication of paper II was met with two kinds of commentary. First, it
was observed that the results depend on human capabilities and the capabilities
of the algorithms used for recognizing the strokes.1 We do not claim otherwise.
Based on our data we cannot conclude that the better performance is due only
to the fact that the hybrid strokes are better for the user. They are also better
for the recognizer. The other part of this argument is that the pure stroke
recognizer could possibly be improved so that there would be no difference
between the two systems. This is possible, but that does not mean that it
was futile to test the un-improved pure recognizer. Now that we know that it
performs poorly we have the motivation for attempting the improvements.

The second class of feedback consisted of suggestions for improving the
user interface. This includes ideas like printing or engraving tactile guides on
the touchpad and using some adaptive2 or intelligent recognition algorithms.
These are all good suggestions, but similarly to the first point we consider
them ideas for further work rather than shortcomings of paper II.

3.3 Quikwriting on Multiple Devices

3.3.1 Introduction

The motivation for undertaking an evaluation of Quikwriting [Perlin, 1998]
arose from a number of sources. Firstly, the literary record on the subject
needed to be corrected. The statement in the original publication on Quik-
writing being typically three times faster than Graffiti 3 has been frowned
upon over the years. For example MacKenzie uses it as an example of inflated
claims that are not based on quantitative measurements and should therefore
not be made [MacKenzie and Soukoreff, 2002b]. MacKenzie has good grounds
for stating that Perlin’s claim is not based on properly gathered quantitative
evidence. However, to credibly refute the claim one needs to measure the
performance of Quikwriting. Inflated claims are commonplace enough not to
justify arduous experimental work on their own. Our main motivation for
experimenting with Quikwriting was that it is well suited for adaptations for
different input devices. It, like MDITIM works on all two-dimensional pointing

1This view was sharply presented by Guo Jin from Motorola Silicon Valley Human In-
terface Lab.

2Re-analysis of the collected data from the point of view of designing an adaptive recog-
nizer was suggested by Barton A. Smith from IBM Almaden Research Center in a posting
at CHIPlace (www.chiplace.org).

3See last paragraph on page 2 in [Perlin, 1998].
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devices and keyboards with four or more keys. Because of this, Quikwriting
was a good tool for testing some of the issues in the text entry architecture
(described in Paper VII) that I was developing at that time.

3.3.2 Discussion

We did not compare Quikwriting and Graffiti head-to-head. Therefore, strictly
speaking, Perlin’s claim still remains to be refuted. However, unlike before,
we now have a measured learning curve for the early part of Quikwriting use.
More importantly we found Quikwriting well suited for multi-device use and
it appeared to perform better than MDITIM.

3.4 Menu-augmented soft keyboards

3.4.1 Introduction

Paper IV is different from the earlier text entry experiment papers because it
does not address the issue of multi-device compatibility. The connection to the
main subject matter of this thesis is through the modeling section discussed
in the next chapter. The model shows that combining a soft keyboard and
a marking menu makes text entry significantly faster on some soft keyboard
layouts. The experiments were done to clarify the conditions under which this
might happen.

3.4.2 Discussion

The results presented in paper IV have been met with many kinds of critique
and questions. What was the purpose of the first experiment? What would
have happened if the longitudinal experiment had continued? Would it not
be easier to learn a optimized soft keyboard layout? Can using the menu ever
be worth learning? What is the nature of the cognitive burden measured in
the second experiment? Most of these questions concern issues that I do not
have data on. This makes giving conclusive answers impossible. However,
some aspects of these issues can be discussed in more detail than the space
constraints in paper IV allowed.

The purpose of the first experiment was simply to see if tapping and select-
ing indeed is as efficient as it seems intuitively. For those readers who trust
their intuition this may seem an unnecessary step. I considered it worth taking
to make sure that the basic notions in the modeling of the motor efficiency
and the whole concept are not fatally flawed.

The longitudinal experiment was preceded by a pilot experiment that took
several weeks. I used the same 15+15 -minute protocol that was used in
experiment 2 up to session 92. The crossover in the text entry rates happened
around session 50. Another person did the same up to session 27. He reached
the menuless text entry rate but did not show speed advantage with the menu-
augmented system. We also did short experiments with different learning
protocols that introduced the menu items gradually instead of suggesting to
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learn them all at once. To no avail, we observed no benefits under this protocol.
Based on these experiences it was clear that we could not demonstrate speed
advantage with the menu-augmented system in a 20-session experiment.

However, it was equally clear that the performance of the pilot participants
was potentially tainted by intimate knowledge of the workings of the system
and possible motivation to show that the menu is a valuable idea. So, an ex-
periment with more independent participants was needed to see if these initial
experiences were accurate in the sense that the menu usage can be learned
and that the text entry rate does indeed increase as rapidly as it seemed to
do. The results seemed to confirm our initial observations. Unfortunately the
participants did slightly better than we expected almost reaching the menuless
text entry rate by session 20. This makes it seem as if the experiment ended
on a very critical moment. However, producing a statistically significant dif-
ference in favor of the menu-augmented system would have taken at least until
session 30. Running the experiment this long was impossible due to practical
scheduling reasons.

It does not seem reasonable to assume that the development of the text
entry rate with the menu-augmented system would suddenly stop at the menu-
less rate. Other experiments have not shown evidence of some common gen-
eral barrier for text entry rate with different systems even when used with
the same input devices [MacKenzie and Zhang, 1999, McQueen et al., 1995,
MacKenzie et al., 2001]. Therefore it is reasonable to believe that at least in
short term, the power curves are accurate estimates of future performance.

A different question is whether the speed advantage that expert users might
have is significant in practice. Using the menu seems to be cognitively more
demanding that using a plain soft keyboard. Even if the cognitive performance
can be trained to a level where the motor performance begins to limit text entry
rate (as suggested by the model), it could still be demanding enough to hurt
the user’s multi-tasking capability while entering text. If this is the case, using
the menu might not be wise even if it was faster.

The critical advantage of the menu-augmentation is that traditional and
menu-augmented usage of a soft keyboard can coexist. Traditional use of a
soft keyboard is not disturbed. However, in the context of soft keyboards
this advantage is especially slim. Soft keyboard layout can be changed easily
depending on user preferences. Thus, it might indeed make more sense to
learn a new optimized sot keyboard layout. The participants in a study that
compared QWERTY and an optimized soft keyboard layout reached their
QWERTY performance in about 200 minutes [MacKenzie and Zhang, 1999].
With the menu-augmented system in Paper IV it took about 300 minutes.
Due to differences in the experimental procedure these figures may not be di-
rectly comparable. However, they suggest that learning a soft keyboard layout
is easier than learning the on-line planning skill that is needed for efficient
utilization of the vowel menu.

One aspect of the user interface that was not tested or discussed in Paper
IV, is the physical strain while using the systems. Rapid text entry with the
menu-augmented system seems much more peaceful and relaxed than entering
the same text at the same rate without the menu. This is because 30% of
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the characters seem to appear for free. The input activity in these cases is
piggybacked on the tap on the previous key. Through reducing the need to
move the stylus the menu use also reduces the hand movements. It could
be that this reduces the stress on the hand potentially reducing the risk of
stress injuries. Without objective data on the actual strain on the hand this
conjecture is, of course, unfounded. However, it is a factor potentially worth
investigating in future work.

3.5 Future Work

Detailed ideas for further work with each individual system can be found in
the papers. On a more general level the experimental work presented above
has revolved around the notion of device independent text input methods. De-
spite the effort, I have failed to find a system that would be compatible with
a wide range of input devices and competitive in speed and error rate with
the best systems for each device. In the future the notion of device indepen-
dent text entry methods should be kept in mind and if suitable candidates
emerge, they should be investigated. When a good device independent text
entry method is paired with the kind of system described in chapter 5, the
concept may suddenly have practical value. At this point, however, device in-
dependent text entry is unrealizable due to lack of suitable text entry methods
and architectural support.
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Chapter 4

Models

Experimental work produces isolated pieces of information that sometimes
suggest the existence of general rules that govern the phenomena under in-
vestigation. Models condense this information into useful constructs that can
be used to describe and predict events in similar situations. In short, my ap-
proach to modeling is utilitarian in the spirit described by MacKenzie [2003].
The simpler the models are the better as long as they are useful.

Below I describe models that address three issues in text entry. First, models
for learning, second, a model for unistroke writing time, and finally a model
for text entry rate with a menu-augmented soft-keyboards.

4.1 Models for Text Entry Rate Development

4.1.1 Introduction

Text entry involves extensive learning. A short-term test, say five minutes of
writing, does not tell much about the text entry system. What it tells about is
how a particular user (or a group of users) performs with a text entry system
given the learning preceding the test. If this is all we want to know a short
test is OK. If, however, we want to know what would happen if the tested text
entry system were to be used for extended periods of time, we need to account
for learning. Historically commitments to text entry systems tend to be rather
long. This is why we need to understand the effects of learning on the user
performance with any system proposed for general use.

Learning has very different effect on error rate and text entry rate.1 Error
rate is a product of the speed-accuracy trade-off that the users make. Typically
in a longitudinal experiment with a new text entry system error rate is initially
high but quickly falls to a level that the users are willing to tolerate. If the
error tolerance of the users does not change, error rate tends to stay on this
same level until the end of the experiment. Text entry rate on the other hand
improves following the power law of learning. This law can be used to describe
the time needed for an individual action such as entering one character, word

1This is by no means an original observation. McQueen et al. [1994] give Bailey [1989]
as a source for this typical speed-accuracy trade-off behavior.
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or phrase [Jong, 1957, Card et al., 1978]:

tn =
t1
nx

(4.1)

where tn is the average time for operation n, t1 is the time for the first op-
eration, and x is estimated from the data. Values for x must be between 0
and 1. Typical values for x are around 0.32 [Jong, 1957]. The law can be
written to describe the rate of doing these individual operations in the form
[McQueen et al., 1995]:

rn = r1n
x (4.2)

where rn is the rate (operations per unit of time) at which the work proceeds
during repetition n, r1 is the rate during the first repetition and x is again
estimated from measured data. Both curves are linear in two dimensional
log-log space making the use of linear regression easy for estimating x.

Measured performance is known to initially follow the power law. In fact
the law usually holds long enough to make it seem to hold forever in the light
of experimental results. Clearly, this cannot be the case. Because the Fitts’
law based modeling techniques can be used to calculate an estimate for the
upper limit of text entry speed, we attempted to combine power law and the
upper limit in a model that would more accurately reflect user behavior in
real-world situations. This work is presented in paper VI.

4.1.2 Discussion

After presenting paper VI at CHI 2003, we were informed2 that similar work
has been done before. The paper in question appears to be the one published
by De Jong in 1957 [1957]. Because of the similarities it is worthwhile to
discuss the differences between our approach and that by De Jong.

De Jong is mainly concerned with the duration of repetitive tasks in indus-
trial settings where it has economical consequences. For example if workers
are paid bonuses based on above-normal performance, it is important to know
what is normal. Because workers’ skill increases over time, the incentive pro-
grams must be structured to take this into account. On a higher level planning
of production needs to take into account the increasing rate at which the work
happens so that different batches of products can be scheduled reliably to avoid
costly idle hands in the factories.

De Jong cites earlier work as a source for the basic power law that is pre-
sented in the form:

Ts =
T1

sm
(4.3)

where T1 is the time required for the first cycle of the repeating task, Ts is
the time for the cycle number s, and m is the “exponent of the reduction”.

2By Stuart K. Card
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Figure 4.1: Per session average cycle times of MacKenzie and Zhang [1999]
and a model after De Jong’s equation 3.

De Jong introduces the concept of “factor of incompressibility” denoted by
M . And gives an example where M is used to describe the fall of cycle times
using the formula:

Ts = T1(M +
1−M

sm
) (4.4)

De Jong notes that this equation explains the situation where the fall of the
cycle time is limited by a hard lower limit. He does not claim the account to be
perfect. Instead he describes it “satisfactory”. Indeed, as Figure 4.1 reveals,
equation 4.4 suffers from the same phenomenon as model 1 in paper VI. It
does not fit the data very well. The curve is too tight in the early part and
too straight in the later parts. Furthermore, the exponent m is not naturally
produced in the process. It needs to be estimated separately. Note that I am
not using repetition cycle count as the unit on the horizontal axis. Instead
the units in figure 4.1 are sessions. In this case the change does not matter.
The same relationship between De Jong’s equation and the OPTI data can be
observed in a plot with the cycle count on horizontal axis.

However, De Jong’s factor of incompressibility suggest another approach
that can be combined with Model 1 in Paper VI to produce an improved version
of model 1. First M is calculated. This can be done by finding the upper limit
of text entry speed Rmax and calculating the time needed per character Tmin.
M is then Tmin

T1
. Then the time spent per character is normalized so that T1 = 1

and then M is subtracted from these normalized values. At this point the data
looks like figure 4.1 except that the points have been shifted down by M (with
the OPTI data M = 0.29). Now the best fitting power law curve is found
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Figure 4.2: Comparison of mid-range predictions of three models on the OPTI
data by MacKenzie and Zhang [1999]. Model 3 is the new model, model 2 is
from paper VI, and Power is the traditional power law prediction.

through log log linear regression. In the case of the OPTI data the equation is
Ts − 0.29 = 0.8475s−0.712. The cycle times can be approximated and thus the
text entry rates calculated for any positive s. The approximations are limited
from above by Rmax which was the point of the whole exercise.

In Figure 4.2 the resulting curve is compared to the traditional power law
and model 2 from paper VI up to session 150. The new model (model 3) curves
still slightly too much in the early part and too little in the later part. The
advantage of this new procedure over model 1 is that it improves the model
fit in terms of R2. With our example data the R2 for model 1 was 0.92. With
the new model it is 0.99. With De Jong’s equation 3 the correlation is about
the same, but there is the extra trouble of estimating m. In comparison to
model 2 in paper VI, both De Jong’s equation 3 and the new model produce
lower medium range predictions. It is not known which of the medium range
trends is more accurate. In the early part of the medium range predictions
the tendency of all of the models to under-estimate the last measured points
suggests that model 2 may be more accurate.

On the whole, the purpose of these models is to maximize the use of the
expensively acquired experimental data by allowing reliable extrapolations be-
yond the end of the experiment. The other facet of this issue is that if reliable
models can be developed, we can run shorter experiments. If, for example
we are interested in user performance after ten hours of practice, we could
compute Rmax , measure a couple of hours of performance and then model
the performance at 10 hours saving eight hours per participant or making it
possible to get a more representative sample of the user population by running
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Figure 4.3: The average error in predicting text entry rate development with
the power law after using 2, 4, 6, and 8 first sessions for building the model.

five times the number of participants in the same amount of time.

For this kind of use, we need to know how accurate the mod-
els are. An estimate can be found by examining published data
on longitudinal text entry experiments. I did this for 15 data sets
from 8 different papers [Gopher and Raij, 1988, Matias et al., 1996,
McQueen et al., 1995, Isokoski and Käki, 2002, MacKenzie et al., 2001,
MacKenzie and Zhang, 1999, Isokoski and Raisamo, 2003b, Isokoski, 2004].
The data sets were chosen based on their length (minimum of 20 sessions)
and suitability of the text entry rate data for naive power law modeling (the
one-handed chord keyboard data by gopher and Raij was rejected because it
has too steep a slope between sessions 1 and 2). All data were modeled by
using 2, 4, 6, and 8 first points for double log linear regression to determine
the power law coefficients. The remaining points were then re-created using
the model, and the difference (in %) between the model and the measured
value calculated. The results are shown in Figure 4.3. The horizontal axis is
proportional to the number of points used so that at 1 the two-point model is
predicting point 4, four-point model is predicting point 8, and so on. We see
that the two point model is somewhat weaker than the others. The 4, 6, and
8 point models can predict roughly at 7% error rate as far into the future as
the length of data that they were built on. The error exceeds 10% at around
two times the length of data used for building the models.

Except for the two point model the results seem encouraging. It appears
that if we are willing to accept a ±10% error, we can save two thirds of the
sessions in a given experiment. Unfortunately the truth is not as nice. The 10%
error is the average. The actual errors may be larger. In the examined data
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there were several examples of learning curves that seemed to jump up or down
after 1-4 sessions. Such jumps may be the result of change in the participants’
motivation or strategy in completing the text enty task or a feature of the
learning process such as overcoming some initial difficulty. Regardless of the
reasons of these anomalies in the curves, the consequence is that the very early
performance cannot be relied to develop consistently in the long run.

The effect that the combined models discussed above would have on the
results in Figure 4.3 is a small increase in the error. The reason for this is that
the combined models tend to underestimate the text entry rate slightly. In
the basic power law models used to create Figure 4.3 there were roughly equal
number of cases where the models tended to overestimate, be pretty much
correct, and underestimate the data. Under these conditions adding a slight
bias toward underestimating increases the overall average error. In this light
the combined models seem bad. However, this is not what they are made for.
The goal in their development was to remove the gross over-estimation that
unbounded power curves have in the long run.

4.2 Model for unistroke writing time

4.2.1 Introduction

The design of handwriting systems has been a surprisingly popular hobby.
Especially in the era preceding computers, many people who wrote a lot had
their own variations of a mixture of short hand and regular handwriting. The
critical difference that computers have brought to the situation is that the
writing no longer needs to be legible on paper. It is enough that computer can
translate it to text.

In order to design efficient character sets for computer input, we need to
know what factors govern the efficiency. It seems intuitively clear that the
more strokes and corners a character consists of the more time it takes to draw
it. The accuracy of this simple model is explored in paper V.

4.2.2 Discussion

While the accuracy of the model in describing or predicting the time con-
sumption per individual instance of character is poor due to natural variation,
a strong linear relationship between the character complexity and writing time
emerges when writing time is averaged over several instances of the character.
Averaging over users further strengthens the relationship. Finally if all char-
acters are pooled according to their complexity, a picture like that shown in
Figure 4.4 emerges.

Each point in Figure 4.4 represents the average writing time of all characters
of a given character set that belong to the same complexity class. The correla-
tions between the complexity and writing time are surprisingly high. MDITIM
received the highest correlation (r2 = 0.992). This is partially explained by
the nature of the characters that consist of straight lines connected by 90 and
180 degree corners. Additionally MDITIM has only 3 different complexity
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Figure 4.4: Average writing times vs. complexity class for all four tested
character sets.

classes making a high correlation likely. Unistrokes (r2 = 0.969) has only four
complexity classes. Graffiti (r2 = 0.989) has five and the Roman hand print-
ing characters (r2 = 0.851) have eight. The relatively low correlation for the
Roman characters is due to the poorly fitting points for complexities 7 and
8. These points represent only one character written by only one participant
each. Removing them increases the r2 value to 0.997.

Another feature of the data shown in Figure 4.4 is that the slopes of the
regression lines vary. MDITIM has the steepest slope (0.22 seconds per com-
plexity unit), Unistrokes are next (0.117), followed closely by Graffiti (0.105)
and Roman characters (0.091). This order is the same as the order of famil-
iarity that the participants had with the character sets. Writing the Roman
characters is close to pure motor activity and the other character sets require
more cognitive involvement that slows the performance down. The earlier work
that the model is partly based on presented a rule of thumb that states that
we have roughly 5 Herz hands. That means that we can perform a controlled
movement about 10 times a second3. Our data with the more familiar char-
acter sets suggests that the model successfully extracts these movements from
the character shapes.

3Approximating sine wave for the frequency measurement requires a movement to one
direction and a movement back. Thus, 5 Hz=10 movements per second. Other examples of
this can be found in the key repeat time measurements by Soukoreff and MacKenzie [2002]
and Silfverberg et al. [2000]. Similar figures are cited by Card et al. [1983]
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4.3 Modeling Menu-augmented soft-

keyboards

Paper IV includes two parts: modeling and experimental work. Some aspects
of the modeling work are discussed below.

4.3.1 Introduction

The traditional approach to the modeling of expert soft keyboard tapping has
been to use spreadsheets with matrixes for key distances and digram frequen-
cies [Soukoreff and MacKenzie, 1995]. This approach works well and is not
very labor intensive for plain soft keyboards. However, if the layout is dy-
namic or if the user interface contains other components that combine in a
multiplicative manner with the keys, the distance tables tend to grow. The
threshold where the complexity becomes unbearable depends on the researcher
performing the modeling. At some point however, alternative techniques be-
come attractive.

One way to circumvent the complex spreadsheet calculations is to write a
program that simulates the user’s stylus or finger movements. The computa-
tional complexity of this approach is in linear relationship to the size of the
text corpus that is used for the simulations. A more sophisticated approach
could condense the corpus to, for example n-gram frequencies (with n suitable
to the simulated text entry technique), simulate each n-gram once, and weight
the results according to the frequency. Such approach has roughly the same
computational complexity as the spreadsheet approach (essentially constant
time operation regardless of the size of the corpus once the n-gram frequencies
are known).

In paper IV I was faced with the task of simulating a mixture of soft key-
board tapping and menu selection activity. I used the naive approach of sim-
ulating the whole corpus. With corpora of moderate size (less than a million
characters) the simulations do not take very long to run on modern computers.
I used a very small corpus of only about 15000 characters.

4.3.2 Discussion

The validity of the modeling results remains unverified. However, the validity
is presumably as good as it is with the spreadsheet approach or any other
means of calculating the same numbers. Overall, no hard upper limit for text
entry speed exists. Because we do not know precisely the level of expertise
that we are modeling, the produced estimates of expert performance are likely
to be somewhat inaccurate. Thus, the modeled upper limits should not be
interpreted too strictly. Another interpretation of the modeling results is to
compare the results of different text entry systems. This was the approach
taken in Paper IV. I ran the simulations for different soft keyboard layouts.
Regardless of whether the magnitude of the simulated text entry rates is cor-
rect, we can expect the relative differences between the layouts to be accurately
reflected.
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4.4 Future Work

The modeling of handwriting characters could be conveniently explored with
a suitable software package. The work in paper V was done partially as an
early feasibility study in order to find out whether there is room to exceed the
accuracy of human intuition with suitable tools. This seems to be the case.
Human ability to figure out the time consumption of a character using only
paper and pencil seems limited. The construction of the software has not been
finished. It might be worth doing.

The work on the learning curve models should be continued as well. The
work reported above has concentrated on data fitting only. A more theoret-
ical approach could produce refined models that could in addition to being
theoretically sound be tunable depending on the parameters of the task and
measured performance. A model that could produce upper limit prediction
for text entry rate based on data recorded over a number of sessions would be
especially nifty.

Modeling expert performance with soft keyboards using Fitts’ law based
models is beginning to be a routine procedure. However, as detailed in paper
IV, there are a number of issues on which a widespread consensus does not
exist. For example my choice of using the Fitts’ law intercept for modeling
repeating taps on a key is seems to be supported by some [Zhai et al., 2002b],
while others find it ridiculous [Soukoreff and MacKenzie, 2002]. Such contro-
versies should be solved and an unified methodology developed to increase the
inter-study comparability of modeling results. Setting up a open source soft-
ware package with capabilities for both digraph table and simulation based
modeling would allow easy comparison between a baseline model and any new
developments that may happen in the future.
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Chapter 5

Systems

Constructive research produces knowledge and systems. The papers in chap-
ters 3 and 4 describe the knowledge gained through experiments where the
produced systems have been used. In the paper discussed in this chapter the
system has the main role.

5.1 Text Input Architecture

5.1.1 Introduction

Paper VII presents a text input architecture that supports personalization of
text entry methods. The personalization happens through user-specific con-
figurations that the user provides for the system when he or she begins to use
it. Text entry methods are implemented as modules that are loaded over the
Internet when needed.

This architecture is the result of evolution that has lasted for five years. At
first I began by writing separate pieces of software for each computation and
experimental prototype. Work in Paper I was done with this approach. Soon
it became apparent that this style of work was unnecessarily laborious. The
next step was to combine the common parts of the software into a framework
that could be easily extended with new text entry methods. This framework
was implemented in C++ and ran under Linux and X. Papers II and V report
work done with this framework.

Finally it became apparent that operating system dependencies should be
minimized. I chose Java as the platform for the next framework. Operating
system dependent code was separated from the core of the framework and
implemented separately for Linux and Microsoft Windows. Papers III and IV
report work done with this latest generation of the framework.

5.1.2 Discussion

The basic notion of the architecture seems alien to the present way of making
and marketing computing devices and software. Very little emphasis is cur-
rently put on the user’s ability to transfer his or her data and skills between
devices from different manufacturers and device generations. I expect that the
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time will come when the only valid marketing argument is the service that a
particular device or piece of software can offer to its user. When viewed from
this perspective, the ability to transport the user’s preferred text entry system
onto whichever device he or she is using is a basic requirement that must be
satisfied. It might take a long time before we are this far. Other aspects of
technology can be improved for years before there is a real need to take user
interface standardization seriously enough in the area that the architecture in
Paper VII addresses. It is also possible that the development takes a path that
avoids the need to have user specific text entry methods. If everybody writes
only English and agrees to use only one or a small number of input devices to
do it, the problem that I have tried to solve disappears.

5.2 Future Work

The existing implementations of the architecture are for desktop computers.
This platform is pretty much the only one with adequate text entry capabilities
and a user base well trained in their use. Therefore desktop computers have
the smallest need for this kind of an architecture. Implementations for the
Symbian smart phone platforms or Palm or Microsoft PDA operating systems
would be more useful. So far I have not done any of these since the desktop
platforms are easier to work with and adequate for demonstration and research
purposes. If the architecture is to be of any practical use, the implementations
for other platforms need to be completed.

51



Chapter 6

Discussion

I have described experiments and models partially based on the results of
these experiments. In this chapter I discuss some of the general limitations
that apply to the work.

6.1 Experimental Methodology

The experiments done in the papers are somewhere in between a typical usabil-
ity evaluation and a proper experiment in rigor. The goal was to do work with
as good internal and external validity as possible given the practical limita-
tions. Each experiment was typically preceded by a pilot phase that consisted
of iterative usability testing of the experimental procedure. Changes were of-
ten made to help the participant focus on the essential parts of the task and
to improve the working conditions of the experimenter.

6.1.1 Experimenter Bias

The experiments to evaluate the new text entry techniques were conducted by
the inventor. It is possible that the enthusiasm of the experimenter may have
influenced the participants. It is customary in other sciences such as medicine
to perform evaluations with the double-blind protocol. In this protocol the
treatment (for example a new drug) is compared against a placebo treatment
that is known to have no medical effect or a known competing treatment. The
people who interact with the participants do not know which of the treatments
is placebo and which is for real. Because of this they cannot influence the par-
ticipants perceptions and motivations. The difficulty of applying this protocol
to user interface evaluations is that developing a placebo user interface is of-
ten very difficult. The participants can usually easily deduce the experimental
setup based on their previous experience. Nevertheless, we must be aware
of these issues both when designing experiments and when reading and in-
terpreting reports on such experiments. I suspect that subjective evaluations
are much more sensitive to whatever bias the experimenter may exert upon
the participants. This explains the relative scarcity of subjective data in this
thesis.

52



DISCUSSION

6.1.2 Sampling methods

Another problematic part of the experiments reported in this thesis is the rep-
resentativeness of the participants. In all cases the participants were recruited
from nearby offices of whatever part of the university I happened to be working
in. Other than being convenient for me, this procedure required the smallest
possible amount of work from the participants. The experiments were typically
longitudinal consisting of 10-20 sessions. Because I did not have resources to
compensate the work that the participants did for me, I deemed it unlikely to
be able to recruit participants from a sample of the general public.

However, the result of this sampling protocol is that not only were the par-
ticipants typically young male adults with university education, but they were
also very experienced computer users, and in most cases worked as HCI re-
searchers. If these factors affect a person’s performance in experiments like
mine, the conclusions drawn based on these experiments may not be represen-
tative of the general public.

6.1.3 Language issues

Language is an issue in some of the experiments. It appears that remembering
and entering a phrase in a foreign language is more difficult than in the native
language. I did the experiments using English phrases. This does not necessar-
ily invalidate the results in situations where two systems are compared under
the same conditions. However, cross-study comparisons with studies done on
native English speakers should take the language issue into account.

6.1.4 Choice of metrics

When designing experiments one has to decide which things will be measured
and how. In all of the work presented in this thesis, I have used efficiency
metrics almost exclusively. In the light of the summary data by Nielsen and
Levy [1994], performance measures are correlated with subjective preference.
On the other hand it has been suggested that relying on one or the other is a
dangerously narrow approach. For example Fokjaer et al. [2000] suggest that
effectiveness, efficiency, and subjective satisfaction should all be investigated
unless it has been shown that in a particular task some aspects do not matter.

These arguments have been cast in the context of usability in general.
Whether text entry is a special case where performance in the form of effi-
ciency is the dominant factor of usability and usefulness has not been shown in
general. However, efficiency emphasis can be defended as a relevant approach
is some areas of text entry. Namely, efficiency is always good in situations
where time is money. For example, in transcription typing a slow way of typ-
ing is difficult to justify economically. Generally a user whose goal is to be
efficient in his or her work will appreciate efficient user interfaces. Strangely
enough, there are other uses of text entry where efficiency can actually be a
bad thing. For example when people entertain themselves by writing SMS
messages, they get more entertainment for a given amount of money if writing
is not too efficient because only sending the messages costs.
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6.1 EXPERIMENTAL METHODOLOGY

Overall, the efficiency emphasis is a feature of the reported work. Efficiency
should not be confused with the overall preferability of a given text entry
method except when it is clear that the two are synonymous because of the
nature of the task and needs of the users.

6.1.5 Replication

An important part of rigorous scientific work is independent replication of ex-
perimental results. Even when proper care is taken to minimize factors like
experimenter bias, skewed sampling, and opportunistic choice of metrics, the
fact remains that the experimenter has many interests vested in the experi-
ment. It is possible that sometimes the observed effects are not due to the
treatment that is administered. Even if no foul play from the part of the
experimenters can be found, statistical conclusions contain a margin of error.

For these reasons it makes sense to replicate important experiments inde-
pendently in different laboratories using different sample of the user population
and experimental apparatus. If the results still hold, it is far more unlikely
that it is due to chance or some unnoticed influence by the experimenters.

In HCI there is no systematic tradition of replicating experiments. In fact
successful replications with no other contributions are practically impossible
to publish. They are considered un-original and therefore worthless. When
replication happens it is mostly because of ignorance of the original work or
because another team of researchers wants to continue on the work of others
and need access to data similar to what has been previously reported in order
to make comparisons.

The work that I report in this thesis has not been independently replicated
to verify its validity. The work does contain a small amount of internal repli-
cation since experiments were preceded by pilot experiments that were used
to test the procedure. However, the power of such internal replications to re-
veal significant flaws in the whole setup is small. As such the work must be
considered tentative until independent evidence on its validity appears.

The reported experiments themselves contain instances of partial replication
on previous work. The pure clock face condition in Paper II replicates earlier
work in a slightly different environment (touchpad instead of a stylus). The
re-implementation of Quikwriting (Paper III) is another instance of replication
as well as the stylus tapping model in Paper IV. Mostly the results confirm
earlier findings. A notable exception is the case of Quikwriting where we did
not observe the kind of general superiority to other writing systems that had
been (informally) claimed.
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Chapter 7

Conclusions

I have presented new text entry methods, results of modeling different aspects
of text entry activity, and a new system for personalized text entry. While
many of the results may be interesting, no salient steps forward can be pointed
out. This is not surprising considering the very long history of writing. In
fact, it would be highly suprising to stumble on a completely new and efficient
method at this late stage in history. Consequently, the presented work consists
of improvements on earlier work and new combinations of previously known
systems and methods.

One of the goals listed in my original research plan was to develop guidelines
for selecting an appropriate text entry method for a given task, device, or user.
Despite considerable effort, the results in this respect are slim. The results of
the experiments as well as some of the modeling work can be used for this
purpose, but they are only small pieces in the puzzle that must be considered,
not suitable for general guidelines. The only general guideline that I have
found reliable is that in a short time perspective the best text entry method
is the one that the user knows. Just about anything else requires a lengthy
learning before it becomes useful and even longer before it performs any better
than a system familiar to the user.

Several themes of research have been started in the course of the thesis
work. Some of these deserve further investigation. One of the unfinished
issues is the relationship between pointing device throughput and text entry
throughput. Pointing device performance can be characterized with Fitts’ law
and a text stream has a certain information content. Combining these notions
into one theory of information throughput has been hinted at numerous times.
However, no useful conceptualization has emerged.

Another issue that continues to stimulate my curiosity is the notion of de-
vice independence. It could be possible to develop text entry methods that
work well enough on all input devices to make it unattractive to learn any
other methods. Unfortunately we do not know whether the fact that no such
methods have emerged is due to lack of imagination or because they are im-
possible.

Finally, the text input architecture work is worth continuing. Device and
operating system platform independent text entry methods make sense as user
interface components and as a software development model in this particular
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case. They may not make economical sense because they encourage standard-
ization and free availability of text entry methods, but this can only hinder
making money with the idea, not researching it.
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