
Functional Programming for Dynamic and
Large Data with Self-Adjusting Computation

Yan Chen
MPI-SWS

chenyan@mpi-sws.org

Umut A. Acar
Carnegie Mellon University and

INRIA-Paris
umut@cs.cmu.edu

Kanat Tangwongsan
Mahidol University International College

ktangwon@gmail.com

Abstract
Combining type theory, language design, and empirical work,
we present techniques for computing with large and dynamically
changing datasets. Based on lambda calculus, our techniques are
suitable for expressing a diverse set of algorithms on large datasets
and, via self-adjusting computation, enable computations to respond
automatically to changes in their data. Compared to prior work, this
work overcomes the main challenge of reducing the space usage of
self-adjusting computation without disproportionately decreasing
performance. To this end, we present a type system for precise
dependency tracking that minimizes the time and space for storing
dependency metadata. The type system eliminates an important
assumption of prior work that can lead to recording of spurious
dependencies. We give a new type-directed translation algorithm
that generates correct self-adjusting programs without relying on
this assumption. We then show a probabilistic chunking technique
to further decrease space usage by controlling the fundamental
space-time tradeoff in self-adjusting computation. We implement
and evaluate these techniques, showing very promising results on
challenging benchmarks and large graphs.

1. Introduction
Recent advances in the ability to collect, store, and process large
amounts of information, often represented in the form of graphs,
have led to a plethora of research on “big data.” In addition to being
large, such datasets are diverse, arising in many domains ranging
from scientific applications to social networks, and dynamic: they
change gradually over time. For example, a social-network graph
changes as users join or leave the social network or as they change
their set of friends. Prior research on languages and programming
systems for big data applications has two important limitations:
• Due to their diversity, big-data applications benefit from expres-

sive programming languages. Yet existing work offers domain-
specific languages and systems such as “MapReduce” [12] with
limited expressiveness that not only restrict the set of problems
that can be solved but also how efficiently they can be solved
(by limiting the algorithms that can be implemented).
• Even though big data applications often require operating on

dynamically changing datasets, many existing languages and
systems provide for a batch model of computation, where the
data is assumed to be static or unchanging.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper, we show that, when combined with the right set
of techniques and tools, functional programming can overcome
both of these limitation. First, as an expressive, general purpose
programming model, functional programming can enable an efficient
implementation of a broad range of algorithms for big data. Second,
since functional programming is consistent with self-adjusting
computation [1, 3, 9, 10], it can also enable programs to respond
efficiently to changing data provided that a major limitation of self-
adjusting computation—space usage—can be overcome.

Self-adjusting computation [1, 3, 9, 10] refers to a technique
for compiling batch programs into programs that can automatically
respond to changes to their data. The idea behind self-adjusting
computation is to establish a space-time tradeoff so that the results
of prior computations can be reused when computing the result for a
different but similar input. Self-adjusting computation achieves this
by representing the execution of a program as a higher-order graph
data structure called a dynamic dependency graph, which records
certain dependencies in the computation, and by using a change-
propagation algorithm to update this graph and the computation.
In a nutshell, change propagation identifies and rebuilds (via re-
execution) only the parts of the computation affected by the changes.

Unfortunately, existing approaches to self-adjusting computation
require a significant amount of memory to store the dynamic
dependency graph, making them practically impossible to use with
large datasets. For example, on a modest input of 107 integers, a
self-adjusting version of merge sort uses approximately 100x more
space than its batch counterpart. Such massive demands for space
thus far have limited applicability of the technique to relatively small
problem sizes.

This paper presents two techniques for overcoming this limitation
of prior work. The first technique improves the space efficiency by
improving the precision of dependency tracking that self-adjusting
computation relies on. The second technique enables controlling the
space-time trade-off fundamental to self-adjusting computation. Our
first technique relies on a type system for tracking dependencies
precisely and a type-directed translation algorithm that can generate
correct and efficient elf-adjusting programs. Our second technique
is a probabilistic chunking scheme for coarsening the granularity at
which dependencies are tracked without disproportionately degrad-
ing the update performance.

Our starting point is the recent work on type-based automatic
incrementalization [9, 10]. That work enables translating batch
programs into self-adjusting programs that can efficiently respond
to incremental changes. The idea behind the approach is to use
a type inference algorithm to infer all changeable data, which
changes over time, and track only their dependencies. Unfortunately,
the type inference algorithm can identify non-changeable data as
changeable, causing redundant dependencies to be recorded. The
reason for this is the modal type system that all previous work on

1 2014/3/1

self-adjusting computation relies on [3]. That modal type system
ensures a crucial property, that all relevant dependencies are tracked,
but at the cost of being conservative and disallowing changeable
data from being nested inside non-changeable data, which leads to
redundant dependencies.

We solve this problem by designing a more refined type systems
(Section 3) and a translation algorithm (Section 6) that can cor-
rectly translate source programs (Section 4) into a lower-level target
language (Section 5). Our source-level type system is an information-
flow type system that enables precise dependency tracking by break-
ing the assumption from prior work and allowing changeable data
to be nested inside non-changeable data. We present a translation
algorithm that can nevertheless produce correct self-adjusting ex-
ecutables by emitting target code written in a destination-passing
style. To provide the flexibility needed for operation on changeables
without creating redundant dependencies, the target language is im-
perative but relies on a type and effect system [34] for correctness,
guaranteeing that all dependencies are tracked. We prove that the
translation generates well-typed and sound target code, consistent
with the source typing, and thus guarantees the correctness of the
resulting self-adjusting code written in the target language.

When combined with an important facility in self-adjusting
computation—the ability to control the granularity of dependency
tracking by selectively tracking dependencies—precise dependency
tracking offers a powerful mechanism to control the space-time
trade-off fundamental to self-adjusting computation. By tracking
dependencies at the level of (large) blocks of data, rather than
individual data items, the programmer can further reduce space
consumption. As we describe, however, this straightforward idea
can lead to disproportionately slow updates (Section 7), because it
can cause a small change to propagate to many blocks. We overcome
this problem by presenting a probabilistic blocking technique.
This technique divides the data into blocks in a probabilistic way,
ensuring that small changes affects a small number of blocks. The
technique enables reducing the size of the dependency metadata
by a desired factor B (block size) under programmer control, while
slowing down updates only by a factor of Θ(B).

We implement the proposed techniques in Standard ML and
present an empirical evaluation by considering several list primitives,
sorting algorithms, and challenging algorithms for large graphs such
as PageRank, graph connectivity, and approximate social-circle size.
These problems, which are highly unstructured, put our techniques
through a serious test. Our empirical evaluation shows that
• Expressive languages such as lambda calculus instead of domain-

specific languages such as MapReduce can lead to large (e.g.
50-100 fold) improvements in time and space efficiency.
• The type system for precise dependency tracking can signifi-

cantly reduce space and time requirements (e.g., approximately
by 2 and 10 folds respectively).
• Our techniques for controlling the space-time trade-off can

reduce memory consumption effectively under programmer
control, while proportionally slowing down updates.
• Our techniques can enable responding significantly faster (e.g.,

several orders of magnitude or more) to both small and aggregate
changes while moderately increasing memory usage compared
to the familiar batch model of computation.
Specific contributions of the paper include the type system,

the translation algorithm from the source to the target language,
the probabilistic chunking scheme for controlling the space-time
tradeoff, the incremental algorithms for graphs, the implementation,
and the evaluation.

2. Background and Overview
Using a simple list-partitioning function, we illustrate the self-
adjusting computation framework, outline two limitations of previ-
ous approaches, and describe how we resolve them.

2.1 Background and List Partition

Figure 1 shows SML code for a list-partition function partition
f l, which applies f to each element x of l, from left to right, and
returns a pair (pos, neg) where pos is the list of elements for which f
evaluated to true, and neg is the list of those for which f x evaluated
to false. The elements of pos and neg retain the same relative order
from l. Omitting the annotation C, this is the same function from
the SML basis library, which takes Θ(n) time for a list of size n.

Self-adjusting computation enables the programmer to develop
efficient incremental programs by annotating the code for the non-
incremental or batch programs. The key language construct is a
modifiable (reference), which stores a changeable value that may
change over time [3]. The runtime system of a self-adjusting lan-
guage track dependencies on modifiables in a dynamic dependency
graph, enabling efficient change propagation when the data changes
in small amounts.

Developing a self-adjusting program can involve significant
changes to the batch program. Recent work [9, 10] proposes a type-
directed approach for automatically deriving self-adjusting programs
via simple type annotations. For example, given the code in the
leftmost column of Figure 1 and the annotation C (the second line)
that marks the tail of the list changeable, the compiler automatically
derives the code in the middle figure.

These type annotations, broadly referred to as level types, parti-
tion all data types into stable and changeable levels. Programmers
only need to annotate the types of changeable data with C; all other
types remain stable, meaning they cannot be changed later on. For
example, intS is a stable integer, intC is a changeable integer and
intS listC is a changeable list of stable integers. This list allows
insertion and deletion but each individual element cannot be altered.

In the translated code (Figure 1, middle), changeable data are
stored in modifiables: a changeable int becomes an int mod.
Given the self-adjusting list-partition function, we can run it in
much the same way as running the batch version. After a complete
first run, we can change any or all of the changeable data and
update the output by performing change propagation. As an example,
consider inserting an element into the input list and performing
change propagation. This will trigger the execution of computation
on the newly inserted elements without recomputing the whole list.
It is straightforward to show that change propagation takes Θ(1)
time for a single insertion.

2.2 Limitation 1: Redundant Dependencies

The problem. As with all other prior work on self-adjusting com-
putation (e.g. [1]) that relies on a type system to eliminate difficult
correctness problem (in change propagation), recent work [9, 10]
uses a modal type system to guarantee properties important to the
correctness of self-adjusting computation—all changeables are ini-
tialized and all their dependencies are tracked. This type system
can be conservative and disallow changeable data to be nested
inside changeable data. For example, in list partition, the type
system forces the return the type to be changeable, i.e., the type
(α list mod * α list mod) mod. This type is conservative;
the outer modifiable (mod) is unnecessary as any observable change
can be performed without it. By requiring the outer modifiable, the
type system causes redundant dependencies to be recorded. In this
simple example, this can nearly double the space usage while also
degrading performance (likely as much as an order of magnitude).

2 2014/3/1

1 fun partition f l
2 : (α listC * α listC) =
3

4 case l of
5 nil ⇒ (nil, nil)
6

7 | h::t ⇒
8 let val (a,b) = partition f t
9

10

11

12 in if f h then (h::a, b)
13

14 else (a, h::b)
15

16 end

fun partition f l
: (α list mod * α list mod) mod =

read l as l’ in
case l’ of
nil ⇒ write (mod (write nil),

mod (write nil))
| h::t ⇒

let val pair = mod (partition f t)

in if f h then read pair as (a,b) in
write (mod (write h::a), b)

else read pair as (a,b) in
write (a, mod (write h::b))

end

fun partition f l (l00,l01)
: (α list mod * α list mod) =

let val () = read l as l’ in
case l’ of
nil ⇒ (write (l00,nil);

write (l01,nil))
| h::t ⇒

let val (a,b) = let
val (l00,l01) = (mod nil, mod nil)
in partition f t (l00,l01)
end

in if f h then (write (l00, h::a);
read b as b’ in write (l01, b’))

else (read a as a’ in write (l00, a’);
write (l01, h::b))

end
in (l00,l01) end

Figure 1. The list partition function: ordinary (left), self-adjusting (center), and with destination passing (right).

Our solution. We can circumvent this problem by using unsafe,
imperative operations. For our running example, partition can be
rewritten as shown in Figure 1(right), using in a destination passing
style. The code takes an input list and two destinations, which are
recorded separately. Without restrictions of the modal type system,
it can return (α list mod * α list mod), as desired.

A major problem with this approach, however, is correctness:
a simple mistake in using the imperative constructs can lead to
errors in change propagation that are extremely difficult to identify.
We therefore would like to derive the efficient, imperative version
automatically from its purely functional version. There are three
main challenges to such a translation. (1) The source language has
to identify which data is written to which part of the aggregate data
types. (2) All changeable data should be placed into modifiables and
all their dependencies should be tracked. (3) The target language
must verify that self-adjusting constructs are used correctly to ensure
correctness of change propagation.

To address the first challenge, we enrich an information-flow
type to check dependencies among different components of the
changeable pairs. We introduce labels ρ into the changeable level
annotations, denoted as Cρ. The label serves as an identifier for
modifiables. For each function of type τ1 → τ2, we give labels for
the return type τ2. The information flow type system then infers
the dependencies for each label in the function body. These labels
decide which data goes into which modifiable in the translated code.

To address the second challenge, the translation algorithm takes
the inferred labels from the source program, and conducts a type di-
rected translation to generate self-adjusting programs in destination
passing style. Specifically, the labels in the function return type are
translated into destinations (modifiables) in the target language, and
expressions that have labeled level types are translated into explicit
write into their corresponding modifiables. Finally, we wrap the
destinations into the appropriate type and return the value.

As an example, consider how we derive the imperative self-
adjusting program for list partition, starting from the purely func-
tional implementation on the leftmost column of Figure 1. First,
we mark the return type of the partition function as (α listC00 ∗

α listC01)S, which indicates the return has two destinations l00 and
l01, and the translated function will take, besides the original argu-
ments f and l, two modifiables l00 and l01 as arguments. Then an
information flow type system infers that the expression (h::a,b)
on line 12 of Figure 1 (left) has type (α listC00 ∗α listC01)S. Using
these label information, the compiler generates a target expression
write (l00,h::a); write (l01,b). Finally, the translated func-
tion returns the destination as a pair (l00,l01). Figure 1 (right)
shows the translated code for list partition using our translation.

To address the third challenge, we design a new type system
for the imperative target language. The type system distinguishes
the modifiable as fresh modifiables and finalized modifiables. The
typing rules enforce that all modifiables are finalized before reading,
and the function fills in all the destinations, no matter which control
branch the program is taken. We further prove that following
the translation rules, we generate target programs that are of the
appropriate type, and are type safe.

2.3 Limitation 2: Dependency Metadata.

The problem. Even with precise dependency tracking, self-
adjusting programs can require large amounts of memory, making
them difficult to scale to large inputs. One culprit is the dynamic
dependency graph that stores operations on modifiables. For ex-
ample, the list partition function contains about n read operations.
Our experiments show, for example, that self-adjusting list partition
requires 41x more memory than its batch counterpart. In principle,
there is a way around this: simply treat blocks of data as a change-
able unit instead of treating each unit as a changeable. However,
it turns out to be difficult to make this work because doing so can
disproportionately degrade performance.

At a very high level, self-adjusting computation may be seen as
a technique for establishing a trade-off between space and time. By
storing the dependency metadata, the technique enables responding
to small changes to data significantly faster by identifying and
recomputing only the parts of the computation affected by the
changes. It is natural to wonder whether it would be possible to
control this trade-off so that, for example, a 1/B-th fraction (for
some B) of the dependency metadata is stored at the expense of an
increased update time, hopefully by no more than a factor of B.

Our solution. To see how we might solve this problem, consider
the following simple idea: partition the data into equal-sized blocks
and treat each of these blocks as a unit of changeable computation at
which dependencies are tracked. This intuitive idea is indeed simple
and natural to implement. But there is a fundamental problem: fixed-
size chunking is highly sensitive to small changes to the input. As
a simple example, consider inserting or deleting a single element
to a list of blocks. Such a change will cascade to all blocks in the
list, preventing much of the prior computation from being reused.
Even “in-place” changes, which the reader may feel would not cause
this problem, are in fact unacceptable because they do not compose.
Consider, for example, the output to the filter function, which
takes an input list and outputs only elements for which a certain
predicate evaluates to true. Modifying an input element in-place
may drop or add an element to the output list, which can create a

3 2014/3/1

Levels δ : := S | Cρ | α

Types τ : := intδ | (τ1×τ2)δ | (τ1+τ2)δ | (τ1 → τ2)δ

Constraints C,D : := true | false | α = β | α ≤ β |
δ C τ | ρ1 = ρ2

Figure 2. Levels, types and constraints

ripple effect to all the blocks. The main challenge in these examples
lies in making sure the blocks remain stable under changes.

We solve these problems by eliminating the intrinsic dependency
between block boundaries and the data itself. More precisely,
we propose a probabilistic chunking scheme that decides block
boundaries using a (random) hash function (independent of the
structure of the data) rather than deterministically. Using this
technique, we are able to reduce size of the dependency metadata
by a factor B in expectation by chunking the data into blocks of
expected size B while taking only about a factor of B hit in the
update time.

3. Fine-grained Information Flow Types
In this section, we derive a type system for self-adjusting compu-
tation that can identify precisely which part of the data, down to
individual attributes of a record or tuple, is changeable. In particu-
lar, we extend the surface type system from previous work to track
fine-grained dependencies in the surface language.

The formalism rests on a simple insight that data that depends
on changeable data must itself be changeable, similar to situations
in information-flow type systems, where “secret” (high-security)
data is infectious; therefore, any data that depends on secret data
itself must be secret.

To track dependency precisely, we distinguish different change-
able data further by giving them unique labels. Our types include
a lattice of (security) levels: stable and changeable with labels. We
generally follow the approach and notation of Chen et al. [9] except
that we need not have a mode on function types.

Levels. Levels S (stable) andCρ (changeable) have a partial order:

S ≤ S Cρ ≤ Cρ S ≤ Cρ C1ρ ≤ C0ρ

Stable levels are lower than changeable; changeable levels with
different labels are generally incomparable. Here, labels are used
to distinguish different changeable data in the program. We also
assume that labels with prefix 1 is lower than labels with prefix 0,
we will discuss the reason in Section 4.

Types. Types consist of integers tagged with their levels, prod-
ucts, sums and arrow (function) types with an associated level, as
shown in Figure 2. The label ρ associated with each changeable
level denotes fine-grained dependencies among changeables: two
changeables with the same label have a dependency between them.

Labels. Labels are identifiers for changeable data. To facilitate
translation into a destination-passing style, we use particular binary-
encoded labels that identify each label with its destination. This
binary encoding works in concert with the relation τ ↓ρ D;L,
in Figure 3, which recursively determines the labels with respect to a
prefix ρ, where the type of the destinations and the destination names
are stored inD andL, respectively. For stable product, rule (#prodS),
we label it based on the structure of the product. Specifically, we
append 0 if the changeable level is on the left part of a product, and
we append 1 if the changeable level is on the right part of a product.
For changeable level types, we require that the outer level label is
ρ. The relation does not restrict the inner labels. For stable level
integers, sums and arrows, we do not look into the type structure,
the inner changeable types can be labeled arbitrarily. As an example,

τ =

(
intC00 ×

(
intC111 + intS

)C01
)S

is a valid label for τ ↓0 D;L.

intS ↓ρ ∅; ∅
(#intS)

intCρ ↓ρ {int}; {lρ}
(#intC)

(τ1 + τ2)S ↓ρ ∅; ∅
(#sumS) (τ1 → τ2)S ↓ρ ∅; ∅

(#funS)

τ1 ↓ρ0 D;L τ2 ↓ρ1 D
′;L′

(τ1 × τ2)S ↓ρ D∪D′;L ∪ L′
(#prodS)

(τ1 × τ2)Cρ ↓ρ {(τ1 × τ2)}; {lρ}
(#prodC)

(τ1 + τ2)Cρ ↓ρ {(τ1 + τ2)}; {lρ}
(#sumC)

(τ1 → τ2)Cρ ↓ρ {(τ1 → τ2)}; {lρ}
(#funC)

Figure 3. Labeling changeable types�
intδ

�
= δ

�
(τ1 + τ2)δ

�
= δ�

(τ1 × τ2)δ
�

= δ
�
(τ1 → τ2)δ

�
= δ

intδ1 $ intδ2 (τ1 + τ2)δ1 $ (τ1 + τ2)δ2

(τ1 × τ2)δ1 $ (τ1 × τ2)δ2 (τ1 → τ2)δ1 $ (τ1 → τ2)δ2

Figure 6. Outer level of types, and equality up to outer levels
Values v : := n | x | (v1, v2) | inl v | inr v | fun f (x) = e

Expr.’s e : := v | ⊕(x1, x2) | fst x | snd x |
case x of {x1 ⇒ e1 , x2 ⇒ e2} |

apply(x1, x2) | let x = e1 in e2

Figure 7. Abstract syntax of the source language

The type for the destinations areD = {int,
(
intC111 + intS

)
}, and the

destination names are L = {l00, l01}.

Subtyping. Figure 4 shows the subtyping relation τ <: τ′, which
is standard except for the levels. It requires that the outer level of
the subtype is smaller than the outer level of the supertype.

Levels and types. We need relations between levels and types to
ensure certain invariants. A type τ is higher than δ, written δ C τ, if
the outer level of the type is at least δ. In other words, δ is a lower
bound of the outer level of τ. For products with outer stable levels,
we check if each component is higher than δ. Note that we do not
check the component of a stable sum type. Figure 5 defines this
relation.

We define an outer-level operation ~τ� that derives the outer
level of a type in Figure 6). Finally, two types τ1 and τ2 are equal up
to their outer levels, written τ1 $ τ2, if τ1 = τ2 or they differ only in
their outer levels.

4. Source Language

Abstract syntax. Figure 7 shows the syntax for our source lan-
guage, a purely functional language with integers (as base types),
products, and sums. The expressions consist of values (integers,
pairs, tagged values, and recursive functions), projections, case ex-
pressions, function applications, and let bindings. For convenience,
we consider only expressions in A-normal form, which names in-
termediate results. A-normal form simplifies some technical issues,
while maintaining expressiveness.

Constraint-based type system. The type system has the fine-
grained level-decorated types and constraints (Figure 2) as was

4 2014/3/1

δ ≤ δ′

intδ <: intδ
′ (subInt)

τ1 <: τ
′
1 τ2 <: τ

′
2 δ ≤ δ′

(τ1 × τ2)δ <:
(
τ′1 × τ

′
2

)δ′ (subProd)
τ1 <: τ

′
1 τ2 <: τ

′
2 δ ≤ δ′

(τ1 + τ2)δ <:
(
τ′1 + τ′2

)δ′ (subSum)
δ ≤ δ′ τ′1 <: τ1 τ2 <: τ

′
2

(τ1 → τ2)δ <: (τ′1 → τ′2)δ
′ (subArr)

Figure 4. Subtyping

δ ≤ δ′

δ C intδ
′ (C-Int)

δ ≤ δ′

δ C (τ1 × τ2)δ
′ (C-Prod)

δ C τ1 δ C τ2

δ C (τ1 × τ2)S
(C-InnerProd)

δ ≤ δ′

δ C (τ1 → τ2)δ
′ (C-Arrow) δ ≤ δ′

δ C (τ1 + τ2)δ
′ (C-Sum)

Figure 5. Lower bound of a type

C;P; Γ ` e : τ
Under constraint C, label set P
and source typing environment Γ,
source expression e has type τ

C;P; Γ ` n : intS
(SInt)

Γ(x) = τ

C;P; Γ ` x : τ
(SVar)

C;P; Γ ` v1 : τ1 C;P; Γ ` v2 : τ2

C;P; Γ ` (v1, v2) : (τ1 × τ2)S
(SPair)

C;P; Γ ` v : τ1

C;P; Γ ` inl v : (τ1 + τ2)S
(SSum)

C;P; Γ ` x : (τ1 × τ2)δ

C;P; Γ ` fst x : τ1
(SFst)

C; {1ρ}; Γ, x : τ1, f : (τ1 → τ2)S ` e : τ2

~τ1� = C1ρ C τ2 ↓0 D;L

C;P′; Γ ` (fun f (x) = e) : (τ1 → τ2)S
(SFun)

C;P; Γ ` x1 : intδ1

C;P; Γ ` x2 : intδ2 C δ1 = δ2 ⊕ : int × int→ int
C;P; Γ ` ⊕(x1, x2) : intδ1

(SPrim)

C;P; Γ ` e1 : τ′

C;P ∪ {ρ}; Γ, x : τ′′ ` e2 : τ
C τ′ <: τ′′

C τ′ $ τ′′

�
τ′′

�
= Cρ

C ρ < P

C;P; Γ ` let x = e1 in e2 : τ
(SLet)

C;P; Γ ` x1 : (τ1 → τ2)δ

C;P; Γ ` x2 : τ1 C δ C τ2

C;P; Γ ` apply(x1, x2) : τ2
(SApp)

C;P; Γ ` x : (τ1 + τ2)δ

C δ C τ
C;P; Γ, x1 : τ1 ` e1 : τ
C;P; Γ, x2 : τ2 ` e2 : τ

C;P; Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
(SCase)

Figure 8. Typing rules for source language

described in Section 3. After discussing the rules themselves, we
will look at type inference.

The typing judgment C;P; Γ ` e : τ has a constraint C, a label
set P (storing used label names) and typing environment Γ, and
infers type τ for expression e. Our work extends the type system in
Chen et al. [9] with labels. Although most of the typing rules remain
the same, there are two major differences: (1) The source typing
judgment no longer has a mode; (2) Our generalization has a label
set in the typing rules to make sure the labels inside a function are
unique. Furthermore, our generalization of changeable levels with
labels does not affect inferring level polymorphic types. To simplify
the presentation, we assume the source language presented here is
level monomorphic.

The typing rules for variables (SVar), integers (SInt), pairs
(SPair), sums (SSum), primitive operations (SPrim), and projections
(SFst) are standard. (We omit the symmetric rules for inr v and
snd x.) To type a function (SFun), we type the body specified by the

function type (τ1 → τ2)δ. The changeable types in the return type
will translate to destinations when translating in the target language.
To facilitate the translation, we need to fix the destination labels in
the return type via τ2 ↓0 D;L, where we assume destination labels
all have prefix 0. We also assume that non-destination labels, e.g.
labels for changeable input, have prefix 1. Note that these labels are
only in a function scope, labels in different functions do not need to
be unique. We omit the simpler rule for ~τ1� = S.

Like in previous work, we allow subsumption only at let bind-
ing (SLet), e.g. from a bound expression e1 of subtype intS to an
assumption x : intCρ . Note that when binding an expression into a
variable with a changeable level, the label ρ must be either unique or
one of the labels from the destination. The subtype allows change-
able labels with prefix 1 to be “promoted” as labels with prefix 0.
This restriction makes sure the input data can flow to destinations,
and the information flow type system tracks dependency correctly.
We omit the simler rule for ~τ′′� = S. As in previous work, we
restrict that we subsume only when the subtype and supertype are
equal up to their outer levels. This simplifies the translation, with
no loss of expressiveness: to handle “deep” subsumption, such as
(intS → intS)S <: (intS → intCρ)Cρ′ , we can insert coercions into
the source program before typing it with these rules. (This process
could easily be automated.)

A function application (SApp) requires that the result of the
function must be higher than the function’s level: if a function
is itself changeable (τ1 → τ2)Cρ , then it could be replaced by
another function and thus the result of this application must be
changeable. Due to let-subsumption, checking this in (SFun) alone
is not enough. Similarly, in rule (SCase) for typing a case expression,
we ensure that the level of the result τ must also be higher than δ:
if the scrutinee changes, we may take the other branch, requiring a
changeable result.

Constraints and type inference. Our rules and constraints fall
within the HM(X) framework [28], permitting inference of principal
types via constraint solving. Although our type system requires
explicit labels for changeable levels, these labels can be inferred
automatically. The user does not need to provide explicit labels when
programming in the surface language. In all, we extend the type
system with fine-grained dependency tracking without any burden
on the programmer.

5. Target Language

Abstract syntax. The target language (Figure 9) is an imperative
self-adjusting language with modifiables. In addition to integers,
units, products, sums, the target type system makes a distinction
between fresh modifiable types � int (modifiables that are freshly
allocated) and finalized modifiable types int mod (modifiables that
are written after the allocation). The function type τ1 →

D
τ2 contains

5 2014/3/1

Types τ : := unit | int | τ mod | � τ | τ1 × τ2 |

τ1 + τ2 | τ1 →
D
τ2

Dest. Types D : :=
{
τ1, · · · , τn

}
Labels L : := {l1, · · · , ln}

Variables x : := y | li

Typing Env. Γ : := · | Γ, x : τ

Values v : := n | x | ` | (v1, v2) | inl v | inr v |
funL f (x) = e

Expressions e : := v | ⊕(x1, x2) | fst x | snd x |
applyL(x1, x2) | let x = e1 in e2 |

case x of {x1 ⇒ e1 , x2 ⇒ e2} |

mod v | read x as y in e | write(x1, x2)

Figure 9. Types and expressions in the target language

an ordered set of destination types D, indicating the type of the
destinations of the function.

The variables consist of labels li and ordinary variables y, which
are drawn from different syntactically categories. The label variable
li is used as bindings for destinations.

The values of the language consist of integers, variables, loca-
tions ` (which appear only at runtime), pairs, tagged values, and
functions. Each function funL f (x) = e takes an ordered label set
L, which contains a set of destination modifiables li that should
be filled in before the function returns. An empty L indicates the
function returns all stable values, and therefore takes no destination.

The expression applyL(x1, x2) applies a function while supplying
a set of destination modifiables L. The mod v construct creates a
new fresh modifiable � τwith an initial value v. The read expression
binds the contents of a modifiable x to a variable y and evaluates
the body of the read. The write constructor imperatively updates
a modifiable x1 with value x2. The write operator can update both
modifiables in destination labels L and modifiables created by mod.

Static semantics. The typing rules in Figure 10 follow the struc-
ture of the expressions. Rules (TLoc), (TInt), (TVar), (TPair),
(TSum), (TFst), (TPrim) are standard. Given an initial value x of
type τ, rule (TAlloc) creates a fresh modifiable of type � τ. Note
that the type system guarantees that this initial value x will never be
read. The reason for providing the an initial value is to determine
the type of the modifiable, and making the type system sound. Rule
(TWrite) writes a value x2 of type τ into a modifiable x1, when x1
is a fresh modifiable of type � τ, and produces a new typing envi-
ronment substituting the type of x1 into an finalized modifiable type
τ mod. Note that Rule (TWrite) only allows writing into a fresh
modifiable, thus guarantees that each modifiable can be written only
once. Intuitively, mod and write separates the process of creating
a value in a purely functional language into two steps: the creation
of location and initialization. This separation is critical for writing
programs in destination passing style. Rule (TRead) enforces that
the programmer can only read a modifiable when it has been already
written, that is the type of the modifiable should be τ mod.

Rule (TLet) takes the produced new typing environment from
the let binding, and uses it to check e2. This allows the type system
to keep track of the effects of write in the let binding. To ensure the
correct usage of self-adjusting constructs, rule (TCase) enforces a
conservative restriction that both the result type and the produced
typing environment for each branch should be the same. This means
that each branch should write to the same set of modifiables. If a
modifiable x is finalized in one branch, the other branch should also
finalize the same modifiable.

Rule (TFun) defines the typing requirement for a function: (1)
the destination types D are fresh modifiables, and the argument
type should not contains fresh modifiable. Intuitively, the function

Λ; Γ ` e : τ a Γ′
Under store typing Λ
and target typing environment Γ,
target expression e has target type τ,
and produces a typing environment Γ′

Λ(`) = τ

Λ; Γ ` ` : τ a Γ
(TLoc)

Λ; Γ ` n : int a Γ
(TInt)

Γ(x) = τ

Λ; Γ ` x : τ a Γ
(TVar)

Λ; Γ ` v : τ a Γ

Λ; Γ ` mod v : � τ a Γ
(TAlloc)

Λ; Γ ` x2 : τ a Γ

Λ; Γ, x1 : � τ ` write(x1, x2) : unit a Γ, x1 : τ mod
(TWrite)

Λ; Γ ` x1 : τ1 mod a Γ Λ; Γ, x : τ1 ` e2 : τ2 a Γ′

Λ; Γ ` read x1 as x in e2 : unit a Γ′
(TRead)

Λ; Γ ` v1 : τ1 a Γ Λ; Γ ` v2 : τ2 a Γ

Λ; Γ ` (v1, v2) : τ1 × τ2 a Γ
(TPair)

L = {l1, · · · , ln} D = {τ′1, · · · , τ
′

n} τ1 , � τ
′

Γd(li) = ·, l1 : � τ′1, · · · , ln : � τ′n
For i = 1, · · · , n Γ′(li) = τ′i mod

Λ; Γ, x : τ1, f : (τ1 →
D
τ2),Γd ` e : τ2 a Γ′

Λ; Γ ` funL f (x) = e : (τ1 →
D
τ2) a Γ

(TFun)

Λ; Γ ` v : τ1 a Γ

Λ; Γ ` inl v : τ1 + τ2 a Γ
(TSum)

Λ; Γ ` x : τ1 × τ2 a Γ

Λ; Γ ` fst x : τ1 a Γ
(TFst)

Λ; Γ ` x1 : int a Γ
Λ; Γ ` x2 : int a Γ ` ⊕ : int × int→ int

Λ; Γ ` ⊕(x1, x2) : int a Γ
(TPrim)

Λ; Γ ` e1 : τ a Γ′ Λ; Γ′, x : τ ` e2 : τ′ a Γ′′

Λ; Γ ` let x = e1 in e2 : τ′ a Γ′′
(TLet)

L = {l1, · · · , ln} D = {τ′1, · · · , τ
′

n}

For i = 1, · · · , n Γ(li) = � τ′i Γ′(li) = τ′i mod
Λ; Γ ` x1 : (τ1 →

D
τ2) a Γ Λ; Γ ` x2 : τ1 a Γ

Λ; Γ ` applyL(x1, x2) : τ2 a Γ′
(TApp)

Λ; Γ ` x : τ1 + τ2 a Γ
Λ; Γ, x1 : τ1 ` e1 : τ a Γ′

Λ; Γ, x2 : τ2 ` e2 : τ a Γ′

Λ; Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ a Γ′
(TCase)

Figure 10. Typing rules of the target language

arguments are partitions into two parts: destinations and ordinary
arguments; (2) the body of the function e has to finalize all the
destination modifiables presented in L. This requirement can be
achieved by either explicitly write’ing into modifiables in L, or
by passing these modifiables into another function that takes the
responsibility to write an actual value to them. Although all the
modifiables in L should be finalized, other modifiables created
inside the function body may be fresh, as long as there is no read of
those modifiables in the function body.

Rule (TApp) applies a function with fresh modifiables L. The
type of these modifiables should be the same as the destination types
D as presented in the function type. The typing rule produces a new
typing environment that guarantees that all the supplied destination
modifiables are finalized after the function application.

Dynamic semantics. The dynamic semantics of our target lan-
guage matches that of Acar et al [2] after two syntactical changes:
funL f (x) = e is represented as fun f (x) = λL.e, and applyL(x1, x2)
is represented as (x1 x2) L.

6 2014/3/1

‖intS‖ = int
‖(τ1 → τ2)S‖ = ‖τ1‖→

‖D‖
‖τ2‖ (τ2 ↓0 D;L)

‖(τ1 × τ2)S‖ = ‖τ1‖× ‖τ2‖

‖(τ1 + τ2)S‖ = ‖τ1‖+ ‖τ2‖

‖τ‖ = ‖
∣∣∣τ∣∣∣S‖mod (~τ� = Cρ)

‖·‖ = ·

‖Γ, x : τ‖ = ‖Γ‖, x : ‖τ‖
‖τ‖φ = ‖[φ]τ‖
‖Γ‖φ = ‖[φ]Γ‖

Figure 11. Translations ‖τ‖ of types and typing environments

6. Translation
This section gives a high-level overview of the translation from the
source language to the target self-adjusting language. To ensure type
safety, we translate types and expressions together using a type-
directed translation. Since the source and the target languages have
different type systems, an expression e : τ cannot be translated to
a target expression e′ of type τ, the type also has to be translated,
producing some e′ : τ′ where τ′ is a target type that corresponds
to τ. We therefore developed the translation of expressions and
types together, along with the proof that the desired property holds.
To understand how to translate expressions, it is helpful to first
understand how we translate types.

6.1 Translating types.
Figure 11 defines the translation of types from the source language’s
types into the target types. We also use it to translate the types in
the typing environment Γ. We define ‖τ‖ as the translation of types
from the source language into the target types. We also use it for
translating the types in the typing environment Γ. For integers, sums,
and products with stable levels, we simply erase the level notation S,
and apply the function recursively into the type structure. For arrow
types, we need to derive the destination types. In the source typing,
we fix the destination type labels by τ2 ↓0 D;L, whereD stores the
source type for the destinations. Therefore, the destination types for
the target arrow function will be ‖D‖.

For source types with changeable levels, the target type will be
modifiables. Since the source language is purely functional, the final
result will always be a finalized modifiable τ mod. Here, we define
a stabilization function

∣∣∣τ∣∣∣S for changeable source types, which
changes the outer level of τ from changeable into stable. Formally,
we define the function as,∣∣∣τ∣∣∣S = τ′,where ~τ� = Cρ,

�
τ′

�
= S and τ $ τ′

Then, the target type for a changeable level source type τ will be
‖
∣∣∣τ∣∣∣S mod‖.

6.2 Translating Expressions
We define the translation of expressions as a set of type-directed
rules. Given (1) a derivation of C;P; Γ ` e : τ in the constraint-
based typing system and (2) a satisfying assignment φ for C, it is
always possible to produce a correctly-typed target expression et
(see Theorem A below). The environment Γ in the translation rules
is a source-typing environment and must have no free level variables.
Given an environment Γ from the constraint typing, we apply the
satisfying assignment φ to eliminate its free level variables before
using it in the translation [φ]Γ. With the environment closed, we
need not refer to C.

Our rules are nondeterministic, avoiding the need to “decorate”
them with context-sensitive details.

Direct rules. The rules (Int), (Var), (Pair), (Sum), (Fst) and (Prim)
follows the structure of the expression, and directly translate the
expressions.

Γ ` e : τ ↪→ e′
Under closed source typing environment Γ,
source expression e is translated at type τ
to target expression e′

Γ ` n : intS ↪→ n
(Int)

Γ(x) = τ

Γ ` x : τ ↪→ x
(Var)

Γ ` v1 : τ1 ↪→ v′1 Γ ` v2 : τ2 ↪→ v′2
Γ ` (v1, v2) : (τ1 × τ2)S ↪→ (v′1, v

′
2)

(Pair)

Γ, x : τ1, f : (τ1 → τ2)S ` e : τ2 e′ τ2 ↓0 D;L

Γ ` fun f (x) = e : (τ1 → τ2)S ↪→ funL f (x) = e′
(Fun)

Γ ` v : τ1 ↪→ v′

Γ ` inl v : (τ1 + τ2)S ↪→ inl v′
(Sum)

Γ ` x : (τ1 × τ2)S ↪→ x

Γ ` fst x : τ1 ↪→ fst x
(Fst)

Γ ` x1 : intS ↪→ x1 Γ ` x2 : intS ↪→ x2

Γ ` ⊕(x1, x2) : intδ ↪→ ⊕(x1, x2)
(Prim)

Γ ` x1 : (τ1 → τ2)S ↪→ x1

Γ ` x2 : τ1 ↪→ x2 τ2 ↓0 D;L

Γ ` apply(x1, x2) : τ2

↪→ let
{
li = mod (τ′i |v)

}τ′i∈D
li∈L

in applyL(x1, x2)

(App)

Γ ` x : (τ1 + τ2)S ↪→ x
Γ, x1 : τ1 ` e1 : τ ↪→ e′1
Γ, x2 : τ2 ` e2 : τ ↪→ e′2

Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
↪→ case x of {x1 ⇒ e′1 , x2 ⇒ e′2}

(Case)

Γ ` e1 : τ′ ↪→ e′1 Γ, x : τ′ ` e2 : τ ↪→ e′2
Γ ` let x = e1 in e2 : τ ↪→ let x = e′1 in e′2

(Let)

Γ`e :τ ↪→ e′ ~τ� = C1ρ τ|v = v

Γ ` e : τ ↪→ let l1ρ = mod v in e′
(Mod)

Γ`e :τ′ ↪→ e′ ~τ� = C1ρ

∣∣∣τ∣∣∣S = τ′ τ|v = v

Γ ` e : τ ↪→ let l1ρ = mod v in e′
(Lift)

Γ ` e : τ ↪→ e′ ~τ� = Cρ

Γ ` e : τ ↪→ let () = write(lρ, e′) in lρ
(Write)

Γ ` e{ (x � x′ : τ′ ` e′)
Γ, x′ :

∣∣∣τ′∣∣∣S ` e′ : τ ↪→ e′′
�
τ′

�
= Cρ

Γ ` x : τ′ ↪→ x

Γ ` e : τ ↪→ read x as x′ in e′′
(Read)

Figure 12. Translation for destination passing style

Changeable rules. The rules (Lift), (Mod), and (Write) translate
expressions with outer level changeable Cρ. Given a translation
of e to some pure expression e′, rule (Write) translates e into an
imperative write expression that writes e′ into modifiable lρ.

For expressions with non-destination changeable levels, that is
the label ρ has a 1 as the prefix, we need to create a modifiable
first. Rules (Lift) and (Mod) achieves this goal. (Mod) is the simpler
of the two: if e translates to e′ at type τ, then e translates to the
mod expression at type τ. To get an initial value for the modifiable,
we define a function τ|v that takes a source type τ and returns any
value v of that type. Note that the initial value is only a placeholder,
and will never be read, so the choice of the value is not important.
In (Lift), the expression is translated not at the given type τ but
at its stabilized

∣∣∣τ∣∣∣S, capturing the “shallow subsumption” in the
constraint typing rules (SLet): a bound expression of type τS0 can
be translated at type τS0 to e′, and then “promoted” to type τCρ0 by
placing it inside a modifiable lρ.

7 2014/3/1

Γ ` e{ (x � x′ : τ ` e′)
Under source typing Γ,
renaming the “head” x in e
to x′ : τ yields expression e′

Γ ` x : τ

Γ ` x{ (x � x′ : τ ` x′)
(LVar)

Γ ` x : τ

Γ ` fst x{ (x � x′ : τ ` fst x′)
(LFst)

Γ ` x1 : τ
Γ ` ⊕(x1, x2){ (x1 � x′1 : τ ` ⊕(x′1, x2))

(LPrimop1)

Γ ` x1 : τ
Γ ` apply(x1, x2){ (x1 � x′ : τ ` apply(x′, x2))

(LApply)

Γ ` x : τ
Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2}

{ (x � x′ : τ ` case x′ of {x1 ⇒ e1 , x2 ⇒ e2})

(LCase)

Figure 13. Renaming the variable to be read

Reading from changeable data. To use an expression of change-
able type in a context where a stable value is needed—such as
passing some x : intC to a function expecting intS—the (Read) rule
generates a target expression that reads the value out of x : intC into
a variable x′ : intS. The variable-renaming judgment Γ ` e{ (x �
x′ : τ ` e′) takes the expression e, finds a variable x about to be
used, and yields an expression e′ with that occurrence replaced by
x′. For example, Γ ` case x of . . .{ (x � x′ : τ ` case x′ of . . .).
This judgment is derivable only for variable, apply, case, fst, and
⊕. For ⊕(x1, x2), we need to read both variables; we omit the sym-
metric rules for reading the second variable. The rules are given in
Figure 13.

Γ ` e : τ e′
Under closed source typing environment Γ,
function body e is translated at type τ
to target expression e′ with destination returns.

Γ ` v1 : τ1 v′1 Γ ` v2 : τ2 v′2
Γ ` (v1, v2) : (τ1 × τ2)S (v′1, v

′
2)

(RPair)

Γ, x1 : τ1 ` e1 : τ e′1
Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ e′1

(RCase)

~τ� = Cρ

Γ ` e : τ lρ
(RMod)

Γ ` e : τ ↪→ e′

Γ ` e : τ e′
(RTrans)

Γ ` e1 : τ′ ↪→ e′1 Γ ` e2 : τ′ ↪→ e′2
Γ, x : τ′ ` e2 : τ ret e2 , let x′ = e′1 in e′2

Γ ` let x = e1 in e2 : τ let x = e′1 in
let = e′2 in ret

(RLet)

Figure 14. Deriving destination return

Function and application rules. Since the self-adjusting primi-
tives are imperative, an expression with outer changeable levels will
be translated into a target expression that returns unit. To recover
the type of the function return for the target language, we need
to wrap the destinations, so that the function returns the correct
type. Figure 14 shows the rules for translating the function body
and wrapping the destinations. For a tuple expression (RPair), the
translation returns the destination for each component. For a case
expression (RCase), it is enough to return destinations from one
of the branches since the source typing rule (SCase) guarantees
that both branches will write to the same destinations. When the
expression has a outer changeable level Cρ, rule (RMod) returns its
modifiable variable lρ. For let bindings, rule (RLet) translates all the
bindings in the usual way and derive destinations for the expressions
in the tail position. For all other expressions, the translation simply
switches to the ordinary translation rules in Figure 12. For example,

expression (1, x) :
(
intS × intC01

)S
will be translated to (1, l01) by

applying rules (RProd) (RTrans) (Int) (RMod).
When applying functions apply(x1, x2), rule (App) first creates

a set of fresh modifiable destinations using mod , then supply both
the destination set L and argument x2 to function x1. Note that
although the destination names li may overlap with the current
function destination names, these variables are only locally scoped,
the application of the function will return a new value, which
contains the supplied destinations L, but they are never mentioned
outside of the function application.

The translation rules are guided only by local information—the
structure of types and terms. This locality is key to simplifying the
algorithm and the implementation but it often generates code with
redundant operations. For example, the translation rules can generate
expressions like read x as x′ in write(lρ, x′), which is equivalent to
x. We can easily apply rewriting rules to get rid of these redundant
operations after the translation.

Translation correctness. Given a constraint-based source typing
derivation and assignment φ for some term e, there are translations
from e to (1) a target expression et and (2) a destination return
expression er, with appropriate target types:

Theorem 6.1. If C;P; Γ ` e : τ, and φ is a satisfying assignment
for C, then

(1) there exists et and Γ′ such that [φ]Γ ` e : [φ]τ ↪→ et, and
·;‖Γ‖φ ` et : ‖τ‖φ a Γ′,

(2) there exists er and Γ′ such that [φ]Γ ` e : [φ]τ er, and
·;‖Γ‖φ ` er : ‖τ‖φ a Γ′.

The proof is by induction on the height of the given derivation of
C;P; Γ ` e : τ. The proof relies on a substitution lemma for (SLet)
case. We present the full proof in the technical report [8].

7. Probabilistic Chunking
Precise dependency tracking saves space by eliminating redundant
dependencies. But even then, the dependency metadata required can
still be large, preventing scaling to large data sets. In this section,
we show how to reduce the size of dependency metadata further by
controlling the granularity of dependency tracking, crucially in a
way that does not affect performance disproportionately.

The basic idea is to track dependencies at the granularity of a
block of items. This idea is straightforward to implement: simply
place blocks of data into modifiables (e.g., store an array of integers
as a block instead of just one number). As such, if any data in a
block changes, the computation that depends on that block must be
rerun. While this saves space, the key question for performance is
therefore: how to chunk data into blocks without disproportionately
affecting the update time?

For fast updates, our chunking strategy must ensure that a small
change to the input remains small and local, without affecting many
other blocks. The simple strategy of chunking into fixed-size blocks
does not work. To see why, consider the example in Figure 15 (left
half), where a list containing numbers 1 through 16, missing 2, is
chunked into equal-sized blocks of 4. The trouble begins when we
insert 2 into the list between 1 and 3. With fixed-size chunking, all
the blocks will change because the insertion shifts the position of all
block boundaries by one. As a result, when tracking dependencies
at the level of blocks, we cannot reuse any prior computations and
will essentially recompute the result anew.

We propose a probabilistic chunking scheme (PCS), which
decouples locations of block boundaries from the data contents
and absolute positions in the list while allowing users to control
the block size probabilistically. Using randomization, we are able
to prevent small (even adversarial) changes from spreading to the
rest of the computation. Similar probabilistic chunking schemes

8 2014/3/1

1 3 4 5 6 7 7 9 10 11 12 13 14 15 16

Original List:

a b c d e f g h i j k l m n o

fixed-size chunking probabilistic chunking

41 3 5 76 7 9 1210 11 13 1614 15 -

4-way fixed chunking:

31 2 4 75 6 7 119 10 12 1513 14 16

4-way fixed chunking after inserting 2

41 3 75 6 7 10 11

4-way probabilistic chunking:

31 2 4

4-way probabilistic chunking after inserting 2

9

75 6 7 10 11 1412 139 15 16

1412 13 15 16

a
b
c
d
e
f
g
h

Key
35
1
4
7
9
3
2
8

hash
i
j
k
l
m
n
o
p

Key hash
11
12
22
5
19
23
29
13

Figure 15. Fixed-size chunking versus probabilistic chunking: with block size B = 4. Next to each data cell in the original list (top) is a
unique identifier (location). The hash values of these identifiers (used in probabilistic chunking) are shown in the table, with values divisible by
B = 4 marked with an arrow.

have been proposed in other work but differently, they aim at
discovering similarities across pieces of data (see, e.g., [27, 35] and
the references therein) rather than creating independence between
the data and how it is chunked as we do here.

PCS takes a target block size B and determines block boundaries
by hashing the location or the unique identifier of each data item and
declaring it a block boundary if the hash is divisible by B. Figure 15
(right) illustrates how this works. Consider, again, a list holding
numbers from 1 to 16, missing 2, with their location identifiers (a,
b, ...) shown next to them. PCS chunks this into blocks of expected
size B = 4 by applying a random hash function to each item. For
this example, the hash values are given in a table on the right of the
figure; hash values divisible by 4 are marked with an arrow. PCS
declares block boundaries where the hash value is 0 mod B = 4,
thereby selecting 1 in 4 elements to be on the boundary. This means
finishing blocks at 4, 9, and 11, as shown.

To understand what happens when the input changes, consider
inserting 2 (with location identifier p) between 1 and 3. Because the
hash value of p is 13, it is not on the boundary. This is the common
case as there is only a 1/B-th probability that a random hash value
is divisible by B. As a result, only the block ~1, 3, 4�, where 2 is
added, is affected. If, however, 2 happened to be a boundary element,
we would only have two new blocks (inserting 2 splits an existing
block into two). Either way, the rest of the list remains unaffected,
enabling computation that depended on other blocks to be reused.
Deletion is symmetric.

To conclude, by chunking a data set into size-B blocks, proba-
bilistic chunking reduces the dependency metadata by a factor of B
in expectation. Furthermore, by keeping changes small and local,
probabilistic chunking ensures maximum reuse of existing compu-
tations. Change propagation works analogously to the non-block
version, except that if a block changes, work on the whole block
must be redone, thus often increasing the update time by B fold.

8. Evaluation
We performed extensive empirical evaluation on a range of bench-
marks, including standard benchmarks from prior work, as well
as new, more involved benchmarks on social network graphs. We
report selected results in this section. All our experiments were per-
formed on a 2GHz Intel Xeon with 1 TB memory running Linux.
Our implementation is single-threaded and therefore uses only one
core. The code was compiled with MLton version 20100608 with
flags to measure maximum live memory usage.

8.1 Benchmarks and Measurements
We have completed an implementation of the target language as
a Standard ML (SML) library. The implementation follows the
formalism except for the following: (1) it treats both fresh and
finalized modifiable types as a single τ mod type; (2) for function
funL f (x) = e, it includes destination labels as part of the function

argument, so the function is represented as fun f(x) = fn L =>
e. Accordingly, the arrow type (τ1 →

D
τ2) is represented as τ1 →

τ′ → τ2, where τ′ = τ′1 mod × · · · × τ′n mod andD = {τ′1, · · · , τ
′
n}.

Since our approach provides for an expressive language (any
pure SML program can be made self-adjusting), we can implement
a variety of domain-specific languages and algorithms. For the
evaluation, we implemented the following:
• a blocked list abstract data type that uses our probabilistic

chunking algorithm (Section 7),
• a sparse matrix abstract data type,
• as implementation of the MapReduce framework [12] that uses

the blocked lists,
• several list operations and the merge sort algorithm,
• more sophisticated algorithms on graphs, which use the sparse-

matrix data type to represent graphs, where a row of the matrix
represents a vertex in the compressed sparse row format, includ-
ing only the nonzero entries.
In our graph benchmarks, we control the space-time trade-off by

treating a block of 100 nonzero elements as a single changeable unit.
For the graphs used, this block size is quite natural, as it corresponds
roughly to the average degree of a node (the degree ranges between
20 and 200 depending on the graph).

For each benchmark, we implemented a batch version—an op-
timized implementation that operates on unchanging inputs—and
a self-adjusting version by using techniques proposed in this paper.
We compare these versions by considering a mix of synthetic and
real-world data, and by considering different forms of changes rang-
ing from small unit changes (e.g., insertion/deletion of one item)
to aggregate changes consisting of many unit changes (e.g., inser-
tion/deletion of 1000 items). We describe specific datasets employed
and changes performed in the description of each experiment.

8.2 Block Lists and Sorting

Using our block list representation, we implemented batch and self-
adjusting versions of several standard list primitives such as map,
partition, and reduce as well as the merge sort algorithm msort.
In the evaluation, all benchmarks operate on integers: map applies
f (i) = i÷2 to each element; partition partitions its input based
on the parity of each element; reduce computes the sum of the list
modular 100; and msort implements merge sort.

Table 1 reports our measurements at fixed input sizes 107. For
each benchmark, we consider three different versions: (1) a batch
version (written with the -batch suffix); (2) a self-adjusting version
without the chunking scheme (the first row below batch); (3) the
self-adjusting version with different block sizes (B = 3, 10, . . .).
We report the block size used (B); the time to run from scratch
(denoted by “Run”) in seconds; the average time for a change
propagation after one insertion/deletion from the input list (denoted

9 2014/3/1

by “Prop.”) in milliseconds. Note that for batch versions, the
propagation time (i.e., a rerun) is the same as a complete from-
scratch run. We calculate the speedup as the ratio of the time for
a run from-scratch to average propagation, i.e., the performance
improvement obtained by the self-adjusting version with respect
to the batch version of the same benchmark. “Memory” column
shows the maximum memory footprint. The experiments show that
as the block size increases, both the self-adjusting (from-scratch)
run time and memory decreases, confirming that larger blocks
generate fewer dependencies. As block size increases, time for
change propagation does also, but in proportion with the block
size. (From B = 3 to B = 10, propagation time decreases, because
the benefit for processing more elements per block exceeds the
overhead for accessing the blocks).

Benchmark B Run (s) Prop. (ms) Speedup Memory

map-batch 1 0.497 497 1 344M

map

1 11.21 0.001 497000 7G
3 16.86 0.012 41416 10G

10 5.726 0.009 55222 3G
100 1.796 0.048 10354 1479M

1000 1.370 0.635 783 1192M
10000 1.347 9.498 52 1168M

partition-batch 1 0.557 557 1 344M

partition

1 10.42 0.015 37133 8G
3 20.06 0.033 16878 14G

10 6.736 0.028 19892 3G
100 1.920 0.049 11367 1508M

1000 1.420 0.823 677 1159M
10000 1.417 11.71 47 1124M

reduce-batch 1 0.330 330 1 344M

reduce

1 9.529 0.064 5156 5G
3 13.39 0.129 2558 6G

10 4.230 0.085 3882 1317M
100 0.990 0.083 3976 592M

1000 0.627 0.075 4400 420M
10000 0.593 0.244 1352 327M

msort-batch 1 12.82 12820 1 1.3G

msort

1 676.4 0.956 13410 121G
3 725.0 1.479 8668 157G

10 204.4 1.012 12668 44G
100 52.00 3.033 4227 10G

1000 43.80 22.36 573 9G
10000 35.35 119.7 107 8G

Table 1. Blocked lists and sorting: time and space with varying
block sizes on fixed input sizes of 107.

In terms of memory usage, the version without block lists (B = 1)
requires 15–100x more memory than the batch version. Block lists
significantly reduce the memory footprint. For example, with block
size B = 100, the benchmarks require at most 7x more memory than
the batch version, while still providing 4000–10000x speedup. In our
experiments, we confirm that probabilistic chunking (Section 7) is
essential for performance—when using fixed-size chunking, merge
sort does not yield noticeable improvements.

8.3 Word Count
A standard microbenchmark for big-data applications is word count,
which maintains the frequency of each word in a document. Using
our MapReduce library (run with block size 1, 000), we implemented
a batch version and a self-adjusting version of this benchmark, which
can update the frequencies as the document changes over time.

We use this benchmark to illustrate, in isolation, the impact
of our precise dependency tracking mechanism. To this end, we
implemented two versions of word count: one using prior art [10]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 30000 60000 90000 120000

T
im

e
 (

s
)

Document Size (# Words)

Without PDT
With PDT

Figure 16. Run time (seconds) of incremental word count.
Benchmark Source Input Size Prop. (s) Speedup Memory

PR-Batch Orkut 3 × 106 vertices 7 1 3G
PageRank 1 × 108 edges 0.021 333 36G

PR-Batch LiveJournal-1 4 × 106 vertices 18 1 5G
PageRank 3 × 107 edges 0.023 783 61G

PR-Batch Twitter-1 3 × 107 vertices 137 1 50G
PageRank 7 × 108 edges 0.254 539 495G

Conn-Batch LiveJournal-2 1 × 106 vertices 105 1 4G
Connectivity 8 × 106 edges 0.531 198 140G

SC-Batch Twitter-2 1 × 105 vertices 8 1 2G
Social Circle 2 × 106 edges 0.079 101 34G

Table 2. Incremental sparse graphs: time and space.

(which contains redundant dependencies) and the other using the
techniques presented in this paper. We use a publicly available
Wikipedia data set1 and simulate evolution of the document by
dividing it into blocks and incrementally adding these blocks to the
existing text; the whole text has about 120, 000 words.

Figure 16 shows the time to insert 1, 000 words at a time into
the existing corpus, where the horizontal axis shows the corpus
size at the time of insertion. Note that the two curves differ only in
whether the new precise dependency tracking is used. Overall, both
incremental versions appear to have a logarithmic trend because
in this case, both the shuffle and reduce phases require Θ(log n)
time for a single-entry update, where n is the number of input
words. Importantly, with precise dependency tracking (PDT), the
update time is around 9x faster than without. In terms of memory
consumption, PDT is 2.4x more space efficient. Compared to a batch
run, PDT is ∼ 100x faster for a corpus of size 100K words or larger
(since we change 1000 words/update, this is essentially optimal).

8.4 PageRank: Two Implementations

Another important big data benchmark is the PageRank algorithm,
which computes the page rank of a vertex (site) in a graph (network).
This algorithm can be implemented in several ways. For example,
a domain specific language such as MapReduce can be (and often
is) used even though it is known that for this algorithm, the shuffle
step required by MapReduce is not needed. We implemented the
PageRank algorithm in two ways: once using our MapReduce library
and once using a direct implementation, which takes advantage of
the expressive power of our framework. Both implementations use
the same block size of 100 for the underlying block-list data type.
The second implementation is an iterative algorithm, which performs
sparse matrix-vector multiplication at each step, until convergence.

In both implementations, we use floating-point numbers to
represent PageRank values. Due to the imprecision in equality check
for floating point numbers, we set three parameters to control the
precision of our computation: 1) the iteration convergence threshold

1 Wikipedia dataset: http://wiki.dbpedia.org/

10 2014/3/1

http://wiki.dbpedia.org/

conε; 2) the equality threshold for page rank values eqε, i.e. if a
page rank value does not change for more than eqε, we will not
recompute the value; 3) the equality threshold for verifying the
correctness of the result verifyε. For all our experiments, we set
conε = 1 × 10−6, and eqε = 1 × 10−8. For each change, we also
perform a batch run to ensure the correctness of the result. All our
experiments guarantee that verifyε ≤ 1 × 10−5.

Our experiments with PageRank show that MapReduce based
implementation does not scale for incremental computation, be-
cause it requires massive amounts of memory, consuming 80GB of
memory even for a small downsampled Twitter graph with 3 × 103

vertices and 104 edges. After careful profiling, we found that this
is due to the shuffle step performed by MapReduce, which is not
needed for the PageRank algorithm. This is an example where a
domain-specific approach such as MapReduce is too restrictive for
an efficient implementation.

Our second implementation, which uses the expressive power of
functional programming, performs well. Compared to MapReduce-
based version, it requires 0.88GB memory on the same graph, nearly
100-fold less, and the update time is 50x faster on average.2 We are
thus able to use the second implementation on relatively large graphs.
Table 2 shows a summary of our findings. For these experiments,
we divide the edges into groups of 1, 000 edges starting with the
first vertex and consider each of them in turn: for each group, we
measure the time to complete the following steps: 1) delete all the
edges from the group, 2) update the result, 3) reintroduce the edges,
and 4) update the result. Since the average degree per vertex is
approximately 100, each aggregate change affects approximately 10
vertices, which can then propagate to other vertices. (Since there
vertices are ordered arbitrarily, this aggregate change can be viewed
as inserting/deleting 10 arbitrarily chosen vertices).

Our PageRank implementation delivers significant speedups at
the cost of approximately 10x more memory with different graphs
including the datasets Orkut 3, LiveJournal 4 and Twitter graph5.
For example on the Twitter datasets (labeled Twitter-1) with 30M
vertices and 700M edges, our PageRank implementation reaches an
average speedup of more than 500x compared to the batch version,
at the cost of 10x more memory. Detailed measurements for the
first 100 groups, as shown in Figure 17(left), show that for most
trials, speedups usually approximate 4 orders of magnitude. Since
1000 vertices are changed at a time, we don’t expect the speedups
to exceed 104, which is difficult to match on average because in
PageRank a small change can affect the result for many vertices.

8.5 Incremental graph connectivity

Connectivity, which indicates the existence of a path between
two vertices, is a central graph problem with many applications.
Our incremental graph connectivity benchmark computes a label
`(v) ∈ Z+ for every node v of an undirected graph such that two
nodes u and v have the same label (i.e. `(u) = `(v)) if and only
if u and v are connected. We use a randomized version of Kang
et al.’s algorithm [22] that starts with random initial labels for
improved incremental efficiency. The algorithm is iterative; in each
iteration the label of each vertex is replaced with the minimum of its
labels and those of its neighbors. We evaluate the efficiency of the
algorithm under dynamic changes by for each vertex, deleting that
vertex, updating the result, and reintroducing the vertex. We test the
benchmark on an undirected graph from LiveJournal with 1M nodes

2 This performance gap increases with the input size, so this is quite a
conservative number.
3 Orkut dataset: http://snap.stanford.edu/data/com-Orkut.html
4 LiveJournal dataset:
http://snap.stanford.edu/data/com-LiveJournal.html
5 Twitter dataset: http://an.kaist.ac.kr/traces/WWW2010.html

and 8M edges. Our findings for 100 randomly selected vertices are
shown in Figure 17(center); cumulative (average) measurements are
shown in 2. Since deleting a vertex can cause widespread changes in
connectivity, affecting many vertices, we expect this benchmark to
be significantly more expensive than PageRank. Indeed, each change
is more expensive than in PageRank but we still obtain speedups of
as much as 200x.

8.6 Incremental social circles
An important quantity in social networks is the size of the circle of
influence of a member of the network. Using advances in streaming
algorithms, our final benchmark estimates for each vertex v, the
number of vertices reachable from v within 2 hops (i.e., how many
friends and friends of friends a person has). Our implementation
is similar to Kang et al.’s [21], which maintains for each node 10
Flajolet-Martin sketches (each a 32-bit word). The technique can be
naturally extended to compute the number of nodes reachable from
a starting point within k hops (k > 2). To evaluate this benchmark,
we use a down-sampled Twitter graph (Twitter-2) with 100K nodes
and 2M edges. The experiment divides the edges into groups of 20
edges and considers each of these groups in turn: for each group, we
measure the time to complete the following steps: delete the edges
from the group, update social-circle sizes, reintroduce the edges,
and update the social-circle sizes. The findings for 100 groups are
shown in Figure 17(right); cumulative (average) measurements are
shown in 2 in the last row. Our incremental version is approximately
100x faster than batch for most trials.

9. Related Work
Incremental computation techniques have been extensively studied
in several areas of computer science but much of this research
focuses on time efficiency rather than space efficiency or the
control over the space-time tradeoff fundamental to essentially any
incremental-computation technique. We discussed closely related
work in the introduction (Section 1). In this section, we present a
brief overview of some of the more remotely related work.

Algorithmic Solutions. Research in the algorithms community
focuses primarily on devising dynamic algorithms or dynamic data
structures for individual problems. There have been hundreds of
papers with several excellent surveys reviewing the work (e.g., [15,
31]. Dynamic algorithms enable computing a desired property
while allowing modifications to the input (e.g., inserting/deleting
elements). These algorithms are often carefully designed to exploit
problem-specific structures and are therefore highly efficient. But
they can be quite complex and difficult to design, analyze, and
implement even for problems that are simple in the batch model
where no changes to data are allowed. While dynamic algorithms
can, in principle, be used with large datasets, space consumption
is a major problem [14]. Bader et al. [32] present techniques for
implementing certain dynamic graphs algorithms for large graphs.

Language-Based Approaches. Motivated by the difficulty in de-
signing and implementing ad hoc dynamic algorithms, the program-
ming languages community works on developing general-purpose,
language-based solutions to incremental computation. This research
has lead to the development of many approaches [13, 16, 30, 31],
including static dependency graphs [13], memoization [30], and
partial evaluation [16]. Recent advances on self-adjusting computa-
tion [1, 3] builds on this prior work to offer techniques for efficient
incremental computation expressed in a general-purpose purely
functional and imperative languages. Variants of self-adjusting com-
putation has been implemented in SML [1], Haskell [7], C [19], and
applied to a number of problems (e.g., [3, 4, 33]).

Systems. There are several systems for big data computations
such as MapReduce [12], Dryad [20], Pregel [24], GraphLab [23],

11 2014/3/1

http://snap.stanford.edu/data/com-Orkut.html
http://snap.stanford.edu/data/com-LiveJournal.html
http://an.kaist.ac.kr/traces/WWW2010.html

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

T
im

e
 (

s
)

Batch
Incremental PageRank

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

T
im

e
 (

s
)

Batch
Incremental Graph Connectivity

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100

T
im

e
 (

s
)

Batch
Incremental Social Circles

Figure 17. (left) PageRank: 100 trials (x-axis) of deleting 1,000 edges; (center) Connectivity: 100 trials of deleting a vertex; (right)
Approximate social-circle size: 100 trials of deleting 20 edges. Note: y-axis is in log-scale.

and Dremel [25]. While these systems allow for computing with
large datasets, they are primarily aimed at supporting the batch
model of computation, where data does not change, and consider
domain-specific languages such as flat data-parallel algorithms and
certain graph algorithms.

Data flow systems like MapReduce and Dryad have been ex-
tended with support for incremental computation. MapReduce On-
line [11] can react efficiently to additional input records. Nectar [17]
caches the intermediate results of DryadLINQ programs and gener-
ates programs that can re-use results from this cache. Prior work on
Incoop applies the principles of self-adjusting computation to the
big data setting but only in the context of MapReduce, a domain-
specific language, by extending Hadoop to operate on dynamic
datasets [5]. In addition, Incoop supports an asymptotically subopti-
mal change propagation algorithm. Naiad [26] enables incremental
computation on dynamic datasets in programs written with a spe-
cific set of data-flow primitives. In Naiad dynamic changes cannot
alter the dependency structure of the computation, which makes
it closely related to earlier work on incremental computation with
static dependency graphs [13, 36]. Percolator [29] is Google’s pro-
prietary system that enables a more general programming model
but requires programming in an event-based model with call-backs
(notifications), a very low level of abstraction.

While domain specific, these systems can all run in parallel
and on multiple machines. In principle our approach can also be
parallelized, especially because purely functional programming is
naturally amenable to parallelism. Such a parallelization would
require parallelizing the underlying self-adjusting computation
techniques. There has been some research on this problem, but
existing solutions work in certain domains and/or use a sub-optimal
algorithms for parallel change propagation [5, 6, 18].

10. Conclusion
We present techniques for scaling automatic incrementalization tech-
niques based on self-adjusting computation to large data sets. These
techniques enable expressing big-data applications in a functional
language and rely on 1) a new information-flow type systems and
translation algorithm for tracking dependencies precisely, and 2) a
probabilistic chunking technique for controlling the fundamental
space-time trade-off that self-adjusting computation offers. Our re-
sults are very encouraging, leading to important improvements over
prior work, and delivering significant speedups over batch computa-
tion at the cost of moderate and programmable space overhead. Our
results also show that functional programming can be significantly
more effective than domain-specific languages such as MapReduce.
In future work, we plan to parallelize these techniques, which would
enable scaling to larger problems that require multiple computers.
Parallelization seems fundamentally feasible because functional
programming is inherently compatible with parallel computing.

References
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional

programming. ACM Trans. Prog. Lang. Sys., 28(6):990–1034, 2006.

[2] U. A. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting
computation. In Proceedings of the 25th Annual ACM Symposium on
Principles of Programming Languages, 2008.

[3] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan.
An experimental analysis of self-adjusting computation. ACM Trans.
Prog. Lang. Sys., 32(1):3:1–53, 2009.

[4] U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu. Dynamic well-
spaced point sets. Journal of Computational Geometry: Theory and
Applications, 2013.

[5] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini.
Incoop: MapReduce for incremental computations. In ACM Symposium
on Cloud Computing, 2011.

[6] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Two for the
price of one: A model for parallel and incremental computation. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2011.

[7] M. Carlsson. Monads for incremental computing. In International
Conference on Functional Programming, pages 26–35, 2002.

[8] Y. Chen, U. A. Acar, and K. Tangwongsan. Technical report. URL
http://www.mpi-sws.org/˜chenyan/icfp14-tr.pdf.

[9] Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit
self-adjusting computation for purely functional programs. In Int’l
Conference on Functional Programming (ICFP ’11), pages 129–141,
Sept. 2011.

[10] Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic
incrementalization. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Jun 2012.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In Proc. 7th Symposium on Networked
systems design and implementation (NSDI’10).

[12] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation of
attribute grammars with application to syntax-directed editors. In
Principles of Programming Languages, pages 105–116, 1981.

[14] C. Demetrescu, S. Emiliozzi, and G. F. Italiano. Experimental analysis
of dynamic all pairs shortest path algorithms. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 369–378, 2004.

[15] C. Demetrescu, I. Finocchi, and G. Italiano. Handbook on Data
Structures and Applications, chapter 36: Dynamic Graphs. CRC Press,
2005.

[16] J. Field and T. Teitelbaum. Incremental reduction in the lambda
calculus. In ACM Conf. LISP and Functional Programming, pages
307–322, 1990.

[17] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang.
Nectar: Automatic management of data and computation in data centers.
In OSDI’10.

[18] M. Hammer, U. A. Acar, M. Rajagopalan, and A. Ghuloum. A proposal
for parallel self-adjusting computation. In DAMP ’07: Declarative
Aspects of Multicore Programming, 2007.

[19] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based language
for self-adjusting computation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. SIGOPS Oper.
Syst. Rev., 41(3):59–72, Mar. 2007. ISSN 0163-5980.

12 2014/3/1

http://www.mpi-sws.org/~chenyan/icfp14-tr.pdf

[21] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec.
Hadi: Mining radii of large graphs. TKDD, 5(2):8, 2011.

[22] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: mining peta-
scale graphs. Knowl. Inf. Syst., 27(2):303–325, 2011.

[23] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: a framework for machine learning
and data mining in the cloud. VLDB Endow., 5(8):716–727, Apr. 2012.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, SIGMOD ’10, pages 135–146, 2010.

[25] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets.
Commun. ACM, 54(6):114–123, June 2011. ISSN 0001-0782.

[26] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A timely dataflow system. In Proc. of SOSP, pages
439–455, 2013.

[27] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth
network file system. In SOSP, pages 174–187, 2001.

[28] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1):35–55,
1999.

[29] D. Peng and F. Dabek. Large-scale incremental processing using
distributed transactions and notifications. In Proc. 9th Symposium on
Operating Systems Design and Implementation (OSDI’10), 2010.

[30] W. Pugh and T. Teitelbaum. Incremental computation via function
caching. In Principles of Programming Languages, pages 315–328,
1989.

[31] G. Ramalingam and T. Reps. A categorized bibliography on incre-
mental computation. In Principles of Programming Languages, pages
502–510, 1993.

[32] E. J. Riedy, H. Meyerhenke, D. A. Bader, D. Ediger, and T. G.
Mattson. Analysis of streaming social networks and graphs on
multicore architectures. In ICASSP, pages 5337–5340, 2012.

[33] O. Sümer, U. A. Acar, A. Ihler, and R. Mettu. Adaptive exact inference
in graphical models. Journal of Machine Learning, 8:180–186, 2011.

[34] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf. Comput.,
111(2):245–296, June 1994. ISSN 0890-5401.

[35] K. Tangwongsan, H. Pucha, D. G. Andersen, and M. Kaminsky.
Efficient similarity estimation for systems exploiting data redundancy.
In INFOCOM, pages 1487–1495, 2010.

[36] D. M. Yellin and R. E. Strom. INC: a language for incremental
computations. ACM Transactions on Programming Languages and
Systems, 13(2):211–236, Apr. 1991.

13 2014/3/1

Appendix, ICFP 2014

Appendix

In this section, we show that translation maps source types to corresponding target types.

A. Translation Type Soundness
Lemma A.1 (Substitution). Suppose φ is a satisfying assignment for C, and φ(~α) = ~δ, where ~α ⊆ FV(C).

1. IfD derives C;P; Γ ` e : τ, then there existsD′ deriving C; [~δ/~α]Γ ` e : [~δ/~α]τ, whereD′ has the same height asD.
2. If C δ′ C τ, then C [~δ/~α]δ′ C [~δ/~α]τ.
3. If C τ′ <: τ′′, then C [~δ/~α]τ′ <: [~δ/~α]τ′′.
4. If C τ′ $ τ′′, then C [~δ/~α]τ′ $ [~δ/~α]τ′′.

Proof. By induction on the given derivation. �

We define τ O.S. if ~τ� = S, and τ O.C. if ~τ� = Cρ.

Lemma A.2. Given τ′ <: τ′′ and τ′ $ τ′′:

(1) If τ′′ O.S. then τ′ = τ′′.

(1) If τ′′ O.C. then either τ′ = τ′′ or τ′ =
∣∣∣τ′′∣∣∣S.

Proof. By induction on the derivation of τ′ <: τ′′.

• Case (subInt): τ′ = intδ
′

and τ′′ = intδ
′′

, where δ′ ≤ δ′′.
(1) If τ′′ O.S. then δ′′ = S. So τ′ = τ′′.

(1) If τ′′ O.C. then δ′′ = Cρ. If δ′ = S then
∣∣∣τ′′∣∣∣S = intS = intδ

′

= τ′; if δ′ = Cρ then τ′′ = intCρ = intδ
′

= τ′.
• Case (subProd):

(1) By definition of $, τ′ = τ′′.
(1) τ′′ O.C. is impossible.
• Case (subSum):

(1) If τ′′ O.S. then τ′′ =
(
τ′′1 + τ′′2

)S
. By inversion on (subSum), τ′ =

(
τ′1 + τ′2

)S
. By definition of $, τ′1 = τ′′1 and τ′2 = τ′′2 . Therefore τ′ = τ′′.

(1) If τ′′ O.C. then τ′′ =
(
τ′′1 + τ′′2

)Cρ
. By inversion on (subSum), τ′ =

(
τ′1 + τ′2

)δ′
. By definition of $, τ′1 = τ′′1 and τ′2 = τ′′2 . If δ′ = S then∣∣∣τ′′∣∣∣S =

(
τ′′1 + τ′′2

)S
, which is equal to τ′. If δ′ = Cρ then τ′′ =

(
τ′′1 + τ′′2

)Cρ
=

(
τ′1 + τ′2

)Cρ
=

(
τ′1 + τ′2

)δ′
= τ′.

• Case (subArrow): Similar to the (subSum) case. �

Lemma A.3 (Translation of Outer Levels).
[φ]τ O.C. if and only if ‖τ‖φ = ‖τ‖�Cφ mod;
[φ]τ O.S. if and only if ‖τ‖φ = ‖τ‖�Cφ .

Proof. Case analysis on [φ]τ, using the definitions of − O.S., − O.C., ‖−‖φ and ‖−‖�Cφ . �

Lemma A.4. If Λ; Γ ` v : τ a Γ′ then Γ = Γ′.

Proof. By induction on the given derivation. �

Theorem . If

(a) C;P; Γ ` e : τ, and
(b) φ is a satisfying assignment for C,

then

(1) there exists et and Γ′ such that [φ]Γ ` e : [φ]τ ↪→ et, and ·;‖Γ‖φ ` et : ‖τ‖φ a Γ′,
(2) there exists er and Γ′ such that [φ]Γ ` e : [φ]τ er, and ·;‖Γ‖φ ` er : ‖τ‖φ a Γ′.

Proof. By induction on the height of the derivation of C;P; Γ ` e : τ.
We present the proof in a line-by-line style, with the justification for each step on the right. Since we need to show that four different

judgments are derivable (translation and typing for target program, and translation and typing for return expression), and often arrive at some
of them early, we indicate them withZ.

1

Appendix, ICFP 2014 Proof of Theorem A

• Case C;P; Γ ` n : intS︸︷︷︸
τ

(SInt)

Part (1): Let et be n.
[φ]Γ ` n : intS ↪→ n By (Int)

Z [φ]Γ ` e : [φ](intS) ↪→ et By n = e and defn. of substitution

·;‖Γ‖φ ` n : int a ‖Γ‖φ By (TInt)
·;‖Γ‖φ ` et : ‖intS‖φ a ‖Γ‖φ By int = ‖intS‖ = ‖[φ]intS‖ = ‖intS‖φ and n = et

Z ·;‖Γ‖φ ` et : ‖τ‖φ a ‖Γ‖φ By τ = intS

Part (2): Let er be n.
[φ]Γ ` n : intS ↪→ n Above

Z [φ]Γ ` n : intS n By (RTrans)
Z ·;‖Γ‖φ ` et : ‖τ‖φ a ‖Γ‖φ Above

• Case
C;P; Γ ` v1 : τ1 C;P; Γ ` v2 : τ2

C;P; Γ ` (v1, v2)︸ ︷︷ ︸
e

: (τ1 × τ2)S︸ ︷︷ ︸
τ

(SPair)

Part (1)
C;P; Γ ` v1 : τ1 Subderivation

[φ]Γ ` v1 : [φ]τ1 ↪→ v1 By i.h.
·;‖Γ‖φ ` v1 : ‖τ1‖φ a ‖Γ‖φ By i.h. and Lemma A.4

C;P; Γ ` v2 : τ2 Subderivation
[φ]Γ ` v2 : [φ]τ2 ↪→ v2 By i.h.
·;‖Γ‖φ ` v2 : ‖τ2‖φ a ‖Γ‖φ By i.h. and Lemma A.4

Let et = (v1, v2).

[φ]Γ ` (v1, v2) : ([φ]τ1 × [φ]τ2)S ↪→ (v1, v2) By (Pair)
Z [φ]Γ ` e : [φ]((τ1 × τ2)S︸ ︷︷ ︸

τ

) ↪→ et By def. of substitution and et = (v1, v2)

·;‖Γ‖φ ` (v1, v2) : ‖τ1‖φ × ‖τ2‖φ a ‖Γ‖φ By (TPair)
Z ·;‖Γ‖φ ` et : ‖(τ1 × τ2)S︸ ︷︷ ︸

τ

‖φ a ‖Γ‖φ a ‖Γ‖φ By defn. of ‖−‖φ

Part (2):
C;P; Γ ` v1 : τ1 Subderivation

[φ]Γ ` v1 : [φ]τ1 v′1 By i.h.
·;‖Γ‖φ ` v′1 : ‖τ1‖φ a ‖Γ‖φ By i.h. and Lemma A.4

C;P; Γ ` v2 : τ2 Subderivation
[φ]Γ ` v2 : [φ]τ2 v′2 By i.h.
·;‖Γ‖φ ` v′2 : ‖τ2‖φ a ‖Γ‖φ By i.h. and Lemma A.4

Let er = (v′1, v
′
2).

[φ]Γ ` (v1, v2) : ([φ]τ1 × [φ]τ2)S (v′1, v
′
2) By (RPair)

Z [φ]Γ ` e : [φ]((τ1 × τ2)S︸ ︷︷ ︸
τ

) er By def. of substitution and er = (v′1, v
′
2)

·;‖Γ‖φ ` (v′1, v
′
2) : ‖τ1‖φ × ‖τ2‖φ a ‖Γ‖φ By (TPair)

Z ·;‖Γ‖φ ` er : ‖(τ1 × τ2)S︸ ︷︷ ︸
τ

‖φ a ‖Γ‖φ a ‖Γ‖φ By defn. of ‖−‖φ

• Case

C;P; Γ, x : τ1, f : (τ1 → τ2)S ` e′ : τ2 τ2 ↓0 D;L

C;P′; Γ ` fun f (x) = e′︸ ︷︷ ︸
e

: (τ1 → τ2)S︸ ︷︷ ︸
τ

(SFun)

2

Proof of Theorem A Appendix, ICFP 2014

(a) Suppose
�
[φ]τ1

�
= S, that is P = ∅.

C; ∅; Γ, x : τ1, f : (τ1 → τ2)S ` e′ : τ2 Subderivation

[φ](Γ, x : τ1, f : (τ1 → τ2)S) ` e′ : [φ]τ2 e′ By i.h.

·;‖Γ, x : τ1, f : (τ1 → τ2)S‖φ ` e′ : ‖τ2‖φ a ‖Γ
′‖φ

′′

τ2 ↓0 D;L Premise
[φ]Γ ` e : [φ]τ ↪→ funL f (x) = e′ By (Fun)

Let et be funL f (x) = e′.
(1)Z [φ]Γ ` e : [φ]τ ↪→ et and et is a value

·;‖Γ‖φ, x : ‖τ1‖φ, f : ‖τ1‖φ →
‖D‖φ

‖τ2‖φ ` e′ : ‖τ2‖φ By defn. of ‖−‖φ

·;‖Γ‖φ ` (funS f (x) = e′) : ‖τ1‖φ →
‖D‖φ

‖τ2‖φ By (TFun)

(1)Z ·;‖Γ‖φ ` (funS f (x) = e′)︸ ︷︷ ︸
et

: ‖(τ1 → τ2)S︸ ︷︷ ︸
τ

‖φ By defn. of ‖−‖φ

(2)Z [φ]Γ ` e : [φ]τ ↪→ let r = et in write(r) By (Write)
Let er be let r = et in write(r).

·;‖Γ‖φ, r : ‖τ‖φ ` r : ‖τ‖φ By (TPVar)
·;‖Γ‖φ, r : ‖τ‖φ ` write(r) : ‖τ‖φ By (TWrite)

(2)Z ·;‖Γ‖φ ` er : ‖τ‖�Cφ By (TLet) and Lemma A.3

(b) Suppose
�
[φ]τ1

�
= C1ρ, that is P = {1ρ}.

[φ](Γ, x : τ1, f : (τ1 → τ2)S) ` e′ : [φ]τ2 ↪→ e′ By i.h. and [φ] = Cρ

·;‖Γ, x : τ1, f : (τ1 → τ2)S‖φ ` e′ : ‖τ2‖
�C
φ

′′

[φ]Γ ` e : [φ]τ ↪→ funC f (x) = e′ By (Fun) and ([φ]τ1 →
Cρ

[φ]τ2)S = [φ]τ

Let et be funC f (x) = e′.
(1)Z [φ]Γ ` e : [φ]τ ↪→ et and et is a value

·;‖Γ‖φ, x : ‖τ1‖φ, f : ‖τ1‖φ →
Cρ
‖τ2‖

�C
φ ` e′ : ‖τ2‖

�C
φ By defn. of ‖−‖φ

(1)Z ·;‖Γ‖φ ` (funC f (x) = e′) : ‖τ‖φ By (TFun)
(2)Z [φ]Γ ` e : [φ]τ ↪→ let r = et in write(r) Analogous to (a)
(2)Z ·;‖Γ‖φ ` let r = et in write(r) : ‖τ‖�Cφ

′′

• Case
C;P; Γ ` v : τ1

C;P; Γ ` inl v︸︷︷︸
e

: (τ1 + τ2)S︸ ︷︷ ︸
τ

(SSum)

Part (1):
C; Γ ` v : τ1 Subderivation
[φ]Γ ` v : [φ]τ1 ↪→ v By i.h.
·;‖Γ‖φ ` v : ‖τ1‖φ

′′

Z [φ]Γ ` e : [φ]τ ↪→ inl v By (Sum)
Let et = inl v.
·;‖Γ‖φ ` inl v : ‖τ1‖φ + ‖τ2‖φ By (TSum)

Z ·;‖Γ‖φ ` inl v︸︷︷︸
et

: ‖(τ1 + τ2)S︸ ︷︷ ︸
τ

‖φ By (TSum)

Part (2): Similar to (SPair), using (τ1 + τ2)S O.S.

• Case
C;P; Γ ` x : (τ1 × τ2)δ

C;P; Γ ` fst x︸︷︷︸
e

: τ1
(SFst)

Suppose [φ]δ = S.
Part (1):

C; Γ ` x : (τ1 × τ2)δ Subderivation
[φ]Γ ` x : ([φ]τ1 × [φ]τ2)S ↪→ x By i.h.
·;‖Γ‖φ ` x : ‖τ1‖φ × ‖τ2‖φ

′′

Z [φ]Γ ` e : [φ]τ1 ↪→ fst x By (Fst)
Let et = fst x.

Z ·;‖Γ‖φ ` fst x : ‖τ1‖φ By (TFst)

3

Appendix, ICFP 2014 Proof of Theorem A

Part (2): Similar to (SVar):

− If τ1 O.S., let er be let r = fst x in write(r) and apply rule (Write).
− If τ1 O.C., let er be let r = fst x in read r as r′ in write(r′) and apply rule (ReadWrite).

Suppose [φ]δ = Cρ. We have the premise C δ ≤ , so [φ] = Cρ; we only need to show part (2).
Part (2):

− If τ1 O.S., let er be read x as x′ in let r = fst x′ in write(r) and apply rule (Read) with (LFst).

. . . , r : ‖τ1‖ ` r : ‖τ1‖ By (TPVar)

. . . , r : ‖τ1‖ ` write(r) : ‖τ1‖ By (TWrite)

. . . , r : ‖τ1‖ ` write(r) : ‖τ1‖
�C τ1 O.S.

‖Γ‖, x′ : ‖τ1‖× ‖τ2‖ ` fst x′ : ‖τ1‖ By (TPVar) then (TFst)

‖Γ‖, x′ : ‖τ1‖× ‖τ2‖ ` let r = fst x′ in write(r) : ‖τ1‖
�C By (TLet)

‖Γ‖ ` x : ‖(τ1 × τ2)Cρ‖ By i.h.
‖Γ‖ ` x : (‖τ1‖× ‖τ2‖) mod By def. of ‖−‖
‖Γ‖ ` read x as x′ in let r = fst x′ in write(r) : ‖τ1‖

�C By (TRead)

− If τ1 O.C., then ‖τ1‖ = τ′1 mod for some τ′1.
Let er be read x as x′ in let r = fst x′ in read r as r′ in write(r′) and apply rule (Read) with (LFst).

. . . , r′ : τ′1 ` write(r′) : τ′1 By (TPVar) then (TWrite)

. . . , r′ : τ′1 ` write(r′) : ‖τ1‖
�C τ1 O.C.

. . . , r : τ′1 mod ` r : τ′1 mod By (TPVar)

. . . , r : τ′1 mod ` read r as r′ in write(r) : ‖τ1‖
�C By (TRead)

The remaining steps are similar to the τ1 O.S. subcase immediately above.

• Case
C;P; Γ `′ e1 : τ′ C;P; Γ, x : τ′′ ` e2 : τ C τ′ <: τ′′ C τ′ $ τ′′

C;P; Γ ` let x = e1 in e2︸ ︷︷ ︸
e

: τ
(SLet)

(a) Subcase for [φ]τ′′ O.C.
C; Γ ` e1 : τ′ Subderivation
[φ]Γ ` e1 : [φ]τ′ ↪→ er By i.h.
·;‖Γ‖φ ` er : ‖τ′‖�Cφ

′′

C τ′ <: τ′′ Premise
[φ]τ′ <: [φ]τ′′ By Lemma A.1

C τ′ $ τ′′ Premise
[φ]τ′ $ [φ]τ′′ By Lemma A.1
[φ]τ′′ O.C. Subcase (a) assumption
[φ]τ′ = [φ]τ′′ or [φ]τ′ =

∣∣∣[φ]τ′′
∣∣∣S By Lemma A.2 (2)

If the former, then:
[φ]Γ ` e1 : [φ]τ′ ↪→ mod er By (Mod)
[φ]Γ ` e1 : [φ]τ′′ ↪→ mod er By [φ]τ′ = [φ]τ′′

If the latter, then:
[φ]Γ ` e1 : [φ]τ′′ ↪→ mod er By (Lift)

Now we have the same judgment no matter which equation Lemma A.2 gave us.

·;‖Γ‖φ ` er : ‖τ′‖�Cφ Above
·;‖Γ‖φ ` mod er : ‖τ′‖�Cφ mod By (TMod)
·;‖Γ‖φ ` mod er : ‖

∣∣∣τ′′∣∣∣S‖�Cφ mod or ·;‖Γ‖φ `S mod er : ‖τ′′‖�Cφ mod By τ′ = τ′′ or
∣∣∣τ′′∣∣∣S = τ′

·;‖Γ‖φ ` mod er : ‖τ′′‖�Cφ mod By defn. of
∣∣∣−∣∣∣S or copying

[φ]τ′′ O.C. Subcase (a) assumption
‖τ′′‖�Cφ = ‖τ′′‖φ mod By Lemma A.3

·;‖Γ‖φ ` mod er︸ ︷︷ ︸
et

: ‖τ′′‖φ By above equation

(b) Subcase for [φ]τ′′ O.S.

4

Proof of Theorem A Appendix, ICFP 2014

C; Γ ` e1 : τ′ Subderivation
[φ]Γ ` e1 : [φ]τ′ ↪→ et By i.h.
·;‖Γ‖φ ` et : ‖τ′‖φ ′′

[φ]τ′′ O.S. Subcase (b) assumption
[φ]τ′′ = [φ]τ′ By Lemma A.2 (1)

·;‖Γ‖φ ` et : ‖τ′′‖φ By above equation

For both subcases, we have:
C; Γ, x : τ′′ ` e2 : τ Subderivation

[φ]Γ, x : [φ]τ′′ ` e2 : [φ]τ ↪→ et
2 By i.h. and defn. of substitution

·;‖Γ‖φ, x : ‖τ′′‖φ ` et
2 : ‖τ‖φ By i.h. and defn. of ‖−‖φ

(1)Z [φ]Γ ` e : [φ]τ ↪→ let x = et in et
2 By (LetE)

(1)Z ·;‖Γ‖φ ` let x = et in et
2 : ‖τ‖φ By (TLet)

C; Γ, x : τ′′ ` e2 : τ Subderivation
[φ]Γ, x : [φ]τ′′ ` e2 : [φ]τ ↪→ er

2 By i.h. and defn. of substitution
·;‖Γ‖φ, x : ‖τ′′‖φ ` er

2 : ‖τ‖�Cφ By i.h. and defn. of ‖−‖φ
(2)Z [φ]Γ ` e : [φ]τ ↪→ let x = et in er

2 By (LetE)
(2)Z ·;‖Γ‖φ ` let x = et in er

2 : ‖τ‖�Cφ By (TLet)

• Case
C;P; Γ `S x1 :

τ f︷ ︸︸ ︷
(τ1 →

′
τ)δ C;P; Γ `S x2 : τ1 C δ C τ

C;P; Γ ` apply(x1, x2)︸ ︷︷ ︸
e

: τ
(SApp)

We distinguish four subcases “S-S”, “Cρ-S”, “Cρ-Cρ”, “S-Cρ” according to [φ]′ and [φ]δ respectively.

Subcase “S-S” for [φ]δ = S.
Part (1):

C; Γ ` x2 : τ1 Subderivation
[φ]Γ ` x2 : [φ]τ1 ↪→ x2 By i.h.
·;‖Γ‖φ ` x2 : ‖τ1‖φ

′′

C; Γ ` x1 : (τ1 →
′
τ)δ Subderivation

[φ]Γ ` x1 : [φ]τ f ↪→ x1 By i.h.
·;‖Γ‖φ ` x1 : ‖(τ1 →

′
τ)δ‖φ ′′

·;‖Γ‖φ ` x1 : ‖([φ]τ1 →
[φ]′

[φ]τ)[φ]δ‖ By def. of ‖−‖φ and def. of substitution

·;‖Γ‖φ ` x1 : ‖([φ]τ1 →
S

[φ]τ)S‖ Subcase S-S assumption

·;‖Γ‖φ ` x1 : ‖τ1‖φ →
S
‖τ‖φ By def. of ‖−‖

Let et = applyS(x1, x2).
Z [φ]Γ ` e : [φ]τ ↪→ applyS(x1, x2) By (App)
Z ·;‖Γ‖φ ` applyS(x1, x2) : ‖τ‖φ By (TApp)

Part (2):
(a) Suppose [φ]τ O.S.
Z [φ]Γ ` e : [φ]τ ↪→ let r = et in write(r) By (Write)
·;‖Γ‖φ, r : ‖τ‖φ ` r : ‖τ‖φ By (TPVar)
·;‖Γ‖φ, r : ‖τ‖φ ` write(r) : ‖τ‖φ By (TWrite)

·;‖Γ‖φ ` let r = et in write(r) : ‖τ‖φ By (TLet)
[φ]τ O.S. Subcase (a) assumption

Z ·;‖Γ‖φ ` let r = et in write(r) : ‖τ‖�Cφ By Lemma A.3

(b) Suppose [φ]τ O.C.

5

Appendix, ICFP 2014 Proof of Theorem A

Z [φ]Γ ` e : [φ]τ ↪→ let r = et in read r as r′ in write(r′) By (ReadWrite)
·;‖Γ‖φ, r : ‖τ‖φ ` r : ‖τ‖φ By (TPVar)

[φ]τ O.C. Subcase (b) assumption
·;‖Γ‖φ, r : ‖τ‖φ ` r : ‖τ‖�Cφ mod By Lemma A.3

·;‖Γ‖φ, r : ‖τ‖φ, r′ : ‖τ‖�Cφ ` r′ : ‖τ‖�Cφ By (TPVar)
·;‖Γ‖φ, r : ‖τ‖φ, r′ : ‖τ‖�Cφ ` write(r′) : ‖τ‖�Cφ By (TWrite)

·;‖Γ‖φ, r : ‖τ‖φ ` read r as r′ in write(r′) : ‖τ‖�Cφ By (TRead)
Z ·;‖Γ‖φ ` let r = et in read r as r′ in write(r′) : ‖τ‖�Cφ By (TLet)

Subcase “Cρ-S” where [φ] = Cρ and [φ]δ = S.
Part (2):

[φ]Γ ` x1 : [φ]τ f ↪→ x1 From subcase S-S above
[φ]Γ ` x2 : [φ]τ1 ↪→ x2 From subcase S-S above

Let er = applyC(x1, x2).
Z [φ]Γ ` e : [φ]τ ↪→ applyC(x1, x2) By (App)

·;‖Γ‖φ ` x1 : ‖(τ1 →
′
τ)δ‖�Cφ By i.h.

·;‖Γ‖φ ` x1 : ‖([φ]τ1 →
[φ]′

[φ]τ)[φ]δ‖�C By def. of ‖−‖�Cφ
·;‖Γ‖φ ` x1 : ‖([φ]τ1 →

Cρ
[φ]τ)S‖�C By subcase Cρ-S assumption

·;‖Γ‖φ ` x1 : ‖[φ]τ1‖→
Cρ
‖[φ]τ‖�C By def. of ‖−‖�C

·;‖Γ‖φ ` x1 : ‖τ1‖φ →
Cρ
‖τ‖�Cφ By def. of ‖−‖φ and ‖−‖�Cφ

·;‖Γ‖φ ` x2 : ‖τ1‖φ From subcase S-S above
Z ·;‖Γ‖φ ` er : ‖τ‖�Cφ By (TApp)

Part (1):
[φ]τ O.C. By [φ]′ = Cρ and barring (τ′1 →Cρ

τ′2)δ where τ′2 O.S.

[φ]Γ ` e : [φ]τ ↪→ er Above
Z [φ]Γ ` e : [φ]τ ↪→ mod er By (Mod)
·;‖Γ‖φ ` er : ‖τ‖�Cφ Above
·;‖Γ‖φ ` mod er : ‖τ‖�Cφ mod By (TMod)

[φ]τ O.C. Above
Z ·;‖Γ‖φ ` mod er : ‖τ‖φ By Lemma A.3

Subcase “Cρ-Cρ” where [φ]′ = Cρ and [φ]δ = Cρ:
Part (2):

(Γ, x′ : (τ1 →
′
τ)S)(x′) =∀~α[true]. (τ1 →

′
τ)S By defn. of Γ

C ∃~α.true By defn. of
C; Γ, x′ : (τ1 →

′
τ)S ` x′ : (τ1 →

′
τ)S By (SVar)

[φ]Γ, x′ : ([φ]τ1 →
Cρ

[φ]τ)S ` x′ : ([φ]τ1 →
Cρ

[φ]τ)S ↪→ x′ By (Var)

[φ]Γ, x′ : ([φ]τ1 →
Cρ

[φ]τ)S ` x2 : [φ]τ1 ↪→ x2 By extending Γ

[φ]Γ, x′ : ([φ]τ1 →
Cρ

[φ]τ)S ` apply(x′, x2) : [φ]τ ↪→ applyC(x′, x2) By (App)

[φ]Γ, x′ :
∣∣∣([φ]τ1 →

Cρ
[φ]τ)Cρ

∣∣∣S ` apply(x′, x2)︸ ︷︷ ︸
e

: [φ]τ ↪→ applyC(x′, x2) By defn. of substitution and
∣∣∣−∣∣∣S

[φ]Γ ` e{ (x1 � x′ : ([φ]τ1 →
Cρ

[φ]τ)Cρ ` apply(x′, x2)) By (LApply)

([φ]τ1 →
Cρ

[φ]τ)Cρ O.C. By defn. of O.C.

C; Γ ` x1 : τ f Subderivation
[φ]Γ ` x1 : ([φ]τ1 →

Cρ
[φ]τ)Cρ ↪→ x1 By i.h.

·;‖Γ‖φ ` x1 : (‖τ1‖φ →
Cρ
‖τ‖�Cφ) mod ′′

Z [φ]Γ ` e : [φ]τ ↪→ read x1 as x′ in applyC(x′, x2) By (Read)

6

Proof of Theorem A Appendix, ICFP 2014

Let er be read x1 as x′ in applyC(x′, x2)
·;‖Γ‖φ, x′ : ‖τ1‖φ →

Cρ
‖τ‖�Cφ ` x′ : ‖τ1‖φ →

Cρ
‖τ‖�Cφ By (TPVar)

·;‖Γ‖φ, x′ : ‖τ1‖φ →
Cρ
‖τ‖�Cφ ` x2 : ‖τ1‖φ By extending Γ

·;‖Γ‖φ, x′ : ‖τ1‖φ →
Cρ
‖τ‖�Cφ ` applyC(x′, x2) : ‖τ‖�Cφ By (TApp)

·;‖Γ‖φ ` x1 : (‖τ1‖φ →
Cρ
‖τ‖�Cφ) mod Above

Z ·;‖Γ‖φ ` read x1 as x′ in applyC(x′, x2) : ‖τ‖�Cφ By (TRead) (**)

Part (1):
C δ C τ Premise

[φ]τ O.C. By [φ]δ = Cρ
[φ]Γ ` e : [φ]τ ↪→ er Above

Z [φ]Γ ` e : [φ]τ ↪→ mod er By (Mod)
·;‖Γ‖φ ` er : ‖τ‖�Cφ Above (**)

Z ·;‖Γ‖φ ` mod er : ‖τ‖φ By reasoning in subcase Cρ-S for Part (1); note that [φ]τ O.C.

Subcase “S-Cρ” where [φ]′ = S and [φ]δ = Cρ:
Part (2):

[φ]Γ, x′ : ([φ]τ1 →
S

[φ]τ)S ` apply(x′, x2) : [φ]τ ↪→ er
0 Above and substitute x1 with x′

[φ]Γ, x′ :
∣∣∣[φ]τ f

∣∣∣S ` [x′/x1]e : [φ]τ ↪→ er
0 By defn. of

∣∣∣−∣∣∣S and substitution
[φ]Γ ` x1 : ([φ]τ1 →

S
[φ]τ)Cρ ↪→ x1 By i.h.

Z [φ]Γ ` e : [φ]τ ↪→ read x1 as x′ in er
0 By (Read)

Let er = read x1 as x′ in er
0.

·;‖Γ‖φ ` er
0 : ‖τ‖�Cφ Above and substitute x1 with x′

·;‖Γ‖φ, x′ : ‖τ1‖φ →
S
‖τ‖�Cφ ` er

0 : ‖τ‖�Cφ By extending Γ

·;‖Γ‖φ ` x1 : (‖τ1‖φ →
S
‖τ‖�Cφ) mod By i.h.

Z ·;‖Γ‖φ ` read x1 as x′ in er
0 : ‖τ‖�Cφ By (TRead)

Part (1): Similar to Part (1) of the subcase for Cρ/Cρ.

• Case

C;P; Γ ` x1 : intδ1

C;P; Γ ` x2 : intδ2

C δ1 = δ2 ` ⊕ : int × int→ int
C;P; Γ ` ⊕(x1, x2) : intδ1

(SPrim)

If [φ]δ1 = [φ]δ2 = S then:
C; Γ ` x1 : intδ1 Subderivation
[φ]Γ ` x1 : intδ1 ↪→ x1 By i.h.
·;‖Γ‖φ ` x1 : ‖intδ1‖φ

′′

·;‖Γ‖φ ` x1 : int By [φ]δ1 = S and def. of ‖−‖

[φ]Γ ` x2 : intδ2 ↪→ x2 Similar to above
·;‖Γ‖φ ` x2 : int Similar to above

[φ]Γ ` e : intS ↪→ ⊕(x1, x2) By (Prim)
Z [φ]Γ ` e : [φ](intδ1) ↪→ ⊕(x1, x2) By [φ]δ1 = S

Let et = ⊕(x1, x2).
` ⊕ : int→ int Premise

·;‖Γ‖φ ` ⊕(x1, x2) : int By (TPrim)
Z ·;‖Γ‖φ ` ⊕(x1, x2) : ‖intδ1‖φ By [φ]δ1 = S and def. of ‖−‖

Part (2): Similar to (SPair); note that τ O.S. holds.

If [ψ]δ1 = [ψ]δ2 = Cρ then:
Part (2):

[φ]Γ, y1 : intS, y2 : intS ` ⊕(y1, y2) : intCρ ↪→ ⊕(y1, y2) By (Var), (Var), (Prim)
[φ]Γ, y1 : intS, y2 : intS ` ⊕(y1, y2) : intCρ ↪→ let r = ⊕(y1, y2) in write(r) By (Write)

[φ]Γ, y1 : intS ` ⊕(y1, y2) : intCρ ↪→ read x2 as y2 in let r = ⊕(y1, y2) in write(r) By (LPrimop2) then (Read)

Z [φ]Γ ` ⊕(y1, y2) : intCρ ↪→ read x1 as y1 in read x2 as y2 in
let r = ⊕(y1, y2) in write(r) By (LPrimop1) then (Read)

7

Appendix, ICFP 2014 Proof of Theorem A

·;‖Γ‖φ, y1 : int, y2 : int, r : int ` write(r) : int By (TVar) then (TWrite)
·;‖Γ‖φ, y1 : int, y2 : int ` ⊕(y1, y2) : int By (TVar) and (TVar), then (TPrim)
·;‖Γ‖φ, y1 : int, y2 : int ` (let r = ⊕(y1, y2) in write(r)) : int By (TLet)

·;‖Γ‖φ, y1 : int ` (read x2 as y2 in let r = . . . in write(r)) : int By (TRead)

·;‖Γ‖φ `
read x1 as y1 in read x2 as y2 in

let r = ⊕(y1, y2) in write(r) : int By (TRead)

Z ·;‖Γ‖φ `
read x1 as y1 in read x2 as y2 in

let r = ⊕(y1, y2) in write(r) : ‖intδ1‖�Cφ By def. of ‖−‖�C and [φ]δ1 = Cρ

Part (1): As the immediately preceding Part (2), but then using rule (Mod).

• Case
C;P; Γ `S x : (τ1 + τ2)δ

C;P; Γ, x1 : τ1 ` e1 : τ
C;P; Γ, x2 : τ2 ` e2 : τ C δ C τ

C;P; Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2}︸ ︷︷ ︸
e

: τ
(SCase)

(a) Suppose [φ]δ = S.
C; Γ ` x : (τ1 + τ2)δ Subderivation
[φ]Γ ` x : ([φ]τ1 + [φ]τ2)S ↪→ x By i.h.
·;‖Γ‖φ ` x : ‖τ1‖φ + ‖τ2‖φ

′′

C; Γ, x1 : τ1 ` e1 : τ Subderivation
[φ]Γ, x1 : [φ]τ1 ` e1 : [φ]τ ↪→ et

1 By i.h.
·;‖Γ‖φ, x1 : ‖τ1‖φ ` et

1 : ‖τ‖φ ′′

[φ]Γ, x1 : [φ]τ1 ` e1 : [φ]τ ↪→ er
1

′′

·;‖Γ‖φ, x1 : ‖τ1‖φ ` er
1 : ‖τ‖�Cφ

′′

C; Γ, x2 : τ2 ` e2 : τ Subderivation
[φ]Γ, x2 : [φ]τ2 ` e2 : [φ]τ ↪→ et

2 By i.h.
·;‖Γ‖φ, x2 : ‖τ2‖φ ` et

2 : ‖τ‖φ ′′

[φ]Γ, x2 : [φ]τ2 ` e2 : [φ]τ ↪→ er
2

′′

·;‖Γ‖φ, x2 : ‖τ2‖φ ` er
2 : ‖τ‖�Cφ

′′

(1)Z [φ]Γ ` e : [φ]τ ↪→ case x of {x1 ⇒ et
1 , x2 ⇒ et

2} By (Case)
(1)Z ·;‖Γ‖φ ` case x of {x1 ⇒ et

1 , x2 ⇒ et
2} : ‖τ‖φ By (TCase)

(2)Z [φ]Γ ` e : [φ]τ ↪→ case x of {x1 ⇒ er
1 , x2 ⇒ er

2} By (Case)
(2)Z ·;‖Γ‖φ ` case x of {x1 ⇒ er

1 , x2 ⇒ er
2} : ‖τ‖�Cφ By (TCase)

(b) Suppose [φ]δ = Cρ.
[φ]Γ, x′ : ([φ]τ1 + [φ]τ2)S ` [x′/x]e : [φ]τ ↪→ er

0 Above but with x′ in place of the first x
·;‖Γ‖φ, x′ : ‖τ1‖φ + ‖τ2‖φ ` er

0 : ‖τ‖�Cφ
′′

[φ]Γ ` case x of {x1 ⇒ e1 , x2 ⇒ e2}

{ (x � x′ : ([φ]τ1 + [φ]τ2)Cρ ` case x′ of {x1 ⇒ e1 , x2 ⇒ e2})
By (LCase)

([φ]τ1 + [φ]τ2)Cρ O.C. By defn. of O.C.
[φ]Γ ` x : ([φ]τ1 + [φ]τ2)Cρ ↪→ x By i.h.
·;‖Γ‖φ ` x : ‖(τ1 + τ2)Cρ‖φ ′′

·;‖Γ‖φ ` x :
(
‖τ1‖φ + ‖τ2‖φ

)
mod By def. of ‖−‖φ

(2)Z [φ]Γ ` e : [φ]τ ↪→ read x as x′ in er
0 By (Read)

Let er = read x as x′ in er
0.

(2)Z ·;‖Γ‖φ ` er : ‖τ‖�Cφ By (TRead)
C δ C τ Premise

[φ]τ O.C. By [φ]δ = Cρ and defn. of O.C.
(1)Z [φ]Γ ` e : [φ]τ ↪→ mod er By (Mod)

·;‖Γ‖φ ` mod er : ‖τ‖�Cφ mod By (TMod)
‖τ‖�Cφ mod = ‖τ‖φ By Lemma A.3

(1)Z ·;‖Γ‖φ ` mod er : ‖τ‖φ By above equation �

8

	Introduction
	Background and Overview
	Background and List Partition
	Limitation 1: Redundant Dependencies
	Limitation 2: Dependency Metadata.

	Fine-grained Information Flow Types
	Source Language
	Target Language
	Translation
	Translating types.
	Translating Expressions

	Probabilistic Chunking
	Evaluation
	Benchmarks and Measurements
	Block Lists and Sorting
	Word Count
	PageRank: Two Implementations
	Incremental graph connectivity
	Incremental social circles

	Related Work
	Conclusion
	Translation Type Soundness

