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Abstract. Ontology Mapping is a mandatory requirement for enabling semantic 

interoperability among different agents and services relying on different 

ontologies. This aspect becomes more critical in Peer-to-Peer (P2P) networks 

for several reasons: (i) the number of different ontologies can dramatically 

increase; (ii) mappings among peer ontologies have to be discovered on the fly 

and only on the parts of ontologies “contextual” to a specific interaction in 

which peers are involved; (iii) complex mapping strategies (e.g., structural 

mapping based on graph matching) cannot be exploited since peers are not 

aware of one another’s ontologies. In order to address these issues, we 

developed a new ontology mapping algorithm called Semantic Coordinator 

(SECCO). SECCO is composed by three individual matchers: syntactic, lexical 

and contextual. The syntactic matcher, in order to discover mappings, exploits 

different kinds of linguistic information (e.g., comments, labels) encoded in 

ontology entities. The lexical matcher enables discovering mappings in a 

semantic way since it “interprets” the semantic meaning of concepts to be 

compared. The contextual matcher relies on a “how it fits” strategy, inspired by 

the contextual theory of meaning, and by taking into account the contexts in 

which the concepts to be compared are used refines similarity values. We show 

through experimental results that SECCO fulfills two important requirements: 

fastness and accuracy (i.e., quality of mappings). SECCO, differently from 

other semantic P2P applications (e.g., Piazza, GridVine) that assume the 

preexistence of mappings for achieving semantic interoperability, focuses on 

the problem of finding mappings. Therefore, if coupled with a P2P platform, it 

paves the way towards a comprehensive semantic P2P solution for content 

sharing and retrieval, semantic query answering and query routing. We report 

on the advantages of integrating SECCO in the K-link+ system. 

Keywords: Ontology mapping in Peer-to-Peer networks, semantic mapping, 

semantic P2P applications, semantic web. 

1 Introduction 

Most of the information available today is in an unstructured and non-standardized 

form, therefore processing and exchanging it with people via computers is actually 



very difficult. This is because “machines” are not able to recognize the meaning of 

information they deal with. Solving this challenge is one of the main goals of 

Semantic Web technologies. The Semantic Web vision [3] aims at providing Web 

resources (e.g., web pages, documents) with supplementary meaningful information 

(i.e., metadata) in order to improve and facilitate their retrieval, enable their automatic 

processing by machines and make it possible the interoperability among different 

systems. Ontologies are key enablers towards this “new” Web of semantically rich 

resources. Ontologies can be exploited to give shared conceptualizations of 

knowledge domains and make explicit and machine understandable the meaning of 

the terminology adopted [24]. They aim at capturing knowledge typically shared by a 

group. The reference to a domain of interest indicates their usage not for modeling the 

whole world but rather those parts relevant to a particular task. Many ontology 

languages used today are based on XML (e.g., RDF(S) [28], OWL [39]) which make 

ontologies exploitable as semantic support in different classes of distributed 

applications such as Semantic Peer-to-Peer [48] and Semantic Grid [22]. 

In a recent interview [4], Tim Berners-Lee stated that: “The Semantic Web is 

designed to smoothly interconnect personal information management, enterprise 

application integration, and the global sharing of commercial, scientific and cultural 

data...”. From this interview emerges that semantic-based data sharing is expected to 

begin in controlled environments smaller than the World Wide Web as for instance: 

enterprise networks and small-medium Peer-to-Peer (P2P) networks. Moreover, the 

Semantic Web is expected to follow the same path of the Internet, which started in 

bounded environments. 

In distributed environments, it is not feasible to have a single (and universally 

accepted) ontology describing a knowledge domain, but there will be several 

(possibly overlapping) ontologies created w.r.t “the point of view” of their designers. 

In fact, as people see the world differently these viewpoints inevitably will be 

encoded in ontologies. For instance, for a computer company a computer is a product, 

for an economist, it is a household appliance, while for a student it is just a computer. 

In order to promote interoperability among these different perspectives about the 

world, it is necessary to ensure “reciprocal understanding”. This problem has been a 

core issue of recent ontology research activities and in the literature is referred to as 

the Ontology Mapping (or Matching) Problem (OMP) [21]. 

OMP concerns discovering correspondences (aka mappings) among entities 

belonging to different ontologies (i.e., a source and a target ontology). The problem 

becomes more challenging in P2P networks for several reasons: (i) the number of 

overlapping ontologies can dramatically increases, in theory each peer will have its 

own ontology that reflects peer’s needs and interests; (ii) mappings among peer 

ontologies must be quickly discovered and only on the parts of ontologies 

“contextual” to a specific interaction in which peers are involved; (iii) complex 

mapping strategies (e.g., structural mapping based on graph matching) cannot be 

exploited since peers are not aware of one another’s ontologies. Thus, ontology 

mapping algorithms for P2P networks should ensure a trade-off between fastness (not 

achievable by adopting complex mapping strategies) and accuracy (i.e., quality of 

results). 

To date, several approaches to solve the OMP have been proposed [11]. These are 

based on techniques borrowed from various research areas such as Bayesian Decision 



theory (see OMEN [36] and [38]) Graph Similarity (see GMO [51]) Information 

Retrieval (see LOM [41] and V-doc [42]) just to name a few of them. However, these 

approaches underestimate the following aspects: 

 They do not adequately consider the OMP in open environments such as 

P2P networks. A recent survey on ontology mapping [11] contains only a 

bibliographic reference to mapping systems designed for P2P networks. 

 They do not take into account the need for “on the fly” mappings crucial 

in P2P networks. In such networks, a complete mapping between peer 

ontologies is not a requirement for interactions among peers; they only 

need to quickly map the parts of their ontologies related to the specific 

interaction in which they are involved. Moreover, since peers are often 

unaware of one another’s ontologies the amount of ontological 

information exploitable to discover mappings is quite limited. 

 They do not adequately interpret the semantic meaning of ontology 

concepts to be compared. In addition, the context in which concepts 

appear is not carefully scrutinized from a semantic point of view. Even if 

there are some approaches addressing these issues, they often are not 

designed on the basis of well-founded experimental results. 

In this paper, we address the OMP in P2P networks by defining a new ontology 

mapping algorithm called SEmantiC COordinator (SECCO). We especially focused 

on the OMP in P2P environments since P2P applications seem to be a class of 

applications that will take advantage of Semantic Web technologies in a near future. 

SECCO is composed by three individual matchers: syntactic, lexical and contextual, 

each of which tackles the OMP from a different perspective. In particular, the 

syntactic matcher aims at discovering mappings by an Information Retrieval approach 

called LOM [41] that exploits linguistic information (e.g., comments, labels) encoded 

in ontology entities. The lexical matcher assesses semantic relatedness, even among 

syntactically unrelated concepts (e.g., car and automobile), by combining two 

approaches exploiting WordNet [35] as background knowledge. The contextual 

matcher implements a new similarity strategy called “how it fits”. This strategy 

complies with the contextual theory of meaning [34] and is founded on the idea that 

two concepts are related if they fit well in each other’s context. This approach allows 

comparing the structures of two concepts both in terms of their position in the 

ontological taxonomy and constituent properties. This is achieved at an affordable 

computational cost since it is not required to take into account the whole structure of 

ontologies. 

Specifically, the main contributions of the paper are: 

 We exploit the idea of concept mapping with the aim to gather similarity 

information among concepts belonging to different peer ontologies. 

Concept mappings allow building semantic links among peers that can be 

exploited in several classes of semantic P2P applications (e.g., semantic 

search, semantic query routing, and community formation). 

 We designed and extensively evaluated SECCO, which is endowed with 

three new mapping strategies facing the OMP from a different perspective 

but that share accuracy and fastness. In particular, concept mappings are 

derived by combining the results of these three mapping strategies. 



 Differently from other semantic P2P applications (e.g., Piazza, GridVine) 

that assume the preexistence of mappings for achieving semantic 

interoperability, we focus on the problem of finding mappings. 

Extensive experimental results, aimed at comparing SECCO w.r.t the state of the art, 

show that the combination of the proposed mapping strategies provides an adequate 

trade-off between accuracy (in terms of quality of mappings) and fastness (in terms of 

elapsed time for discovering mappings). 

Moreover, we want to emphasize that SECCO, if coupled with a P2P platform, paves 

the way towards a comprehensive semantic P2P solution for content sharing and 

retrieval, semantic query answering and semantic routing. We report on the 

advantages of integrating SECCO within the K-link+ system [31]. 

The remainder of this paper is organized as follows. Section 2, after introducing 

the terminology adopted in the rest of the paper, presents the SECCO ontology 

mapping algorithm. Section 3 describes and evaluates the individual matchers of 

SECCO. In Section 3.4 we motivate the design of SECCO. Section 4 presents a 

detailed evaluation of the system in two different settings. In particular, Section 4.1 

compares SECCO with H-Match [8, 9] and performs a sensitivity analysis of the 

different parameters of the algorithm (Section 4.1.1). Then, Section 4.2 evaluates the 

algorithm on four real-life ontologies of the OAEI 2006 benchmark test suite. Here 

SECCO is also compared with other mapping algorithms not explicitly designed for 

facing the OMP in P2P networks. Section 5 reviews related work. Section 6 draws 

some conclusions. Finally, Section 7 sketches future work.  

2 The SECCO ontology mapping algorithm 

We designed the SECCO ontology mapping algorithm for addressing the OMP in P2P 

networks, since semantic P2P applications, built by interconnecting knowledge 

managed at personal level, seem to be the applications taking advantage of Semantic 

Web technologies in a near future [4]. We argue that most of the existing mapping 

algorithms are not suitable for P2P networks since they, to work properly, need to 

deal with the whole two ontologies to be mapped. For instance, top ontology mapping 

algorithms, i.e., Falcon [25], and RiMOM [54] have structural mapping strategies 

built upon graph matching techniques. These techniques are well suited to work 

“offline” while they are not applicable in P2P environments where the OMP has to be 

faced “online” and peers are not aware of one another’s ontologies. 

In this section, after introducing the terminology adopted in the rest of the paper 

(Section 2.1) we describe the ontology model exploited by SECCO to discover 

mappings (Section 2.2). Section 2.3 presents a scenario of usage of SECCO and 

provides the pseudo-code of the algorithm. 

2.1 Preliminary definitions 

We consider a P2P network in which each peer owns an ontology (i.e., peer ontology) 

that represents the point of view of the peer on a particular knowledge domain. Each 



(seeker) peer can request to other (providers) peers a concept mapping whose aim is 

to provide information of similarity among a concept belonging to the seeker peer 

ontology and concepts belonging to ontologies of provider peers. The aim of the 

request depends on the application class, as will be discussed in Section 3.4. In this 

scenario, we define both seeker and provider peers as semantic peers since they 

manage, share and exchange knowledge by exploiting ontologies. 

An ontology is basically composed of two parts: (i) the intensional model, represented 

by means of an ontology schema and (ii) the extensional part, implemented by a 

knowledge base. In this paper, we adopt the following simplified ontology model that 

is inspired by the formal ontology definition proposed in [12]. 

Definition 1 (SECCO Ontology model). The SECCO ontology model is a six-tuple 

of the form: 

O=C,R,L,,R,L 

consisting of a set of concepts names C, a set of relation names R and a set of strings 

L that contains ontology metadata like comment(s) and label(s). Concepts names are 

arranged in a hierarchy by means of the partial order  (which intrinsically defines the 

ISA relation). The signature R: R  CC associates each relation name rR with a 

couple of concepts. Given a relation name rR, the first attribute of the tuple defines 

the relation domain dom(r)=1(R(r)) and the second attribute the range range(r)= 

2(R(r)). The signature R: CR  2
L
 associates each concept and relation with a 

subset of strings representing its metadata. 

This simplified ontology model is built up starting from OWL ontologies as described 

in Section 2.2. 

Definition 2 (Seeker peer). A seeker peer is a semantic peer that sends a semantic 

request over the P2P network to provider peers and receives a set of concept 

mappings. 

Definition 3 (Provider peer). A provider peer is a semantic peer that receives a 

request from a seeker peer and returns a concept mapping obtained by exploiting 

SECCO. 

Definition 4 (Request). Let O be an ontology, a request is a two-tuple of the form 

RQ=c,ctx(c) where cC is a concept belonging to the seeker peer ontology and 

ctx(c) is the context of c.  

Definition 5 (Concept Context). Let O be an ontology, the set of strings ctx(c) is the 

context of the concept cC. This set contains names of concepts related to c by 

relations in R that correspond to OWL objectype properties [39] and the names of 

relations in R that correspond to OWL datatype properties [39]. More formally, 

ctx(c)=CrangeCdomRdt where: (i) Crange and Cdom are the sets of concepts names for 

which respectively hold the following conditions: cdom(r)crangerange(r) and 

cdomdom(r)crange(r) with rR and range(r) and dom(r) both corresponding to 

user defined classes; (ii) Rdt is the set of relation names for which either range(r) or 

dom(r) is defined on a data type [39]. 

Datatype property names, present in the original OWL ontology, are included in 

ctx(c) as described in Section 2.2. 

The concept mapping between a seeker peer concept and the set of concepts 

belonging to a provider peer ontology is defined as follows: 



Definition 6 (Concept Mapping). Given the seeker peer request RQ=s,ctx(s) and 

the ontology O belonging to a provider peer, a concept mapping M between each 

provider concept pC and the seeker peer concept s is a set of 3-tuples of the form 

M=s,p, where [0,1] is the similarity value between the couple of concepts s and 

pCp. 

Similarity values between couples of concepts are obtained by adopting the similarity 

measure defined as follows: 

Definition 7 (Similarity Measure). Given two ontologies Os and Op belonging to a 

seeker and a provider peer respectively, a request RQs=cs,ctx(cs) and the set CTXp 

composed by two-tuples of the form cj,ctx(cj) where cjCp ctx(cj) is the context of 

cj; the similarity between the couples of concepts csCs and cpCp is computed by the 

following function: 

]1.0[ )}c,(csim),c,(csim),c,(c{sim : )c,sim(c psconpslexpssynps   

where simsyn(cs,cp): CsCp  [0,1] is the syntactic similarity, simlex(cs,cp): CsCp  

[0,1] is the lexical similarity, simcon(cs,cp): RQs CTXp  [0,1] is the contextual 

similarity. These three similarity measures are symmetric and reflexive i.e., cs Cs 

and cpCp, 

sim(cs,cs)=1   (reflexivity) 

sim(cs,cp)=sim(cp,cs) (symmetry) 

How to represent mappings in SECCO 

Even if the OMP has received a lot of attention from the scientific community, a 

standardized format for storing ontology mappings does not exist. In order to 

overcome this problem, there are two possible ways: 

1. Exploiting features of ontology languages. For instance, OWL provides 

built-in constructs for representing equivalence between concepts (i.e., 

owl:equivalentClass), relations (i.e., owl:equivalentProperty) and instances 

(i.e., owl:sameAs). This approach allows OWL inference engines to 

automatically interpret the semantics of mappings and perform reasoning 

across different ontologies. However, by adopting this approach, a 

confidence value cannot be interpreted. 

2. Adopting the approach described in [20]. This mapping representation 

exploits RDF/XML to formalize ontology mappings. Each individual 

mapping is represented in cells and each cell has the following attributes: 

entity 1 (i.e., the concept in the source ontology), entity 2 (i.e., the concept 

in the target ontology), measure (i.e., the confidence value), type of 

mapping (usually equivalence). Due to its different parameters, this 

representation can easily be exploited by several kinds of applications. 

In SECCO, we adapt the second type of representation to the context of a P2P 

ontology mapping system. The adopted mapping representation is depicted in Fig.1. 

This representation allows a seeker peer (i.e., the seeker_peer tag), for a given seeker 

concept (i.e., the seeker_concept tag), to maintain both the URIs of provider concepts 

(i.e., provider_concept tag) and values of similarity (i.e., the similarity tag) grouped 

on the basis of provider peers (i.e., the provider_peer tag) that answered to the seeker 

request. 



       <mapping> 

           <seeker_peer name= ID> 

           <seeker_concept=URI> 

           <provider_peer name = ID> 

     <provider_concept ID=URI> 

                               <similarity>σ</similarity> 

                        </provider_concept> 

                        <provider_concept ID=URI> 

                               <similarity> σ</similarity> 

                        </provider_concept> 

                         … 

           </provider_peer name> 

             ... 

       </mapping> 

 

Fig. 1. Representation of mappings in SECCO. 

2.2 The SECCO ontology model construction 

The SECCO ontology model (see Definition 1) is built by exploring ontology class 

definitions contained in peer ontologies. To explain how the SECCO ontology model 

is constructed, let us consider the fragment of the Ka ontology (available at http:// 

www.cs.man.ac.uk/~horrocks/OWL/Ontologies/ka.owl) depicted in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A fragment of the Ka ontology 

<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Publication"> 

 <rdfs:subClassOf> 

     <owl:Restriction> 

         <owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#title"/> 

         <owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

     </owl:Restriction> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

   <owl:Restriction> 

   <owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#describesProject"/> 

         <owl:allValuesFrom> 

             <owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Project"/> 

         </owl:allValuesFrom> 

   </owl:Restriction> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

     <owl:Restriction> 

         <owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#abstract"/> 

         <owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

     </owl:Restriction> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

     <owl:Restriction> 

         <owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#year"/> 

         <owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/> 

     </owl:Restriction> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty rdf:resource="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#keyword"/> 

        <owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

      </owl:Restriction> 

  </rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Book"> 

        <rdfs:subClassOf> 

            <owl:Class rdf:about="file:F:/Projects/OIL/DAMLOilEd/ontologies/ka.daml#Publication"/> 

        </rdfs:subClassOf>   OMISSIS 

</owl:Class> 



Given an input ontology SECCO executes the following four main steps to construct 

its ontology model: 

1. Class name extraction: for each class a concept name is created in the 

SECCO ontology model. 

2. Subclass properties (i.e., ISA) analysis: for each class definition, SECCO 

scrutinizes its sub classes defined by the construct rdfs:subClassOf and 

generates the taxonomic structure. 

3. Datatype properties analysis: values of these properties are data literals. 

For each datatype property SECCO considers the linguistic information 

encoded in the property name (e.g., year in Ka) and includes in its ontology 

model, a new concept name representing the property (i.e., year) and a 

relation (i.e., has_year as shown in Fig. 3) to relate this new concept with 

the original class. 

4. Object properties analysis: these are properties for which the value is an 

individual. In this case, for each property, SECCO exploits the original 

OWL encoding and generates a relation, in its ontology model, that has the 

same name, domain and range of the original one. 

The ontology fragment depicted in Fig. 2, contains the definition of a class 

Publication along with some object and datatype properties, and related classes. By 

running SECCO, we obtain the ontology model representation depicted in Fig. 3. 

Notice that the construction of this representation also exploits the definitions of 

classes (e.g., Project, Event) that are not represented in the excerpt shown in Fig.2. 

 

ARTICLE 

KEYWORD 

PROCEEDINGS_TITLE 

PROJECT 

PUBLICATION DESCRIBES_PROJECT 

YEAR 

ABSTRACT 

PUBLICATION 

EVENT 

TITLE 

CONFERENCE 

ISA 

ISA 

CONFERENCE 

PAPER 

CONFERENCE 

JOURNAL 
BOOK 

ISA ISA 

EDITOR 

EDITOR 
VOLUME 

NUMBER 

HAS_KEYWORD HAS_ABSTRACT 

HAS_YEAR 

HAS_TITLE 

CONTEXT OF PUBLICATION  

 

Fig. 3. The SECCO representation of the Ka ontology related to the concept Publication. 

In Fig. 3 filled oval represent ontology concepts (i.e., classes) as defined in the 

original OWL ontology whereas empty ovals are the concepts introduced in the 

SECCO ontology model to exploit information encoded in Datatype properties. 

The context of the Publication concept, as defined in Definition 5, is the dashed area 

in Fig. 3. In more detail, ctx(Publication)={title, year, abstract, keyword, Project, 

Event, Book, Journal, Article}. 



2.3 The SECCO ontology mapping algorithm 

SECCO aims at discovering a concept mapping between a seeker peer concept and 

ontology concepts belonging to ontologies of provider peers. Each peer in the 

network plays a twofold role: (i) seeker peer, when it sends a request to the network; 

(ii) provider peer, when it executes locally the SECCO algorithm. Whenever a 

provider peer receives a request, it runs SECCO with an input of the following form: 

I=<cs, ctx(cs), Op, Th, ws, wL, wc>  

where: cs is a concept belonging to a seeker peer ontology; ctx(cs)is the context of cs; 

Op is the provider ontology, Th  [0,1] is a threshold value that can be used for 

filtering results. Moreover, ws, wL, and wc are the weights assigned to the values of 

syntactic, lexical and contextual similarity respectively. The overall similarity value is 

computed by the Combiner module that weights the similarity values provided by the 

individual matchers (see Fig. 4) and discards values that do not exceed a given 

threshold (i.e., the Th parameter in Fig.4). Once SECCO has terminated, it returns a 

concept mapping as defined in Definition 6. 

The overall approach is described in Fig. 4. A seeker peer issues an information 

request by picking a concept along with the related context from its ontology. This 

request reaches provider peers that run the SECCO algorithm on their ontologies and 

return to the seeker peer concept mappings that will be stored in the mapping store for 

future reuse. Fig. 5 describes the SECCO algorithm in a pseudo-code.  

 

(Ws, Wl, Wc, Th) 

ONTOLOGY CONCEPT 
+ CONTEXT 

 

SEMANTIC COORDINATOR (SECCO)  

LEXICAL 

MATCHER 

 

CONTEXTUAL 

MATCHER 

 

SYNCTACTIC 

MATCHER 

 

COMBINER 

WORDNET LUCENE 

MAPPING 

STORE 

PROVIDER PEER 
ONTOLOGY 

SEEKER PEER 
ONTOLOGY 

WEIGHTS AND THRESHOLD 

Seeker peer Provider peer 

REQUEST (CONCEPT+CONTEXT) 

 

MAPPING 

STORE 

ANSWER (MAPPING) 

  

Fig. 4. The SECCO architecture and usage scenario. 

The function evaluate_syntactic_similarity is implemented by the syntactic matcher 

(see Section 3.1) while the function evaluate_lexical_similarity, is implemented by 

the lexical matcher (see Section 3.2). The function evaluate_contextual_similarity 

(see Fig. 7), implemented by the contextual matcher (see Section 3.3), relies on the 

function evaluate_how_it_fits (see Fig. 8) that adopts a “see how it fits” strategy that 

is founded on the idea that two concepts are related if they fit well in each other’s 

context (see Section 3.3). The contextual matcher takes as input the context obtained 

by the function extract_context (see Fig. 6). 



 
 

Fig. 5. The SECCO algorithm in pseudo-code. 

 

Fig. 6. The extract_context function. 

 

Fig. 7. The evaluate_contextual_similarity function. 

 

The SECCO algorithm 

Input: An input I=<c , ctx(c ), O, T , w , w , w > where O=C,R  is the 
SECCO ontology model 
Output: The concept mapping M 
Method: 

  1.  M=; 

  2.  for each  cC do   
  3.    sim =evaluate_syntactic_similarity(c ,c);  
  4.    sim =evaluate_lexical_similarity(c ,c);  
  5.     ctx(c)=extract_context(c,O); /*Fig.6*/ 
  6.     sim =evaluate_contextual_similarity(c ,Ctx(c ),c,Ctx(c)); 
  7.     sim=(w *sim +w *sim +w *sim ); /* overall similarity value */ 

  8.      if simT  then   

  9.         m.s=c  
  10.        m.p=c; 

  11.        m.=sim 

  12.        M=Mm; 
  13.     end-if  
  14. end-for  
  15. return M; 

Function extract_context 

Input: An ontology O=C,R and a concept cC  
Output: The context ctx(c) 
Method:  

1. ctx =; ctx =;  

2. for each c C do 

3.     for each r R do 

4.         if r (c,c )|r (c ,c) then 

5.            ctx =ctx {c } 

6.            ctx =ctx {r } 

7.         end-if 
8.     end-for 
9. end-for 

return ctx(c)=ctx ,ctx ; 

Function evaluate_contextual_similarity 
Input: Two concepts c  and c  and their contexts ctx(c ) and ctx(c ) 

Output: A numerical value sim [0,1] representing the contextual 

similarity between the concepts c  and c  
Method:  

1. s2s=evaluate_how_it_fits(c , ctx(c )); /* see Figure 8 */ 
2. s2t=evaluate_how_it_fits(c , ctx(c ));  
3. t2s=evaluate_how_it_fits(c , ctx(c ));  
4. t2t=evaluate_how_it_fits(c , ctx(c ));  
5. sim =((1-||s2s-t2t|-|s2t+t2s||)); 
6. return sim  



 

Fig. 8. The evaluate_how_it_fits function. 

In the next section, the individual matchers of SECCO are described and evaluated. 

3 Individual matchers: the building blocks of SECCO 

The idea of combining different heuristics, each of which implemented by an 

individual matcher, for the assessment of an overall similarity value between two 

ontology entities is not new (see [16,17]). The main motivation of adopting such a 

strategy is that from some ontology mapping initiatives (e.g., [19]) emerged that a 

combination of mapping strategies, in general, allows to obtain better results. 

Moreover, it is not arguable that a single heuristic is able to exploit all the types of 

information (e.g., lexical, structural) encoded in ontology entities.  

With these motivations in mind, we decided to endow SECCO with three different 

matchers. Each matcher respectively exploits syntactic/linguistic (syntactic matcher), 

lexical (lexical matcher) and contextual (contextual matcher) information contained 

in ontology entities. We adopt the syntactic matcher, since in our previous work on 

ontology mapping [41] we noticed that a merely syntactic approach can be effective 

and fast in discovering mappings. The lexical matcher is successful in discovering 

mappings in a semantic way, that is, by considering the semantic meaning of the 

compared terms and not treating them just as strings. Through this approach, it is 

possible, for instance, to discover that the automobile concept used in a seeker peer 

ontology is similar to the concept of car used in a provider peer ontology. Finally, the 

contextual matcher that relies on the lexical matcher allows refining similarity 

between concepts by considering the contexts in which they appear. The contextual 

matcher rationale complies with the contextual theory of meaning [34] according to 

which the relatedness between concepts can be defined in terms of their 

interchangeability within the contexts in which they appear. The contextual matcher 

allows the assessment of similarity between two concepts in terms of their 

structure/properties, but on a local basis, that is, by only considering the properties 

and neighbors of the two concepts and not the whole ontology structures in which 

they appear. Notice that for the scenario in which SECCO has to work (i.e., a P2P 

network) a structural matching strategy could affect the requirement of time accuracy 

given that it requires to compare entire ontologies (e.g., [51]). Indeed, in SECCO, a 

provider peer only receives a request (i.e., a concept along with its context) from a 

seeker peer and not its entire ontology. Through experimental evaluations (see 

Function evaluate_how_it_fits 

Input: A concept c and a context ctx(x)= C ,R 

Output: A numerical value m[0,1] representing the fitness between the 
concept c and the context ctx(x) 
Method:  

1. T=0;  

2. for each c C  do 
3.       T+=evaluate_lexical_similarity(c,c );  
4. end-for 
5. return m=T/|ctx(x)|; 



Section 4), we prove that the lack of a structural matcher will not significantly affect 

mapping results. Furthermore, it is worthwhile noting that the modular architecture of 

SECCO allows easily designing and adding new matchers to be included into the 

algorithm. In the Sections 3.1-3.3, we provide both a description and an evaluation of 

the three individual matchers. Section 3.4 motivates the designing of SECCO by 

reporting on the advantages of integrating it in K-link+ [31], a P2P system for 

collaborative work and content sharing and retrieval. 

3.1  The Syntactic Matcher 

This matcher that implements the function evaluate_syntactic_similarity (see Fig. 5, 

line 3), mainly relies on the Lucene Ontology Matcher (LOM) described in our 

previous work on ontology mapping [41]. Here we provide an overall description of 

LOM, further details along with complete experimental results can be found in [41]. 

Given a source ontology O, in order to discover mappings, LOM aims at exploiting 

metadata of ontology entities (e.g., comments, and labels) contained in L (i.e., 

linguistic information). In particular, for each entity e in CR a virtual document that 

contains its metadata in L is encoded by exploiting the concept of Lucene Document 

[33]. Virtual documents are stored into an index maintained in main memory. 

Ontology mappings are derived by using values of entities of a target ontology as 

search arguments against the index created from the source ontology. Similarity 

values are computed by exploiting the scoring schema implemented in Lucene, which 

relies on Vector Space techniques [45]. 

In order to show the suitability of LOM in terms of both speed and accuracy, here 

we report on its evaluation on the OAEI 2006 benchmark test suite [37] as compared 

to three string matching techniques (i.e., I-Sub [49], Jaro Winkler [52] and Edit 

Distance [32]) that are typically exploited to perform syntactic matching of ontology 

entities. Ontologies in the OAEI benchmark test suite are based on one particular 

ontology defined in the bibliography domain and a number of variations of such 

ontology for which alignments are provided. There are different categories of 

alteration related to both linguistic aspects (variation in names and comments of 

entities) and structural aspects (variation in relations among entities). The benchmark 

is composed of five groups of tests that are constructed on the basis of the above 

mentioned types of alterations. Fig. 9 shows the average results obtained by LOM in 

terms of Precision (i.e., the number of correct mapping among all the mapping found), 

Recall (i.e., the number of correct mapping among all the existing mapping) and F-

measure (i.e., the harmonic mean of Precision and Recall) [15]. 



 

Fig. 9. Evaluation of LOM on the OEAI 2006 benchmark test suite. 

As can be noticed, LOM outperforms the competitors. This is because it can 

profitably exploit all the linguistic information included in ontologies. In fact, even in 

test cases where entity names are altered (e.g., randomized, expressed in another 

language) LOM, by exploiting other linguistic information (e.g., labels, comments), 

can correctly assess similarity values. Moreover as discussed in [41] the average time 

for computing a mapping between two ontologies of the OAEI tests is 1.47s. 

In the light of these considerations, LOM can be exploited as an individual matcher of 

SECCO, instead of a classical string-based approach, since it is more effective in 

terms of accuracy and is adequately fast. 

In particular, in order to adopt LOM in SECCO we made the following adaptations: 

 Ontologies of both seeker and provider peers are indexed. Therefore, each 

peer exploits its index to search for similar entities for requests coming from 

seeker peers (i.e., acts as a provider). 

 Since in SECCO we do not want to compare whole ontologies, but a seeker 

concept along with its context with provider ontology concepts, we construct 

a new type of virtual document that contains linguistic information of the 

concept along with linguistic information of its context. This way, the 

linguistic information of a concept is augmented with linguistic information 

of entities in its context. Therefore, also the syntactic matcher takes into 

account a certain degree of structural information. 

3.2  The Lexical Matcher 

The lexical matcher, that implements the function evaluate_lexical_similarity (see 

Fig. 5, line 4), is the central component of the whole system. It allows implementing 



the semantic mapping by “interpreting” the semantic meaning of concepts to be 

compared. The lexical matcher exploits WordNet [35] as a source of knowledge about 

the world. WordNet is a lexical ontology organized in synsets (or senses) that 

encompass terms with synonymous meaning. Each synset has a gloss, which is a 

description in natural language of the concepts it represents. Synsets are connected to 

one another by a predefined set of semantic relations, some of which are reported in 

Table 1. 

Table 1. Semantic relations between synsets in the WordNet 3.0 noun taxonomy. 

Relation Description Example 
 

Hypernymy is a generalization of Plant is an hypernym of Flower 

Hyponymy is a kind of Tulip is hyponym to Flower 

Meronymy is a part of Finger is a meronym of Hand 

Holonymy contains part Tree is a holonym of Bark 

Antonymy opposite of Man is an antonym of Woman 

Instance of is an instance of California is an instance of American state 

Has instance has instance American state has instance California 

Some of these relations define inheritance relations (Hypernymy and Hyponymy), 

other part-of relations (Holonymy and Meronymy). The Antonymy relation is used to 

state that a noun is the opposite of another. The relations instance of and has instance 

have been introduced in WordNet 3.0 and represent instantiation relations. Fig.10 

shows an excerpt of the WordNet noun taxonomy. 
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Fig. 10. An excerpt of the WordNet 3.0 noun taxonomy. 

Through the lexical matcher we aim at assessing the relatedness between ontology 

entities by exploiting their definitions within the WordNet database and position in 

the taxonomy. Semantic relatedness is the question of how related two concepts are 

by considering different kinds of relations connecting them. On the other hand, 

semantic similarity only considers the hypernymy/hyponymy relations among 

http://www.answers.com/topic/plant
http://www.answers.com/topic/flower


concepts. For instance, Car and Gasoline may be closely related to each other, e.g. 

because gasoline is the fuel most often used by cars. Car and Bicycle are semantically 

similar, not because they both have wheels and means of steering and propulsion, but 

because they are both instances of Vehicle. The relation between semantically similar 

and semantically related is asymmetric: if two concepts are similar, they are also 

related, but they are not necessarily similar just because they are related. 

In literature (see [54]), there are several metrics for assessing similarity and 

relatedness among concepts in WordNet. In the context of ontology mapping, several 

approaches (e.g., [29]) compute semantic similarity between concepts by exploiting 

semantic similarity metrics. However, these approaches only consider the hypernymy 

/ hyponymy relations linking synsets. 

In order to take into account a wide range of semantic relations connecting synsets we 

included two components in the lexical matcher. A similarity assessor aimed at 

assessing semantic similarity and a relatedness assessor aimed at assessing semantic 

relatedness. The final lexical similarity value is obtained by combining the 

contribution of the two assessors. 

3.2.1 The semantic similarity assessor 

The semantic similarity assessor aims at exploiting the structure of WordNet, which 

contains per se a certain degree of semantic information encoded in synsets. In the 

literature several approaches to compute semantic similarity are presented. In order to 

choose the most appropriate one, we evaluated results of several approaches and 

correlated them w.r.t human judgments of similarity. A detailed description of the 

dataset and evaluation methodology along with complete experimental results can be 

found at http://grid.deis.unical.it/similarity. 

Among the evaluated metrics, the most performant are these based on the notion of 

Information Content (IC). IC can be considered a measure that quantifies the amount 

of information a concept expresses and is computed as log the negative likelihood of 

the occurrences of a concept in a large corpus. Resnik in [43] exploited the notion of 

IC for assessing semantic similarity between terms in a taxonomy. The basic intuition 

behind the use of the negative likelihood is that the more probable a concept is of 

appearing then the less information it conveys, in other words, infrequent words are 

more informative than frequent ones. Knowing the IC values for each concept, we 

may then calculate the similarity between two given concepts. 

In the lexical matcher we adapt the Jiang and Conrath distance metric (J&C) [27]. 

This metric computes the semantic similarity between two concepts cs and cp as 

follows: 
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We consider the opposite of the semantic distance metric defined by J&C, as a 

similarity measure. Moreover, in order to quantify IC of concepts we exploit the 

function IC defined as follows [46]: 
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where the function hypo returns the number of hyponyms of a given concept c. Notice 

that concepts that represent leaves in the taxonomy will have an IC equals to one. 

Moreover, maxwn is a constant that indicates the total number of concepts in the 

WordNet noun taxonomy (i.e., 82115 in WordNet 3.0).  

The function sub(cs,cp) in equation 1 returns the concept (the lowest in the taxonomy) 

that subsumes both cs and cp. 

3.2.2 The semantic relatedness assessor 

In order to select the most appropriate relatedness assessor we evaluated several 

approaches. A complete description of the dataset and evaluation methodology along 

with complete experimental results is available at the similarity experiment website: 

http://grid.deis.unical.it/similarity. 

In our evaluation, we found that the gloss vector relatedness metric described in [40] 

is the most correlated w.r.t human judgment. This metric is based on the following 

intuition: the relatedness between two concepts can be assessed by comparing their 

glosses. In particular, this approach exploits “second order” vectors for glosses, that 

is, rather than just matching words that occur in glosses, the words in the gloss are 

replaced with co-occurrence (extracted from a corpus) vectors. Therefore, each gloss 

is represented by the average of its word vectors. Hence, pairwise comparisons can be 

made between vectors to measure relatedness between the concepts they represent. In 

the following, we summarize the step followed to compute the relatedness between 

two concepts cs and cp: 

1. Get the gloss of cs from WordNet. Create a gloss vector by adding the word 

vectors of all the words in the gloss.  

2. Get the gloss of cp from WordNet. Create a gloss vector by adding the word 

vectors of all the words in this gloss. 

3. Compute the cosine of the gloss-vectors. In addition, this metric use the 

relations represented in Table 1 to augment the glosses of cs and cp, with 

gloss information of concepts that are directly linked to cs and cp. This 

makes the augmented glosses of cs and cp much bigger than the just the 

glossed of cs and cp. 

If vs and vp are the gloss vectors for cs and cp, their relatedness in computed as 

follows: 
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Computing the overall lexical similarity score 

Overall, the lexical similarity is computed as a weighted sum of the scores provided 

by the two assessors:  

),(*),(*),(simlex psrpssps ccrelatwccsimwcc   . 
(4) 

From experimental evaluation, we found that equally weighting the two contributions 

(i.e., assigning 0.5 to both ws and wr) gives the best accuracy in terms of correlation 

w.r.t human judgment. 



Reducing the elapsed time  

Since WordNet is a huge lexical database, some performance issues related to its 

access can arise. In order to provide a fast access to the database and implement our 

similarity and relatedness measures we built an ad-hoc Lucene index that maintains 

the information about synsets. In particular, both values of IC and gloss vectors are 

stored in the index. The index is built by parsing the Prolog release of WordNet [53]. 

A running example 

In order to see how the lexical matcher works, let us compute the lexical similarity 

between the concepts Animal and Person. According to eq. (4) we have to compute 

the semantic similarity and relatedness between the two concepts. 

Computing semantic similarity 

For the semantic similarity, we have to calculate the following coefficients: 

 IC(Animal): Animal in the WordNet taxonomy has 3998 hyponyms, 

therefore according to equation (2) we have that IC(Animal)=0.2670. 

 IC(Person): Person has 6978 hyponyms, in this case we have: IC 

(Person)=0.2178. 

 IC(Organism): Organism, which subsumes both concepts (see Figure 10) has 

16110 hyponyms. Therefore we have IC(Organism)=0.1439. 

The semantic similarity value according to equation (1) is  

sim(Animal, Person)= 0.9014 

Computing semantic relatedness 

In order to compute semantic relatedness between Animal and Person we have to 

compare their glosses augmented with glosses of neighbors concepts. The neighbors 

concepts of a given concept are concepts related to it by any of the relations reported 

in Table 1. In our example, the gloss of the concept Person is” a human being…”. The 

gloss of the concept Animal is “a living organism characterized by voluntary 

movement ... ”. Each of these concepts has a representative vector which contains for 

each dimension a number indicating the frequency of the word encoded in that 

dimension. Here we do not report the vectors of the two concepts since they have a 

very large dimension (about 12000). The semantic relatedness between Animal and 

Person is: 

relat (Animal, Person)= 0.4667 

Overall, the lexical similarity between Animal and Person is: 

simlex (Animal, Person)= 0.5*0.9014+0.5*0.4667=0.6840 

Compound terms 

The lexical matcher treats compound terms by following the heuristic that in English 

the last token appearing on the right side of a compound term denotes the central 

concept, while other concepts encountered from the left side to the right side of 

denote a qualification of its meaning [30]. 

 



Remark 

To summarize, our lexical matcher is a good candidate for being included in SECCO 

since it respects the requirements of fastness (by exploiting the Lucene index) and 

accuracy (proven by several experimental evaluations whose results are available at 

http://grid.deis.unical.it/similarity). The lexical matcher is included in the Java 

WordNet Similarity Library (JWSL) [26], which is a Java-based library that provides 

access to information about WordNet Synsets and implements a variety of similarity 

and relatedness metrics. 

3.3  The Contextual Matcher 

The aim of the contextual matcher is to implement the evaluate_contextual_similarity 

function (see Fig. 5, line 6) exploited to refine similarity values assessed by the 

syntactic and/or lexical matcher. It advances a contextual approach to semantic 

relatedness that builds upon Miller et al. definition in terms of the interchangeability 

of words in contexts [34]. Contexts help to refine the search of correct mappings since 

they intrinsically contain both information about the domains in which concepts to be 

compared are used and their structure in terms of properties and neighbors concepts. 

Contexts represent possible patterns of usage of concepts and the contextual matcher 

is founded on the idea that similar concepts have similar patterns of usage. If two 

concepts can be used in a similar context then they are related. A concept Cs (i.e., 

seeker concept) in a context ctx(cs) (i.e., seeker context) not similar to a concept Cp 

(i.e., provider concept) in a context ctx(cp) (i.e., provider context) will likely fit bad 

into ctx(cp) as well as cp will do in ctx(cs). Conversely, if the two concepts can be 

interchangeably used, that is fit well in each other’s contexts, then they can be 

considered related. We call this strategy how it fits and, in order to quantify how well 

a concept fits in a context, we calculate the lexical similarity between the concept and 

all the concepts in the considered context and take the average value (see Fig. 8). The 

overall contextual similarity is computed by exploiting the following similarity 

indicators: 

1. s2s: indicates how the seeker concept fits in the seeker context 

2. s2t: indicated how the seeker concept context fits in the provider context 

3. t2t: indicated how the provider concept fits in the provider context 

4. t2s: indicates how the provider concept fits in the seeker context 

The overall contextual similarity is calculated according to the following equation. 

)2222(1),( sttsttssccsim pscon   . (5) 

It is worthwhile noting that this strategy aims at taking into account structural 

information about concepts on a local basis, that is, by only considering properties 

and nearest neighbor concepts in the taxonomy. This is justified by the fact that a 

complete mapping among peer ontologies is not required; they only need to map their 

part of ontologies contextual to the interaction in which they are involved. Moreover, 

in computing a concept mapping by SECCO, a provider peer is not aware of the 

whole ontology of the seeker peer. 

Here we provide a detailed evaluation of the contextual matcher on the two excerpts 

of ontologies depicted in Fig.11. 
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Fig. 11. Excerpts of a seeker and provider peer ontologies. 

We consider Book in the ontology of the seeker peer, as seeker concept, and Volume 

in the ontology of the provider peer, as provider concept. 

In order to assess the contextual similarity between Book and Volume we start with 

calculating the coefficients defined in equation (5). In particular, Table 2 and 3 show 

how the s2t and t2s coefficients are calculated. 

Table 2.  Calculation of the s2t coefficient.      Table 3.  Calculation of the t2s coefficient. 

Seeker 

concept 

(Book) 

Context of 

Volume 

Lexical 

Similarity 

value 

 

 

Provider 

concept 

(Volume) 

Context of 

Book 

Lexical 

Similarity 

value 

 

 

 

Book 

 

Journal 0.8554  

 

 

Volume 

 

Magazine 0.7088 

Library 0.5102 Bookshop 0.2574 

Proceedings 0.3961 Chapter 0.3179 

Title 0.5553 Heading 0.3279 

Author 0.4735 Author 0.3944 

Publisher 0.3105 Pages 0.3967 

s2t value 0.5168 t2s value 0.40 

Elapsed time  0.21 s Elapsed time  0.20 s 

In a similar way, SECCO computes values for s2s and t2t. In the considered example 

such values are: s2s=0.6578 and t2t=0.5467. The final contextual similarity between 

Book and Volume is 0.7057. Contextual similarity values for other couples of 

concepts are shown in Table 4. 

Discussion of results 

Similarity values obtained by the contextual matcher underline the fact that the 

contextual similarity between two concepts is affected by concepts and properties 

included in their contexts. For instance, even if Book and Volume can be linguistically 

considered very similar (their lexical similarity is 1), the contextual matcher correctly 

decreases their similarity value to 0.7057 (see equation 5) since they respectively 

appear in a Bookshop and Library context. Moreover, properties included in the 

definition of Book and Volume only share the concept of author. The highest 



contextual similarity value is obtained by the couple Bookshop and Library. Even 

being the two concepts linguistically not so much similar, their lexical similarity is 

0.3467, if we only consider the contexts to which they belong, we can observe that the 

seeker context defines a Bookshop with Place as a property while the provider context 

defines a Library with Address as property. Both contexts refer to places containing 

books (one in which they are sold and another in which they are stored) that are 

characterized by an attribute indicating their location. In this case, the high similarity 

value obtained by the contextual matcher will be refined by the lexical similarity 

value (which is lower) when weighing their individual contributions. 

Table 4. Results obtained by the contextual matcher for some couples of concepts in Fig. 11. 

Seeker  

concept 

Provider 

concept 

Contextual 

Similarity 

Elapsed 

time (s)* 
 

Book Journal 0.60567 0.26 

Book Library 0.3278 0.25 

Book Proceedings 0.1789 0.28 
    

Bookshop Journal 0.3878 0.24 

Bookshop Library 0.8067 0.25 
    

Chapter Proceedings 0.60879 0.16 

Chapter Volume 0.22345 0.28 

 

By continuing to evaluate further results, the couple Book and Proceedings receives a 

low contextual similarity value. They are not lexically very similar (their lexical 

similarity is 0.3987) and their respective contexts represent different things. The 

seeker context defines a set of properties of a Book (e.g., author, pages) and provides 

relations with its constituent parts (i.e., chapter), with the place where it can be sold 

(i.e., Bookshop) and so forth. Conversely, the provider context just provides 

information about the fact that a Proceedings is related to a Volume. Similar 

consideration can be done for the other couples of concepts. 

In the light of these considerations, we can conclude that the contextual matcher is a 

suitable approach to interpret the use of concepts in different contexts. In fact, it can 

correctly interpret similarity between contexts, as in Library and Bookshop, while it is 

also able to interpret their dissimilarity, as in the case of the couple Book and 

Proceedings. However, it is worthwhile noting that it becomes more effective when 

combined with the lexical matcher, as in the case of the couple Book and Volume. 

Finally, a consideration about elapsed time (see the last column of Table 4). We 

can see, as one can expect, that the elapsed time depends on the number of 

concepts/properties contained in the seeker and provider contexts. However, the 

elapsed time values, even in the case in which the dimension of the contexts in terms 

of number of concepts/properties is quite high (both the couples Book and Volume 

have 6 entities in total), never reach 0.3 s. 

                                                           
* Times elapsed are computed on a P4 running at 3 GHz with 1Gb of memory. 



Since the contextual matcher fulfills the requirement of speed and seems to be a 

reasonable approach for exploiting contextual information of ontology concepts, it 

can also be included in SECCO. 

3.4 Why do we need SECCO? 

This section explains why SECCO has been designed and how it can be practically 

exploited. The main motivation for designing SECCO is to provide an ontology 

mapping algorithm in open environments (e.g., P2P, Grid). As pointed out in Section 

1, there are several mapping algorithms, but there is a lack of algorithms especially 

designed for open environments. In such scenario, time accuracy is a mandatory 

requirement to perform “online” mapping and the amount of ontological information 

exploitable to discover mappings is quite limited. SECCO has been designed to 

provide the semantic foundation for the K-link+ system [31]. K-link+ is a P2P system 

for collaborative work based on the concept of workspace. The system allows workers 

to work concurrently in the same and shared environment (i.e., workspace) by a set of 

tools for sharing and exchanging knowledge in a semantic way. In such an open 

architecture, it would be very useful to discover and interact with semantically 

neighbor peers. The concept of semantic proximity can be represented by exploiting 

SECCO. In fact, mappings discovered by SECCO, establish semantic links among 

peers of a K-link+ network. These links can be exploited in the following ways: 

 Semantic based search: contents (e.g., web pages, documents) can be 

annotated to ontology concepts in order to provide them with an explicit and 

machine understandable semantic meaning. Therefore, content search can be 

performed by specifying ontology concepts instead of keywords. Retrieving 

similar concepts by SECCO will result in discovering contents annotated to 

such concepts. 

 Semantic building of workspaces: semantic links between peers are supposed 

to reflect common interests shared by the peers involved in these links. 

Therefore, by following these links peers with common interests can be 

discovered and grouped together. 

 Semantic query routing: semantic links can be exploited to forward queries. 

When a query reaches a peer, it can forward this query to other peers with 

which it has semantic links. This way a new semantic path between 

“unknown” peers can be constructed. Moreover, the amount of network 

traffic generated by queries (as compared with flooding techniques) can be 

significantly reduced by adopting a semantic-aware routing strategy. 

We want to point out how, in designing a comprehensive semantic P2P solution, the 

central problem is to find out semantic links among peers. Once found, these can be 

exploited for several purposes. Therefore, differently from other approaches (e.g., [1, 

24]) where the preexistence of mapping ensures semantic interoperability among 

peers, we provide a comprehensive solution that tackles the problem of designing 

semantic P2P systems from all the perspectives, that is, construction of the semantic 

overlay (provided by SECCO) and underling physical P2P architecture (provided by 

K-link+). 



4  SECCO: a double evaluation 

In this section, we show how the requirements that driven the design of SECCO are 

fulfilled in real case scenarios. In Sections 3.1-3.3 the matchers of SECCO have been 

individually described and how they cope with the requirements of fastness and 

accuracy has been shown. The syntactic matcher has been evaluated on the 

OAEI2006 real life ontologies (see Fig. 9). The lexical matcher has been extensively 

evaluated through the similarity experiment whose results are available at 

http://grid.deis.unical.it/similarity. The rationale of the contextual matcher has been 

described through the example depicted in Fig. 11. 

In this section, we want to evaluate SECCO as a whole. The evaluation has been 

split in two parts (referred to as Experiment 1 and Experiment 2 in the following). In 

Experiment 1 (see Section 4.1), we evaluated SECCO by comparing it with H-Match 

[8,9] that actually is the only system designed for mapping ontologies in open 

environments offering very similar features. In Section 4.1.1 we perform a sensitivity 

analysis of the assignment of weights to the individual matchers and observe how 

results provided by SECCO in Experiment 1 and the correlation w.r.t those produced 

by H-Match vary. In Experiment 2 (see Section 4.2), we evaluate how SECCO 

performs as a general mapping algorithm. In this experiment, we evaluate it on four 

real-life ontologies included in the OAEI 2006 benchmark test suite [37], and 

compare its results with those of other algorithms not explicitly designed for ontology 

mapping in P2P networks. We evaluate SECCO only on ontologies 301-304 of the 

OAEI 2006 in order to have an indicator of how it performs in real case scenarios. 

4.1 Experiment 1: comparing SECCO with H-Match 

This section presents the comparison of SECCO w.r.t H-Match on two excerpts of 

(online available) ontologies. The first ontology (Ka) describes research projects 

while the second one (Portal) describes content of a Web portal. We suppose that Ka 

belongs to a seeker peer while Portal to a provider peer. These ontologies have also 

been adopted to evaluate the H-Match system as described in [8]. We have chosen to 

adopt the same two ontologies in order to have an objective comparison between the 

two approaches. Fig. 12 shows two excerpts of Ka and Portal describing the concept 

of Publication are shown. 

In this evaluation, we aim at constructing, by exploiting SECCO, a mapping (see 

Definition 6) between the concept Publication in Ka and some concepts belonging to 

Portal. In particular, we want to emphasize how SECCO can profitably discover 

similarities even among terms apparently not related and how it behaves w.r.t H-

Match. 
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Fig. 12. Excerpts of the Portal and Ka ontologies defining the concept Publication. The context 

of Publication (dashed area) is also shown. 

Configuration of SECCO for Experiment 1 

In this experiment, the input I of SECCO (see Section 2.3) takes the values shown in 

Table 5. We do not set a threshold value (the Th parameter) since we want to create 

one-to-many mappings. 

Table 5. The input I of SECCO for Experiment 1. 

Parameter Value 
 

Cs                   Seeker Concept Publication 

ctx(Cs)           Seeker Context ctx(Publication) 

O                     Provider Ontology Portal (the excerpt shown in Fig.12) 

Th                    Threshold 0 

ws                   Syntactic similarity weight 0.1 

wL                    Lexical similarity weight 0.6 

wc                   Contextual similarity weight 0.3 

Since we want to give more emphasis to the semantic component of the algorithm, we 

consider lexical similarity more reliable than syntactic similarity or contextual 

similarity (i.e., we assign a higher value to wL). A detailed analysis on how the 

assignment of weights can affect results will be provided in Section 4.1.1. 

Results obtained by SECCO for Experiment 1 

Table 6 shows the results obtained by SECCO with the input I (see Table 5) along 

with overall elapsed times. 

 

 



Table 6. Results obtained by SECCO by considering Publication as seeker concept. 

 Similarity Values  

Ka 

concept 

Portal 

concept 

Syntactic Lexical Contextual Overall Elapsed 

time (s)† 
 

 

Publication Publication 1 1 0.697 0.909 0.49 

Publication Book 0 0.823 0.199 0.553 0.29 

Publication Journal 0 0.767 0.221 0.526 0.31 

Publication Magazine 0 0.737 0.088 0.468 0.29 

Publication Edited Book 0 0.823 0.674 0.696 0.29 

Publication Publication 

Reference 

0.3 0.549 0.118 0.395 0.27 

Publication Book 

Reference 

0 0.549 0.118 0.365 0.28 

Publication Edited Book 

Reference 

0 0.549 0.118 0.365 0.31 

These examples show the suitability of the lexical matcher which allows to discover 

mappings in a semantic way. In fact, by considering the analyzed couples of concepts 

only from a syntactic point of view we would obtain similarity values equal to 0 apart 

from the couples Publication (Ka) and Publication (Portal) and Publication (Ka) and 

Publication Reference (Portal). In the following, we compare these results with those 

obtained by H-Match. 

Discussion of results and comparison with H-Match 

Comparing ontology mapping algorithms is a hard task, especially when an objective 

and reliable reference alignment is not provided. Moreover in a P2P scenario, since a 

mapping algorithm usually aims at finding one-to-many mappings (it provides a 

similarity ranking between concepts) it is very difficult to interpret ranking values. In 

literature, there exist very few algorithms that address the ontology mapping problem 

in P2P environments. The approach closer to SECCO is H-Match. In order to make an 

objective comparison between them, we considered the results obtained by H-Match 

for the same couples of concepts on which SECCO has been evaluated. 

In the example depicted in Fig. 11 authors in [9] provide only a similarity value 

(related to the couple Book and Volume). For this couple, H-Match obtained the 

results shown in Table 7. 

Table 7. Comparison between SECCO and H-Match on the example of Fig. 11. 

 

Couple 

 

SECCO 

H-Match  

Shallow Intermediate Deep Average 
 

Book-Volume 0.8117 1 0.78 0.70 0.8266 

The overall similarity value between the couple Book and Volume obtained by 

SECCO is computed as follows: 

sim(Book, Volume )=ws*simsyn+ wL* simlex + wC* simcon 

                                                           
† Elapsed times are computed on a P4 running at 3 GHz with 1Gb of memory. 



Therefore, we obtain: 

sim(Book, Volume )=0.1*0+0.6*1+0.3*0.7057=0.8117 

The lexical matcher correctly interprets the linguistic similarity between the Book and 

Volume concepts; in fact, it gives 1 as output. The high value of lexical similarity is 

because the Book and Volume concepts belong to the same WordNet synset and 

therefore are synonyms. Same things are valid for H-Match, whose shallow matching 

model has similar features to the lexical matcher of SECCO. The contextual matcher 

of SECCO, since Book and Volume respectively appear in a Bookstore context and a 

Library context, correctly decreases the overall similarity value (this aspect has been 

discussed is Section 3.3). 

H-Match obtains a similarity score of 0.78 with the intermediate matching model, 

which takes into account concept names and properties. Through the deep matching 

model, which considers the whole context of concepts (i.e., all the properties) H-

match obtains 0.70. This matching model is the most similar to that implemented by 

SECCO. The average value given by H-Match, obtained by averaging results of the 

three matching models, is 0.8266, which is very close to the result obtained by 

SECCO. Therefore, in this case, we can conclude that the similarity value between 

Book and Volume obtained by SECCO is comparable with that obtained by H-Match. 

A more detailed comparison between the two approaches can be done by 

considering the two excerpts of the Ka and Portal ontologies depicted in Fig. 12. 

Similarity values obtained by both SECCO and H-Match [8] are shown in Table 8. 

For the sake of comparing only semantic features of the two approaches we do not 

considered the contribution of the syntactic similarity of SECCO for the couples 

Publication (Ka) and Publication (Portal) and Publication (Ka) Publication 

Reference (Portal). 

Table 8. Comparison between SECCO and H-Match on the example of Fig. 12. 

Ka 

concept 

Portal concept SECCO H-Match  

Surface Shallow Deep Intensive Average  
 

Publication Publication 0.909 1 0.7384 0.8047 0.7814 0.8318 

Publication Book 0.553 0.8 0.6184 0.66 0.6394 0.6795 

Publication Journal 0.526 0.64 0.5224 0.5538 0.5381 0.5636 

Publication Magazine 0.468 0.8 0.6184 0.6498 0.6341 0.6756 

Publication Edited Book 0.696 0.64 0.5224 0.5641 0.5434 0.5675 

Publication Publication 

Reference 
0.395 0.64 0.5531 0.5741 0.5503 0.5794 

Publication Book Reference 0.365 0.64 0.5531 0.5733 0.5497 0.5790 

Publication Edited Book 
Reference 

0.365 0.64 0.5531 0.5637 0.5420 0.5747 

In this experiment, it is interesting noting that the higher similarity values obtained by 

SECCO and H-Match are related to the couple Publication (Ka) and Publication 

(Portal). These two values are very close. Same considerations are valid for the 

couple Publication (Ka) and Book (Portal). An interesting consideration can be done 

for the last three rows of Table 8. While SECCO obtains low similarity values, H-

Match obtains values that always exceed 0.5. For instance, for the couple Publication 



and Publication Reference, SECCO obtains 0.395 while H-Match obtains 0.5794 as 

average result. However, by objectively analyzing the concepts, one can assess that 

these concepts are not much similar. In fact, the first describes the concept of 

Publication while the second defines a reference to a Publication.  

It is very difficult to comparing results between the two strategies with very few 

matching of couples, as in the case of Book and Volume (see Table 7). Moreover, 

comparing mapping results, without a reference alignment, implicitly includes a 

certain degree of subjective interpretation. 

In order to obtain an overall indicator of how the two approaches are (un)related, 

we computed the Pearson correlation coefficient [13] between their results. This 

coefficient represents an agreement between the values of two data sets (in our case 

between similarity results) by expressing the degree of association between them (see 

Table 9). 

Table 9. Correlation between results of SECCO and H-Match shown in Table 8. 

 H-Match 

Surface Shallow Deep Intensive  Average 

SECCO 0.898 0.8559 0.9051 0.908 0.8919 

As can be noticed the higher value of correlation is 0.908 meaning that results 

obtained by SECCO are closer to these obtained by H-Match through the intensive 

matching model. Through this model of matching, H-Match considers both linguistic 

feature of ontology concepts and whole context of concepts (in terms of properties 

and semantic relations) in which they appear. In addition, also the correlation w.r.t the 

deep model is high. The average correlation value is 0.8919, which underlines how he 

two approaches are very close. In fact, a value of correlation higher that 0.7 can be 

interpreted as an indicator of high similarity [44]. It is very important notice that 

SECCO performs very close to those of H-Match even if SECCO does not adopt 

complex matching strategies. 

Since both approaches heavily rely on linguistic features of ontologies, we also 

computed the correlation (see Table 10) between results of our lexical matcher that 

relies on WordNet and the surface matching model of H-Match that relies on an ad-

hoc thesaurus built by exploiting WordNet. 

Table 10. Correlation between the lexical matcher of SECCO and the surface matching model 

of H-Match. 

 H-Match 

Surface 

SECCO  
0.7123 Lexical matcher 

As can be noticed, the value of correlation is high even if it is very difficult to 

estimate which approach is more accurate. However, the lexical matcher of SECCO is 

not an ad-hoc thesaurus but it is able to exploit the whole structure of WordNet by 

including in the similarity computation a wide set of semantic relations between 



concepts. Moreover, the metrics included in the lexical matcher have been extensively 

evaluated by the similarity experiment [26]. 

4.1.1  Discussion on similarity aggregation and assignment of weights 

SECCO, in order to perform similarity aggregation, adopts a weighted sum of 

similarity values given by the individual matchers. Do and Rahm [14] address some 

aspects of weights assignment and similarity aggregation for database structures. A 

similarity aggregation function is a function that takes results from several matchers, 

weights these results, and gives as output an overall similarity indicator. The weights 

are assigned manually or learned, e.g., using machine learning on a training set. 

Berkovsky et al. [5] have thoroughly investigated the effects of different weights on 

the alignment results.  

We chose to adopt a strategy based on multiple matchers since experimental results 

have shown that a combination of similarity measures (provided by different 

matchers) leads to better alignment results than using only one matcher at a time. We 

realize that this technique needs a certain degree of expertise from the SECCO user. 

In facts, if the different weights are not correctly assigned, mapping results can be 

affected. However, notice that in a P2P scenario it is not possible to a priori analyze 

the structure of ontologies to be compared, in order to find the best mapping strategy 

(as done in [25]), since peers are not aware of the ontologies of other peers. 

In the experiments, we manually settled values of the different weights (i.e., the ws, 

wL, wc parameters). However, it would be interesting to see how the correlation 

coefficient w.r.t H-Match (Experiment 1) changes when assigning different weights. 

Table 11 shows correlation values between the two approaches by assigning different 

values of ws, wL and wc. For sake of space, we do not report, for each variation of the 

weights, the similarity values obtained by SECCO. 

Table 11. Correlation between results of SECCO and H-Match by varying the weights of the 

individual matchers on the couples of concepts listed in Table 8. 

SECCO H-Match 
Syntactic 

similarity 
ws 

Lexical 

similarity 
wL 

Contextual 

similarity 
wc 

Correlation w.r.t the different matching 
models 

 

Average 
correlation 

surface shallow deep intensive 

0.1 0.6 0.3 0.898 0.8559 0.9051 0.908 0.8917 

0.3333 0.3333 0.3333 0.9023 0.8657 0.9102 0.9117 0.8974 

0.3 0.4 0.3 0.8415 0.8367 0.8567 0.8645 0.8498 

0.3 0.3 0.4 0.8218 0.8123 0.8657 0.8756 0.8438 

0.1 0.3 0.6 0.7656 0.7567 0.8123 0.8198 0.7886 

0.1 0.1 0.8 0.4978 0.4478 0.5218 0.5123 0.4949 

An interesting consideration arises from results shown in Table 11. As it can be 

noticed, if we assign equal weights to the matchers (row 2) the correlation raise up to 

0.9117 with the intensive model of H-Match and to 0.8974 in the average. Moreover, 

it is interesting to point out that if we assign a little higher value to the contextual 

matcher (row 4), the correlation remains high (0.8756 for the intensive model and 



0.8438 in the average). Even in the case in which contextual similarity has a higher 

value (row 5), the average correlation value remains quite high. Conversely, if we 

give much more emphasis to the contextual matcher (row 6), the average correlation 

drastically decrease to 0.4949 in the average. As final remark, we can conclude that 

assigning equal weight to the matchers can increase the correlation value w.r.t H-

Match, that does not necessarily mean better results since in the considered example 

alignments are not provided. However, in the light of these considerations in 

Experiment 2 we assign equal weights to the different matchers. 

4.2 Experiment 2: comparing SECCO with other ontology mapping algorithms 

not designed for ontology mapping in P2P networks 

This section provides an extensive evaluation of SECCO on four real-life ontologies 

contained in the OAEI 2006 [37] test suite. We compared SECCO with other mapping 

algorithms not explicitly designed to tackle the OMP in P2P networks. This way we 

want to show how much the designing strategy of SECCO, which has to ensure 

fastness and cannot exploit the whole structures of ontologies to be mapped, affects 

accuracy (i.e., quality of results). 

In particular, we focused on the group of tests that contain four real-life ontologies 

(i.e. tests from 301 to 304) in order to investigate how SECCO performs in mapping 

real ontologies. For each of these ontologies the OAEI organizers provided a 

reference alignment. We computed measures of Precision (i.e., the number of correct 

mapping among all the mapping found), Recall (i.e., the number of correct mapping 

among all the existing mapping) and F-measure [15] (i.e., the harmonic mean of 

Precision and Recall). In particular, we compared results obtained by SECCO with 

those provided by the OAEI organizers. 

Notice that SECCO, even being designed for P2P networks and therefore to work 

“online”, can be exploited to compare entire ontologies by reiterating the process 

described in Section 2 for each concept in the source ontology (i.e., the reference 

ontology 101 contained in the OAEI tests). 

Configuration of SECCO for Experiment 2 

Table 12 shows the values of the input of SECCO for this experiment. Here we are 

interested in obtaining one-to-one mappings. 

Table 12. SECCO configuration for Experiment 2. 

Parameter Value 
 

Cs         Seeker Concept Each concept Ci contained in the reference ontology (i.e., 

101) 

ctx(Cs)  Seeker Context ctx(Ci) 

O          Provider Ontologies 301-302-303-304 

Th         Threshold 0.51 

ws         Syntactic similarity weight 0.333 

wL        Lexical similarity weight 0.333 

wc      Contextual similarity weight 0.333 



Results obtained by SECCO for Experiment 2 

Fig. 13 shows values of  Precision, Recall and F-Measure obtained by SECCO. As 

can be noticed, SECCO performs well. It always obtains a Precision around 0.9. The 

Recall, reaches the highest value (i.e., 0.9387) for ontology 304 while the lowest 

value (i.e., 0.6211) for ontology 302. However, it always remains higher than 0.5. The 

F-Measure values are 0.8269 for ontology 301, 0.7375 for ontology 302, 0.8012 for 

ontology 303 and 0.949 for ontology 304. Values of F-Measure that represent an 

overall indicator of the performance of a mapping algorithm are in all the cases high. 

 

Fig. 13. Results of SECCO on the OAEI 2006 real life ontologies. 

Discussion of results and comparison with other ontology mapping algorithms  

In order to have an objective evaluation of SECCO, we decided to compare its 

average results with those of other ontology mapping approaches. The results are 

shown in Table 13. SECCO obtained an average Precision of 0.81, an average Recall 

of 0.81 and an average F-measure of 0.81. As can be noticed, SECCO is one of the 

most precise algorithms. It is only slightly outmatched by Automs and Falcon. 

In terms of Recall SECCO is outperformed only by RiMOM. In terms of F-Measure, 

SECCO is only dominated by Falcon and RiMOM. 

An important consideration emerges from these results. SECCO is an ontology 

mapping algorithm that in its current implementation cannot exploit the whole 

structural information encoded in ontologies. Conversely, most of the presented 

approaches have a solid structural matching strategy. For instance, Falcon relies on 

the GMO approach [51] that exploits a graph-matching algorithm for discovering 

mappings while RiMOM exploits an adaptation of the Similarity Flooding algorithm. 

Such strategies require a complex analysis of the ontologies that is not conceivable in 

a P2P environment for two reasons: (i) peers are not aware of the whole ontologies of 

other peers; (ii) the fundamental requirement of fastness in P2P networks can be 



affected. It is worthwhile noting that SECCO obtains very good results without using 

that strategy. 

Table 13. Average results obtained by some ontology mapping algorithms on the OAEI 2006 

real-life ontologies, as reported in [19]. 

 SECCO‡ Jhu/apl 

[6] 

Automs  

[29] 

Falcon  

[25] 

RiMOM 

[55] 

H-Match 

[10] 
 

Precision 0.81 0.18 0.91 0.89 0.83 0.78 

Recall 0.81 0.50 0.70 0.78 0.82 0.57 

F-Measure 0.81 0.26 0.79 0.83 0.82 0.65 

Average 

Elapsed 

Time (s) 

3.05 s Na 70.25 s 7.22 s 3.14 s Na 

Notice that the elapsed time by SECCO is the lowest. In particular, it is 25 times 

lower that that obtained by Automs that also exploits WordNet and about 3 times 

lower than that of Falcon, which adopts a structural matching strategy. Moreover, the 

comparison with H-Match, the system actually very similar to SECCO, shows how 

SECCO is better in terms of Precision, Recall and F-Measure. It would be also 

interesting to compare the approaches in terms of elapsed time but unfortunately, 

authors in [10] do not provide information about execution times. 

On the one side, these results show how a structural mapping strategy can improve 

mapping results as in the case of Falcon. On the other side, they show that SECCO 

obtains results comparable with those of the most performant ontology mapping 

algorithms without adopting complex structural analysis of ontologies. Finally, we 

can conclude SECCO is faster than other mapping algorithms and the cost paid, in 

terms of accuracy, is not so high. 

5 Related work 

Recently several ontology mapping algorithms have been proposed. A detailed survey 

is given in [11]. In that survey, only a bibliographic reference to ontology mapping in 

P2P systems is listed. This underlines the fact that the OMP has not adequately been 

tackled in open environments. In literature, there are few approaches similar to 

SECCO explicitly designed for mapping ontologies in open environments. 

The CtxMatch algorithm [7] aims at discovering mappings between Hierarchical 

Categories (HCs). It relies on WordNet for interpreting the correct sense of concepts 

in the context in which they appear. Therefore, it performs a transformation of the 

concepts to be compared in Description Logics axioms that are exploited to reduce the 

problem of discovery mappings to a SAT problem. CtxMatch similarly to SECCO 

implements a semantic based approach since it relies on WordNet. However, the main 

difference between these systems is that CtxMatch focuses on matching HCs and 

provides as output a semantic relation between terms while SECCO can also deal with 

ontologies and provides a confidence value. 

                                                           
‡ Elapsed times are computed on a P4 running at 3 GHz with 1Gb of memory. 



H-Match [8, 9] is an algorithm for dynamically matching concepts in distributed 

ontologies. H-Match allows for different kinds of matching depending on the level of 

accuracy needed. The system aims at supporting knowledge sharing and ontology-

addressable content retrieval in peer-based systems. It is actually the system closer to 

SECCO. Indeed, there are at least two main differences between these approaches: 

 The lexical matcher of H-Match is based on a ad-hoc thesaurus, while that of 

SECCO is based on WordNet. H-Match defines an ad hoc similarity metric 

between concepts in the thesaurus. Conversely, SECCO can benefit from a 

similarity metric evaluated by the similarity experiment [26]. The metric 

adopted in SECCO is highly correlated w.r.t similarity judgments given by 

human§. 

 H-Match in performing contextual affinity exploits predefined weights 

assigned to the different types of relations among concepts. It introduces five 

types of relations (i.e., same-as, part-of, kind-of, contains, associates) among 

terms of a peer ontology. These relations are assessed by exploiting relations 

that concepts have in WordNet. Conversely, SECCO adopts the “how it fits” 

strategy from which the contextual similarity indicator can emerge by 

combining measures of semantic similarity, to take into account 

hypernymy/hyponymy relations among synsets, and relatedness to take into 

account a broader range of semantic relations (e.g., part of). 

We deeply compared SECCO with H-Match concluding that results obtained by 

the two approaches are, for several aspects, comparable. However, SECCO performs 

a little better on real-life ontologies included in the OAEI 2006 tests. Since the two 

approaches are both designed to work in open environments, it would be interesting 

also to compare them in terms of performance (i.e., execution time for computing 

mappings). 

Falcon-AO [25] is an automatic tool for aligning ontologies based on three 

alignment strategies: the I-Sub [48] metric is exploited to compare strings, the V-Doc 

[42] is a linguistic matcher based on Information Retrieval, while the GMO [51] is a 

matcher based on graph matching.  

The RiMOM system [55] combines different strategies to assess ontology 

mappings. In particular, it includes an edit distance metric and an adaption of the 

similarity flooding algorithm to the context of ontology mapping. 

iMapper [50] is an ontology mapping tool based on the idea of semantic 

enrichment. It makes use of ontology instances to calculate the similarity between 

concepts. The mapping process is split in two phases. In the first one (i.e., enrichment 

phase) documents (i.e., instances) associated to ontology concepts are analyzed thus 

building the enriched ontology. The association of documents to concepts can be done 

automatically, but user refinement it is also allowed. The output of this phase are 

representative vectors (one for each concept) built from the textual content of their 

associated documents. In the second phase (i.e., mapping phase) similarities between 

ontology elements are computed as the cosine between their representative vectors. 

Further refinements are employed to re-rank the results via the use of WordNet. 

The abovementioned systems discover ontology mappings by exploiting both 

structural and linguistic information encoded in ontology entities. However, in order 

                                                           
§ For preliminary experimental results refer to: http://grid.deis.unical.it/similarity 



to work properly they need to scrutinize the two ontologies to be mapped. For 

instance, the structural matcher of Falcon is based on a graph matching algorithm 

(i.e., the GMO matcher) which requires to construct the adjacency matrix of the two 

ontologies. In addition, the lexical matcher of Falcon (i.e., the V-Doc matcher [42]) 

requires analyzing both the ontologies to be mapped. Similar things hold for RiMOM, 

which adopts as a structural matcher a variant of the Similarity Flooding algorithm. 

iMapper needs to access the whole two ontologies and requires ontology concepts to 

be associated with instances. As can be notice, a common denominator among these 

approaches is that they “need to know” the whole two ontologies. Conversely, 

SECCO does not impose this requirement since as usually happens in P2P networks 

peers are not aware of one another’s ontologies. Therefore, it would be interesting to 

see how the abovementioned approaches perform without completely knowing the 

two ontologies to be mapped. 

In the literature, there are some semantic P2P applications sharing common 

characteristics with SECCO. 

SWAP (Semantic Web and Peer to Peer) [18] aims at combining ontologies and 

P2P for knowledge management purposes. SWAP allows local knowledge 

management through a component called LR (Local node repository), which gathers 

knowledge from several sources and represents it in RDF-Schema. In SWAP, each 

node is responsible for a single ontology: ontologies might represent different views 

of a same domain, multiple domains with overlapping concepts, or might be obtained 

by partitioning an upper level ontology. Knowledge sharing is obtained through 

ontology mapping and alignment. 

GridVine [1] is a semantic P2P system whose aim is to build a semantic overlay 

network based on two layers: logical layer and physical layer. The logical layer 

provides a set of functionalities such as: attribute-based search, schema management 

and schema mapping. The physical layer is used as support to the logical layer in 

constructing the overlay and forwarding queries. In GridVine, semantic 

interoperability is achieved by semantic gossiping [2]. Semantic gossiping assumes 

the preexistence of local agreements provided as mappings between different 

schemas. Peers introduce their own schemas and exchanging translations between 

them can incrementally come up with an implicit “consensus schema”. 

Piazza [24] is a P2P Data Management system whose main aim is to enable 

efficient query processing. Piazza takes into account the structure of the knowledge 

domain and documents in order to achieve interoperability between different 

information sources. Similarly, to GridVine it assumes the preexistence of mappings 

between data sources. Therefore, these mappings are chained together and exploited 

for query rewriting/answering. 

In the SWAP system, mappings between peer ontologies are dynamically obtained 

by exploiting techniques based on lexical features, structure and instances of 

ontologies. Conversely, neither the GridVine nor the Piazza approach tackle the 

problem of discovering mappings among the different representations (i.e., schema, 

ontologies) belonging to different peers since they assume the preexistence of 

mappings. 



6 Concluding remarks 

This paper described SECCO, an ontology mapping algorithm aimed at discovering 

concept mappings in P2P networks. A concept mapping has been defined as a 

similarity ranking between a request (composed by a concept along with its context) 

performed by a seeker peer and concepts belonging to provider peer ontologies. Since 

we assume that peers are not aware of one another’s ontologies, in order to discover 

mappings, we designed an ad-hoc mapping strategy. This strategy aims at fulfilling 

two important requirements (i.e., fastness and accuracy) through three individual 

matchers. The main problem we faced is related to the fact that we cannot adopt 

sophisticated and time-consuming structural matching strategies that require to know 

the whole two (peer) ontologies to be compared. Hence, we adopted the notion of 

context, defined as a concept along with its properties (obtained as described in 

Section 2.2) and nearest neighbor concepts. Through contexts, we aim at encoding the 

amount of structural information needed in a particular request. We compare the 

contextual information of different concepts by the “how it fits” strategy that is 

founded on the idea that two concepts are related if they fit well in each other’s 

context. This strategy is supported by the lexical matcher whose aim is to exploit an 

accurate (proven by the similarity experiment [26]) similarity metric in WordNet. 

This metric allows assessing similarity even among syntactically unrelated concepts. 

Moreover, in order to exploit all the linguistic information of ontology entities (i.e. 

ontology metadata) we adopt the syntactic matcher. This matcher encodes linguistic 

information in virtual documents that are created and compared by an information 

retrieval approach. All these matching strategies have been extensively evaluated. 

Along the paper, we discussed the exploiting of SECCO in the context of P2P 

networks and proven through experimental evaluation the suitability of the algorithm. 

In particular, SECCO has been compared (Experiment 1) with the H-Match algorithm, 

designed for ontology mapping in open environments, with very promising results. 

Furthermore, SECCO has been compared (Experiment 2) with other mapping 

algorithms not explicitly designed for mapping in P2P networks and even in this case 

results are satisfactory. We also performed a sensitivity analysis from which emerged 

an interesting aspect related to weight assignments to the different matchers. 

7 Future work 

Here we briefly describe possible improvements of the algorithm. First in a future 

version of SECCO we aim at distinguishing relations between concepts from relations 

that describe properties of concepts. This way, the definition of context exploited by 

SECCO will give much emphasis to the relations that have per se a semantic meaning 

as for instance the ISA relations. We are also performing further improvements of 

SECCO along two directions. 

On the one side, we are investigating a strategy for automatically tuning the 

weights of the different matchers and aggregating results. In particular, we are 

evaluating the following possibilities: 



 The use of sophisticated techniques such as the Dempster Shafer theory for 

combining results of the different matchers. The Dempster-Shafer theory 

[47] is a mathematical based on belief functions and plausible reasoning, 

which is used to combine separate pieces of information (evidence) to 

calculate the probability of an event. In our case, we aim at exploiting this 

strategy for combining uncertain results given by the different matchers for 

obtaining a more reliable overall similarity value. 

 The use of a linear aggregation formula. According to this strategy, a weight 

of 1 is given to results provided by each matcher. The overall similarity is 

obtained as the average similarity value given by the different matchers. 

On the other side, we aim at exploiting the World Wide Web for refining similarity 

values among concepts. In fact, we argue that the Web could be a valuable source of 

knowledge. Our aim is to design a similar strategy based on the analysis of relations 

between terms extracted from the snippets (related to concepts to be compared) given 

by a search engine. 

Finally, since we included SECCO as semantic support in our K-link+ [31] system, 

we also would like to evaluate its performance within K-link+. In this case, we are 

interested in evaluating SECCO in a complete semantic P2P solution for cooperation 

and contents sharing and retrieval. 
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