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1 Introduction

Graph transformation systems (GTSs) are recognised as a powerful specifica-
tion formalism for concurrent and distributed systems [12], generalising Petri
nets. Their truly concurrent behaviour has been deeply studied and a consol-
idated theory of concurrency is now available. In particular, several seman-
tics of Petri nets, like process and unfolding semantics, have been extended
to GTSs (see, e.g., [8,26,1,2]). However, concerning automated verification,
while several approaches exist for Petri nets, ranging from the calculus of in-
variants [25] to model checking based on finite complete prefixes [23], the rich
literature on GTSs does not contain many contributions to the static analysis
of such systems (see [20,21,14]). Interestingly, several formalisms for concur-
rency and mobility can be encoded as graph transformation systems, in a way
that verification techniques for graph transformation systems potentially carry
over such formalisms.

This paper describes a framework, developed in [5,6,4], where behavioural
properties of a system described as a GTS can be specified and verified.

A Logic for Behavioural Properties of GTSs. The logic used here to
specify behavioural properties of GTSs is the temporal logic µL2, which can
be seen as a variation of the µ-calculus. The formulae of µL2 are generated
by closing state predicates under temporal modalities (2 and 3), fixed-point
operators (µ and ν), and standard logical connectives. Negation is classi-
cal. In turn, state predicates, which are used to express the graph properties
of interest, are formed according to the monadic second-order logic L2 on
graphs, where quantification is allowed over (sets of) edges (see, e.g., [9].) In-
teresting graph properties can be expressed in L2, like the non-existence or
non-adjacency of edges with specific labels, and the absence of certain paths
or of certain cycles. Such properties may be used to represent in the graph
transformation model relevant properties of the system at hand, like security
properties or deadlock-freedom.

Approximating the Behaviour of GTSs. A basic ingredient for the ver-
ification of µL2 is a technique, proposed in [5,6], for approximating the be-
haviour of GTSs by means of finite Petri net-like structures, in the spirit of
abstract interpretation of reactive systems [22]. More precisely, an approx-
imated unfolding construction maps any given GTS G to finite structures,
called coverings of G, which provide “effective” (over-)approximations of the
behaviour of G.

The accuracy of the approximation can be chosen by the user and arbi-
trarily increased. Essentially one can require the approximation to be exact
up to a certain causal depth k, thus obtaining the so-called k-covering Ck(G)
of G. The coverings are Petri graphs, i.e., structures consisting of a Petri
net with a graphical structure over places. Each Ck(G) over-approximates
the behaviour of G in the sense that every computation of G is mapped to a
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valid computation of Ck(G) and every graph reachable from the start graph
can be mapped homomorphically to (the graphical component of) Ck(G) and
its image is reachable in the Petri graph. Therefore, given a property over
graphs reflected by graph morphisms, if it holds for all states reachable in the
abstraction Ck(G) then it also holds for all reachable graphs in G.

Verifying Behavioural Properties of GTSs. Relying on the approxima-
tions of the unfolding, we propose a technique for reducing the verification of
a µL2 formula over a GTS G to the verification of a corresponding multiset
formula over (the Petri net component of) a covering of G. More specifically,
fixed a covering Ck(G), we define a constructive translation of formulae in µL2
into formulae over the Petri net underlying the abstraction Ck(G). This is
done in two steps.

• First, any state predicate F in L2 is mapped to a formula F̂ over markings
such that a marking satisfies F̂ if and only if the graph it represents satisfies
F . The translation is a kind of quantifier elimination procedure which
encodes monadic second-order logic formulae into propositional formulae
on markings, containing only predicates of the form #s ≤ c (the number of
tokens in place s is smaller than or equal to c). This somehow surprising
fact can be understood by recalling that the graph underlying Ck(G) is finite
and fixed after computing the abstraction.

• Then any temporal formula in µL2 over G is translated to a temporal
formula over the Petri graph by simply translating its L2-subformulae as
sketched above, and keeping the “temporal part” untouched.

Altogether, these results allow us to verify behavioural properties of a GTS,
expressed in a suitable fragment of µL2, by reusing existing model-checking
techniques for Petri nets. In fact, consider a formula T in 2µL2 (i.e., not
containing in the temporal part the modality 3 nor negation) to be checked
over a GTS G. If the state predicates in T are reflected by graph morphisms,
by the construction mentioned above we can translate T into a formula T̂ over
the Petri net underlying a covering of Ck(G) of G. (The restriction to 2µL2 is
necessary because Ck(G) over-approximates G.) Then, by general results from
abstract interpretation [22], T̂ can be checked over the Petri net underlying
Ck(G). A type inference system is introduced which characterises a subclass
of formulae in the logic L2 which are reflected by graph morphisms. Hence,
the requirement over state predicates in T can be verified by checking that
any such predicate can be typed as “reflected” in the mentioned type system.

We recall that temporal state-based logics over Petri nets, i.e., logics where
basic predicates have the form #s ≤ c, are not decidable in general, but
important fragments of such logics are [17,16,18].

For the sake of simplicity, although the approximation method of [5,6] was
designed for hypergraphs, in this paper we stick to directed graphs. More-
over, although not discussed in this document, a dual theory involving under-
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approximations of the behaviour of GTSs has been developed (see [4]).

In the rest of the paper, after introducing the class of graph transformation
systems handled by our approach, we will present the monadic second-order
logic L2 of graph formulae, and the temporal logic built on it, called µL2.
Next we shall summarise the approximation technique for GTSs developed
in [5], briefly mentioning some results from [6]. Finally we will propose a
method for verifying µL2 formulae over GTS’s: this makes use of a type
system characterising a subclass of formulae in L2 which are reflected by
graph morphisms (and which can thus be checked on the covering), as well as
of an encoding of these formulae into quantifier-free multiset formulae on the
markings of Petri nets.

2 Graph Transformation Systems

In this section we introduce the class of graph transformation systems consid-
ered in this paper, which are basically graph rewriting systems in the double-
pushout approach [11], with some restrictions.

We first define graphs and structure-preserving morphisms on graphs. We
will assume that Λ denotes a fixed and finite set of labels.

Definition 2.1(Graph, graph morphism) A graph G = (VG, EG, sG, tG, lG)
consists of a set VG of nodes, a set EG of edges, source and target functions
sG, tG:EG → VG and a function lG:EG → Λ labelling the edges.

A graph morphism ϕ:G1 → G2 is a pair 〈ϕV :VG1
→ VG2

, ϕE:EG1
→ EG2

〉
of mappings such that ϕV ◦sG1

= sG2
◦ϕE, ϕV ◦tG1

= tG2
◦ϕE and lG1

= lG2
◦ϕE

for each edge e ∈ EG1
. A morphism ϕ will be called edge-bijective if ϕE is a

bijection. The subscripts in ϕE and ϕV will be usually omitted.

We next define the notion of graph transformation system and the corre-
sponding rewriting relation.

Definition 2.2 (Graph transformation system) A graph transformation
system (GTS) (G0,R) consists of an initial graph G0 and a set R of rewriting
rules of the form r = (L,R, α), where L, R are graphs, called left-hand side
and right-hand side, respectively, and α:VL → VR is an injective function.

A match of a rewriting rule r in a graph G is a morphism ϕ:L→ G which
is injective on edges. We can apply r to a match ϕ in G obtaining a new graph
H, written G

r
⇒ H. The target graph H is defined as follows

VH = VG ] (VR − α(VL)) EH = (EG − ϕ(EL)) ] ER

and, defining ϕ : VR → VH by ϕ(α(v)) = ϕ(v) if v ∈ VL and ϕ(v) = v
otherwise, the source, target and labelling functions are given by

e ∈ EG − ϕ(EL) ⇒ sH(e) = sG(e), tH(e) = tG(e), lH(e) = lG(e)

e ∈ ER ⇒ sH(e) = ϕ(sR(e)), tH(e) = ϕ(tR(e)), lH(e) = lR(e)

Intuitively, the application of r to G at the match ϕ first removes from G
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Fig. 1. Start graph of RPh with a process and two free resources.

the image of the edges of L. The resulting graph is extended by adding the
new nodes in R (i.e., the nodes in VR−α(VL)) and all the edges of R. Observe
that the (images of the) nodes in L are preserved, i.e., they are not affected
by the rewriting step.

Example 2.3 Consider a variant of the Dining Philosopher system where
processes compete for resources R1 and R2, a process needs both resources
in order to perform some task, but processes are not organised in a cyclic
structure and they can reproduce themselves. The system is represented as a
GTS RPh as follows. We consider edges labelled by R1, R2, R

f
1 , R

f
2 standing for

assigned and free resources, respectively, and P1, P2 and P3 denoting a process
waiting for the first resource, a process waiting for the second resource, and
a process holding both resources, respectively. Furthermore, edges labelled
by D1 and D2 connect the target node of a process and the source node of a
resource when the process is asking for the resource. When the target node
of a resource coincides with the source node of a process, this means that the
resource is assigned to that process. The initial scenario for RPh is represented
in Fig. 1, with a single process P1 asking for both resources.

The rewriting rules of RPh are defined with the aim of avoiding deadlocks
in the form of vicious cycles. There are three kind of rules, depicted in Fig. 2:
(1) a process Pi can acquire a free resource Rf

j whenever i = j and it becomes
Pi+1, (2) P3 can release its resources and (3) processes of the form P1 can fork
creating more processes of the same kind competing for the same resources.
The natural numbers 1, 2, 3, . . . which decorate nodes in the left- and right-
hand side of rules implicitly represent the mapping α.

With the given rules, deadlocks are avoided by forcing each process to
acquire the resources in a fixed ordering: first R1 and then R2. An additional
rule, analogous to rule 1 but with i = 1 and j = 2, would possibly lead to a
vicious cycle with circular demand for resources, in two steps (see Fig. 3).

3 A Logic for Graph Transformation Systems

This section presents a behavioural logic for GTSs. It is essentially a vari-
ant of the propositional µ-calculus (i.e., a temporal logic enriched with fixed-
point operators) where propositional symbols range over arbitrary state predi-
cates, characterising static graph properties, which are expressed in a monadic
second-order logic.
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Fig. 2. Rewriting rules of the GTS RPh.
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Fig. 3. A vicious cycle representing a deadlock.

3.1 A Monadic Second-Order Logic for Graphs

We first introduce the monadic second-order logic L2 for specifying graph
properties, i.e., “static” properties of system states. Quantification is allowed
over edges, but not over nodes (as, e.g., in [9]).

Definition 3.1 (Graph formulae) Let X1 = {x, y, z, . . .} be a set of (first-
order) edge variables and X2 = {X,Y, Z, . . .} be a set of (second-order) vari-
ables ranging over edge sets. The set of graph formulae of logic L2 is defined
as follows, where ` ∈ Λ
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F ::= x = y | s(x) = s(y) | s(x) = t(y) | t(x) = t(y) |

lab(x) = ` | x ∈ X | (Predicates)

F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)

∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order
variables, respectively, occurring free in F .

The notion of satisfaction is defined in a straightforward way.

Definition 3.2 (Satisfaction) Let G be a graph, let F be a graph formula in
L2, let σ : free(F )→ EG and Σ : Free(F )→ P(EG) be valuations for the free
first- and second-order variables of F , respectively. The satisfaction relation
G |=σ,Σ F is defined inductively, in the usual way; for instance:

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y)

G |=σ,Σ s(x) = s(y) ⇐⇒ sG(σ(x)) = sG(σ(y))

G |=σ,Σ lab(x) = ` ⇐⇒ lG(σ(x)) = `

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X)

G |=σ,Σ ∀X.F ⇐⇒ G |=σ,Σ′ F for any Σ′ such that Σ′(Y ) = Σ(Y )

for Y ∈ X2 − {X}, and Σ′(X) ∈ P(EG),

Example 3.3 The formula NC ` below states that a graph does not contain
a cycle including two distinct edges labelled `, a property that will be used
to express the absence of vicious cycles in our system RPh. It is based on the
formula NP(x, y), which says that there is no path connecting the edges x and
y, stating that a set that contains at least all edges reachable from x does not
contain y necessarily.

NP(x, y) = ¬∀X.(∀z.(t(x) = s(z)∨∃w.(w ∈ X ∧ t(w) = s(z)))⇒ z ∈ X)⇒ y ∈ X)
NC ` = ∀x.∀y.(lab(x) = ` ∧ lab(y) = ` ∧ ¬(x = y)⇒ NP(x, y) ∨NP(y, x))

A standard compactness argument shows that NC ` cannot be stated in
first-order logic, a fact which motivates our choice of considering a second-
order logic.

3.2 Introducing a Temporal Dimension

The behavioural logic for GTSs, called µL2, is a variant of the propositional
µ-calculus where propositional symbols range over formulae from L2.

Definition 3.4 (Logic over GTSs) The syntax of µL2 formulae is the fol-
lowing:

f ::= A | X | 3f | 2f | ¬f | f1 ∨ f2 | f1 ∧ f2 | µX.f | νX.f

where A ranges over closed formulae in L2 and X ∈ X are proposition vari-
ables.
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The formulae are evaluated over a graph transition system T = (Q,→),
i.e., a transition system where the set of states Q consists of (isomorphism
classes of) graphs. This can be thought of as the abstract representation of
the behaviour of a graph grammar. Intuitively, an atomic proposition A holds
in any state q satisfying A according to Definition 3.2. A formula 3f / 2f

holds in a state q if some / any single step leads to a state where f holds. Note
that (as in [22]) the operators 2 and 3 only refer to the next step and not
(as defined elsewhere) to the whole computation. The connectives ¬,∨, ∧ are
interpreted in the usual way. The formulae µX.f and νX.f represent the least
and greatest fixed point over X, respectively. When a transition system T has
a distinguished initial state q0, we say that T satisfies a (closed) formula f ,
written T |= f , if the initial state q0 of T satisfies f . Since the logic is classical,
3 and ν could be defined in terms of 2 and µ. All the operators are inserted
explicitly since later we will restrict to negation-free fragments of µL2.

The fragment of µL2 without negation and box operator is denoted by
3µL2. By dropping negation and the diamond operator we obtain the frag-
ment 2µL2. Some typical liveness properties of the form “eventually A” (i.e.,
µX.(A∨3X)) can be expressed in the fragment 3µL2, whereas some typical
safety properties of the form “always A” (i.e., νX.(A∧2X)) can be expressed
in the fragment 2µL2.

Example 3.5 Consider the system RPh in our running example. We would
like to express the fact that, according to the design intentions, RPh is deadlock-
free. This is formalised by the requirement that all reachable graphs do not
contain a vicious cycle, i.e., a cycle of edges where P2-labelled edges (processes
holding a resource and waiting for a second resource) occur twice. Notice that
this is a safety property which can be encoded in 2µL2 as follows:

TNC = νϕ.(NC P2
∧2ϕ )

where NC` is the formula considered in a previous example.

4 Approximated Unfolding Construction

In this section we sketch the algorithm, introduced in [5,6], for the construc-
tion of finite over-approximations of the unfolding of a graph transformation
system. This plays a crucial role in the verification process of the logic µL2.

4.1 Petri Graphs

In order to approximate graph transformation systems we will use Petri net-
like structures, called Petri graphs, originally introduced in [5].

To deal with Petri nets we first need to recall some basic notation con-
cerning multisets. Given a set A we will denote by A⊕ the free commutative
monoid over A, whose elements will be called multisets over A. We will
sometimes identify A⊕ with the set of functions m:A → N such that the set
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Fig. 4. A pair (G′, m′) contained in a simulation.

{a ∈ A | m(a) 6= 0} is finite. E.g., in particular, m(a) denotes the multi-
plicity of an element a in the multiset m. Sometimes a multiset will be also
identified with the underlying set, writing, e.g., a ∈ m for m(a) 6= 0. Given a
function f :A → B, by f⊕:A⊕ → B⊕ we denote its monoidal extension, i.e.,
f⊕(m)(b) =

∑

f(a)=bm(a) for every b ∈ B.

Petri graphs over a given graph transformation system G are basically Petri
nets equipped with an additional graphical structure where the places play the
role of edges, while the transitions represent applications of the rules of G.

Definition 4.1 (Petri graph) Let G = (G0,R) be a GTS. A Petri graph P
(over G) is a tuple (G,N,m0) where G is a graph and

• N = (EG, TN ,
•(), ()•, pN) is a Petri net, where the set of places EG is the

edge set, TN is the set of transitions, •(), ()•:TN → E⊕
G specify the post-set

and pre-set of each transition and pN :TN → R is the labelling function,
mapping each transition to a corresponding rule;

• m0 ∈ (EG)⊕ is the initial marking of the Petri graph, satisfying m0 =
ι⊕(EG0

) for a suitable graph morphism ι : G0 → G (i.e., m0 must properly
correspond to the initial state of the GTS G).

We shall write m [r〉m′ if a transition labelled by r is enabled at marking
m and its firing produces m′. A marking m ∈ E⊕

G will be called reachable
(coverable) in P if it is reachable (coverable) from the initial marking in the
Petri net underlying P .

A marking m of a Petri graph can be seen as an abstract representation
of a graph in the following sense.

Definition 4.2 Let (G,N,m0) be a Petri graph and let m ∈ E⊕
G be a marking

of N . The graph generated by m, denoted by graphG(m), is the graph H

without isolated nodes (unique up to isomorphism) such that there exists a
morphism ψ:H → G injective on nodes with ψ⊕(EH) = m. More explicitly,
the graph H is defined as: VH = {v ∈ VG | ∃e ∈ m: (sG(e) = v ∨ tG(e) = v)},
EH = {(e, i) | e ∈ m ∧ 1 ≤ i ≤ m(e)}, sH((e, i)) = sG(e), tH((e, i)) = tG(e)
and lH((e, i)) = lG(e).

An example of Petri net marking and the corresponding generated graph
can be found in Fig. 4.
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4.2 Approximated Unfolding Algorithm

Given a GTS (G0,R), with some minor constraints on the format of rewriting
rules (see [5,6]), for any k ∈ N we can construct a Petri graph approximation
of (G0,R), called (k-)covering and denoted by Ck(G0,R). Intuitively, the k-
covering is exact up to causal depth k, i.e., any computation consisting of less
than k (possibly concurrent) steps, is represented in Ck(G0,R) without any
loss of information.

In order to make this more formal, given a Petri graph P = (N,G), let the
causal relation < be the least transitive relation over transitions such that, if
t1

• ∩ •t2 6= ∅ then t1 < t2. Then define the depth of a transition t to be the
length of the longest sequence t0 < t1 < . . . < tn < t. The depth of an edge is
the maximum among the depths of transitions which contain the edge in their
post-set.

Then the covering Ck(G0,R) is produced by the last step of the following
(terminating) algorithm which generates a sequence Pi = (Gi, Ni,mi) of Petri
graphs.

(i) P0 = (G0, N0,m0), where the net N0 contains no transitions and m0 =
EG0

.

(ii) As long as one of the following steps is applicable, transform Pi into Pi+1,
giving precedence to folding steps.

Unfolding. Find a rule r = (L,R, α) ∈ R and a match ϕ:L → Gi

such that ϕ(E⊕
L ) is coverable in Pi. Then extend Pi by “attaching” R to

Gi according to α and add a transition t, labelled by r, describing the
application of rule r.

Folding. Find a rule r = (L,R, α) ∈ R and two matches ϕ, ϕ′:L→ Gi,
at depth greater than or equal to k, such that
• ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and
• the second match causally depends on the transition unfolding the first

match.
Then merge the two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and
factoring through the resulting equivalence relation ≡.

For instance, an unfolding step involving rule 3 is depicted in Fig. 5. Tran-
sitions are represented as black rectangles and the Petri net structure is ren-
dered by connecting edges (places) to transitions with dashed lines. The label
n for dashed lines represents the weight with which the target/source place
occurs in the post-set (pre-set); when the weight is 1, the label is omitted. In
the resulting Petri graph we can find three occurrences of the left-hand side of
rule 3. The latter two are causally dependent on the first, which means that
they can be merged in two folding steps. The algorithm, starting from the
start graph in Fig. 1, terminates producing the Petri graph C0(RPh) in Fig. 6,
where the initial marking is represented by tokens.

The covering Ck(G0,R) is an abstraction of the original GTS (G0,R) in
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Fig. 5. An unfolding and two folding steps.
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Fig. 6. The Petri graph C0(RPh) computed as covering of RPh.

the following sense.

Proposition 4.3 (Abstraction) Let G = (G0,R) be a graph transformation
system and let Ck(G) = (G,N,m0) be its k-covering. Furthermore, let G be
the set of graphs reachable from G0 in G and let M be the set of reachable
markings in Ck(G). Then there exists a simulation S ⊆ G ×M with the
following properties:

• (G0,m0) ∈ S;

• whenever (G′,m′) ∈ S and G′ r
⇒ G′′, then there exists a marking m′′ with

m [r〉m′′ and (G′′,m′′) ∈ S;

• for every (G′,m′) ∈ S there exists an edge-bijective graph morphism ϕ:G′ →
graphG(m′).

The above result will allow us to use existing results concerning abstrac-
tions of reactive systems [7,22]. Consider the property TNC in Example 3.5
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expressing the absence of dead-locks in system RPh. Observe that the graph
property NC P2

, i.e., the absence of vicious cycles where P2-labelled edges
(processes holding one resource and waiting for a second one) occur twice is
reflected by edge-bijective graph morphisms. Hence, by using Proposition 4.3,
if we can prove it on the covering C0(RPh) of Fig. 6, we could deduce that it
holds for the original system RPh as well. Observe that actually, in this case,
even the stronger property “#e ≤ 1”, i.e., “e contains at most one token”,
where e is the edge labelled P2, holds for all reachable markings as it can be
easily verified by drawing the coverability graph of the Petri net. This is an
ad hoc proof of the property, which instead, by the results in this paper, will
follow as an instance of a general theory.

5 Verifying µL2 on Graph Transformation Systems

In this section we show how the verification of properties of a GTS G, expressed
in the logic µL2, can be reduced to the verification of suitable properties of the
Petri net underlying a covering of G. This is done by viewing our technique
as a specific instance of abstract interpretation [10,19], and exploiting some
results from [22].

The idea is the following. Let G be a GTS and let Ck(G) be its k-covering.
By Proposition 4.3, Ck(G) = (G,N,m0) “approximates” G via a simulation
consisting of pairs (G′,m′) such that G′ can be mapped to graphG(m′) (see,
e.g., Fig. 4) via an edge-bijective morphism. Given a formula on graphs F in
L2, expressing a state property in G, a corresponding formula M(F ) on the
markings of Ck(G) is constructed such that, for any pair in the simulation,

m′ |= M(F ) ⇒ G′ |= F

and thus, in a sense, F can be safely checked over the approximation Ck(G).
This will be obtained in two steps. First, we will define a type system
which allows us to identify formulae F which are reflected by edge-bijective
morphisms, ensuring that graphG(m′) |= F implies G′ |= F . Then, we
will encode F into a propositional formula M(F ) on multisets such that
m′ |= M(F ) ⇐⇒ graphG(m′) |= F .

Finally, consider the temporal logic µL2 over GTSs. For suitable fragments
of such logics, e.g., the fragment 2µL2 without negation and the “possibility
operator” 3, by Proposition 4.3 and exploiting general results in [22], a tem-
poral formula T over G, where state predicates can be typed as “reflected”,
can be translated to a formula M(T ) over markings (translating the state
predicates as described above), such that, if Ck(G) |= M(T ) then G |= T , i.e.,
T is valid for the original GTS.

5.1 Preservation and Reflection of Graph Formulae

Preservation and reflection of graph formulae by graph morphisms are defined
as follows.
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s(x) = s(y), s(x) = t(y), t(x) = t(y):→ x = y, lab(x) = `, x ∈ X:↔

F : d−1

¬F : d

F1, F2: d

F1 ∨ F2, F1 ∧ F2: d

F1: d
−1, F2: d

F1 ⇒ F2: d

F : d

∀x.F : d

F : d

∃x.F : d

F : d

∀X.F : d

F : d

∃X.F : d

Fig. 7. A type system for preservation and reflection of L2 formulae by edge-bijective
morphisms.

Definition 5.1 Let F be a formula in L2 and ϕ : G1 → G2 be a graph
morphism. We say that F is preserved (resp. reflected) by ϕ if for all valuations
σ : free(F ) → EG1

and Σ : Free(F ) → P(EG1
), G1 |=σ,Σ F implies (resp. is

implied by) G2 |=ϕ◦σ,ϕ◦Σ F .

We are interested in syntactic criteria characterising classes of graph for-
mulae reflected, respectively preserved, by all edge-bijective graph morphisms.
Similar considerations on reflection and preservation on morphisms can be
found in [15]. Here we provide a technique which works for general second-
order monadic formulae. It is based on the type system of Fig. 7 which allows
to prove judgements of the form F :→ (resp. F :←), meaning that the L2-
formula F is preserved (resp. reflected) by all edge-bijective graph morphisms.
In the typing rules, it is intended that→−1=← and←−1=→. Moreover F :↔
is a shorthand for F :→ and F :←, while F1, F2 : d stands for F1 : d and F2 : d.

Example 5.2 The judgements NP(x, y):← and NC `:← are provable using
the type system of Fig. 7, thus the absence of paths and of vicious cycles is
reflected by edge-bijective morphisms.

The proposed type system can be shown easily to be correct, but it is
not complete. In fact, it is possible to show that the set of closed first-order
formulae which are preserved (resp. reflected) by edge-bijective morphisms is
undecidable. Therefore, a fortiori, not all L2-formulae which are preserved or
reflected are captured by the above type system.

5.2 A Propositional Logic on Multisets

In order to characterise markings of Petri nets we use a propositional logic on
multisets. We consider a fixed universe A over which all multisets are formed.

Definition 5.3 (Multiset formulae) The set of multiset formulae, ranged
over by M , is defined as follows, where a ∈ A and c ∈ N

M ::= #a ≤ c | ¬M | M ∨M ′ | M ∧M ′.

Let m be a multiset with elements from A. The satisfaction relation m |= M

is defined, on basic predicates, as m |= (#a ≤ c) ⇐⇒ m(a) ≤ c. Logical
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connectives are dealt with as usual.

We will consider also derived predicates of the form #a ≥ c and #a = c

with the obvious meaning. E.g., (#a ≥ c) stands for ¬(#a ≤ c − 1) if c > 0
and for true otherwise.

5.3 Encoding Graph Logic into Multiset Logic

We show how graph formulae can be encoded into “equivalent” multiset for-
mulae. More precisely, for a fixed Petri graph P = (G,N,m0) the aim
is to find an encoding M1 of L2-formulae into multiset formulae such that
graphG(m) |= F ⇐⇒ m |= M1(F ) for every marking m of P and every
closed graph formula F .

We actually propose two encodings: an inductive one, which works only
for first-order formulae, and a general one which works for the whole set of
graph formulae.

Inductive Encoding. The encoding M1 of first-order graph formulae is
based on the following observation. Every graph graphG(m) for some marking
m of P can be generated from the finite “template graph” G in the following
way: some edges of G might be removed and some edges might be multiplied,
generating several parallel copies of the same template edge. Whenever a
formula has two free variables x, y and graphG(m) has n copies e1, . . . , en of
the same edge, it is not necessary to associate x and y with all edges, but it is
sufficient to assign e1 to x and e2 to y (first alternative) or e1 to both x and y
(second alternative). Thus, whenever we encode a formula F , we have to keep
track of the following information: a partition Q on the free variables free(F ),
telling us which variables are mapped to the same edge, and a mapping ρ from
free(F ) to the edges of G, with ρ(x) = e meaning that x will be instantiated
with a copy of the template edge e. Since there might be several different
copies of the same template edge, two variables x and y in different sets of Q
can be mapped by ρ to the same edge of G. Whenever we encode an existential
quantifier ∃x, we have to form a disjunction over all the possibile choices for
x: either x is instantiated with the same edge as another free variable y, and
in this case x and y should be in the same set of the partition Q. Or x is
instantiated with a new copy of an edge in G. In this case, a new set {x}
is added to Q and we have to make sure that enough edges are available by
adding a suitable predicate.

We need the following notation. We will describe an equivalence relation
on a set A by a partition Q ⊆ P(A) of A, where every element of Q represents
an equivalence class. We will write xQy whenever x, y are in the same equiv-
alence class. Furthermore we assume that each equivalence Q is associated
with a function rep : Q → A which assigns a representative to every equiva-
lence class. The encoding given below is independent of any specific choice of
representatives.
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Given a function f : A → B such that f(a) = f(a′) for all a, a′ ∈ A with
aQa′ and a fixed b ∈ B we define nQ,f (b) = |{k ∈ Q | f(rep(k)) = b}|, i.e.,
nQ,f (b) is the number of sets in the partition Q that are mapped to b.

Definition 5.4 (Encoding of first-order graph formulae) Let G be a
finite directed graph, let F be a graph formula in the first-order fragment of
L2, let ρ : free(F ) → EG and let Q ⊆ P(free(F )) be an equivalence relation
such that xQy implies ρ(x) = ρ(y) for all x, y ∈ free(F ). The encoding M1 is
defined as follows:

M1[¬F, ρ,Q] =¬M1[F, ρ,Q]

M1[F1 ∨ F2, ρ,Q] = M1[F1, ρ,Q] ∨M1[F1, ρ,Q]

M1[F1 ∧ F2, ρ,Q] = M1[F1, ρ,Q] ∧M1[F1, ρ,Q]

M1[x = y, ρ,Q] =

{

true if xQy

false otherwise

M1[lab(x) = `, ρ,Q] =

{

true if lG(ρ(x)) = `

false otherwise

M1[s(x) = s(y), ρ,Q] =

{

true if sG(ρ(x)) = sG(ρ(y))

false otherwise

formulae t(x) = t(y) and s(x) = t(y) are treated analogously

M1[∃x.F, ρ,Q] =
∨

k∈Q

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, Q\{k} ∪ {k ∪ {x}}]) ∨

∨

e∈EG

(M1[F, ρ ∪ {x 7→ e}, Q ∪ {{x}}] ∧ (#e ≥ nQ,ρ(e) + 1))

M1[∀x.F, ρ,Q] =
∧

k∈Q

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, Q\{k} ∪ {k ∪ {x}}]) ∧

∧

e∈EG

((#e ≥ nQ,ρ(e) + 1)⇒M1[F, ρ ∪ {x 7→ e}, Q ∪ {{x}}])

If F is closed (i.e., without free variables), we define M1(F ) = M1[F, ∅, ∅].

General Encoding. General monadic second-order graph formulae in L2 can
be encoded into multiset formulae, but differently from the first-order case,
the encoding is not defined inductively, even if quantifier elimination is still
possible.

Proposition 5.5 Let G be a fixed finite template graph. A closed graph for-
mula F in L2 can be encoded into a logical formula M2(F ) on multisets as
follows. For any multiset k ∈ E⊕

G , let Ck be the conjunction over the following
formulae:

• #e = k(e) for every e ∈ EG satisfying k(e) < qd1(F ) · 2qd2(F ) and

• #e ≥ k(e) for every e ∈ EG satisfying k(e) = qd1(F ) · 2qd
2
(F ).

where qd1(F ) and qd2(F ) denote the first and second order quantifier depth
of F , defined in the obvious way. Let M2(F ) be the disjunction of all Ck such
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that k ∈ E⊕
G , graphG(k) |= F and k(e) ≤ qd1(F ) · 2qd

2
(F ) for every e ∈ EG.

Then graphG(m) |= F ⇐⇒ m |= M2(F ) for every m ∈ E⊕
G .

Intuitively, for every first-order quantifier we have to try every edge of the
template graph. Furthermore we have to try every possible membership to
the sets assigned to second-order variables, of which there are at most qd2(F ),
hence there are at most 2qd2(F ) possible membership combinations.

Although a formal complexity analysis is beyond the scope of this paper,
we mention that the inductive encoding offers the advantage of generally pro-
ducing smaller propositional formulae, easier to simplify.

5.4 Verification of Temporal Formulae of µL2

We need to recall some concepts from [22], the more basic one being the
formalisation of abstraction given in terms of Galois connections.

Definition 5.6 (Galois connection) Let Q1 and Q2 be two sets of states.
A Galois connection from P(Q1) to P(Q2) is a pair of monotonic functions
(α, γ), with α : P(Q1) → P(Q2) (abstraction) and γ : P(Q2) → P(Q1)
(concretisation), such that idP(Q1) ⊆ γ ◦ α and α ◦ γ ⊆ idP(Q2).

Galois connections can be defined on general partial orders, but in this
context we only need to consider them over powerset lattices. Next we in-
troduce 〈α, γ〉-simulations which turn out to coincide with simulations in the
sense of Milner.

Definition 5.7 (〈α, γ〉-simulation) Let Ti = (Qi,→i) with i ∈ {1, 2} be
transition systems, where Qi is a set of states and→i⊆ Qi×Qi is the transition
relation. Let furthermore (α, γ) be a Galois connection from P(Q1) to P(Q2).

We say that T2 〈α, γ〉-simulates T1, written T1 v〈α,γ〉 T2, if α ◦ pre[→1] ◦
γ ⊆ pre[→2], where the function pre[→i] : P(Qi) → P(Qi) is defined by
pre[→i](Q) = {q ∈ Qi | ∃ q

′ ∈ Q : q →i q
′}.

Let T1, T2 be transition systems and let ϕ : T1 → T2 be a transition system
morphism, i.e., a function ϕ : Q1 → Q2 such that for any q, q′ ∈ Q1 if q →1 q

′

then ϕ(q) →2 ϕ(q′) (in other words, ϕ is a special kind of simulation). Then
the pair (ϕ, ϕ−1) is a Galois connection and furthermore T1 v〈ϕ,ϕ−1〉 T2.

These definitions allow us to interpret the approximations of the behaviour
of a graph grammar in this context. In fact, let us identify any graph grammar
G with the obvious graph transition system generated by G (as described after
Definition 3.4). Observe that also a Petri graph (G,N,m0) over G can be
seen as a graph transition system, by simply identifying any marking m with
the graph graphG(m). In this view, it can be shown that for any k ∈ N, for
suitable α and γ

G v〈α,γ〉 C
k(G).

By exploiting the results of [22] regarding the preservation and reflection
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of modal µ-calculus formulae on transitions systems and the results in this
paper we have the following.

Proposition 5.8 Let G = (G0,R) be a GTS, and let T be a µL2-formula.
Consider the formula M2(T ) obtained by replacing any state predicate A in
T by the multiset formula M2(A) as defined in Proposition 5.5. Then if T ∈
2µL2 and for any state predicate A in T the judgement A :← is provable
using the type system of Fig. 7, then for any k ∈ N

Ck(G) |= M2(T ) ⇒ G |= T

The above result shows how to reduce the analysis of the full transition
system of a graph grammar to the analysis of simpler transition systems,
generated by Petri nets (underlying Petri graphs). These transition systems
might still have infinitely many states, but there are several decidability re-
sults for fragments of the modal µ-calculus and other forms of temporal log-
ics [13,17,18]. Analogous result can be proved by restricting state predicates
to the first-oder fragment of L2 and using the encoding M1.

For instance, consider the safety property TNC over system RPh of Ex-
ample 3.5, i.e., the absence of vicious cycles including two distinct P2 pro-
cesses in all reachable graphs. The formula TNC can be translated into a
formula over markings, by translating its graph formula components accord-
ing to the techniques described in Sections 5.3. This will lead to the formula
M2(TNC) = νϕ.(M2(NC P2

)∧2ϕ ). Since TNC belongs to the 2µL2 fragment
and the basic predicate NCP2

can be typed as “reflected”, i.e., the judge-
ment NCP2

:← is provable in the type system of Fig. 7, by Proposition 5.8,
if Ck(RPh) |= M2(TNC) then RPh |= TNC . Therefore the formula TNC can
be checked by verifying M2(TNC) on the Petri net component of the approxi-
mated unfolding. In this case it can be easily verified that M2(TNC) actually
holds in C0(RPh) and thus we conclude that RPh satisfies the desired property.

6 Conclusions

We have presented a logic for specifying graph properties, useful for the veri-
fication of graph transformation systems. A type system allows us to identify
formulae of this logic reflected by edge-bijective morphisms, which can there-
fore be verified on the covering, i.e., on the finite Petri graph approximation
of a GTS. Moreover, fixed an approximation of the original system, we can
perform quantifier-elimination and encode these formulae into boolean com-
bination of atomic predicates on multisets. Combined with the approximated
unfolding algorithm of [5], this gives a method for the verification and analysis
of graph transformation systems. This form of abstraction is different from
the usual forms of abstract interpretation since it abstracts the structure of
a system rather than its data. Maybe the closest relation is shape analysis,
abstracting the data structures of a program [24,27].

Some natural generalisations of the approach presented in this paper are
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under development. Firstly, we intend to extend the approach to general hy-
pergraph rewriting, also considering the fact that the approximation method
of [5,6] was indeed designed for hypergraphs. The extension to general hyper-
graphs will require some basic changes to the graph logic L2. Furthermore,
we intend to consider wider classes of GTSs where it is possible to specify that
an hyperedge is preserved by a rule: this will require to consider Petri graphs
having an underlying contextual Petri net [3].
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