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Abstract
We define a type system, which may also be considered as a simple
Hoare logic, for a fragment of an assembly language that deals with
code pointers and jumps. The typing is aimed at local reasoning in
the sense that only the type of a code pointer is needed, and there
is no need to know the whole code itself. The main features of
the type system are separation logic connectives for describing the
heap, and polymorphic answer types of continuations for keeping
track of jumps. Specifically, we address an interaction between
separation and answer types: frame rules for local reasoning in
the presence of jumps are recovered by instantiating the answer
type. However, the instantiation of answer types is not sound for all
types. To guarantee soundness, we restrict instantiation to closed
types, where the notion of closedness arises from biorthogonality
(in a sense inspired by Krivine and Pitts). A machine state is
orthogonal to a disjoint heap if their combination does not lead to a
fault. Closed types are sets of machine states that are orthogonal to
a set of heaps. We use closed types as well-behaved answer types.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory, Verification

Keywords Code pointers, typed assembly language, Hoare logic,
continuations, polymorphism

1. Introduction
Low-level programming languages, such as intermediate or assem-
bly languages, are challenging to reason about, since the abstrac-
tions that one can rely on in high-level languages are not present:
storage and pointers must be managed explicitly, and the control
flow may be similarly unstructured. In recent years, there has been
substantial progress in applying sophisticated type theories and log-
ics to low-level languages, strongly motivated by verifying systems
code and proof-carrying code [2, 19].

In particular, separation logic [9, 22] (see Reynolds’s paper [27]
for an overview) makes it possible to reason about heaps in a
modular fashion: only the portion of the heap affected by the
program fragment at hand needs to be considered, while frame rules
can be used to infer that the remainder of the heap stays unchanged.
The central idea in separation logic is the spatial conjunction∗: a
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formulaP ∗ Q is true in a given heap if the heap can be split into
two disjoint subheaps, such thatP holds in one andQ in the other.
The heap-splitting semantics of∗ then gives rise to frame rules: in
a Hoare triple{P} c {Q} for a commandc, another formulaR can
be added with the separating conjunction:

{P} c {Q}
{P ∗ R} c {Q ∗ R}

Any part of the heap that is not mentioned in the specification
of the commandc cannot be altered by it, so we can assume that
R stays invariant (ignoring “modifies” clauses, which are not about
the heap).

However, the very format of frame rules assumes purely func-
tional control behaviour:c is assumed to have a single entry and
exit point, to which we can then addR. If c could jump to some
external label, the above rule would not be sound, unless∗R were
also somehow added to the precondition of the label. (Recall that
under the tight interpretation of separation logic it is generally not
possible to jump to a label whose precondition isQ while passing
along some extra heap, sayQ ∗ R.)

In assembly language, of course, all control is jumping. It ap-
pears, then, that in a language with arbitrary jumps we need to
keep track of the control flow, perhaps using control flow analysis
or a control effect system [10, 14]. The problem is in fact similar
to effect masking in effect systems, in that we need to keep track
of all possible exits from and entries into the code. However, it is
not necessary to design a control effect system for assembly. Since
everything is in continuation-passing style, we can use the answer
types of continuations to keep track of jumps.

The notion of answer type of continuations may sound surpris-
ing to some readers in the light of the well-known classical typ-
ing [8] of control operators likecall/cc. The type ofcall/cc is
Peirce’s law

((A →⊥) → A) → A

where⊥ is some empty type that may logically be read as falsity.
However, these classical typings are a feature of control operators
in direct style. If everything is converted to continuation passing
style, there are non-trivial answer types for continuations. The
continuations never return to their point of call, but the answer
type is not about returning to the point of call. Rather, it refers to
the global answer of the whole program, or more operationally, its
behaviour. A type likeA −−∗ B, for instance, can be read as stating
that the code is requiring some new heap satisfyingA, and will
then behave according toB. The typeB itself may again require
more heap, or express a precondition on existing heap. If the last
instruction in the code is a jump to some labelf , then the type of
f determines what the behaviour is going to be. In other words, the
operation of jumping is polymorphic in the answer type.

The general idea of answer type polymorphism [29, 30] in
the setting of theλ-calculus is as follows. An expression in
continuation-passing style expects a continuation, which it may



then apply to a value. If the expression has no control effects, it
always applies the continuation; hence its type is of the form

∀α.(A → α) → α

whereα is not free inA. The expression could also have a less
rigid control behaviour. It may for example expect two continua-
tions [28], exactly one of which must be called (say for successful
and abnormal exit). This situation may be expressed with a typing
like the following:

∀α.(A → α) → (A′ → α) → α

again assuming thatα is not free inA or A′.
By instantiating the answer type, additional levels of state-

passing can be added [29]. LetS be a type of stores, and instantiate
α to S → α′. Then we have

∀α′.(A → S → α′) → (A′ → S → α′) → S → α′

Note that the instantiation is done consistently for the two possi-
ble exits. Thus answer type polymorphism in continuation-passing
style gives us a kind of semantic control flow analysis. It immedi-
ately makes powerful reasoning principles like parametricity [26]
available. Specifically, equivalences have been shown for continu-
ation passing [29, 30] using “Theorems for free” techniques [32].

The resemblance of answer type instantiation to frame rules
may become a little more perspicuous with some uncurrying:

∀α′.(((A × S) → α′) × ((A′ × S) → α′) × S) → α′

To be sure, the analogy to continuation passing in theλ-calculus
is a little naive, because in a language with assignment not every-
thing is as well-behaved as in theλ-calculus. In fact, if we read the
× as analogous to logical conjunction, there is the evident prob-
lem that frame laws with (additive) conjunction rather than sepa-
rating conjunction are unsound. That is the main problem that will
have to be addressed: only some substitutions for the answer type
can be allowed. These types correspond to frame rules with sep-
arating conjunction, but seen from the inside, so to speak, due to
continuation-passing style.

Such types can be characterized as being orthogonal to a set
of heaps, where a machine state is orthogonal to a heap if their
combination does not lead to a run-time error. The general notion
of orthogonality between a term and its context is due to Krivine,
Pitts and others [11, 15, 23, 31], and is variously called biorthog-
onality,⊥⊥-closure, or>>-closure. In a sense, we generalize or-
thogonality from stacks to heaps. The connection to framing is that
we define orthogonality using separating conjunction in such a way
that only the interaction with disjoint heaps can be observed.

In brief, the contributions of this paper include the following:

• We give Hoare-style typing for code pointers with strong up-
date;

• frame rules are derived from answer type polymorphism in
continuation-passing style;

• the technique of biorthogonality (also called>>-closure) is
adapted to a language with heaps.

1.1 Outline

The paper is organized as follows. We consider a small fragment of
an assembly language; to clarify its intended meaning, we give an
operational semantics in Section 2, before defining the type system
in Section 3. We discuss closed types (in the sense of biorthog-
onality) in Section 4, as a preparation for giving a realizability
semantics based on this idea on top of the operational semantics
in Section 5. The main idea of this semantics is to recover frame
rules, addressed in Section 6. We then discuss a limitation of the
present paper, the absence of dynamic recursion through the heap

(Section 7), and conclude with a discussion of related and possible
future work in Section 8.

2. The language and operational semantics
We consider a very idealized fragment of an assembly language,
with a straightforward operational semantics, which is fairly stan-
dard. Despite its simplicity, it is sufficient for our purpose here,
since it contains operations for strong update of code pointers.

Code blocks (basic blocks) are sequences of instructions ending
in a jump. They are defined by the following grammar:

c ::= jmp f

| jmp [p]

| movc f p; c

| movh p q; c

These instructions are the minimum we need for moving code
pointers into the heap, updating them and jumping to them. The
instructionjmp f jumps to a fixed labelf in the code segment,
while jmp [p] jumps to a code pointerp in the heap (the brackets
are intended to indicate indirect addressing). A code addressf from
the code segment can be stored in the heap usingmovc f p, while
the instructionmovh p q moves the contents of heap cells. We use
c to range over basic blocks,f over immutable code addresses, and
p, q, . . . over pointers.

A function mappingx to y is written asx 7→ y, and we write
dom(g) for the domain of definition of the functiong. Both heaps
and code segments will be modelled as such finite functions.

A program consists of a currently executing basic block and a
finite mapping from addressesfi to basic blocksci, which we write
as

{f1 7→ c1, . . . , fn 7→ cn}
Strictly speaking, one could distinguish between the program in
which thefi are labels for theci and the mapping in memory at
runtime; we conflate them for simplicity.

A machine state or configuration〈c | h | s〉 consists of a current
code blockc, a mutable data heaph (which may include code
pointers), and an immutable code segments. (The executing code
block is in reality the code pointed to by the instruction pointer,
but writing it separately makes the operational semantics more
readable.)

More precisely, such machine states with a currently executing
code block will be calledactive states. In addition, we will also
need a notion ofpassivestate of the form〈h | s〉 for a heaph and
a code segments.

States can be combined to form larger ones, provided that their
code segments agree on their intersection and their heaps are dis-
joint (as required by the * operation on heaps). Two passive states
together form another passive state, while an active and a passive
state together form an active one. In the latter case, control starts
off in the part coming from the active state, but could later pass to
the formerly passive one.

The operational semantics is defined as a small-step transition
relation between active machine states, given by the rules in
Figure 1. Update of the heap cellp in h by some valuex is written
ash[p 7→ x].

There are two special code addressesexit anderror, which are
never in the domain of a code segment. There is no code associated
with them, and the semantics gets stuck if a jump to either of
them is attempted. Intuitively, one could think of these addresses
as belonging to the surrounding operating system; jumping to them
leaves the user code space and lets one observe termination, just as
reduction to a value does in the context of a functional language.
The operational semantics also gets stuck if a memory access
outside the current heap or code segment is attempted.



〈jmp f | h | s〉  〈s(f) | h | s〉 wheref /∈ {exit, error}
〈jmp [p] | h | s〉  〈s(h(p)) | h | s〉

〈movc f p; c | h | s〉  〈c | h[p 7→ f ] | s〉
〈movh p q; c | h | s〉  〈c | h[q 7→ h(p)] | s〉

Figure 1. Operational semantics

It should be straightforward to add more details to this semantics
in the form of registers and a richer instruction set for data, building
on assembly languages from the literature [20]. (Since registers
cannot be aliased, they are more innocuous than the heap from the
point of view of separation.) However, the typing problems of code
pointers that we are concerned with manifest themselves already in
the semantics of this small fragment.

As an example of the operational semantics, consider the fol-
lowing transition sequence, where looping arises from a code
pointer update:

〈movc f p; jmp f | p 7→ g | f 7→ jmp [p]〉
 〈jmp f | p 7→ f | f 7→ jmp [p]〉
 〈jmp [p] | p 7→ f | f 7→ jmp [p]〉
 〈jmp [p] | p 7→ f | f 7→ jmp [p]〉
 · · ·

3. Type system
The type system that we will use for the code pointer fragment
is based on separation logic and bunched typing [21, 24]. It uses
Hoare-style typing, in which assignment changes the types; alter-
natively, it may be seen as a fragment of Hoare logic with only
simple type-like assertions. For simplicity, only a subset without
recursion is considered, even though the operational semantics al-
lows recursion, including recursion through the heap.

As with the operational semantics, the type system is only in-
tended as a fragment to be integrated into a richer type theory. Its
purpose is to provide a foundational interface with continuation-
passing semantics. Derivations contain many−−∗ and∀ introduc-
tions and eliminations that are operationally a “no-op”, but more
convenient idioms arise as derivable rules.

The main design decisions concern code pointers. The aim here
is to reason locally only about the type (or specification) of a code
pointer in the heap, without having to know what the actual code
pointed to is.

We assume that the code segment is immutable, and hence not
a resource in the same way that the data heap is. For the data heap,
we specifyexactlywhat the heap that we have access to contains.
For the code segment, we only demand that it contain enough code
of the right type, but it may contain more code that we do not (yet)
know about. Of course, there may be situations when one wants to
treat the code heap as a resource, for instance when dynamically
loading code. But it would be cumbersome to have to treat the code
in the same explicit way as the data heap all the time.

We distinguish between heap typesA, behaviour typesB and
closed typesC; see Figure 2 for their grammars.

Heap types use the standard separation logic connectives. The
only novelty are points-to assertions of the formp 7→ B, whose
intended meaning is that the heap cellp points to code with type
B. This does not mean that the machine instructions are in the
heap; rather,p points to some heap cell containing an address
in the code segment.B types specify the behaviour of code in
terms of the arrow types of BI. They also include type variables

α, which are used for answer type polymorphism. Other forms
of polymorphism, in particular location polymorphism, would be
natural features of a richer language, but are beyond the scope of
the present paper.

Types of the formC, where the use of→ is disallowed, form a
subset of well-behaved behaviour types (the sense of well-behaved
will be defined as⊥⊥-closedness in Section 4).

Definition 3.1 The rules of the type system are in Figure 3.

Basic blocks are typed with judgements of the form

Γ | A ` c : B

The intended meaning is that the basic blockc may rely on code
typed according toΓ, and a heap typed withA in order to behave
as typed byB.

The rules for introduction and elimination of both arrow types
(→ and−−∗) are silent in that there is no syntax forλ-abstraction.
They could also be written as two-way rules:

Γ | A′ ∗ A ` c : B

Γ | A′ ` c : A −−∗ B

Γ | A′ ∧ A ` c : B

Γ | A′ ` c : A → B

Since there are noλ-abstractions that bind any variables, arrow
types are quite different from what may be familiar from functional
languages. They do not introduce a function, but express the pre-
conditions of a jump. An arrow type also does not delay execution,
as it would in a call-by-value language.

Since we assume the code segment to be immutable, its typing
is reminiscent of declarations. Code segments are typed using con-
texts of the formf1 . B1, . . . , fn . Bn. This typing ascribes the
typeBi to the constant code pointerfi. The code pointed to does
not own any heap (emp), since we do not have closures. If the code
wants to make any assumptions about the heap, it has to use arrow
types.

Informally, one could read a type for a code pointer in the heap
as an abbreviation for an existential

(p 7→ B) ≡ ∃f.(p 7→ f) ∧ (f . B)

where the(f . B) is interpreted solely in the code segment, so that
there is no conflict between the two pointers. The existential for the
code address is left implicit in indirect addressing.

The typing rules contain the usual BI rules for weakening and
contracting in a contextA(−), e.g., a heapA ∗ (A1 ∧ A1) can be
contracted toA ∗ A1.

We also impose the following structural congruence, written as
≡ and used by the rule (≡) on types:

• emp and∗ form a commutative monoid

• true and∧ form a commutative monoid

• ((A ∗ A′) −−∗ B) ≡ A −−∗ (A′ −−∗ B)

• ((A ∧ A′) → B) ≡ A → (A′ → B)

The interpretation of the separation logic connectives on the
data heap is standard. Existing work, for instance dealing with



A ::= p 7→ B | A ∗ A | A ∧ A | emp | true (heap types)
B ::= A −−∗ B | A → B | ∀α.B | α (behaviour types)
C ::= α | A −−∗ C | ∀α.C (closed types)

Γ ::= − | Γ, f . B (code segments)

Figure 2. Syntax of types

Code blocks Γ | A ` c : B

(JMP)
Γ, f . B, Γ′ | emp ` jmp f : B

(INDJMP)
Γ | p 7→ ∀α.((p 7→ α) −−∗ C) ` jmp [p] : C whereα is not free inC

Γ | p 7→ B ∗ q 7→ B ` c : C
(MOVHEAP)

Γ | p 7→ B ∗ q 7→ B′ ` movh p q; c : C

Γ, f . B, Γ′ | p 7→ B ` c : C
(MOVCODE)

Γ, f . B, Γ′ | p 7→ B′ ` movc f p; c : C

Γ | A′ ∗ A ` c : B
(−−∗I)

Γ | A′ ` c : A −−∗ B

Γ | A′ ` c : A −−∗ B
(−−∗E)

Γ | A′ ∗ A ` c : B

Γ | A′ ∧ A ` c : B
(→I)

Γ | A′ ` c : A → B

Γ | A′ ` c : A → B
(→E)

Γ | A′ ∧ A ` c : B

Γ | A(A1) ` c : B
(WEAKEN)

Γ | A(A1 ∧ A2) ` c : B

Γ | A(A1 ∧ A1) ` c : B
(CONTR)

Γ | A(A1) ` c : B

Γ | A ` c : B
(≡)

Γ | A′ ` c : B′ whereA ≡ A′ andB ≡ B′

Γ | A ` c ` B
(∀I)

Γ | A ` c : ∀α.B
whereα is not free inΓ or A

Γ | A ` c : ∀α.B
(∀E)

Γ | A ` c : B[C/α]

Code segments ` s : Γ

(EMPTY)` ∅ : −
` s : Γ Γ | emp ` c : B

(ADDCODE)` s ∪ {f 7→ c} : Γ, f . B
wheref /∈ dom(s)

Figure 3. Typing rules for the assembly language fragment



data structures as well as allocation and deallocation of storage,
should be easy to adapt [4, 17]. The main difference from the
languages typically used in the separation logic literature is that
in assembly language there are no stack variables and everything
is in the heap. This does not cause any additional difficulties, apart
from the notational inconvenience of having to refer to the heap all
the time.

3.1 Return addresses and indirect jumps

The rule for an indirect jump

Γ | p 7→ ∀α.((p 7→ α) −−∗ C) ` jmp [p] : C

deserves some explanation, since it is a deliberate restriction to
avoid a knotty problem. When we jump to some code pointer in
the heap, the same pointer is still in the heap, and so it is passed
to the code. This is a form of self-application through the heap,
so to type it in full generality, we would need recursive types.
Since a semantic account of recursive types is beyond the scope
of this paper, we compromise by restricting the indirect jumping
to an idiom that avoids the recursion: the code pointed to byp
may usep, but it cannot make any assumptions about the type
of the code pointed to, due to the quantification. This restriction
breaks the potential recursion. The idiom is motivated by return
addresses: ifp is some default location in which return addresses
are passed in the function calling convention, then the code pointed
to by p needs access top to store the next return address when
it calls the next function. That means we cannot hidep from the
code using some sort of frame rule. However, in this idiom, all that
the code does is overwritep, so it can assumep to point to any
type. Other idioms are possible, but return addresses are a useful
one for our purposes here, since once we can type return addresses,
function calls arise as an idiom, and frame rules for functions can
then be formulated in Section 6. We revisit the more general form
of jumping in Section 7.

3.2 Frames and answer types

The typing rules are akin to the so-called small axioms of sepa-
ration logic. In essence, such axioms only mention the heap that
changes. Whatever is left unchanged by the operation can then
be added by frame laws. In our setting, all framing takes place at
the answer type. For instance, consider the rule for storing a code
pointer in the heap:

Γ | p 7→ B ` c : C

Γ | p 7→ B′ ` movc f p; c : C

whereΓ is of the formΓ = Γ1, f . B, Γ2.
This rule states that the heap must consist exactly of the code

pointerp to be overwritten. SpecializingC to A −−∗ C, we can use
the rule for cases where there is additional heapA.

Γ | (p 7→ B) ∗ A ` c : C
(−−∗I)

Γ | p 7→ B ` c : A −−∗ C
(MOVCODE)

Γ | p 7→ B′ ` movc f p; c : A −−∗ C
(−−∗E)

Γ | (p 7→ B′) ∗ A ` movc f p; c : C

However, we have to be careful how we specializeC. Suppose
we allowed any type here, includingA → C. Then we could pick
p 7→ B for A and infer:

Γ | (p 7→ B) ∧ (p 7→ B′) ` c : C
(→I)

Γ | p 7→ B ` c : (p 7→ B′) → C
(MOVCODE)

Γ | p 7→ B′ ` movc f p; c : (p 7→ B′) → C
(→E)

Γ | (p 7→ B′) ∧ (p 7→ B′) ` movc f p; c : C
(CONTR)

Γ | (p 7→ B′) ` movc f p; c : C

Note that using→ instead of−−∗ allows us to contract the disjunc-
tion ∧ in the last step. This inference states that by storingf into
p we can satisfy the precondition of the codec even though it may
be inconsistent. For instance, if our logic includes assertions like
p 7→ 1, we could have(p 7→ 1) ∧ (p 7→ 2) that holds for no heap.

Specializing answer types with−−∗ is analogous to frame
laws (using∗) in separation logic; specializing the answer with
→ amounts to unsound rules using∧ in place of ∗. Although
the format of the inference above may look unfamiliar due to
continuation-passing style, it is comparable to the unsoundness of
∧ rather than∗ in a putative frame law for traditional (direct-style)
Hoare logic; a simple example of which is the following spurious
inference:

{x 7→ 2} [x] := 3 {x 7→ 3}
???{x 7→ 2 ∧ x 7→ 2} [x] := 3 {x 7→ 2 ∧ x 7→ 3}
Contraction{x 7→ 2} [x] := 3 {false}

The choice of possible answer types is behind many of the
design decisions in the type system in Figure 3. Answer types
include type variablesα, but the rule for∀-elimination only allows
these variables to be instantiated to closed typesC. The closed
types do not include→-types, thus avoiding the framing problem
outlined above. The next section supports this choice with a more
semantic view.

4. Closed types
We need to abstract from code by considering only its interaction
with all disjoint heaps. To do so, we use a notion of⊥⊥-closure of a
type, which includes all machine states that cannot be distinguished
by the interaction withdisjoint heaps.

It is not as evident as in functional languages what termination
should mean in the context of assembly language. Here we assume
that successful termination consists of a jump to a special label
called exit. A notion of termination relative to a context will be
built into an orthogonality relation−⊥− analogous to the ones
used by Krivine, Pitts and others [11, 15, 23]. The contexts are built
from disjoint heaps, using separating conjunction. Since a heap
may also contain pointers to known or unknown code, the heaps
will be paired with a code segment that may overlap the current
code segment; we refer to such pairs as passive states.

Definition 4.1 For heapsh andh′, we writeh # h′ iff dom(h) ∩
dom(h′) = ∅.

For code segmentss ands′, we writes ] s′ iff s(f) = s′(f) for
all f ∈ dom(s) ∩ dom(s′).

Since code segments are assumed immutable, we do not demand
that they be disjoint, only that they do not disagree on any code in
their possible overlap.

Definition 4.2 For an active state〈c | h | s〉, we write

〈c | h | s〉 l
if the state terminates successfully or loops, that is, if there is:

• a reduction〈c | h | s〉 ∗ 〈jmp exit | h′ | s′〉 for someh′ and
s′, or

• an infinite reduction〈c | h | s〉 · · · · · ·
For an active state〈c | h | s〉 and a passive state〈h′ | s′〉, we write

〈c | h | s〉 ⊥ 〈h′ | s′〉
if h # h′ ands ] s′ implies〈c | h ∗ h′ | s ∪ s′〉 l.

Intuitively, 〈c | h | s〉 ⊥ 〈h′ | s′〉 means that the active state
is happy with the additional heap and code in the passive state



provided they are compatible. Their combination may terminate
successfully, or it may loop, but it will not “go wrong” by getting
stuck in the operational semantics. We will need the following
lemma aboutl:

Lemma 4.3 If 〈c | h | s〉 l ands ⊆ s′, then also〈c | h | s′〉 l.

We useA, A1 andA2 for sets of passive states, andB for sets
of active states (since that is how in Section 5, types of the formA,
respectivelyB, will be interpreted).

Given the definition of orthogonality, we define the biorthogonal
or⊥⊥-closure of a set of states (analogous to similar definitions in
the literature [11, 15, 23, 31]).

Definition 4.4 Let A be a set of passive states of the form〈h | s〉,
andB be a set of active states of the form〈c | h | s〉. We define the
orthogonalA⊥ of A and the orthogonalB⊥ of B as follows:

A⊥ = {〈c | h | s〉 | 〈c | h | s〉 ⊥ 〈h′ | s′〉
for all 〈h′ | s′〉 ∈ A}

B⊥ = {〈h′ | s′〉 | 〈c | h | s〉 ⊥ 〈h′ | s′〉
for all 〈c | h | s〉 ∈ B}

The setB⊥⊥ is called the biorthogonal or⊥⊥-closure ofB. B is
called closed ifB⊥⊥ ⊆ B.

As an example, consider an active state that loops, like

Ω = 〈jmp f | ∅ | {f 7→ jmp f}〉
Then for any set of active states,B, it is easy to see thatΩ ∈ B⊥⊥,
since it is orthogonal to any set of passive states. Since we use the
⊥⊥-closed sets as types, that is as it should be, just as a divergent
term can have any value.

On the other hand, to see that not everything is identified,
consider

〈jmp [p] | ∅ | ∅〉 and〈jmp [q] | ∅ | ∅〉
Then〈jmp [p] | ∅ | ∅〉 /∈ {〈jmp [q] | ∅ | ∅〉}⊥⊥, as witnessed by

〈{q 7→ f} | {f 7→ jmp exit}〉
The definition of (−)⊥⊥ automatically entails a number of

set-theoretic properties irrespective of the details of−⊥−; for
instance,(−)⊥⊥ is a closure operator [31]. Moreover, it enjoys
some algebraic laws with regard to the separation logic connectives
∗ and−−∗, which we define as operations on sets of states:

Definition 4.5 LetA1, A2 andA be sets of passive states, andB a
set of active states. We define:

A1 ∗ A2 = {〈h1 ∗ h2 | s1 ∪ s2〉 | h1 # h2, s1 ] s2,

and〈hi | si〉 ∈ Ai}
A −−∗ B = {〈c | h | s〉 | 〈h′ | s′〉 ∈ A, h # h′, s ] s′

implies〈c | h ∗ h′ | s ∪ s′〉 ∈ B}
emp = {〈∅ | s〉 | s is any code segment}

On the heap part of the states, this is the standard reading of
the connectives. The definition of(−)⊥ (Definition 4.4 above) is
analogous to the one of−−∗ in its use of the implication. As one
would expect,−−∗ is right adjoint to∗:

Lemma 4.6 LetA1 andA2 be sets of passive states andB a set of
active states. Then we have:

(A1 ∗ A2) −−∗ B = A1 −−∗ (A2 −−∗ B)

The set of all active states that do not go wrong is the same as
emp⊥, so that we have this lemma:

Lemma 4.7 Let A be a set of passive states. The operations(−)⊥

and−−∗ satisfy:

• emp⊥ = {〈c | h | s〉 | 〈c | h | s〉 l}
• A⊥ = A−−∗ (emp⊥).

Proof Let 〈c | h | s〉 ∈ emp⊥. As 〈∅ | ∅〉 ∈ emp, this implies
〈c | h ∗ ∅ | s ∪ ∅〉 l. Conversely, assume〈c | h | s〉 l, and let
〈∅ | s′〉 ∈ emp with s ] s′. Then by Lemma 4.3,

〈c | h ∗ ∅ | s ∪ s′〉 l
Given the connection betweenl and emp⊥, the identityA⊥ =
A−−∗ (emp⊥) is immediate. �

The next lemma gives two rules linking the separating connec-
tives∗ and−−∗ with the orthogonal(−)⊥. Intuitively, an active state
that can be combined with two disjoint passive states with typesA1

andA2 is the same as an active state that, when first given anA1

state, could then be combined with anA2 state. A passive state of
typeA together with one that can be combined with an active one
of typeB amounts to a passive state that can be combined with an
active state of typeA−−∗ B.

Lemma 4.8 LetA1, A2 andA be sets of passive states andB a set
of active states. Then:

(A1 ∗ A2)
⊥ = A1 −−∗ A⊥

2

A ∗ B⊥ ⊆ (A−−∗ B)⊥

Proof (A1 ∗ A2)
⊥ = A1 −−∗A⊥

2 follows fromA⊥ = A−−∗ emp⊥
and the fact that−−∗ is right adjoint to∗:

(A1 ∗ A2)
⊥

= (A1 ∗ A2) −−∗ emp⊥
= A1 −−∗ (A2 −−∗ emp⊥)

= A1 −−∗ (A⊥
2 )

To proveA ∗ B⊥ ⊆ (A −−∗ B)⊥, we use the previous equality
and the fact that(−)⊥⊥ is a closure operator (soX ⊆ X⊥⊥ for
anyX ).

SinceB ⊆ B⊥⊥ andA−−∗ (−) preserves inclusions,

A−−∗ B
⊆ A−−∗ (B⊥⊥)

= (A ∗ B⊥)⊥

Hence, since(−)⊥ reverses inclusions,

A ∗ B⊥

⊆ (A ∗ B⊥)⊥⊥

⊆ (A−−∗ B)⊥

as required. �

Lemma 4.9 ⊥⊥-closed types are closed underA −−∗ (−); that is,
if C is closed, then so isA−−∗ C.

Proof AssumeC is closed, that is,C⊥⊥ ⊆ C. We have to show
that this implies(A−−∗ C)⊥⊥ ⊆ A−−∗ C. By Lemma 4.8, we have
(A∗C⊥) ⊆ (A−−∗C)⊥. As (−)⊥ reverses inclusions andA−−∗(−)
preserves them, we infer from that:

(A−−∗ C)⊥⊥



⊆ (A ∗ C⊥)⊥

= A−−∗ C⊥⊥

⊆ A−−∗ C
and hence the desired inclusion. �

Lemma 4.9 is crucial for our approach to frame rules by way
of instantiation of answer type variables by closed types. What we
have established in this section is a well-behaved and sufficiently
rich set of possible answer types, which the semantics in the next
Section will build on.

5. Realizability semantics
Using the notion of⊥⊥-closed set from Section 4, we can now
define a semantics for the type system from Figure 3 in Section 3.
Each type is interpreted as a set of untyped realizers. More specif-
ically, a type of the formA is interpreted as a set of passive states,
and a behaviour typeB as a set of active states (much as in Defini-
tion 4.5) . A contextΓ is interpreted as a set of code segments. All
interpretations are relative to a type environmentη that maps type
variables to sets of active states. We require the type environment
to be closed, that is, for eachα, η(α) is a⊥⊥-closed set of active
states.

Definition 5.1 Let η be a closed type environment. We define a
realizability semantics of behaviour types[[B]] η, heap types[[A]] η
and contexts[[Γ]] η by the rules given in Figure 4.

A subtle point in the semantics is the definition of[[A −−∗ B]] η.
As far as the heap is concerned, the definition follows the standard
semantics of separation logic. However, the code segment is treated
differently. When the code of type[[A −−∗ B]] η is supplied with a
heap satisfying[[A]] η, the code pointers in the new heap may point
to the code segment, or to previously unknown code.

Quantification∀α.B ranges only over closed types. The next
lemma justifies calling types of the formC closed.

Lemma 5.2 For any type of the form

C ::= α | A −−∗ C | ∀α.C

and closed type environmentη, [[C]] η is ⊥⊥-closed.

Proof [[α]] η is ⊥⊥-closed by definition. The⊥⊥-closed sets are
closed underA −−∗ (−) by Lemma 4.9, and they are closed under
arbitrary intersections for set-theoretic reasons independently of the
definition of−⊥− �

Lemma 5.3 The adjoint isomorphisms are equalities:

[[(A1 ∗ A2) −−∗ B]] η = [[A1 −−∗ (A2 −−∗ B)]] η

[[(A1 ∧ A2) → B]] η = [[A1 → (A2 → B)]] η

The code segment is treated intuitionistically: moving from a code
segments to a larger ones′ with s ⊆ s′ does not change the type,
unlike the tight interpretation of data heaps.

Lemma 5.4 Let s ⊆ s′ be code segments. Then:

• 〈c | h | s〉 ∈ [[B]] η implies〈c | h | s′〉 ∈ [[B]] η
• 〈h | s〉 ∈ [[A]] η implies〈h | s′〉 ∈ [[A]] η
• s ∈ [[Γ]] η impliess′ ∈ [[Γ]] η

Lemma 5.5 If s ∈ [[Γ, f . B, Γ′]] η, then〈s(f) | ∅ | s〉 ∈ [[B]] η.

Lemma 5.6 LetB be a behaviour type. If〈c | h | s〉 〈c′ | h | s〉
and〈c′ | h | s〉 ∈ [[B]] η, then also〈c | h | s〉 ∈ [[B]] η.

With the help of the preceding lemmas, we now prove sound-
ness. The type system in Figure 3 is sound with respect to the real-
izability semantics in Figure 4. If we can infer a type for code in a
judgementΓ | A ` c : B, then the code realizesB whenever it is
placed in a machine state that is equipped with a code segment that
realizes the code contextΓ and a heap that realizesA.

Theorem 5.7Let η be a closed type environment.

• If Γ | A ` c : B is derivable, thens ∈ [[Γ]] η and〈h | s〉 ∈
[[A]] η implies〈c | h | s〉 ∈ [[B]] η.

• If ` s : Γ is derivable, thens ∈ [[Γ]] η.

Proof (sketch)The proof proceeds by induction over the derivation
of typing judgements. Only a few cases are given here, emphasising
the role of closed types.

First, consider the typing rule for moving a label into a code
pointer:

Γ, f . B, Γ′ | p 7→ B ` c : C
(MOVCODE)

Γ, f . B, Γ′ | p 7→ B′ ` movc f p; c : C

Let s ∈ [[Γ, f . B, Γ′]] η and〈h | s〉 ∈ [[p 7→ B′]] η. The latter
implies thath = {p 7→ f ′} for somef ′. We need to show that

〈movc f p; c | {p 7→ f ′} | s〉 ∈ [[C]] η

Since[[C]] η is ⊥⊥-closed by Lemma 5.2, it is sufficient to show
membership of([[C]] η)⊥⊥. So suppose we have some〈h1 | s1〉 ∈
([[C]] η)⊥ with dom(h) ∩ dom(h1) = ∅ ands(g) = s1(g) for all
g ∈ dom(s) ∩ dom(s1). We need to show that

〈movc f p; c | {p 7→ f ′} ∗ h1 | s ∪ s1〉 l
The first transition step of this state is:

〈movc f p; c | {p 7→ f ′} ∗ h1 | s ∪ s1〉
 〈c | {p 7→ f} ∗ h1 | s ∪ s1〉

Now 〈{p 7→ f} | s〉 ∈ [[p 7→ B]] η due tos ∈ [[Γ, f . B, Γ′]] η.
So by the induction hypothesis,〈c | {p 7→ f} | s〉 ∈ [[C]] η. Since
〈h1 | s1〉 ∈ ([[C]] η)⊥, that implies

〈c | {p 7→ f} ∗ h1 | s ∪ s1〉 l
so〈movc f p; c | {p 7→ f ′} ∗ h1 | s ∪ s1〉 l as well. As this holds
for any〈h1 | s1〉 ∈ ([[C]] η)⊥, we have that

〈movc f p; c | {p 7→ f ′} | s〉 ∈ ([[C]] η)⊥⊥ ⊆ [[C]] η

as required.
Next, consider the rule for an indirect jump along a code pointer:

(INDJMP)
Γ | p 7→ ∀α.((p 7→ α) −−∗ C) ` jmp [p] : C

We assume thatα is not free inC. Let s ∈ [[Γ]] η and〈h | s〉 ∈
[[p 7→ ∀α.((p 7→ α) −−∗ C]] η. Then we haveh = {p 7→ f} for
somef with s(f) = c such that

〈c | ∅ | s〉 ∈ [[∀α.((p 7→ α) −−∗ C]] η

Let C = [[∀α.((p 7→ α) −−∗ C)]] η. Then

〈c | ∅ | s〉 ∈ [[(p 7→ α) −−∗ C]] (η[α 7→ C])

= [[p 7→ ∀α.((p 7→ α) −−∗ C)]] η −−∗ [[C]] η

Furthermore, the next transition step causesc to run:

〈jmp [p] | {p 7→ f} | s〉 〈c | {p 7→ f} | s〉
Since〈{p 7→ f} | s〉 ∈ [[p 7→ ∀α.((p 7→ α)−−∗C)]] η and trivially
s ] s, we then have by the definition of−−∗ that

〈c | {p 7→ f} | s〉 ∈ [[C]] η



〈c | h | s〉 ∈ [[A → B]] η iff 〈h | s′〉 ∈ [[A]] η ands ⊆ s′ implies〈c | h | s′〉 ∈ [[B]] η

〈c | h | s〉 ∈ [[A −−∗ B]] η iff 〈h′ | s′〉 ∈ [[A]] η with h # h′ ands ] s′

implies〈c | h ∗ h′ | s ∪ s′〉 ∈ [[B]] η

〈c | h | s〉 ∈ [[α]] η iff 〈c | h | s〉 ∈ η(α)

〈c | h | s〉 ∈ [[∀α.B]] η iff for all ⊥⊥-closed setsC of active states, 〈c | h | s〉 ∈ [[B]] (η[α 7→ C])

〈h | s〉 ∈ [[p 7→ B]] η iff h = {p 7→ f} ands(f) = c with 〈c | ∅ | s〉 ∈ [[B]] η

〈h | s〉 ∈ [[A1 ∧ A2]] η iff 〈h | s〉 ∈ [[A1]] η, 〈h | s〉 ∈ [[A2]] η

〈h | s〉 ∈ [[A1 ∗ A2]] η iff 〈h1 | s1〉 ∈ [[A1]] η, 〈h2 | s2〉 ∈ [[A2]] η
whereh = h1 ∗ h2, s1 ∪ s2 = s with h1 # h2 ands1 ] s2

〈h | s〉 ∈ [[emp]] η iff h = ∅

〈h | s〉 ∈ [[true]] η iff h is any heap

s ∈ [[Γ, f . B]] η iff s ∈ [[Γ]] η ands(f) = c with 〈c | ∅ | s〉 ∈ [[B]] η

s ∈ [[−]] η iff s is any code segment

Figure 4. Realizability of types

Due to the transition

〈jmp [p] | {p 7→ f} | s〉 〈c | {p 7→ f} | s〉
we have〈jmp [p] | {p 7→ f} | s〉 ∈ [[C]]η as well, and we are done
with this case.

For a direct jump, we do not need to assume a closed answer
type:

(JMP)
Γ, f . B, Γ′ | emp ` jmp f : B

Supposes ∈ [[Γ, f . B, Γ′]] η and 〈h | s〉 ∈ [[emp]] η. Now
〈h | s〉 ∈ [[emp]] η impliesh = ∅ ands ∈ [[Γ, f . B, Γ′]] η implies
〈s(f) | ∅ | s〉 ∈ [[B]] η. The next machine transition is:

〈jmp f | ∅ | s〉  〈s(f) | ∅ | s〉
By Lemma 5.6, that implies〈jmp f | h | s〉 ∈ [[B]] η.

For building up code segments from code blocks, we need
to show the soundness of (ADDCODE). Supposè s : Γ and
Γ | emp ` c : B. By the induction hypothesis applied tòs : Γ, we
haves ∈ [[Γ]] η and so〈c | ∅ | s〉 ∈ [[B]] η. Let s′ = s ∪ {f 7→ c}.
Then by Lemma 5.4, we have alsos′ ∈ [[Γ]] η and〈c | ∅ | s′〉 ∈
[[B]] η, and therefores′ ∈ [[Γ, f . B]] η, as required.

�

6. Frame rules
Instantiation of the answer type to types of the formA −−∗ C gives
us frame rules whose soundness follows from the soundness of the
type system, Theorem 5.7. In particular, we define function types
as the evident continuation-passing type with a return addressr:

A1 ⇒r A2

≡ ∀α.(r 7→ (∀αr.(r 7→ αr) −−∗ A2 −−∗ α)) −−∗ A1 −−∗ α

The answer type polymorphism [29, 30] in this idiom means that
the function must eventually invoke its return continuation or loop;
it cannot jump to a different continuation instead.

We then have a derivable frame rule for the function call idiom:

Γ, f . A1 ⇒r A2, Γ
′ ` jmp f : (A1 ∗ A′) ⇒r (A2 ∗ A′)

See Figure 5 for the derivation, which uses instantiation of the
answer type variable and congruence for−−∗ types.

Frame laws for continuation passing with quantified answer
types are not restricted to purely functional idioms. Figure 6 shows
how to frame inA ∗ − for an indirect jump of the formjmp [p].
Syntactically, the derived rule looks different from the usual Hoare
logic one, since there are two− ∗ A on the left of thè ; they are
however in a covariant and a contravariant position.

Using the function type idiom⇒r with the return address
passed inr, the identity function(λx.x) can be compiled into
the codejmp [r]. We type it as:

− | emp ` jmp [r] : A ⇒r A

We then have the typing

` {f 7→ jmp [r]} : f . A ⇒r A

for the code segment holding the identity function at addressf .
To write more involved examples, it would be useful to extend

the language and typing fragment with more features that make
it less cumbersome to pass around pointers. Even the typing for
jmp [p] used so far is a restriction to a special case, and we return
to this point in the next section.

7. Recursion through the heap
The rule for indirect jump in Figure 3 was explicitly designed so
that the code being jumped to cannot subsequently make recursive
calls to itself by an indirect jump through the pointer to itself that
is still in the heap. Peter Landin calls this recursion through the
heap “tying a knot in the store”. A full account of mutual recursion
between code and heap types is beyond the scope of this paper,
so we only sketch what extensions are needed to accommodate
general jumping, what could be typed using them, and how they
relate to the type system studied in the previous sections. Typing



Γ, f . A1 ⇒r A2, Γ
′ | emp ` jmp f : A1 ⇒r A2

Γ, f . A1 ⇒r A2, Γ
′ | emp ` jmp f : ∀α.(r 7→ (∀αr.(r 7→ αr) −−∗ A2 −−∗ α)) −−∗ A1 −−∗ α

(∀E)
Γ, f . A1 ⇒r A2, Γ

′ | emp ` jmp f : (r 7→ (∀αr.(r 7→ αr) −−∗ A2 −−∗ A′ −−∗ α′)) −−∗ A1 −−∗ A′ −−∗ α′
(≡)

Γ, f . A1 ⇒r A2, Γ
′ | emp ` jmp f : (r 7→ (∀αr.(r 7→ αr) −−∗ (A2 ∗ A′) −−∗ α′)) −−∗ (A1 ∗ A′) −−∗ α′

(∀I)
Γ, f . A1 ⇒r A2, Γ

′ | emp ` jmp f : ∀α′.(r 7→ (∀αr.(r 7→ αr) −−∗ (A1 ∗ A′) −−∗ α′)) −−∗ (A2 ∗ A′) −−∗ α′

Γ, f . A1 ⇒r A2, Γ
′ | emp ` jmp f : (A1 ∗ A′) ⇒r (A2 ∗ A′)

Figure 5. Derivation of a frame law for the function call idiom

(INDJMP)
Γ | p 7→ ∀αp.((p 7→ αp) −−∗ α) ` jmp [p] : α

(≡)
Γ | emp ∗ p 7→ ∀αp.((p 7→ αp) −−∗ α) ` jmp [p] : α

(−−∗I)
Γ | emp ` jmp [p] : (p 7→ ∀αp.((p 7→ αp) −−∗ α)) −−∗ α

(∀I)
Γ | emp ` jmp [p] : ∀α.(p 7→ ∀αp.((p 7→ αp) −−∗ α)) −−∗ α

(∀E)
Γ | emp ` jmp [p] : (p 7→ ∀αp.((p 7→ αp) −−∗ A −−∗ α)) −−∗ A −−∗ α

(≡)
Γ | emp ` jmp [p] : (p 7→ ∀αp.(((p 7→ αp) ∗ A) −−∗ α)) −−∗ A −−∗ α

(−−∗E)
Γ | emp ∗ p 7→ ∀αp.(((p 7→ αp) ∗ A) −−∗ α) ` jmp [p] : A −−∗ α

(−−∗E)
Γ | emp ∗ (p 7→ ∀αp.(((p 7→ αp) ∗ A) −−∗ α)) ∗ A ` jmp [p] : α

(≡)
Γ | (p 7→ ∀αp.(((p 7→ αp) ∗ A) −−∗ α)) ∗ A ` jmp [p] : α

Figure 6. Framing for an indirect jump

knots in the store with a Hoare-style typing is more challenging
than in strongly typed functional languages like ML. Since the
Hoare typing tracks the state of the heap, it must be different before
and after the knot has been tied.

As a concrete example, here is some code in C that ties a knot
in the store which then causes the functionf to loop:

void (*p)() = 0;

void f() { (*p)(); }

main()
{
p = &f;
f();

}

Initially, there is no recursion;f only becomes recursive by
virtue of the assignmentp = &f;. If our specification forf re-
quires it to be recursive, then we would not be able to callf until
after the assignment top.

The same principle works with labels in a language with code
pointers, like Gnu C, as in the following fragment (using the&&
operator to turn a label into a pointer):

void *p;

p = &&f;
goto f;
...
f: goto *p;

Note that f: goto *p; does not by itself imply a loop; only the
assignment creates the loop.

To type the general form of an indirect jump, we need recur-
sively typed heaps. We writeµφ.A for a recursively-defined heap,
and assume that we can roll and unroll the recursion via a congru-
ence

µφ.A ≡ A[(µφ.A)/φ]

A possible rule for general jumping is then:
(µJMP)

Γ | µφ.p 7→ (φ −−∗ C) ` jmp [p] : C

Given the operational semantics ofjmp [p],

〈jmp [p] | h | s〉 〈s(h(p)) | h | s〉
the precondition

µφ.p 7→ (φ −−∗ C)

is plausible: it states that the heap contains at addressp a pointer
to some code that, given the same heap (includingp itself), will
produce an answer of typeC.

Assuming this rule, the code segment consisting of{f 7→
jmp [p]} has type

f . µφ.p 7→ (φ −−∗ C)) −−∗ C

Assuming this heap, we can then type the code that savesf itself
in p and then jumps tof ; see Figure 7 for derivations for the code
segment containingf and the current code that sets up the knot and
then jumps tof . HereC can be any type, in particular∀α.α, which
indicates that this code loops (which it does, see Section 2).

A jump in its most general form implies a self-application
through the heap, so that it is instructive to compare the derivation
in Figure 7 with the typing of theλ-term

(λx.xx) (λx.xx)

using a recursive typeµα.(α →B), in particular the unrolling that
needs to happen before the self-applicationxx can be typed.



(µJMP)− | µφ.p 7→ (φ −−∗ C) ` jmp [p] : C
(≡)− | emp ∗ (µφ.p 7→ (φ −−∗ C)) ` jmp [p] : C

(−−∗I)− | emp ` jmp [p] : (µφ.p 7→ (φ −−∗ C)) −−∗ C
(EMPTY)` ∅ : −
(ADDCODE)` {f 7→ jmp [p]} : f . (µφ.p 7→ (φ −−∗ C)) −−∗ C

(JMP)
f . (µφ.p 7→ (φ −−∗ C)) −−∗ C | emp ` jmp f : (µφ.p 7→ (φ −−∗ C)) −−∗ C

(−−∗E)
f . (µφ.p 7→ (φ −−∗ C)) −−∗ C | emp ∗ µφ.p 7→ (φ −−∗ C) ` jmp f : C

(≡)
f . (µφ.p 7→ (φ −−∗ C)) −−∗ C | µφ.p 7→ (φ −−∗ C) ` jmp f : C

(≡)
f . (µφ.p 7→ (φ −−∗ C)) −−∗ C | p 7→ ((µφ.p 7→ (φ −−∗ C)) −−∗ C) ` jmp f : C

(MOVCODE)
f . (µφ.p 7→ (φ −−∗ C)) −−∗ C | p 7→ B ` movc f p; jmp f : C

Figure 7. Recursion by tying a knot in the heap

Recall the restricted idiom of jumping that avoids recursion, as
given in Figure 3 and discussed in Section 3.1. This non-recursive
indirect jump rule has the precondition

p 7→ (∀αp.(p 7→ αp) −−∗ C)

The general recursive jump rule has the precondition

µφ.p 7→ (φ −−∗ C)

We can relate the latter to the former by instantiatingαp to
(µφ.(p 7→ (φ −−∗ C))) −−∗ C, and rolling the recursive type twice,
as follows:

p 7→ (∀αp.(p 7→ αp) −−∗ C)

p 7→ (p 7→ ((µφ.(p 7→ (φ −−∗ C))) −−∗ C) −−∗ C)

= p 7→ ((µφ.(p 7→ (φ −−∗ C))) −−∗ C)

= µφ.(p 7→ (φ −−∗ C))

The operational semantics of indirect jumping remains the same,
but what is different is the view of what is passed along with the
jump.

To summarize, it appears that, subject to the requirement for
contravariant recursive types, recursion through dynamically cre-
ated knots in the heap would fit quite smoothly into the present
type system.

8. Conclusions
We have recovered frame rules from answer type polymorphism
over⊥⊥-closed types. The potential recursion through code point-
ers in the heap remains a challenge, but may be amenable to similar
techniques.

8.1 Related work

Work on typed assembly language [16], and typing heaps, such as
substructural type systems [18], is part of the general background
of the present paper. Recent work on L3, a Linear Logic with Lo-
cations [17], also uses a relational style of semantics, rather than
subject reduction, for soundness of a type system for a language
with heap operations. Type systems and logics for assembly lan-
guages usually assume more restricted control flow than pointers
to unknown code; however, in recent work Ni and Shao have stud-
ied a language with embedded code pointers [20]. Much of the
typing presented here is based on separation logic and bunched
typing [21, 24] in particular. Code has to work not just given the
currently known code segment, but all larger ones, to which it may

gain access through code pointers, so it appears the semantics could
be formulated as a possible-worlds semantics [25].

Apart from separation logic, substructural type systems and an-
swer type polymorphism, one of the crucial ideas is biorthogonal-
ity. It was invented by Krivine [11] and independently by Pitts, who
defines a notion of>>-closure of relations [23] in his relational
parametricity for operational semantics. Vouillon and Melli´es have
recently built on Krivine’s work [15, 31] by giving elegantly sim-
ple semantics for polymorphic and recursive types in an operational
setting, as an alternative to approaches based on indexing [1]. Lind-
ley and Stark [13] use Pitts’s>>-closure for termination proofs.

Both in Krivine’s and Pitts’s version, orthogonality is a relation
between a term and its continuation, which is syntactically repre-
sented as a stack of frames [7]. (Krivine also considers operating
systems-level features such as the run-time clock [12] in realizabil-
ity.) In the present paper, we transfer the idea of orthogonality to
assembly language, where there is no surrounding evaluation con-
text; rather the continuation in this sense is the rest of the heap and
code segment, and spatial separation is built into the definition of
orthogonality.

8.2 Directions for further work

It seems quite likely that Melli´es’s and Vouillon’s recent work on
recursive types in an operational setting [15] could be adopted to
deal with the recursive types that are necessary to cover indirect
jumps in full generality, as in Section 7. In fact, this possible direc-
tion is one of the reasons why a framework inspired by their use of
biorthogonality was used in this paper. Principled operational tech-
niques are also appropriate in this context since the literature on
low-level languages typically presents them in terms of operational
semantics. Conversely, the mutual recursion between code (which
operates on heaps) and heaps (which can point to code) provides
concrete motivation for recursive types combined with polymor-
phism.

Frame rules via answer type polymorphism should generalize
from function calls to more general forms of jumping. It remains to
be seen if it can cover the hypothetical frame rule [22] or higher-
order frame rules, perhaps even for non-functional control structure
such as coroutines or system calls. BI-style typing of continuations
may also overcome some of the limitations of earlier work on linear
continuation passing [3, 5].

Multiplicative quantification over locations may be an alter-
native to biorthogonality for obtaining well-behaved answer type
polymorphism [4]. The distinction between an immutable code seg-
ment and a writable heap could be seen as an instance of permis-



sions [6] in separation logic, in thatf .B corresponds to an execute
permission andf 7→ B to a read and write permission in operating
systems. By using execute permissions, it may be possible to unify
the code segment and the heap to give greater flexibility than in the
system presented here, for instance for dynamically loading code.
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