
Noname manuscript No.
(will be inserted by the editor)

Continuously Mining Distributed Version Control
Systems: An empirical study of how Linux uses git

Daniel M German · Bram Adams ·
Ahmed E. Hassan

Received: date / Accepted: date

Abstract Distributed version control systems (D-VCSs—such as git and
mercurial) and their hosting services (such as Github and Bitbucket) have
revolutionalized the way in which developers collaborate by allowing them to
freely exchange and integrate code changes in a peer-to-peer fashion. However,
this flexibility comes at a price: code changes are hard to track because of the
proliferation of code repositories and because developers modify (“rebase”)
and filter (“cherry-pick”) the history of these changes to streamline their inte-
gration into the repositories of other developers. As a consequence, researchers
and practitioners, who typically only consider the (cleaned up) history in the
official project repository, are unaware of important elements and activities in
the collaborative software development. In this paper, we present a method
that continuously mines all known D-VCSs of a software project to uncover the
complete history of a project’s development. We use this method to (1) show
the divergence between the code history in the official Linux kernel repository
and the complete kernel development history, and (2) to investigate the char-
acteristics of the ecosystem of git repositories of the Linux kernel. Finally, we
discuss how continuous mining could be adopted by current D-VCS hosting
services.

Daniel German
University of Victoria
E-mail: dmg@uvic.ca

Bram Adams
Polytechnique Montréal
E-mail: bram.adams@polymtl.ca

Ahmed E. Hassan
Queen’s University
E-mail: ahmed@cs.queensu.ca



2 Daniel M German et al.

1 Introduction

Distributed version control systems (D-VCSs) have taken the open source
ecosystem by storm. Since initial development of D-VCSs in the early 2000s
(arch and monotone) and their breakthrough for open source development
in the Linux kernel development community (bitkeeper and git), D-VCSs
are quickly replacing the predominant centralized version control systems (C-
VCSs) like CVS and Subversion. For example, by the end of 2013 Ohloh, a
directory indexing more than 500,000 open source projects, reported that 29%
of the tracked projects use git and 5% use other D-VCSs like mercurial and
bazaar, compared to 52% using C-VCS Subversion and 11% using CVS (Black
Duck Inc., 2013). Similarly, the Eclipse 2012 Community Survey with 732 open
source participants reported that git has replaced CVS as the second most
popular version control system, with 23.2% (almost double the adoption of
2011), right behind Subversion, with 46.0% (Foundation, 2012).

The success of D-VCSs is due to the flexibility that they provide as well as
the emergence of D-VCS hosting services like Github and Bitbucket. One of the
most fundamental characteristics of a D-VCS is that it allows each developer to
have her own repository and to exchange change-sets with other developers in
a peer-to-peer fashion. As such, each developer can decide which code changes
are worthwhile to integrate into her repository and which ones are not. Hence,
code changes propagate throughout developer repositories until they reach
the primary project repository (we will refer to this repository as blessed)
containing the “official” code base. Creating and hosting a D-VCS repository
has become relatively trivial through the advent of hosting services, which
offer 1-click access for cloning an existing D-VCS repository and making the
new clone accessible for other developers.

The ability to access the public repositories of developers in addition to the
official blessed repository (we use the term “Super-repository” for the set of
all repositories of a project) makes it possible to obtain a more complete view
of development activities. For example, it might be possible to observe if work
is cleaned up before it is sent to blessed , or if some changes are never prop-
agated to other repositories and developers. Hence, the data in all developer
repositories would provide a potential gold mine for research on development
processes, collaboration, software evolution and socio-technical congruence, as
well as for practitioners who want to monitor their development progress.

To understand how developers use the features of D-VCSs in practice,
we studied the use of the git D-VCS in the Linux kernel project. The Linux
kernel is arguably one of the largest open source software systems ever devel-
oped, with over 10,800 developers having contributed to its development since
2005 (Corbet et al, 2013). It was also at the forefront of the move towards
D-VCSs. Our case study on the Linux kernel enables us to study the following
research questions:

– What are the characteristics of the repositories in the Linux Super-
repository?



Title Suppressed Due to Excessive Length 3

– How do the repositories of a Super-repository interact with each other and
how do commits flow across them?

However, during our study, we observed that current repository mining
methods are unable to exploit the rich set of development data stored in
D-VCSs. In particular, there are three major challenges that have stopped
traditional mining methods from leveraging the rich data available through
D-VCSs. First, commits do not keep track of which repositories they
have passed through. This is even true for online services like Github and
gitorious, which track when a merge is performed, as well as its source and des-
tination repositories, but do not explicitly track the commits that are moved
in such a request. Second, D-VCSs recommend developers to rewrite
(rebase) their development history, if necessary, to facilitate easier
integration of their work into other repositories (Bird et al, 2009b; Cor-
bet, 2008a). This rewriting ranges from merging, splitting or deleting change-
sets to changing their order (i.e., creating a copy and destroying the original
commit). Third, when merging a change-set into another repository,
developers are also encouraged to filter (cherry-pick) only the in-
teresting portions and ignore the rest. Due to these three challenges, the
actual development history of projects that use D-VCSs is permanently lost,
making traditional analysis of code change history incomplete and potentially
unreliable in a D-VCS repository.

In order to address our two research questions, this paper replaces the
traditional “snapshot-based mining” (snapMining) of D-VCS repositories by
a “continuous mining” (continuousMining) method. Whereas snapMining
merely analyzes the list of code changes in the blessed D-VCS repository,
continuousMining continuously crawls all known D-VCS repositories multiple
times a day to record and analyze all new change-sets. As such, continuous-
Mining not only yields more accurate development history, it also allows us to
study phenomena that are impossible to study using only blessed , like rebas-
ing and cherry-picking, and to study integration activities involved in moving
commits throughout the repositories on their way to blessed . To evaluate the
effectiveness of continuousMining (which is a prerequisite for the other two
research questions), we study the following research question:

– Does continuousMining expose any bias in the project history recovered
using snapMining?

The contributions of this paper are:

– A method (and its implementation) to mine D-VCSs that relies on the
continuous mining of the distributed repositories. Based on this method, we
also implemented a git-history tracking dashboard to improve traceability
of commits in the ecosystem of Linux git repositories.

– We compare the use of continuousMining to snapMining and show that:
– continuousMining uncovers significantly more development activity and

a larger ecosystem than snapMining .
– continuousMining can monitor the propagation of commits across

repositories and identify when they arrive at blessed .



4 Daniel M German et al.

– Cherry-picking and rebasing make commit identifiers (ids) insufficient
to track change-sets across repositories. They also make the commit
date and the committer metadata unreliable.

– An empirical study of how Linux developers use git, i.e., we:
– show that one can identify different kinds of repositories in the Linux

ecosystem, each of which has a different role, such as: repositories
for producers of patches, for integrators, and for product lines (e.g.,
versions of the kernels distributed by Android, SUSE, Redhat and
Ubuntu).

– show that commits with new features take longer and visit more repos-
itories on their way to blessed than commits that fix bugs.

2 Background

In this section, we introduce the nomenclature that we will use, then briefly
introduce the Linux development process and how it uses git.

2.1 The D-VCS Super-repository

In C-VCSs all commits happen in a central repository. Only developers with
write-access can contribute to this repository. The main development activity
takes place on the so-called “trunk” of the repository (the repository’s main
codeline), whereas more experimental features are developed on “branches”
(other codelines), before being merged back into the trunk or abandoned.

D-VCSs, such as git, take a radically different approach. Instead of making
a working copy of the state of a repository at a particular time, the developer
clones the whole history of a repository (the trunk and all branches), and
develops inside her local repository. Any repository can be cloned, and, from
a conceptual point of view, no repository is more important than any other.
In practice, the development team will organize the repositories in a social
hierarchy and at least one of the repositories will be marked as the central
repository (its blessed repository), where the latest team-approved changes
are expected to be found.

Any contributing developer aims her changes to flow from her personal
repository to blessed , using one of three methods: by “pushing” them to the
destination repository (if she has write-access–this is equivalent to committing
to a centralized version control repository); by letting someone with write-
access to the destination repository “pull” the changes in; or by emailing the set
of commits to a person who has write access to the destination repository (D-
VCSs allow exchange of commits via email with full commit history tracking).

Conceptually, we can model the collection of all repositories of a project
as if it were a single repository, which we call the project’s Super-repository .
The “trunk” of this Super-repository is the trunk of the blessed repository.
The trunk and branches of all public (available to all teammates) and private



Title Suppressed Due to Excessive Length 5

(accessible only to their owner) repositories that were (recursively) cloned
from the same repository are branches of the Super-repository . The set of
all commits in the Super-repository is the union of all commits in each of
its repos, hence each commit in the Super-repository exists in at least one
repository in the Super-repository . Every time a developer pulls, pushes from
another repository, or incorporates commits that she received via email, she is
effectively merging one branch (in the source repository) into another one (in
the destination repository). Such a merge might result in a new commit that
records the merge, a so-called merge-commit, in contrast to the non-merge
commits, which contain the actual code changes. Merge-commits link together
branches, and correspond to integration work.

2.2 Linux and git

In order to study the use of D-VCSs in practice, this paper analyzes the Linux
kernel, which arguably is one of the most globally distributed software systems
ever developed. According to the Linux Foundation, nearly 10,000 developers
from over 1,000 different companies have contributed to the Linux kernel since
2005 (Corbet et al, 2013). The requirements imposed by such a large and
diverse team, working on a codebase of more than 44,000 files, has prompted
many innovations in the area of distributed version control systems.

In 2002, Linux decided to start using bitkeeper, a commercial D-VCS
system. According to the Linux Weekly News, the adoption of bitkeeper by
the Linux development team became a success: “The rate at which patches
were merged skyrocketed, the developers were happy, and the whole system
ran smoothly.”(Corbet, 2005). This improvement was attributed to the re-
placement of a workflow based on email patches with a workflow based on
multiple distributed repositories that could merge their changes with minimal
user intervention. In 2005, Linus Torvalds decided to stop using bitkeeper,
and replaced it with git (his own implementation of a D-VCS). Because git

was built with the Linux workflow in mind, one can expect that Linux devel-
opers exercise most of git’s features.

Anybody who wants to contribute to Linux is expected to clone one of its
public repositories, and implement his or her contribution locally on top of
such a clone. After the contributions are completed, they are sent to a mailing
list for review (these emails are prepared using git’s email patch feature).
Once the contribution is approved, it is committed by a member of the Linux
development team into a repository. The newly created commit will record as
its author the original creator and as its time of authorship the time when it
was created in the author’s repository (before it was emailed). The committer
and commit date of the newly created commit will reflect who integrated
this commit into the receiving repository. git also implements a method to
trace the review and mail-patch process via sign-off fields that get added to the
message of each commit. These sign-off fields usually reflect the original author



6 Daniel M German et al.

Fig. 1 Life of a patch. A patch is created in a private repository. After that, the patch
is sent to one of the kernel mailing lists where the patch might be picked up by a module
maintainer, who signs it off and commits it to her public repository. From there, the patch
(inside a commit) starts to be propagated to other repositories, eventually reaching blessed .
This paper concentrates on the propagation of a patch in the ecosystem of public repositories,
once the patch has been accepted by a module maintainer.

of a commit, the module maintainer who first committed to her repository, and
other individuals involved in the review.

Once commits are in the git repository of the module maintainer, they
start to propagate (via push and pulls) to other repositories, until eventually,
they reach blessed (the repository of Linus Torvalds). Some commits might
not go through a review process. In that case, they move from their source
repository to blessed via push and pull operations between individual reposi-
tories. Such commits might still include a sign-off field with the name of the
person that first committed the change. This person will be recorded as both
the author and committer of the commit. Figure 1 depicts the life of a patch.
Since personal repositories are only accessible by their owners, we concentrate
on the movements of commits in the ecosystem of public repositories.

2.3 Challenges Introduced by D-VCSs

In order to understand how software projects like the Linux kernel use a D-
VCS like git, we first need to address the three major challenges introduced
by D-VCSs: (Bird et al, 2009b): (1) once a repository is merged into another,
the history does not contain information about the location from where the
commits originated, except for any optional commit log information stored in
merge-commits (if these merge commits were created); developers can alter



Title Suppressed Due to Excessive Length 7

the history of commits in their repository by (2) moving commits around
(rebasing) or (3) filtering the commits (cherry-picking). We first discuss these
challenges, and in the next Section presents our method to resolve them.

2.3.1 No Traceability of Commits across Repositories

Paradoxically, D-VCSs assume an self-centred view of the world. A repository
does not keep track of other repositories in the Super-repository ; and a reposi-
tory does not keep track of the commits that occurred in other repositories and
have not propagated to it1. Commits receive a unique identifier upon creation
using a hash function (git uses SHA-1) of the contents of the commit, i.e., its
metadata2, patch and parent commits. Since the slightest change to the meta-
data would alter the SHA1, the commit cannot accumulate any information
about the repositories through which it has passed on its way to blessed . Only
merge-commits (if these commits are created) might contain, as part of their
commit message, information about the address (URI) of the branch being
merged, but this depends on the discipline of the developer doing the merge.

2.3.2 Commits are Moved Around

Rebasing is the act of moving commits from their current location (following
an older commit) to the new head (newest commit) of their branch (Chacon,
2009). Developers use rebasing to make their changes work with the newest
changes committed in the parent repository (e.g., blessed), and to make their
repository easier to integrate into other repositories. Because rebasing changes
the ancestors of a commit, the SHA1 of the commit itself changes as well (even
if the rest of the metadata remains the same) and this results in a new commit
ID for the same change, losing traceability with the old commit.

2.3.3 Commits are Filtered

Cherry-picking is a process that allows a developer to select one or more parts
from a larger change-set in the source repository and only apply those in the
destination. As with rebasing, cherry-picking a commit will change the com-
mit’s ID because the ancestors of the destination are likely different than in the
original repository. Also, the dropped parts of a change-set in the source repos-
itory might be discarded by dropping the branch in which they reside. Again,
possibly important development history disappears, making it impossible to
retrieve a complete history from blessed .

1 Even services on top of D-VCSs, like Github, do not provide a way to know the set of
all commits in a Super-repository, i.e., the commits that have already arrived to blessed and
those that are still in other repositories.

2 The metadata consists of the time during which the commit was first committed (au-
thorship date), the name of the author, the time when it was last committed (commit date),
the committer, and the commit message.



8 Daniel M German et al.

3 Continuously Observing Events as They Happen

To overcome the three challenges described in Section 2.3, we need to be
able to observe, over time, the commits as they are created in their original
repository, the propagation of commits across repositories and, potentially,
whether commits are deleted or rebased.

Traditionally, researchers have mined only the blessed repository of a
project that uses a D-VCS, i.e., the final version of accepted commits. We
will refer to this as the “snapshot method” (snapMining). Unfortunately, this
method is not able to see how commits move across repositories, and misses ac-
tivities that are not propagated to blessed . Also, the history of the interactions
between the various development repositories is lost.

If D-VCSs had a central logging feature3, we could simply exploit such
logs. However, even hosting services for D-VCSs do not provide full tracking
of commits. For example, Github only tracks cloned repositories if the cloning
operation is done inside Github’s web interface too, and Github tracks the
origin of commits in a merge only if such a merge was the result of a pull-
request. An in-depth explanation of this lack of traceability can be found in
Gousios et al (2014) and Kalliamvakou et al (2014).

The alternative is to continuously query each repository in a Super-
repository , discovering their new commits and those commits that these repos-
itories no longer contain. Such continuous querying will allow us to know when
and where commits are created, and how they propagate to other repositories.
Along the way, new repositories in the Super-repository will be discovered. We
have developed a method to achieve this, which we call: continuous min-
ing of distributed version control repositories, and we refer to it as
continuousMining .

Using continuousMining , it is possible to retrieve: a) the repositories that
compose the Super-repository , and for each of them, its owners (the devel-
opers that have commit privilege to it), and its branches; and b) the set of
all commits in the repository, and for each commit, the moment at which it
appears and/or is deleted in each repository in the Super-repository . Continu-
ousMining is composed of three steps: 1) Initializing the set of repositories, 2)
Crawling process, and 3) Reviewing commits and discovering new repositories.
These steps are depicted in Algorithms 1 and 2, while their output is described
in Table 1.

3.1 Initializing the set of repositories

At the very beginning of the mining process, the Super-repository (i.e., the
set of known repositories R) will contain, at the very least, the blessed repos-
itory of a project and any other known and accessible repository used by the
project. We found that projects typically publish the locations of their main
repositories. Services like Bitbucket, Github and Gitorious also cross-reference

3 bitkeeper is the only D-VCS that optionally supports centralized logging.



Title Suppressed Due to Excessive Length 9

Table 1 The output of our method for continuousMining.

Name Description
R set of known public repositories
Owners set of tuples 〈person, repo〉 indicating that person

can commit in repo
C set of commits in Super-repository
Prop set of tuples 〈c, r, t〉 showing that commit c has propagated

to repo r at time t
Del set of tuples 〈c, r, t〉 showing that commit c is deleted from

a repo r at time t
B set of tuples 〈b, c, r, t〉 showing that branch b in repo r had

commit c as its head at time t

hosted repositories that have been cloned from each other (as long as these
clones are created within these services).

3.2 Crawling process

This step is fully automated. Every fixed time interval τ , each repository r
in the Super-repository is queried for changes (part I of Algorithm 1). If r
has changed, we record its new commits (including the metadata and patch
of the commit), which commits were deleted, and the list of branches that
each repository currently has. We timestamp this information with the time
at which we updated the repository.

A major challenge is that this process is not atomic, i.e., we cannot stop
people from updating the various repositories while we perform a scan. There-
fore, we have to deal with two issues: a) commits that have been propagated
between scans, where we do not find the new commit in its true origin, but
in a repository to which it has been propagated; and b) finding commits that
originated in new repositories that are not yet in our list of repositories. For
this, we keep a list of the owners of every repository. The owner of a repository
is the name of the person that can commit to that repository. A repository
might have more than one owner. We deal with variations in names by first
unifying the names of developers and their email addresses using a method
similar to Bird et al (2006).

If a new commit c appears in repo r, but committer(c) is not an owner of
r, then we mark the commit for review (see part II of Algorithm 1).

3.3 Reviewing commits and discovering new repositories

As described above, the crawling process finds, at every iteration, commits
that need to be reviewed. This reviewing process is described in Algorithm 2
and it is semi-automated (usually conducted once a day). It is composed of
two phases. The first phase is automated: for each commit c to review, we
automatically verify if the commit is created by the owner of the repository (we



10 Daniel M German et al.

Algorithm 1: Crawling process

input : τ an interval of time between scans of the repositories

output: R set of known repositories in Super-repository
output: C set of all commits in Super-repository
output: Prop set of tuples each showing when a commit is observed arriving at a

repository
output: Del set of tuples each showing when a commit is deleted from a repository
output: B set of tuples showing a branch, the repository where it is observed, and

its head
output: ToReview set of tuples containing commits that are likely created in a

repository not in Super-repository yet and that must be manually reviewed

C ← Prop← Del← Branches← Owners← ∅;
R← known repositories in Super-repository (at least blessed);

Make a local clone of every repo in R;

repeat at intervals τ
I for every repository r in R do

Synchronize the local copy of r ;
if r changed since last scan then

t← current time;
new ← commits not previously seen in r ;
Del← Del ∪ commits deleted in r;
B ← B ∪ new branches in r;

for every commit c in new do
Prop← Prop ∪ 〈c, r, t〉;

for every commit c in new but not in C do
if 〈committer(c), r〉 /∈ Owners then

II ToReview ← ToReview ∪ 〈c, r, t〉
else

C ← C ∪ c

might have updated the list of Owners of that repository since the time this
commit was added to ToReview—see part α of Algorithm 2). Otherwise, we
verify if the same commit was found in the same iteration or in the immediately
next one in a repository r1 such that the committer(c) is one of theOwners(r1)
(see part β of Algorithm 2). In that case, we tag the commit as coming from
r1 and remove it from ToReview.

The second phase is manual (although we have developed scripts to help us
with it). For every commit, we first inspect the commits that follow it, and if
there is a merge, and the merge is by a different committer, then we manually
inspect this merge to find if it refers to an unknown repository r2. If r2 is
unknown, we clone r2, process it for the first time, identify its owners, and, if c
is found in r2 and the committer of c is an owner of r2, then we mark c as having
originated in r2 (see part γ of Algorithm 2). Otherwise, we scan the mailing
lists and web sites of the project to determine if the committer(r) should be
added as an owner of r (part δ of Algorithm 2). Although we have developed
tools to help with this phase, it requires manual intervention. Fortunately, we



Title Suppressed Due to Excessive Length 11

Algorithm 2: Reviewing commits and discovery of new repositories.

input : ToReview set of tuples containing commits that are likely created in a
repository not in Super-repository yet and that must be manually reviewed

output: Updates R, Owners, C and ToReview –see Table 1.

for every tuple 〈c, r, t〉 ∈ ToReview do // automated process
α if committer(c) ∈ owner(r) then

ToReview ← ToReview − {〈c, r, t〉};
β else if 〈c, r1, t1〉 ∈ Prop such that t1 − t < I and 〈committer(c), r1〉 ∈ Owners

then
set r1 as the true origin of c;
C ← C ∪ c;
ToReview ← ToReview − {〈c, r, t〉};

for every tuple 〈c, r, t〉 ∈ ToReview do // req. manual intervention
γ if c is followed by a merge and the merge refers to an unknown repo r2 then

Make a local clone of r2;
Process r2 using section A of Mining ;
Owners← Owners ∪ owners(r2);
if committer(c) is one of owners(r2) and c is seen in r2 then

set r2 as the true origin of c;
C ← C ∪ c;
ToReview ← ToReview − {〈c, r, t〉};

R← R ∪ r2;

δ else if there is other evidence that committer(c) is an owner of r or
committer(c) made many commits to r that are never followed by somebody
else’s merges then

C ← C ∪ c;
Owners← Owners ∪ 〈committer(c), r〉;
ToReview ← ToReview − {〈c, r, t〉};

expect that (1) a short interval τ minimizes propagation before new commits
are found and that (2) over time the number of newly discovered repositories
will decrease.

We have implemented continuousMining for git as a set of perl scripts
with a relational database (postgresql) as its backend. We have run it continu-
ously on Linux since November 2011. Since then, we have identified 2.3 million
different commits from 635 repositories (as of Sept 2013).

4 Empirical Study

In this section, we present an empirical study of how Linux uses git as a
concrete case study of how D-VCSs are used in practice. Through this study,
we achieve two goals: first, we demonstrate that continuousMining is effective
at providing a richer picture on the use of git than snapMining , and second,
we present an in-depth study of how git is used by Linux developers.

Thus, we ground our empirical study on the following three research ques-
tions:



12 Daniel M German et al.

– RQ1. Does continuousMining expose any bias in the project history re-
covered using snapMining?

– RQ2. What are the characteristics of the repositories in the Linux Super-
repository?

– RQ3. How do the repositories of a Super-repository interact with each
other and how do commits flow across them?

4.1 Setup

The goal of this empirical study is to compare the information recovered using
the two mining methods: snapMining and continuousMining . The subject of
this study are the commit activities of the Linux kernel developers during
2012.

4.1.1 snapMining

As the blessed repository, we use the git repository of Linus Torvalds. We
made a clone of his repository on Jan 2, 2013. We extracted the metadata,
and the patch of all commits performed in 2012.

4.1.2 continuousMining

We started mining the Linux Super-repository in Nov 9, 2011. The mining
performed during 2011 was used to fine-tune the implementation of continu-
ousMining , to gather a substantial part of all repositories, and to determine
the mining interval τ .

4.1.3 Initializing the set of repositories

We seeded our list of repositories with those found in git.kernel.org on Nov 9,
2011 (193 repositories). We settled for a mining interval τ of 3 hrs, since a)
it took approximately 2 hrs to complete a mining iteration, and b) only 1.4%
of commits were propagated in such a time window. Considering that most
public repositories of the Linux kernel are updated a median of once every 12
days, and very few were updated daily, it is unlikely that reducing τ would find
many commits that are added to a public repository, and then deleted before
a scan in that repo is performed. A shorter τ would have reduced the number
of iterations where a commit had propagated before it was first discovered but
this effect was already very small.

4.1.4 Crawling process

The growth of the number of crawled repositories can be seen in Figure 2.
By Jan. 1, 2012 we were crawling 262 repositories and by the end of 2012 we
were crawling 530 repositories. However, only 479 of these 530 repositories had



Title Suppressed Due to Excessive Length 13

Jan 1, 2012

0

100

200

0 20 40
Week

co
un

t

Committers

Repos

Fig. 2 Number of new repositories and committers discovered per week. Week 1 corre-
sponds to the first week of 2012. The spike on the left hand side corresponds to the final
weeks of 2011, the period during which we were discovering the majority of the repositories
in the ecosystem.

at least one new commit during 2012. We completed 32,945 repository-crawls
that found at least one new commit.

4.1.5 Reviewing commits and discovering new repositories

This step automatically fixed the origin of 1.4% of the commits (7,714). As
described in Section 3, we incorrectly attributed these commits during con-
tinuousMining , because pulling changes from repositories is not transactional.
Hence some commits were copied between repositories while we were doing
our crawling. We manually processed 0.7% of the commits (3,925) that had
originated in previously unknown repositories. Frequently, a scan would result
in many new commits that were resolved at once. For example, on April 20,
2012 we had to manually process 852 commits, but all of them came from the
same unknown repository. The output of this step included the list of owners
of each repository. Figure 2 shows the growing number of committers that were
identified. We estimate that the amount of work invested to do this manual
analysis was approximately 50 hours during the first two weeks of mining, and
2-3 hours per week after that.

By January 2012 we were confident that we were mining most of the ac-
tive and publicly accessible repositories in the Linux Super-repository , and
we were tracking commits from the first public repository in which they were
seen. As with snapMining , for each commit we recorded its metadata and any
associated patches.

We observed that the same patch would appear in the Super-
repository with different commit ids. For that reason, we computed a
patch id using the following method: first, using ’git log --patch’ we extract
the entire patch of the commit (it might contain changes to one or more files);
second, we remove all index lines (index lines are used internally by git to
indicate the SHA1 identifier of the exact files the patch applies to) and, from
each hunk, the line numbers where the hunk is to be applied. For example,
the patch:



14 Daniel M German et al.

index 6936e0a..f748cc8 100644

--- a/drivers/pnp/driver.c

+++ b/drivers/pnp/driver.c

@@ -197,6 +197,11 @@ static int pnp_bus_freeze(struct device *dev)

return __pnp_bus_suspend(dev, PMSG_FREEZE);

}

+static int pnp_bus_poweroff(struct device *dev)

...

becomes:

--- a/drivers/pnp/driver.c

+++ b/drivers/pnp/driver.c

@@-@@ static int pnp_bus_freeze(struct device *dev)

return __pnp_bus_suspend(dev, PMSG_FREEZE);

}

+static int pnp_bus_poweroff(struct device *dev)

...

Finally, we compute the SHA1 checksum of the resulting patch (all changes
to all files in the commit). Patch ids allow us to uniquely identify a contribution
(patch), even when it is committed multiple times and its commit id changes
(for example due to rebasing or cherry picking). A merge commit usually does
not contain a patch, unless there was a conflict in the branches that it merges.
In the latter case, the merge commit’s patch contains the changes needed to
resolve the conflict. Hence, a commit might have zero or one patches associated
with it.

4.2 Comparing the Information Recovered using continuousMining and
snapMining

Table 2 Basic statistics performed on the commits from 2012, based on the two mining
methods.

Metric cont. snap Ratio
cont./snap

Active repositories 479 1 479
Unique commits 533,513 64,029 8.3

Unique non-merge commits 485,027 58,953 8.2
Unique merge commits 48,486 5,076 9.5

Unique patches (patch ids) 135,352 58,355 2.3
Unique author email addresses 5,646 3,434 1.6

Unique authors 4,575 2,883 1.6
Unique committer email addresses 1,185 283 4.2

Unique committers 1,058 245 4.3

For each commit, we record its metadata, the repository where
it is created, whether it is a merge or a non-merge, its associated



Title Suppressed Due to Excessive Length 15

patch and its patch id. The basic statistics of the mining processes of
snapMining and continuousMining are reported in Table 2. As can be seen,
using continuousMining we observe 8.3 times more commits, and 2.3
times more patches in the Super-repository than in blessed . Hence, a
patch is found in an average of 3.6 commits (135,352 patches across 485,027
non-merge commits). The additional number of patches in Super-repository
compared to blessed implies that there is a large amount of contributions that
are not reflected in blessed . These contributions could be (1) rejected patches,
(2) patches that were still in transit by the end of 2012 (end of our mining),
or (3) development that is never expected to reach blessed (such as product
line-type customizations). Rejected commits often keep on wandering around
in at least one repository, making them hard to distinguish from commits that
are still in transit. Between January 1st and Dec. 15th, 2013, only 931 (1.2%)
of these patches had arrived at blessed .

With respect to the development team, the number of different au-
thors and committers in the Super-repository was, respectively, 1.6
and 4.3 times larger than those discovered using snapMining . These
individuals collaborate using 479 different repositories. There is a low per-
centage of committers who managed to have a patch accepted into blessed
(23.2%). This implies that 76.8% of the committers observed in the
Super-repository are not visible in blessed . However, we observed that,
of the 479 repositories, 360 (75.1%) had at least one commit contributed to
blessed .

continuousMining uncovers significantly more activity and a larger ecosys-
tem of developers than snapMining .

5 Results

The following subsections present the results for our research questions. For
each research question, we discuss its motivation, the concrete findings in the
Linux kernel project as well as the new opportunities for research that are
opened up. While RQ1 focuses on bias introduced by snapMining , RQ2 and
RQ3 highlight the richness of the data produced by continuousMining , since
it enables new types of questions and analyses.

RQ1. Does continuousMining expose any bias in the project history recovered
using snapMining?

Motivation

It is expected that by mining more repositories one would recover not just
more complete data, but also a more accurate picture of the development pro-
cess than by mining blessed only. However, one important question is if this



16 Daniel M German et al.

additional data exposes bias (i.e., significant differences) in the information
recovered from blessed using snapMining compared to the information recov-
ered using continuousMining? Such a bias might give an incorrect view of the
development process. Our data collection showed that there were 2.3 times
more new patches, and 8.3 times more commits in the Super-repository than
in blessed (see Section 4.2). Without rebasing, each patch would correspond
to exactly one commit. Hence, rebasing seems to be common, which means
that the metadata of commits (commit message, author, committer, dates of
authorship and commit) might change across different incarnations (commits)
of the same patch. In other words, what is observable in blessed might be
significantly different than what is actually happening.

Even though blessed provides an accurate account of which commits have
been accepted into a project, its view of the development history is reactive:
a commit only becomes visible in blessed once it has been integrated (Jiang
et al, 2013), even though the commit might have been around in the Super-
repository for months. For example, if one analyzes on a certain day the number
of commits per week for each of the past weeks, one obtains a distribution D1.
If that night, the maintainer of blessed merges 1,000 new commits4, and the
next morning one generates a new distribution (D2) of the number of commits
per week for each of the past weeks, the two distributions can be substantially
different, with certain periods in the past suddenly exhibiting a large number
of commits. continuousMining on the other hand enables pro-active tracking
of a commit (with respect to blessed) from the moment that it enters its first
repository.

Findings:

RQ1.1 Regarding the relationship between commit ids and patches

At the beginning of our research we naively expected that every commit con-
tained a different patch. However, when we discovered that the number of
commits in the Super-repository was 8.3 more than in blessed we hypothesized
it was because the same patch was occurring in different commits. As described
in Section 4.2, the number of commits in the repo was 533,513, but we only
observed 135,352 different patches. For this reason we decided to look at the
distribution of the number of commits in which a given patch appears. The
number is heavily skewed, with an average of 3.7 commits per patch in the
Super-repository and 55% had one commit per patch. Table 3 shows the com-
parison between patches and commits seen in blessed and the Super-repository .
Note that 482 patches appeared in at least two commits in blessed—we ver-
ified every one of these commits and they contained non-trivial patches. We
believe that this is the result of cherry-picking: the same patch is integrated
into different development branches (each resulting commit will have a dif-
ferent commit id) and when the second branch is merged into blessed , git

4 During 2012, there were 19 days where Linus merged at least 1,000 commits on the same
day.



Title Suppressed Due to Excessive Length 17

recognizes that the patch has already been applied (when the first branch was
merged), and ignores the patch in the second commit. Although more work
is needed to understand what kind of patches undergoes such cherry-picking,
the implication of this result is that in a Super-repository , the commit
id cannot be used to uniquely identify patches as they move across
repositories (and their branches).

Observation #1a: In a Super-repository , the same patch can appear in
different commits, making commit ids insufficient to track patches in the
Super-repository .

Table 3 Comparison between patches and commits in blessed and the Super-repository.

Super-
Blessed repository

Number of Non-merge commits 58,953 485,027
Number of patches 58,356 135,532
Ratio of patches to non-merges 98.9% 27.9%
Ratio of non-merges committed in 2012 that reached blessed 12.1%
Ratio of patches that reached blessed 43.1%

Since we track commits from their origin, we know when a commit in
blessed contains a patch that was previously seen in another commit (that
didn’t reach blessed), hence we are in the position to measure how many
commits in blessed have different commit metadata than the earlier commit
version. If we assume that the original metadata is correct, the different commit
metadata could introduce bias in the data that is mined from blessed using
snapMining . Table 4 shows these commits, classified by the observed type of
change in metadata. 37.9% of the non-merge commits found in blessed
were later copies of an earlier commit that contains the same patch.
This means that more than one third of commits were re-commits of the same
change, and hence, had their date of commit changed. For these commits, the
median difference in time between the first version of the commit
and the one that arrived in blessed is 14.2 days. In other words, for
18.9% of the commits in blessed , the actual commit date is skewed by at least
14 days. Furthermore, in 11.4% of the changes in blessed , the authorship date
was changed (a median difference of 10.9 days). Our results show empirically
that commit date and even author date metadata in blessed is biased,
which means that relying on the metadata stored in blessed likely gives a
partially-incorrect representation of what really happened.

RQ1.2 Regarding rebasing

Of these metadata changes, we suspected that basic rebasing of commits might
be one of the most common causes. As discussed in Section 2.3.2, simple



18 Daniel M German et al.

Table 4 Breakdown of changes in the metadata of patches for commits in blessed that are
copies of earlier commits containing those patches. Committer and author names have been
unified to account for changes in email addresses.

Count Proportion
Date of commit 22,326 37.9%
Committer 7,330 12.4%
Date of authorship 6,725 11.4%
Author 203 0.3%
Commit message 13,323 22.6%
Commit message summary (subset of commit message) 2,634 4.5%

rebasing5 occurs during a synchronization with another repository (git pull)
when a locally-developed codeline is detached from its location and re-attached
after the latest pulled commit in the same branch. We identify simple rebasing
as follows: if during a scan of a repository, a commit is deleted from this
repository, and, in the same scan, a new commit appears in the same repository
with the same patch id as the deleted one, we mark this new commit as a simple
rebase of the deleted commit6.

In the Super-repository , 20% (27,856) of patches had been simply rebased
at least once. This rebasing has the side effect that the commit-date of the
pre-rebase commit is lost and the new commit has the commit-date of the
pull. Such re-committing helps explain why sometimes developers appear to
commit many changes in a very short period of time. For example, we observed
that, during 2012, in thirteen occasions a developer committed more than 100
changes in one minute, whereas what actually happened was the automatic
simple rebasing of those changes (during a git pull). Other common rea-
sons for rebasing are modifying the commit message to improve the commit
summary or to add tested-by, and signed-off-by fields. The large proportion
of changes in metadata between the first commit containing a patch, and the
commit that arrives at blessed with the same patch shows that, at least in
Linux, rebasing is a common activity that introduces substantial
bias in the data that is mined from blessed using snapMining .

Observation #1b: continuousMining exposes substantial bias in the com-
mit’s date and committer name as recorded by snapMining .

RQ1.3 Regarding the arrival of commits at blessed

Commits need to move from the repositories where they are first seen to
blessed . We wanted to explore any patterns in the arrival of the commits to
blessed , To do so, we looked at the rate at which they arrived at blessed over
time. Figure 3 shows the number of commits authored (green) and committed

5 See The Basic Rebase in http://git-scm.com/book/ch3-6.html.
6 Simple rebasing is usually performed automatically during a git pull operation with

the option --rebase.



Title Suppressed Due to Excessive Length 19

●

●

●
● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

●

● ●
● ● ● ●

●

●

●

● ●
●

● ●
● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

●0

2500

5000

7500

0 10 20 30 40 50
Week

N
um

be
r 

of
 C

om
m

its

Date

● Arrival date

Authorship date

Commit date

Fig. 3 Number of commits per week based on three criteria: authorship date, commit date,
and date-of-arrival at blessed (only includes commits committed in 2012). Both authorship
and commit date have a fairly uniform distribution; however, the date of arrival at blessed
peaks on the week of a release or right after—which are depicted as vertical dashed lines.

(blue) per week in the Super-repository , and compares them to the number
of commits arriving (red) into blessed per week. The overall authoring and
committing of commits in the Super-repository is more or less uniformly dis-
tributed over the year, only slightly peaking around releases (vertical dashed
lines). However, if we look at when these commits arrived at blessed , we notice
that most of them are merged in the so-called merge window, i.e., the two weeks
after a major release. After these two weeks, only bug fixes are permitted7.
This pattern is not surprising: it similar to that of multi-branch development
(using centralized version control systems), in which developers continue with
their work (e.g. new features) while their completed work is being tested and
integrated into a current release. The implication of this result is that the
many repositories of Linux act as branches where new features and bug fixes
are constantly being developed. Once these work-items are completed, they
move into blessed in a well defined pattern that starts with the release of a
version (and the beginning of the integration of the next one). The signifi-
cant difference between centralized and distributed repositories in this regard
is that in the centralized repo all the activity is visible at once, while in the
distributed one, only the commits that have reached blessed are visible (unless
one mines the rest of the repositories, as we have done in this research).

Table 5 shows the number of non-merge commits per release, for each
merge window in 2012. This table shows that the number of commits that
Linus Torvalds accepts during the merge window is significantly larger than
during the bug-fixing window, while the total number of commits per release
is relatively constant. The arrival of commits at blessed shows a well-
defined periodicity around releases, i.e., the Linux “merge window”.

Observation #1c: continuousMining can monitor the propagation of com-
mits across repositories and identify when such commits arrive at blessed .

7 http://www.kernel.org/doc/Documentation/development-process/2.Process



20 Daniel M German et al.

Table 5 Number of commits for the merge and bug-fixing windows of each release, and the
percentage of commits that contain “fix” or “bug” (capitalization ignored) at least once in
its entire commit message (denoted as Msg.) or their one-line summary (denoted as Sum.).

Rel Merge Incl. fix/bug Bug-Fix. Incl. fix/bug Total
Window Msg. Sum. Window Msg. Sum.

3.2 9,459 24.6% 15.8% 1,955 57.3% 42.9% 11,415
3.3 9,858 26.5% 17.5% 1,969 57.5% 41.2% 11,828
3.4 10,068 22.5% 13.3% 1,702 60.1% 42.1% 11,771
3.5 9,160 23.6% 15.1% 1,968 56.4% 41.9% 11,129
3.6 11,083 25.2% 15.4% 1,920 56.5% 42.4% 13,004
3.7 11,737 24.1% 15.4%

RQ1.4 Regarding commits that arrive during the bug-fixing window

As we have seen, Linus Torvalds designates a bug-fixing window: any non-
merge that arrives during this window is expected to be a bug-fix. This
gives an opportunity to evaluate one common method to identify bug fixes.
Researchers—such as Mockus and Votta (2000); Hassan (2008)—often assume
that commits with the strings “bug” or “fix” in their commit message are
defect fixing commits. Table 5 shows for every window (both merge and bug-
fixing) the number of commits that contain the strings “bug” or “fix” in the
summary (the one-liner that describes the commit), or the detailed commit
message—the average length of the commit message in Linux was 10.25 lines.
The summary is part of the commit message.

During the bug fixing windows only 2 in every 5 commits contain the
strings “bug” or “fix” in their one-line summary, and 3 out of 5 in the detailed
description of the commit message. Hence, those heuristics seem to miss a
significant number of bug fixes.

We inspected the commit messages and summaries during the bug-fixing
windows, and in many of these bug-fixes the commit message does not state
explicitly that they fixed a bug (and by consequence neither does their commit
summary), instead the commits mention the action that the developer took to
fix it, e.g.: “md: Avoid write invalid address if read seqretry returned true...”,
“md/raid5: Make sure we clear R5 Discard when discard is finished...” and
“md: make sure everything is freed when dm-raid stops an array..”.

However, the commit messages of commits that merge these fixes into
blessed often contain fix. For example, the three commits mentioned above
were merged together with the commit message “Merge tag ’md-3.7-fixes’ of
git://neil.brown.name/md ... Fixed a recently introduced deadlock”. Other
examples of such merge-commit messages are: “Pull SELinux fixes from ...”,
“Merge tag ’gfs2-fixes’ of ...”, “This batch of changes is mostly clean ups
and small bug fixes.” and “Pull MIPS fixes from ...”. This implies that the
commit message of the merge that incorporates commits into blessed
can be an important source of information when trying to identify
bug fixes. In fact, 88% of merges in the bug-fixing window contained “bug” or
“fix” in their commit message (compared to only 48% in the merge window).



Title Suppressed Due to Excessive Length 21

Because it is possible to identify the merge that merges a commit into blessed ,
it is possible to identify bug-fixing commits with information extracted from
blessed using snapMining .

Observation #1d: continuousMining provides a pro-active view of a
project’s development history (with respect to the information stored in
snapMining) and uncover patterns of development otherwise invisible.

Opportunities:

To understand a development process in full, one needs to use continuous-
Mining , since it can uncover patterns of top-level integration that are other-
wise lost in the recorded history of blessed . Furthermore, continuousMining
provides the opportunity to explain some of the large differences in activity
between the entire Super-repository and blessed (Table 5).

We observed that the number of accepted commits (including the number
of bug-fixing commits) seems more or less stable for each release, with around
10,000 commits in the merge-window, and 1,900 commits in the bug-fixing
window. Hence, it seems that the project has a kind of constant development
capacity, however it is not clear why this is the case and if this is a long-
term phenomenon. ContinuousMining of the Super-repository would provide
researchers with development information that can help understand such an
interesting phenomenon.

In addition, an advantage of identifying the arrival time of a commit in
blessed is that one can tag with a high level of confidence the commits that
arrive during the bug-fixing window as bug-fixes. For instance, during the
bug-fixing windows, we found that not all commits in the bug-fixing window
contain the words fix or bug (see Table 5). One could exploit this information
to improve current models for automated identification of bug-fixing commits
(e.g., Tian et al (2012)) and to identify potential for bias, in a way similar to
that found in bug databases—as reported by Herzig et al (2013).

Another advantage of monitoring the arrival of commits at blessed is that
we can categorize bug-fixing commits into those that are discovering during
the development of the new-features (those accepted during the merge-window
and that contain “bug” or fix”) and those that are created to fix a bug that
are found after integration has taken place. We know that it is important
to discover defects as soon as possible. With this data we can add a new
dimension to studies of defect-fixing activities that separates bugs-fixes into
those two categories.

One of the most important lessons that we have uncovered in this research
question is that the commit-date reflects the last time a patch was committed,
and at least in Linux, 37.9% of commits in blessed have been recommitted
(22.6% had their commit message reworked too). This means that, unless this
phenomenon is taken into account, studies should not rely on this date. As
shown in Table 4, these change in metadata of a patch from its first instance



22 Daniel M German et al.

to the one that arrives at blessed could be a potential threat to validity to
studies that rely on the commit or authorship time, or the name of the com-
mitter. Especially the bias in author data is worrisome, since many studies
have considered this data to be much more reliable than commit data. By
tracing commits throughout the Super-repository , one can understand what
prompts developers to change commit metadata like author names in the first
place. The fact that commits change their id makes it difficult to map to their
origin in the mailing list. A shift in dates could also increase the difficulty to
map the bug fix to the bug-report. On top of that, it is not clear if commits
in Linux are entangledKawrykow and Robillard (2011)

Rebasing and cherry-picking in D-VCSs are activities that have not been
studied in detail. How does rebasing help integration? What prompts some-
body to cherry-pick a particular change?

As we have observed, commits in blessed are successful ones. They have
arrived at blessed from other repositories where they are expected to be tested
and chosen for integration. When we study only the blessed repository of Linux,
we are only studying commits that have gone through this vetting process. The
entire Super-repository is similar to an enormous centralized repository where
development happens in multiples branches (each branch in each repository
would be equivalent to one branch in this centralized repo). Concentrating in
blessed is similar to only studying the main integration branch of a software
project (not even the older releases of Linux are found in blessed–as we will
discuss in RQ2). Development in Linux is probably not that different from
development in a large organization that does multi-branch development, as
those described in Shihab et al (2012) and bird12. Future research should
compare these two development models.

We can conclude that the answer to “RQ1. Does continuousMining expose
any bias in the project history recovered using snapMining?” is Yes.

RQ2. What are the characteristics of the repositories in the Linux Super-
repository?

Motivation:

Up until now, we treated the Super-repository as a collection of “equal” repos-
itories, each of them serving up commits to blessed . However, the extremely
low percentage (23.2%) of committers having commits accepted into blessed
suggests that not all commits are intended to be sent towards blessed . Some
repositories belong to automatic integration servers like linux-next8, which
“is intended to be a gathering point for the patches which are planned to
be merged in the next development cycle” (Corbet, 2008b). Yet, other repos-
itories contain experimental or niche features that do not benefit everyone.

8 git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next



Title Suppressed Due to Excessive Length 23

ContinuousMining allows us to study the different types of repositories and
their development activities, and the interactions between them.

Findings:

RQ2.1 Regarding Activity

New Patches New Commits New Merges New NonMerges

0
1

10

100

1000

10000

C
ou

nt

Originating in repo Contributed to blessed

Fig. 4 These bean plots show the distribution of the number of different patches and
number of different types of commits that originated in each of the 459 repositories, and
how many of them were contributed to blessed . The left side (in black) is the total count
for each type, while the right side (in grey) is the size of the subset that were contributed
to blessed . The horizontal lines are the median values for each set.

We identified 459 different repositories that contributed at least one commit
to the Super-repository during 2012. We observed a very wide variance in both
their activity, and the way they contributed to blessed. To illustrate their
differences both in terms of activity and their contributions to blessed we
first identified how many patches and commits originated in each repository.
For patches, we only considered patches that we first observe in 2012. For
each patch that was first seen in the Super-repository in 2012, we record the
repository where it first appeared. We also label each of these patches as
contributed to blessed or not. We do the same for commits: we record the first
repository where a commit is seen, and whether this commit is contributed to
blessed . The Figure 4 shows using bean plots the distribution of the number of
patches and commits originating from each of the repositories. Each sides of
bean plot corresponds to a density distribution of the number of repositories
have a given count. The left hand side of each bean plot (the black section)
is the total number of patches or commits (we also show the distributions for
the two types of commits: merges and non-merges). The right hand side (grey)
is the number of them that were contributed to blessed . The horizontal lines
represent the median number. For instance, the median number of patches that
originated in a repository was 84, but only a median of 28 of these patches



24 Daniel M German et al.

reached blessed . This implies that most repositories had a good proportion
of patches that did not reached blessed . The same applies to the number of
commits (median of 198 new commits per repository; median of 23 contributed.
Also, it can be seen that many repositories never contribute commits to blessed .

When commits are divided into merges and non-merges, it can be observed
that many repositories never created any merges (41% of repositories had no
merges, and in general a median of 2 merges per repository). It also shows that
some repositories never contributed non-merges, implying that these reposito-
ries’ activity never reached blessed .

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

0
1

5
10
20

50
100
200

500
1000

5000

0 1 5 10 20 50 10
0

20
0

50
0

10
00

50
00

Merges (log)

N
on

 m
er

ge
s 

(lo
g)

Number Committers ● 1 2 >=3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0
1

5
10
20

50
100
200

500
1000

5000

0 1 5 10 20 50 10
0

20
0

50
0

10
00

50
00

Patches (log)

N
on

 m
er

ge
s 

(lo
g)

Number Committers ● 1 2 >=3

Fig. 5 The scatterplot on the left shows for each repository its number of non-merges and
merges, while the one on the right compares non-merges to patches.

Figure 5 allows to explore the relationship between merges and non-merges,
and non-merges and patches (a patch can exist in many different non-merges).
As can be seen, there is a large proportion of repositories that do not have
merges, which implies that they do not perform any integration work. Regard-
ing patches to non-merges, we can observe that many repositories, regardless
of their size, create new non-merges from previous ones (the result of rebasing
or cherry-picking).

Observation #2a: The activity in the repositories varies widely, and in
most repositories non-merges heavily outnumber merges. Many reposito-
ries do not have any merge commits, implying that they do not integrate
other repositories’ work.

RQ2.2 The Roles of Repositories

One would expect that most commits end in blessed . However, that is not the
case. The right hand side of the bean plots in Figure 4 show the distributions



Title Suppressed Due to Excessive Length 25

of the contributions to blessed . One noteworthy result is that 22% of the
repositories did not contribute a single commit to blessed (99 repos-
itories). To further explore the contributions of repositories to blessed , and
their role in the ecosystem, we computed, for each repository, the following
metrics:

– Ratio of patches contributed to blessed . Number of patches created
in the repository divided by the number of patches that made it to blessed .
This ratio gives us an indication of whether patches created in this repos-
itory are intended for blessed or not.

– Ratio of patches to non-merge commits. If this ratio is low, this
implies that the repository is rebasing patches (from itself or somewhere
else). A ratio of 1 implies that every patch is found in exactly one commit.

– Ratio of patches to merge commits. The lower this number, the more
integration that the repository is doing. When this metric is undefined (the
number of merge commits for a repository is zero), this repository is not
doing any integration work.

Figure 6 uses these metrics to plot all the repositories. The X-axis corre-
sponds to the total number of commits produced by the repository (a measure
of its activity), while the Y-axis is the ratio of patches contributed to blessed .
Using the median of each axis, the plot is divided into four quadrants. Each
point is annotated in three ways: a) whether it is an official repository (is
the repo hosted on kernel.org? ), depicted by its shape; b) the ratio of patches
to non-merge commits (how much rebasing is there? ), depicted as its size
(smaller means more rebasing); and c) the ratio of patches to merge commits
(how much integration is there? ), depicted as its colour (a warmer colour–
closer to red–means more integration, while grey means that the repository
had no merges).

The repositories in the top two quadrants have most of their patches con-
tributed to blessed , i.e., they are contributors of patches. 15% of the repos-
itories had all their patches contributed to blessed . The lower part of the
right bottom quadrant contains active repositories that rarely contribute to
blessed , hence they are consumers of commits from blessed . These reposito-
ries are summarized in Table 6, which shows the most active repositories with
at most a 5% ratio of patches contributed to blessed . All of these repositories
are product lines of Linux. For example, the Android-msm9 repository hosted
by Google contributed only 10 patches to blessed , yet it had a total activity
of 11,922 commits.

The repositories depicted with a colour closer to blue represent those with
a larger patch-to-non-merge-commit ratio, corresponding to repositories ded-
icated primarily to produce code (they are producers of patches), while
more red colours imply integration work (they are mainly integrators). Note
how, as the repository increases its churn (in terms of number of commits—
horizontal axis), it moves from being a producer to being an integrator. We

9 https://android.googlesource.com/kernel/msm



26 Daniel M German et al.

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 5001000 5000 80000
Commits

R
at

io
 o

f p
at

ch
es

 c
on

tr
ib

ut
ed

 to
 b

le
ss

ed

Official repo?

True

False

Ratio patches
to non−merge
commits

0.1

0.3

0.7

0.9

1.0

0.1

1.0
4.0
16.0
64.0

512.0

Ratio patches
to merge
commits

Fig. 6 Scatterplot showing, for each repository, the number of commits in the repository
versus the ratio of contributed patches to blessed . The size of the points represents the ratio
of patches to non-merge commits, and the colour represents the ratio of patches to merge
commits (grey indicates that the repository had no merge commit).



Title Suppressed Due to Excessive Length 27

Table 6 Most active repositories with a ratio of contributed patches of at most 5%. All
these repositories are product-lines of Linux or older releases still being maintained (e.g.,
linux-stable).

#New #New #Contr. Prop.
Address Com- Patch. Patch. Patches

mits Contr.
linaro.org/.../andygreen/kernel-tilt 43,290 2743 28 1.0%
ubuntu.com/.../ubuntu-precise 27,141 1184 28 2.3%
kernel.org/.../rt/linux-stable-rt 25,129 407 2 0.4%
ubuntu.com/.../ubuntu-quantal 19,459 809 7 0.8%
linaro.org/.../linux-tb-ux500 18,508 1765 20 1.1%
linaro.org/../linux-linaro-tracking 12,058 1291 58 4.4%
android.googlesource.com/.../msm 11,922 5911 10 0.1%
kernel.org/.../stable/linux-stable 7,591 1116 0 0.0%
github.com/vstehle/linux 7,421 1079 2 0.1%
denx.de/linux-denx 5,005 1915 2 0.1%
opensuse.org/kernel 4,399 1716 75 4.3%

can observe a large number of repositories in grey, which didn’t have a single
merge. These repositories are pure producers of patches.

Observation #2b: Repositories serve different purposes. They can be
divided into contributors—those that send most of their commits to
blessed—and consumers—those that take commits from the Super-
repository but hardly contribute to blessed . Contributors can be further
divided into producers of patches and integrators of patches.

RQ2.3 On committers and authors

In terms of persons who committed to a repository, 79.7% of the repositories
have only one committer (and 87.1% at most two). This person is usually
responsible for integrating the work of various authors (the median ratio of
authors to committers is 10). If only one person commits to a repository,
this implies that in Linux, commits are moved from one repository to
another via email patches and pull operations that are performed by
the owner of the destination repository. Hence, most repositories are con-
trolled by one person who has the ultimate power to decide what
makes it into that repository. This is best illustrated by the blessed repos-
itory, where only Linus Torvalds can commit to it. Many repositories (10% of
the total) had only one author and one committer. These repositories never
integrated somebody else’s work (not even via email patches from other devel-
opers). Similarly, most committers only work on one repository: 82% of them
(865) only committed to one repository, and a further another 10% to two.
The maximum was one person who committed to was nine repositories.

Observation #2c: Most of the repositories are personal, i.e., only their
owner can commit to them; and most committers commit to only one
repository.



28 Daniel M German et al.

We identified three groups of contributors that performed significant ac-
tivity, but did not contribute any commits to blessed:

– Integration-testers are people like Stephen Rothwell, who maintain the
linux-next integration repository (most of his commits are created auto-
matically as part of the integration testing he is responsible for).

– Experimentors are people offering less mainstream versions of the kernel,
such as G. Roeck who is the maintainer of Linux Staging (stand-alone
drivers and filesystems that are not ready to be merged into blessed) and
T. Gleixner who maintains Linux RT (real-time version of the kernel).

– Product-line maintainers are those who are customizing the code in
blessed for specific uses in product-line repositories (such as those employed
by Android, Ubuntu and Linaro).

It is important to mention that in the case of integration-testers and ex-
perimentors, their repositories were usually personal. This means that we can
propagate the committers’ roles to their repository, i.e., we can also classify
repositories into whether they do integration testing or experimen-
tal work. Product-line maintainers typically work in repositories that are
shared among many developers.

On the other hand the most active developers that contributed to blessed
can be divided into two groups (non-mutually exclusive): producers and in-
tegrators.

– Producers dedicate their efforts to create patches that end in blessed .
Examples of producers are H. Verkuil and H. Hartleys (both maintainers
of various drivers).

– Integrators are those that merge code on its way to blessed , and are
responsible for the majority of the merges in blessed . In this category,
we find Linus Torvalds (maintainer of blessed), and A. Bergman and O.
Johannson (maintainers of the arm port of the kernel).

Because most committers commit to one repo only (see Observation 2c
above), there is, for the majority of contributors, a one-to-one relationship be-
tween the role of the contributor and the role of the repository where he/she
commits. Some developers, however, play both roles, and maintain both pro-
ducer and consumer repos, most notably Greg Kroah-Hartman (arguably the
second most important of contributor to the kernel), who maintains 7 pro-
ducer repositories, including the USB and tty subsystems and one consumer,
the older versions of the kernel (known as stable). We have added a note
regarding this.

Observation #2d: Contributors to the kernel can be classified into different
roles. Some are similar to those of repositories (such as producers and
integrators). Other roles such as integration testers, experimenters
and product-line maintainers are not visible in blessed .



Title Suppressed Due to Excessive Length 29

5.4 Official versus Non-Official Repositories

We observed that official repositories behaved differently than non-official.
Official repositories are located at kernel.org. In Figure 6, we depicted official
and non-official repositories (triangles correspond to official repositories, and
circles to non-official). One aspect in which they appear different was whether
they contributed to blessed or not. To evaluate this hypothesis we computed
the ratio of patches that originated in a repo and ended in blessed , compared
to the total number of patches that originated in that repository.

As it can be seen in Figure 7, the official repositories are more likely to
contribute patches to blessed than non-official (median of 85% vs 50%). This
difference is statistically significant (Kolmogorov-Smirnov test with D = 0.29
and p << 0.01). Also many non-official repos tend not to contribute to blessed ,
and vice-versa (many official repositories contribute most of their patches).
The most active of the non-official are usually maintained by organizations
that distribute bundled versions of Linux (such as Android, Linaro, SUSE,
and Ubuntu). These repositories seem to be using git as a way to maintain
a customized version of Linux on top of blessed (their own product line of
the kernel). Note that their patches could have been contributed via mailing
lists, however it is well-known that a project like Android has had difficulties
getting its changes integrated into blessed (Kroah-Hartman, 2010).

Ratio Contributed to Blessed

0

20%

40%

60%

80%

100%

Non Official
Official

Fig. 7 Bean plot comparing the density of distributions of the ratio of patches contributed
to blessed of official and non official repositories.

We can also observe that there are some repositories in the official
server that do not contribute to blessed . Four of these official repositories
that do not contribute to Linux are Linux-stable-rt (the stable version of Real
Time linux), Linux-stable (the stable version of the last released version of
the kernel–meant to receive only bug-fixes); and the 3.2 (bwh/linux-3.2.y)
and 2.6 (linux-2.6.32.y-drm33.z) versions of the kernel that still receive bug-
fixes. Hence we can conclude that in Linux, old releases are maintained



30 Daniel M German et al.

in different git repositories, rather than the more traditional process of
creating a branch in blessed . This explains why blessed does not have any
branches.

Observation #2e: Official repositories are more likely to contribute their
patches to blessed . Also, blessed does not host any branches; instead, other
repositories are used for this purpose.

Opportunities:

Different repositories have different goals, each participating in its own way as
part of the Super-repository . Because most repositories are owned by only one
person, there is a symmetry in the role of the repository and its owner. Future
work should concentrate on trying to understand the roles of repositories and
their owners and how they work together. Future work should also look at
the way that git appears to facilitate the work of those that package Linux
as a product (e.g., Linux, Ubuntu, TI and Linaro) and the role that these
stakeholders play in the ecosystem of repositories.

RQ3. How do the repositories of a Super-repository interact with each other
and how do commits flow across them?

Motivation:

As we described for RQ1.3, commits (and the patches that they contain)
need to move from their repository of origin to blessed . Since continuous-
Mining monitors all repositories, it allows us to follow these commits (and
their patches) as they propagate from their repository of origin throughout
the Super-repository . The pattern of propagation of commits can uncover in-
teresting development activities and practices about the integration process of
a project, especially involving the hidden committers and types of repositories
identified in RQ2.

Findings:

The median number of repositories visited by a commit is 5. Figure 8(a) shows
the distribution of the number of repositories visited before blessed across all
commits, as well as breaks this distribution down across merge and bug-fixing
commits. This breakdown shows that bug-fixing window commits (i.e., bug
fixes) only pass through a median of 2 repositories instead of 5. A Mann-
Whitney test shows that this difference is statistically significant with p �
0.01. Of the intermediate repositories through which commits passed, some
serve as integration hubs that merge thousands of commits, while others (like
linux-next), help to test the commits before they are propagated further.



Title Suppressed Due to Excessive Length 31

●

●
●
●

●●

●
●

●

●●

●

●
●

●

●●

●

●

●●

●
●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●

●
●

●

●
●

●●

●●
●
●

●

●
●

●

●●

●

●
●
●●
●

●
●

●
●
●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●
●
●
●

●

●
●
●

●●

●

●

●
●
●
●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●●
●
●
●

●

●
●

●●

●
●
●

●
●

●●

●
●●
●
●

●
●

●

●
●
●

●

●

●
●
●
●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●●
●

●

●

●●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●

●●●

●

●●

●
●

●●
●
●●●●

●

●
●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●
●●

●

●

●

●
●

●
●

●
●
●●
●
●
●

●

●

●
●

●●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●
●

●

●●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●
●
●●

●●

●

●

●●●
●

●
●

●

●●
●
●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●●
●

●

●

●●

●

●
●
●●●

●●

●

●

●

●
●
●●

●

●

●●

●
●

●

●

●

●●
●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●●●

●
●

●●

●

●

●
●●
●

●

●
●
●
●

●

●

●

●
●

●
●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●
●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●●●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●●
●

●
●●

●
●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●●

●

●●

●
●
●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●
●

●
●
●
●●
●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●
●

●

●●
●

●●

●●●
●

●

●●

●

●
●●
●

●

●
●

●

●

●●
●●●●

●
●

●
●
●
●
●

●

●
●
●
●

●

●●●

●

●

●
●

●
●

●
●

●●●●

●

●

●

●●●

●

●

●●●●●●
●

●

●

●●

●●●
●
●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●
●
●
●●

●

●
●●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●●●
●
●

●
●

●

●●●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●●

●
●

●

●
●
●

●●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●
●

●

●
●
●
●

●

●
●

●

●●

●

●

●●

●

●

●
●
●
●
●
●

●

●

●

●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●
●
●●●

●
●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●●

●

●
●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●
●

●●

●

●●

●

●
●

●

●
●
●

●
●

●●●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●
●●

●

●

●●

●

●

●●

●

●

●
●
●
●

●●

●

●
●

●●

●

●

●

●

●●

●
●

●
●●
●
●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●
●

●

●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●●
●

●
●

●

●

●

●

●

●
●
●

●

●
●●
●●
●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●

●

●
●●
●

●●●

●
●
●

●●

●●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●

●●
●

●

●●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●
●

●

●

●●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●●

●●

●

●

●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●
●
●
●

●
●
●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●●

●
●
●
●
●

●

●
●●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●
●●
●

●

●

●
●
●

●●●

●

●●

●
●
●

●

●
●

●
●●●
●●●

●

●●

●

●

●●

●●

●●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●
●●
●●
●

●

●
●●●●

●

●
●

●

●

●
●
●●

●●●

●

●

●

●●●●

●●●●●
●●●

●

●●

●

●
●
●

●●

●
●

●

●●

●

●
●

●

●

●

●
●

●●
●
●
●
●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●●●
●
●

●
●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●
●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●
●●
●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●
●

●

●●●●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●●

●
●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●
●●●●

●

●

●

●

●
●
●
●

●

●
●
●
●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●●
●
●

●

●
●

●

●
●
●

●
●

●
●●
●
●

●
●

●

●
●
●

●

●

●
●
●
●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●●
●
●●●●●
●
●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●●
●●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●●

●
●

●

●
●●

●●●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●
●●

●

●
●

●
●

●
●
●●●
●

●

●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●●

●

●

●●

●
●●

●

●
●

●

●

●

●●
●

●●
●
●

●

●

●
●

●●

●

●●●
●

●
●

●

●●
●
●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●
●●
●

●

●

●

●
●●●

●

●●
●
●●

●

●
●●

●

●●
●
●●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●
●

●

●●

●●

●●

●

●

●
●
●

●

●

●

●
●●●

●
●

●●

●

●
●●
●
●
●
●
●
●

●

●
●
●
●

●

●
●●

●●
●

●

●

●

●

●●●●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●●●

●
●

●

●
●

●

●

●

●●

●
●
●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●●
●

●

●

●●

●●

●

●
●

●

●
●

●
●
●

●

●

●●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●
●
●
●

●

●

●

●
●

●

●
●●
●●
●

●

●

●

●●
●
●

●

●

●
●●
●

●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●●

●

●

●●

●

●

●
●
●●
●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●
●

●

●
●

●●

●

●●
●

●
●

●
●
●
●●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●●
●●
●

●

●●
●

●

●

●
●●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●●

●●

●

●

●
●●

●
●●

●

●

●

●●
●

●●

●●●

●

●●

●

●●

●

●
●

●

●●
●●●●

●

●
●
●
●
●

●

●
●
●

●

●●●

●

●

●

●
●
●

●●●●
●

●

●

●●●●●●
●

●

●

●●

●●●
●
●
●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●●
●

●

●●
●●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●●

●
●

●

●

●
●
●
●●
●
●●
●

●

●
●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●
●●●
●
●
●

●

●●●
●

●

●●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●
●
●●●

●
●

●●●

●

●●

●

●

●

●

●●

●

●
●
●
●

●

●

●
●

●

●

●

●●
●

●

●

●●

●●
●

●

●

●
●●●
●

●

●

●●
●●

●

●
●

●●
●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●
●●

●

●●
●●

●

●
●
●
●

●

●
●●●

●

●

●
●

●
●●
●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●●●●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●●
●●
●

●
●

●

●

●●

●
●

●

●
●●
●●
●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●
●●
●

●
●
●●●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●●

●●

●●●
●

●●
●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●
●●
●

●

●
●
●

●●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●
●●

●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●●●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●
●●●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●●

●

●

●
●
●
●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●
●

●

●
●●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●

●●

●●●

●

●●

●
●
●

●

●
●
●●●

●

●●●

●●

●●●

●●

●

●

●●

●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●

●

●●●●

●●●●●
●●●

●●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●●●

●

●

●●

●
●

●
●
●
●●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●●

●●●●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●●
●
●

●
●●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●●

0
2
5

10

20

30

40

All Merge
Window

Bug−Fixing
Window

N
um

be
r 

of
 R

ep
os

 (
lo

g)

(a) By Repositories

●

●●

●

●

●

●●
●●

●

●

●●
●●●
●●
●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●
●

●

●

●●●●
●●●●●●●●●
●

●
●

●
●
●

●

●
●●●
●●●●●●●●●
●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●●●●●●●●●

●

●

●
●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●
●
●●●
●●

●

●●●

●
●

●●

●●●●

●

●●●●●●●
●

●

●

●●

●

●

●

●●
●●
●●●●

●●●

●●

●

●
●
●●●●●●●●

●

●●●
●
●

●

●
●●

●●

●●●●●●●●

●●

●●●●●●

●
●●●●●●●●●●●●●●●●

●●

●●

●●●

●

●●●

●

●●●●●●●

●

●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●

●

●●

●

●

●●

●

●●●

●●●
●●

●

●●●
●
●●●●
●●●●●●●●●
●●●●

●

●
●●●●
●

●●
●

●

●●●
●

●
●

●

●●

●●●●●

●

●●●●

●

●

●

●
●●●●●●●●●

●

●●●●●●●●●
●●
●
●
●●
●

●

●

●
●●●●

●
●●

●

●●●

●●

●

●

●●
●
●
●●●●
●

●

●

●

●

●●

●●

●
●●●

●

●

●
●

●

●●
●
●
●

●●●●●●●

●●

●

●

●

●●
●

●

●
●

●●

●
●
●
●●

●●●

●

●●●

●
●

●

●
●
●

●

●●●●

●
●

●
●

●

●

●●●●●●

●
●●●●●●●●●●●●●●●●●●●●
●
●

●●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●

●●

●

●●

●

●
●●

●
●
●●
●●

●●

●
●●●
●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●
●●●

●●
●

●
●
●

●

●

●

●

●

●

●●●
●
●●●●●●

●●●
●●

●

●●

●●●
●
●
●●●●
●●●●
●
●
●
●●●

●●●●●

●●
●

●●●
●●●●●
●●●●●
●●

●
●

●

●

●●●●●●●

●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●●
●
●●●●●●●●●●●●

●

●

●●
●●●●

●●

●●●●●●●
●●

●●●●

●●●

●
●

●

●●

●●●●●●

●

●

●●●●●

●

●

●

●●●●
●●

●

●

●
●●
●

●

●●●●●
●●
●●●●●●●

●

●
●●●●

●

●
●●●
●●

●●
●

●●

●●●●●●●

●

●

●

●

●

●

●

●●

●●
●

●●

●●●

●●

●

●

●

●

●●●●●●●
●

●●

●●

●●
●●
●
●

●

●

●●●

●

●●●●●●●●●●

●●

●

●●
●
●

●

●●●●●●
●●●●●●●●

●●●

●

●
●
●

●●●
●●

●

●

●●
●●

●

●●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●●

●
●

●

●

●

●●●

●●

●
●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●
●●
●
●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●
●
●●

●

●●●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●●
●
●

●

●

●

●●●●
●

●●●●
●●

●

●
●

●●●

●●

●
●
●

●
●
●●●●●●●●●●●●
●●
●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●

●

●
●●●
●●
●
●

●●●

●●●●●●

●●●

●●●●●

●
●
●●●
●●●
●●●
●

●

●

●

●

●●
●
●
●●●●●●●●

●

●
●●●●●●●●●●●

●

●
●●●●●●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●
●

●●

●
●●

●

●

●

●

●
●●

●

●●●

●●●●

●●●●

●

●

●
●
●
●●●●●●●●●

●●●
●
●
●●●●●●
●●

●

●
●●

●●●●
●

●

●●●●●

●

●

●
●●

●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●

●●●

●●●●

●
●●●●●●●●●●●●●●
●

●●
●
●

●

●
●
●●●●●●●●●●●●●
●●●●●●●
●●●●

●

●

●●●
●
●●

●●●●

●●

●
●
●

●●

●

●●

●●●

●

●

●

●

●

●

●
●

●●
●
●

●
●●●●●

●●●●●●

●
●

●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●

●
●

●●●

●

●

●●●●●●●●●

●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●
●●●●
●●

●
●●

●●

●

●

●

●●

●●●

●●●●●●●
●●●
●
●●
●●●●
●
●●●●
●●

●
●
●
●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●●●●●

●●

●●

●●●●●
●●●●●●●●●●●●●
●●

●
●
●
●
●●●●
●
●

●●●

●●

●
●●●●
●●●●
●
●●●

●●●●
●●

●

●

●

●●

●

●●●

●●

●●

●
●

●●

●●
●●

●●
●●

●
●
●

●

●
●

●
●

●

●
●

●

●

●●
●
●

●

●●

●

●

●

●
●●
●

●

●
●●
●
●
●

●●●●

●
●
●
●

●

●●

●
●
●●

●

●

●●
●

●●

●●●●●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●●●

●
●●●
●
●
●●●●●

●

●●●●●

●●

●

●

●●●●

●●●

●
●

●

●
●

●

●●

●

●●

●
●●
●
●
●
●●●

●

●

●●●

●

●

●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●●
●

●
●

●
●●●●●●●●●●

●

●

●●
●
●●

●
●
●●●

●●

●

●

●
●

●●

●
●
●●●●●

●

●●●●●

●

●

●
●●

●

●

●
●

●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●
●●
●●
●●●●

●●●●●●●●●●●●●
●
●

●

●

●

●●

●●
●
●

●
●●●●●●●●

●
●
●
●

●

●

●●●●
●●

●
●
●

●●●

●●
●●●

●

●
●●●●●●●●●
●
●

●
●
●
●
●
●

●

●
●●●

●
●

●●●
●

●

●●

●

●●

●

●

●
●●●●●●●●●

●
●

●

●

●
●
●
●

●●
●●
●●
●●

●●●●●

●

●

●●●
●
●●

●

●●●

●

●

●
●●

●●

●
●

●
●
●

●

●

●●●●●
●●●●●●●●

●

●

●

●

●
●●●●●
●●

●

●
●

●

●

●●

●

●
●
●

●

●●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●●
●
●
●

●
●●
●●

●

●

●

●

●

●●●

●

●●
●●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●●

●

●●

●

●
●

●
●

●
●

●
●

●

●●●

●

●●
●
●●
●
●
●

●

●
●
●
●

●

●
●●

●
●●●

●

●

●

●

●●
●●
●●●

●●
●

●
●

●
●●●●

●●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●●

●

●●

●●●

●
●

●
●

●
●

●●

●●

●●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●
●
●

●

●

●

●
●●●

●

●

●
●

●
●

●
●●

●

●

●

●
●
●
●

●

●

●

●●

●

●●

●●

●
●

●

●
●

●●●

●●

●
●
●

●●●

●
●●●
●●●●

●●●●

●●●

●●●●
●
●

●

●●

●●●●●●●●●●●●●

●●●

●●

●

●●●●

●●

●●

●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●
●
●

●

●

●

●●

●
●
●
●

●
●●●
●
●

●●

●

●●●

●

●

●●●●●●

●●●●
●●
●
●

●
●●●
●
●●
●
●

●

●

●

●●●●●

●●

●●●●●●●●●●
●●
●
●●●
●
●

●●●●●●●●●●●●●●●●
●●●●

●

●●

●

●

●

●●
●●

●

●

●●
●●●
●●
●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●
●

●

●

●●●●●
●●●●●●●●

●
●

●
●
●

●

●
●●●
●●●●●●●●●
●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●
●
●●●
●●

●

●●●

●
●

●●

●●●●

●

●●●●●●●
●

●

●

●●

●

●

●

●●
●●
●●●●

●●●

●●

●

●
●
●●●●●●●●

●

●●●
●
●

●

●
●●

●●

●●●●●●●●

●●

●●●●●●

●
●●●●●●●●●●●●●●●●

●●

●●

●●●

●

●●●

●

●●●●●●●

●

●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●

●

●●

●

●

●●

●

●●●

●●●
●●

●

●●●
●
●●●●
●●●●●●●●●
●●●●

●

●

●
●

●●●●●
●
●
●●●●●

●

●●●●

●

●

●

●
●●●●●●●●●

●

●●●●●●●●●
●●
●
●
●●
●

●

●

●
●●●●

●
●●

●

●●●

●●

●

●

●●
●
●
●●●●
●

●●

●

●●

●●

●
●●●

●

●

●
●

●

●●
●
●
●

●●●●●●●

●●

●

●

●

●●
●

●

●
●

●●

●
●
●
●●

●●●

●

●●

●
●

●

●
●
●

●

●●●●

●
●

●
●

●

●

●●●●●●

●
●●●●●●●●●●●●●●●●●●●●
●
●

●●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●

●

●
●

●●●

●●

●

●●

●

●
●●

●
●
●●
●●

●●

●●●
●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●●●

●

●●

●

●●

●●●
●
●
●●●●
●●●●
●
●
●
●●●

●●●●●

●●
●

●●●
●●●●●
●●●●●
●●

●
●

●

●

●●●●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●●
●
●●●●●●●●●●●●

●

●

●●
●●●●

●●

●●●●●●●
●●

●●●●

●●●

●
●

●

●●

●●●●●●

●

●

●●●●●

●

●

●

●●●●
●

●

●

●
●●
●

●

●●●●●
●●
●●●●●●●
●●●

●

●
●●●
●●

●●
●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●●

●●●

●●

●

●

●

●

●●●●●●●
●

●●

●●

●●
●●
●
●

●

●

●●●

●

●●●●●●●●●●

●●

●

●●
●
●

●

●●●●●●
●●●●●●

●●●

●
●
●

●●●
●●

●

●

●●
●●

●

●●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●●●●

●

●●

●
●

●

●

●

●●●

●●

●
●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●●

●

●●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●
●●
●
●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●
●●

●

●●●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●●●●
●

●●●●
●●

●

●
●

●●●

●●

●
●
●

●
●●●●●●●●●●●●
●●
●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●

●

●
●●●
●●
●
●

●●●

●●●●●●

●●●

●●●●●

●
●
●●●
●●●
●●●
●

●

●

●

●

●●
●
●
●●●●●●●●

●

●
●●●●●●●●●●●

●

●
●●●●●●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●

●●

●
●

●

●

●

●

●
●●

●

●●●

●●●●

●●●●

●

●

●
●
●
●●●●●●●●●

●●●
●
●
●●●●●●
●●

●

●
●●

●●●●
●

●

●●●●●

●

●

●
●●

●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●●

●●●

●●●●

●
●●●●●●●●●●●●●●
●

●●
●
●

●

●
●
●●●●●●●●●●●●●
●●●●●●●
●●●●

●

●●●
●
●●

●●●●

●●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●
●●●●

●●●●●●

●
●

●●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●●●

●●●●●●●●●●●●●●●●●●●

●
●

●●●

●

●

●●●●●●●●●

●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●
●●●●
●●

●
●●

●●

●

●

●

●●

●●●

●●●●●●●
●●●
●
●●
●●●●
●
●
●●
●

●

●●

●

●●●

●●●

●

●

●

●

●●●●●

●●

●●

●●●●●
●●●●●●●●●●●●●
●●

●
●
●
●
●●●●
●
●

●●●

●●

●
●●●●
●●●●
●
●●●

●●●●
●●

●

●

●

●●

●

●●●

●●

●●

●
●

●●

●●
●●

●●
●●

●
●
●

●

●
●

●
●

●

●
●

●

●

●●
●
●

●

●●

●

●

●

●
●●
●

●

●
●●
●
●
●

●●●●

●
●
●
●

●

●●

●
●
●●

●

●

●●
●

●●

●●●●●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●●●

●
●●●
●
●
●●●●●

●

●●●●●

●●

●

●
●●●

●
●

●

●
●

●

●●

●

●●

●
●●
●
●
●
●●●

●●●●

●

●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●
●

●
●

●
●●●●●●●●●

●

●

●●
●
●●

●
●
●●●

●●

●

●

●
●

●●

●
●
●●●●●

●

●●●●●

●

●

●
●●

●

●

●
●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●
●●
●●
●●●●

●●●●●●●●●●●●●
●
●

●

●

●

●●

●●
●
●

●
●●●●●●●●

●
●
●
●

●

●

●●●●
●●

●
●
●

●●●

●●
●●●●●●●●
●

●
●
●
●
●
●

●

●
●●●

●
●

●●●

●

●●

●

●●

●

●

●
●●●●●●●●●

●
●

●

●

●
●
●
●

●●
●●
●●
●●

●●●●●

●

●

●●●
●
●●

●

●●●

●

●

●
●●

●●

●
●

●
●
●

●

●

●●●●●●
●●●●●
●

●
●

●
●●●●●
●●●●

●

●

●●

●

●
●
●

●

●●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●
●
●

●●
●
●
●

●
●●
●●

●

●

●

●

●

●●●

●

●●
●●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●●

●

●●

●

●
●

●
●
●

●
●

●

●●

●

●
●
●●
●
●
●

●

●
●
●
●

●

●
●●

●
●●●

●

●

●

●

●●
●●
●●

●●

●
●

●
●●●

●●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●●

●

●●

●●●

●
●

●
●

●
●

●●

●●

●●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●
●
●

●

●

●

●
●●●

●

●

●
●

●
●

●
●●

●

●

●

●
●
●
●

●●●

●

●●

●●

●
●

●

●
●

●●●

●●

●
●
●

●●●

●
●●●
●●●●

●●●●

●●●

●●●●
●
●

●

●●

●●●●●●●●●●●●●

●●●

●●

●

●●●●

●●

●●

●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●
●
●

●

●

●

●●

●
●
●

●
●●●
●
●

●●

●

●●●

●

●

●●●●●●

●●●
●●
●
●

●
●●●
●
●●
●
●

●

●

●

●●●●●

●●

●●●●●●●●●●
●●
●
●●●
●
●

●●●●●●●●●●●●●●●●
●●●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●
●

●●●
●

●

●●
●

●

●●●

●

●●
●●●

●
●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●●●
●

●●
●

●●

●

●●

●

●●
●●
●

●

●

●

●

●

●●

●
●●

●●

●●

●

●
●●
●

●

●

●

●

●

●

●●
●●

●

●●
●●

●
●

●●

●

●
●

●
●
●●
●
●
●●●●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●

●
●

●
●
●

●

●
●●

●

●
●

●●

●

●

●

●
●●

●

●●

●●●●
●●

●

●●
●

●

●

●

●

●
●

●

●●
●
●●
●

●●

●
●

●

●

●

●

●●
●●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●●
●

●

●
●●

●
●

●●●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●●

●
●
●

●

●

●●

●

●
●●●●●
●

●
●

●

●●

●

●●

●
●
●
●

●
●●

●●●
●
●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●●●

●

●
●
●●

●

●
●
●●●

●●
●

●
●

●
●

●●

●●
●●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●
●●
●

●
●

●●

●

●●●●●
●●
●

●
●
●

●
●

●
●●
●

●
●●

●●●

●
●
●

●●
●●

●

●

●

●
●
●

●

●●

●
●
●

●

●

●
●
●●
●
●

●

●

●

●
●

●●

●●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●●●●●
●●
●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●
●●
●

●

●●●●

●

●●●●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●●●●

●

●●●

●
●

●

●

●

●●

●

●●●
●
●●●

●

●●
●

●

●
●

●●●●
●
●●
●●

●

●●
●●
●

●●
●

●

●
●●
●
●

●

●

●

●
●
●
●
●●

●

●●●

1

3

8
15
30
50

100

500

1500

All Merge
Window

Bug−Fixing
Window

D
ay

s 
(lo

g)
(b) By Days

Fig. 8 Number of repositories through which a non-merge commit propagates before it
reaches blessed , and its latency (the difference between the time it is authored, and its
arrival at blessed). Bug-fixes travel through fewer repositories and arrive faster at blessed
than merge-window commits.

Figure 9 illustrates the propagation flow of commits. It shows 3,599 patches
(i.e., commits) that Torvalds merged on one day of the merge window (Decem-
ber 12th, 2012—we only show one day because the graph would be too large
otherwise), and the paths that these commits took to arrive at blessed . A yel-
low node represents repositories that produced the commits, and a green node
integrators—those that merged somebody else’s commits— but might have
also produced commits. Of course, we could only show (and study) the flow of
commits to public repositories, since the developers’ private repositories are
not visible. However, unless a patch is committed directly to blessed by Linus
Torvalds (he committed 4.3% of patches this way, i.e., 2,530), commits have
to move across one or more public repositories before they arrive at blessed
(see Figure 1 on page 6).

Since most commits are not directly applied to blessed , there is a latency
between the time at which they are first authored and the time at which they
arrive to blessed . This latency is shown in Figure 8(b). The distribution of the
latency between the commits accepted in the bug-fixing window (median of
7.5 days) and the merge-window (median of 34.2 days) is statistically different
(Kolmogorov-Smirnov test with D = 0.54 and p � 0.01). In other words,
during the merge-window, contributing repositories follow a hierarchical-like
structure, with blessed as the root. This structure is flatter during the bug-
fixing window in order to reduce the latency of the patch—and fix bugs faster.

Observation #3: Commits with new features take longer and visit more
repositories in their way to blessed than bug-fixing commits. They visit a
median of 5 repositories versus 2, and have a median latency of 34.2 days
versus 7.5.



32 Daniel M German et al.

lW
a
lle

ij

1
8

a
rm

a
rm s
o
c

6
5
6 1
8

k
h
ilm

a
n
-l
in

u
x
-o

m
a
p
-p

m

3

tm
lin

d

lin
u
x

o
m

a
p

1
2
8

3

w
ill

-l
in

u
x

9

9

g
re

g
k
h
-t

ty

2
3
5

lin
u
s

3
5
9
9

2
3
5

h
o
rm

s
3

1
0

1
0

fw
e
is

b
e
c
-d

y
n
ti
c
k
s

2
6

ti
p

4
8
4

1
6

1
0

ra
s 7

1
6

s
h
a
w

n
g
u
o
-l
in

u
x
-2

.6

7
2

7
2

h
z
h
u
a
n
g

3
0

3
0

s
te

v
e
-g

fs
2
-3

.0
-n

m
w

2
7

2
7

tu
rq

u
e
tt
e

2
0

2
0

lin
u
x
-s

a
m

s
u
n
g

3
7

k
g
e
n
e

lin
u
x

s
a
m

s
u
n
g

2
4

8

2
9

c
a
lx

e
d
a
-c

o
m

3
6

3
6

ro
s
te

d
t-

lin
u
x
-t

ra
c
e

3
5

3
0

5

jia
n
g
liu

1

h
e
lg

a
a
s

1
0
2

1

ry
d
b
e
rg

2
1

h
id 7
4

2
1

m
fl
e
m

in
g
-l
in

u
x

5

5

s
w

a
re

e
n
-r

p
i

6

6

o
le

g
-m

is
c

1
2

1
2

c
m

a
ri
n
a
s
-l
in

u
x
-a

a
rc

h
6
4

3
5

3
5

d
a
v
id

b
-l
in

u
x
-m

s
m

2
4

2
4

s
a
n
to

s
h
-g

it
h
u
b

2

2

te
ig

la
n
d
-l
in

u
x
-d

lm

7

7

s
ir

f

6

6

ro
la

n
d

1
0

1
0

g
re

g
k
h
-d

ri
v
e
r-

c
o
re

9
5

9
5

u
k
l

2
5

2
5

s
fr

e
n
c
h
-c

if
s
-2

.6

8
2

8
2

a
e
g
l-
lin

u
x

4

4

g
e
e
rt

-l
in

u
x
-m

6
8
k

4

4

jic
2
3
-i
io

9
5

g
re

g
k
h

s
ta

g
in

g

1
0
9
4

9
5

im
x

1
3

1
3

m
is

l-
e
b
u

1

1

s
w

a
re

e
n

6
3

6
3

rr
ic

-o
p
ro

fi
le

1
0

1
9

s
a
ra

h
-x

h
c
i

1
0

g
re

g
k
h

u
s
b

3
3
9

1
0

g
ro

e
c
k
-l
in

u
x
-s

ta
g
in

g

6
4

6
4

a
c
m

e

2
2
4

2
2
4

ro
s
te

d
t-

k
c
o
n
fi
g

4

4

c
o
u
s
s
o
n

3
1

3
1

b
a
lb

i-
u
s
b

1
2
6

1
2
6

lin
u
x
w

m
t

8

8

s
3
9
0

7
6

7
6

ro
s
te

d
t-

lin
u
x
-k

te
s
t

2

2

b
p
-b

p

3
3

m
a
llo

n

3
3

le
d
s

1
8

1
8

ljo
n
e
s

3
9

3
9

p
jw

-o
m

a
p
-p

e
n
d
in

g

1
2

1
2

a
t9

1
lin

u
x
-l
in

u
x
-a

t9
1

4

4

3
3
9

g
re

g
k
h

c
h
a
r

m
is

c

5
2

5
2

1
0
9
4

b
ro

o
n
ie

re
g
u
la

to
r

7
1

7
1

2
4

p
a
u
lm

c
k

lin
u
x

rc
u

7
3

8
4
7
6 jik

o
s

tr
iv

ia
l

9
2

9
2

1
2
8

5
3

2
1

7
3

1
0
2

b
ro

o
n
ie

re
g
m

a
p

1
1

1
1

6
5
6

Fig. 9 This graph shows the repositories that commits visited on their way to blessed (Linus
Torvalds’ repository—depicted in white) that were merged into blessed on December 12th,
2013 (the busiest day of the year and part of a merge window). Yellow repositories only
produced commits, while green ones merge other repositories. The edges are annotated with
the number of commits that were merged in this path, and the repository indicates how
many commits it contributed.



Title Suppressed Due to Excessive Length 33

Opportunities:

Comparing the commits as they move across repositories will provide a new
view on the integration effort that goes into developing Linux. Without con-
tinuousMining , such integration needs are impossible to measure or analyze.
Furthermore, continuousMining allows us to study the different development
processes followed for bug-fixing commits and merge-window commits.

6 Hydraladder , a dashboard to Track Commits across the Linux
SuperRepository

As we have demonstrated (see Observation #1a on page 17), the commit ids
of patches often change as they move from one repository to another. Within a
Super-repository , the tracking of commits and the patches that they contain is
a feature that neither git nor git hosting repositories support. For instance,
it is not possible to know, for a given patch (or a commit), the
repositories where it has been, and where it has been deleted from.

Older versions of the kernel that are still being maintained and product-line
repositories (those that take commits from blessed in order to customize the
kernel to their needs, such as Android, Linaro and Ubuntu) are particularly
affected since they tend to cherry-pick changes as they see fit. As such, the
resulting rebased commits have no link anymore with the original commits,
making it impossible for product-line repositories to trace back the origin of
the commits in their products, and for kernel developers to understand the
impact of their changes on product-line projects.

In April 2013, we implemented and deployed Hydraladder , which is a dash-
board that displays, for a given commit in the Linux Super-repository , the
repositories where this commit has been, and its path to blessed . Hydraladder
is located at http://hydraladder.turingmachine.org/. During the Linux
Foundation Collaboration Summit 2013, we introduced this service to some
Linux developers, who suggested two use-cases. The first was tracking commits
that had arrived in blessed without first arriving in linux-next (i.e., which had
not been integration-tested), and the second was cross-referencing of commits.

The first use-case is intended to help identify commits that might not have
been thoroughly tested. Linux-next is used to test commits and to verify their
integration before they arrive at blessed (Chapman (2011)). Every commit is
expected to pass through Linux-next before it is integrated into blessed , in
order to increase its chances of successful integration. Since we know when a
commit arrives in any repository, this report is trivial to create thanks to the
information retrieved with continuousMining . As commits are seen in blessed ,
a report is automatically generated listing the commits that have not been
seen in Linux-next but have arrived at blessed (Linus Torvalds’ repository).

The second use case—cross-referencing of commits—has been shown to be
a time consuming issue (Dhaliwal et al (2012)). Cross-referencing of commits
can be divided into two types: a) cross-referencing commits that contain the



34 Daniel M German et al.

commit 70cb8bb0d365f0bc8b20fa67347caf9598a4674e
Author: Kees Cook <keescook@chromium.org>
AuthorDate: Wed Jun 5 11:47:18 2013 -0700
Commit: Luis Henriques <luis.henriques@canonical.com>
CommitDate: Fri Jun 14 10:18:47 2013 +0100

x86: Fix typo in kexec register clearing

commit c8a22d19dd238ede87aa0ac4f7dbea8da039b9c1 upstream.

Fixes a typo in register clearing code. Thanks to PaX Team for fixing
this originally, and James Troup for pointing it out.

[...]
commit 073028356cb7dd59b95a7a6be564946976118165
Author: Kees Cook <keescook@chromium.org>
AuthorDate: Wed Jun 5 11:47:18 2013 -0700
Commit: Steve Conklin <sconklin@canonical.com>
CommitDate: Thu Jun 20 13:36:00 2013 -0500

x86: Fix typo in kexec register clearing

BugLink: http://bugs.launchpad.net/bugs/1193029

commit c8a22d19dd238ede87aa0ac4f7dbea8da039b9c1 upstream.

Fixes a typo in register clearing code. Thanks to PaX Team for fixing
this originally, and James Troup for pointing it out.

[...]
commit c8a22d19dd238ede87aa0ac4f7dbea8da039b9c1
Author: Kees Cook <keescook@chromium.org>
AuthorDate: Wed Jun 5 11:47:18 2013 -0700
Commit: H. Peter Anvin <hpa@linux.intel.com>
CommitDate: Wed Jun 12 15:16:18 2013 -0700

x86: Fix typo in kexec register clearing

Fixes a typo in register clearing code. Thanks to PaX Team for fixing
this originally, and James Troup for pointing it out.

[...]

Fig. 10 Example of how Linux developers cross-reference commits across repositories. The
top two commits, first seen in two Ubuntu repositories, reference the bottom commit (which
was the only one integrated into blessed). The three commits contain the same patch.

same patch; and b) cross-referencing commits that are mentioned in the mes-
sage of a commit. Cross-referencing commits that contain the same patch is
trivial, since—thanks to the information retrieved with continuousMining—
we keep a hash of the patch of every commit. For the second kind of cross-
referencing of commits, we scan the message of every commit for commit ids
and link those commit ids that contain the same patch. An example of this
cross-referencing is shown in Figure 10, where two commits in the Ubuntu
repositories reference a commit that was integrated into blessed . In this par-
ticular case, Hydraladder is capable of discovering these relationships auto-
matically, since these commits contain exactly the same patch.

For a given commit C, Hydraladder shows a) other commits with the same
contents (patch), b) commits that include C’s commit id in their commit
message, and c) commits that C lists in its message. Figure 11 shows a sample
output of Hydraladder .



Title Suppressed Due to Excessive Length 35

Fig. 11 Sample of the output of Hydraladder .

Hydraladder has been running since April 2013. As of September 2013, it
tracks commits in 633 repositories, has seen 2.3 million different commit ids,
and followed 109 million commit-propagations. Figure 12 demonstrates that
Hydraladder (as url http:/o.cs.uvic.ca:20810/) is being used by actual
Linux developers to cross-reference commits across repositories, and to com-



36 Daniel M German et al.

plement their comments in the bug tracking system (bugzilla.kernel.org).
A full user study of Hydraladder is outside the scope of this paper.

https://bugzilla.kernel.org/show_bug.cgi?id=59841#c75

https://bugzilla.kernel.org/show_bug.cgi?id=58971#c42

(a) From Linux’s Bugzilla tracking system

https://bbs.archlinux.org/viewtopic.php?pid=1286558#p1286558

(b) From Discussion Forum from the ArchLinux distribution

Fig. 12 Three examples of Linux developers using Hydraladder .

7 Further Discussion and Future Work

This section discusses findings and insights from our study regarding git,
continuousMining , Linux and D-VCSs.

7.1 Regarding git

As the popularity of git continues to grow, it is important to understand how
git is used, along with its advantages and disadvantages.

The distributed nature of version control systems like git implies a lack of
a central authority. This feature becomes a two-edged sword: on the one hand,



Title Suppressed Due to Excessive Length 37

it eases the participation of outsiders in the development, and facilitates—as
is done in the Linux kernel—the creation of product lines by third parties. On
the other hand, development lacks traceability (even for “official” members of
the team). This lack of traceability has two important outcomes.

First, it is impossible to know what clones have been made of a repository
(and by extension what clones have been made of clones). Cloning a repository
is a feature available to any person with read access to the repository, contrary
to C-VCSs, which can be configured in such a way that users can read and
commit changes, but cannot copy the repository itself.

Second, at any given time, it is practically impossible to know what is
the set of all the commits in the Super-repository of a project. There will
always be repositories on the computers of developers that are only readable
to their owners (such as their laptops), hence, there will always be commits
that are only known to their authors. Even in public repositories, git does not
currently support any centralized logging features. While this does not seem
to be an issue for open source developers, it might be to commercial users.

Hosting services for git are providing a pro-active logging mechanism if,
and only if, the operations are performed via their interface. However, this
logging and cross-referencing is currently incomplete, and it is hard to force
people to do all their D-VCS manipulations through a specific interface.

Alternatively, git can be enhanced by optionally adding centralized log-
ging features. Any time a developer performs an operation, a log would be
created in a centralized location. This log could be lightweight (storing only
metadata) or comprehensive (storing also the patches). Such a log would allow
an organization to trace development as it happens. bitkeeper, a commercial
D-VCS, is already supporting this feature. However, such a feature impacts
developers in different ways, such as their ability to work offline or to freely
experiment without anyone seeing their mistakes. Future research should look
at a compromise between ease-of-use and the ability for organizations to man-
age who can clone their code-bases (and potentially remotely disable access to
them). If this work would succeed, it could obviate the need for continuous-
Mining .

7.2 Regarding continuousMining

The information stored in D-VCSs changes over time, either because it is oc-
cluded by new information (e.g., we don’t know where a commit originated
because, after a while, every repository has such a commit), and because in-
formation is altered by its users (e.g., commits are rebased). Until recently,
researchers have assumed that information in many software repositories was
immutable (emails are not changed once they are archived, and commits could
not be altered once they were performed) and almost instantaneous (e.g., an
email is archived seconds after it is distributed by a mailing list, and a com-
mit is recorded the moment that it is created). However, D-VCSs demonstrate



38 Daniel M German et al.

that this is not always the case. Researchers who are trying to understand how
these development tools are used should take into consideration these issues.

As discussed above, traceability in D-VCSs can be addressed in two ways:
a pro-active manner, in which the D-VCSs implement a centralized logging
mechanism, or in a re-active manner, in which activity is identified and logged
after it has occurred.

ContinuousMining is a re-active logging mechanism. It tries to discover
changes after they have occurred by scanning the changes present in each
repository. One of the challenges of continuousMining is that, in general, some
repositories might be readable only by their owners (e.g., those hosted on lap-
tops). Similarly, continuousMining has to discover the locations of the repos-
itories. These challenges can be mitigated, for example if a team is always
expected to use a given location for its repositories—such as Github or Gito-
rious). Private repositories could be easily scanned if they are hosted in a net-
worked file system (a requirement imposed by tools such as Crystal that help
identify and prevent conflicts in merges (Brun et al, 2011)). However, these
problems cannot be completely avoided, especially when we cannot change the
behaviour of the subjects of our research. For instance, to study the use of git
by the Linux kernel, we cannot use any of these methods. The repositories of
Linux are spread around the world, in a multitude of servers, and it will be
impossible to instrument the tools that they use to gather information logs of
their activities.

Note that we do not consider continuousMining a permanent solution to
the need of centralized logging features in git. Rather, we believe that it is a
temporary solution that helps address this problem, especially for researchers
who are interested in studying how git is used in practice. As the results herein
demonstrate, the use of continuousMining can be valuable both to researchers
and practitioners.

Linux is an extreme case, as not many software projects have the same size
or number of developers as Linux. It is possible that in small projects with
a handful of developers, git is used as a C-VCS, and hence, the difference
in the information recovered between continuousMining and snapMining will
be minimal or non-existent. However, we would not know if this is the case
unless we use continuousMining . If some projects use git as a C-VCS, then it
is worth exploring why. Therefore, future research should look at how different
projects use git.

7.3 Regarding Linux

Linux is a project where thousands of developers from many different orga-
nizations collaborate together. Linux is also customized by many different
organizations to reach the consumer (such as Android, Ubuntu, Linaro and
Busybox). By being the backbone through which code flows between partici-
pants, git plays a crucial role in this ecosystem.



Title Suppressed Due to Excessive Length 39

The flow of code in Linux is analogous to the flow of sand in an hourglass,
as depicted in Figure 7.3. At the center of the hourglass is Linus Torvalds, who
is the maintainer of blessed . He decides what makes it into the official Linux
release. The contributors to Linux create patches that eventually reach him.
After a patch has arrived at Linus, it is then propagated to the product-line
repositories where the kernel might be further customized.

We have observed that sometimes code will also flow from the bottom
of the hourglass to the top. In that case, the product-line maintainers will
author patches that are sent to integrators who commit these patches to their
repositories, and send them to blessed . Sometimes, product line repositories
will cherry-pick commits from producers before they arrive in blessed . However,
in general, commits will flow in a hierarchical graph from producers of patches
to blessed via integrators, and from blessed to product lines via product line
maintainers. Linux is a rich ecosystem with many participants each taking
different roles. This ecosystem deserves to be studied in more detail in future
research.

Fig. 13 The flow of contributions in Linux is similar to an hourglass. Contributions flow
until they reach Linus Torvalds’ repository. After that, they flow to product-line repositories.



40 Daniel M German et al.

7.4 The D-VCSs paradox

One of the great benefits of D-VCSs is providing version-control features to
anybody who wants to participate in the development, without having to be
approved and given an account (as it is the case with C-VCSs). Hence, D-
VCSs democratize the participation in software development, and
open the door for anybody to participate. The only requirement is that
it should be possible to clone and pull changes from at least one repository in
the system. Cloning a D-VCS is equivalent to the creation of a branch in a
C-VCS.

However, the paradox is that, while in C-VCSs anybody with an ac-
count can commit changes to the repository, and hence contribute to the
development, in D-VCSs the committers to blessed and other repos-
itories that feed into it decide what contributions are committed
into blessed . In other words, in D-VCSs anybody is able to create their
own patches with the help of version control features, but only a handful of
developers control what makes it into the official product. git provides the
freedom to participate in the development, but git does not provide
the freedom to contribute.

In Linux, more than 79.7% of repositories have only one committer. The
hierarchical organization of these committers will control what code is merged
into blessed . At the center of this is Linus Torvalds’ repository. Anybody can
clone Linus’ repository, and add features to it, but Linus will ultimately decide
what he integrates into Linux. D-VCSs allow universal participation, but
also allow ultimate centralization of the integration process.

8 Threats to Validity

With respect to construct validity, our empirical study depends on the accu-
racy of continuousMining and its implementation. The algorithms and their
implementation were fine-tuned and debugged during two months (November
to December 2011), when we spent a considerable amount of time manually
verifying the accuracy of the recorded data. We have unified 5,962 email ad-
dresses into 4,766 individuals (and manually verified them) to make sure that
we did not over-count developers.

Regarding internal validity, our study näıvely ignores how commits (and
their patches) evolve. It is very likely that many of the patches that do not
arrive at blessed are previous versions of the patches that do. In-depth analysis
should link all related commits together to reconstruct the correct lifecycle and
path of a commit. However, we leave such detailed analysis for future work.

Another aspect that might affect internal validity is that we compared
the activity in blessed against the activity in the entire Super-repository , even
though some of this activity will never make it to blessed . The 25% of reposito-
ries that never contributed to blessed (pure consumers) do not represent part
of the ecosystem of repositories that create the Linux kernel (as found in Linus



Title Suppressed Due to Excessive Length 41

Torvalds’ repository). However, one can argue that because these repositories
are closer to what users know as Linux, the activity of these repositories also
represents an important part of the activity of the Linux kernel development
team. Hence, the commits in the entire Super-repository reflect better the ac-
tivity of the team than the commits found only in blessed . The activity of
consumers (including the development of their own features) and how they
integrate features from blessed is an important area that needs to be studied.

It is also important to mention that our method is only capable of ob-
serving activity in public repositories that we know about. There will always
be repositories (including many personal ones) that cannot be accessed (Bird
et al, 2009b). For example, we know the addresses of some corporate Linux
repositories that are behind firewalls, and hence we cannot reach them. For this
reason, we believe that we are underestimating the size of the Super-repository
of Linux and its activity. Nonetheless, our findings regarding the differences
between the data recorded in blessed and the Super-repository of Linux should
be considered as a starting-point for further research. In particular, we believe
that studies that try to understand the development practices of Linux should
look into these differences.

The main threat to external validity is that Linux is perhaps the largest
project that has ever used a D-VCS (Barr et al, 2012). Therefore, what we
observed in Linux might not be happening in smaller projects (e.g., in projects
using git as a centralized repository). Similarly, some of the information that
we have observed might only be created in git and not in other D-VCSs. For
this reason, studies in other projects are needed. We are currently mining the
history of five more projects, including one that uses mercurial, in an attempt
to address this issue.

To minimize the effects of these threats we will publish–and make publicly
available–the data that we have gathered using continuousMining10.

9 Related Work

Bird et al. (Bird et al, 2009b) analyzed the git D-VCS technology from the per-
spective of mining software repositories researchers. They identified 9 promises
and 7 perils of the then brand new D-VCS technology. git promised a larger
and richer set of development data, and was able to distinguish between patch
authors and committers. However, a large amount of data was only recorded
in the private logs of developers (impossible to obtain), and the three chal-
lenges discussed in this paper were also identified as major perils. Whereas
these perils were explored conceptually by Bird et al., continuousMining is
able to quantify the actual impact of these perils, which indeed turn out to be
a threat.

The domain of software integration is the closest related to this paper.
Brun et al. (Brun et al, 2011) studied merge conflicts, i.e., errors happening

10 Please contact the first author for information regarding access to this huge amount of
data.



42 Daniel M German et al.

when changes in one branch are merged into another branch. In particular,
they note that integration is risky because the person merging a commit is not
the developer herself, usually many commits are merged at once, and merging
typically happens a long time after development. Some of these factors might
explain why rebasing and cherry-picking are performed so heavily in the Linux
kernel project. Shihab et al. (Shihab et al, 2012) established an empirical link
between the post-release quality of two proprietary projects and the branching
structure of their repository. Especially misalignment between branching and
the organizational structure plays a major role in software quality. This is why
collaborative open source projects like the Linux kernel tend to opt for D-
VCSs. Finally, Bird et al. (Bird and Zimmermann, 2012) propose techniques
to improve the speed with which changes move through the branches of a
repository. These techniques have been applied primarily on the branches of
blessed , however, given the scale of the Super-repository of a project like the
Linux kernel, similar techniques could be applied there as well. Note that the
software integration phase typically follows the patch reviewing process. This
process has been studied in depth, in particular to identify the kinds of patches
that tend to be accepted (Baysal et al, 2012; Jiang et al, 2013; Rigby et al,
2008; Weissgerber et al, 2008). Similar studies could be performed on software
integration.

The act of obtaining finer-grained development history by using continu-
ousMining instead of snapMining has strong similarities with the use of IDE
interaction histories like the edit history of specific lines in a file or the order
of opening files. Zou et al. (Zou and Godfrey, 2006) used an Eclipse plugin
to monitor the files viewed during maintenance. Other researchers built more
powerful tools like SpyWare (Robbes and Lanza, 2007), or used the interac-
tion histories provided by Mylyn or the Eclipse Usage Data Collector to study
the impact on software quality of specific developer interactions (Zhang et al,
2012), predict future bugs (Lee et al, 2011), or measure how developers resume
interrupted tasks (Parnin and Rugaber, 2011). Developer actions inside an IDE
represent the ultimate level of mining, since they even capture uncommitted
changes.

Similar to bias caused by rebasing and cherry-picking, bias has also been
studied in other domains, like bug reports. Antoniol et al. (Antoniol et al,
2008) found that many bug reports do not report bugs, but enhancements or
other issues. This tag bias skews models towards subsystems with proportion-
ally more bug reports. Bird et al. (Bird et al, 2009a) studied linkage bias. The
higher the severity of a bug, the lower the chance that a bug report is linked to
the source code files that fixed the bug. Similarly, bug reports written by ex-
perienced developers are more likely to be linked to source code than those by
less experienced developers. This linkage bias skews the models towards more
severe bug reports written by more experienced developers. Even perfectly-
linked bug reports are biased towards experience (Nguyen et al, 2010), hence
noise-resistant models and noise removal techniques have been built to deal
with this bias (Kim et al, 2011).



Title Suppressed Due to Excessive Length 43

Hydraladder was motivated by the ability of bitkeeper to do centralized
logging. bitkeeper can be deployed such that any commit to any repository
of a Super-repository is automatically logged to a centralized location. This
logging records the metadata and the patch of a commit, at the moment it is
created. Hydraladder , in contrast, builds this information by regularly querying
repositories to try to discover new commits that happened since the last query.
bitkeeper’s approach is more powerful, since the client connects to the server
at every event, while continuousMining (and by extension Hydraladder) has
to be able to query the repositories (something that is not always possible)
to read their histories, and will never be as comprehensive as bitkeeper’s
logging. Unless git supports centralized logging like bitkeeper (either in its
core implementation or by instrumenting it), methods that reconstruct events
by analyzing history logs (such as continuousMining) are the only current
alternative to do so, although they will always provide only a partial view of
the activity of the entire Super-repository .

10 Conclusions

D-VCSs are becoming more prevalent. Their working model promotes the cre-
ation of satellite repositories where developers can work on features without
having to propagate their change-sets to a centralized repository to get the
benefits of version control (as C-VCSs do).

Mining the blessed repository of a project will always show only a subset of
the activity of its developers, with possibly biased metadata. We have demon-
strated that by using continuousMining (i.e., periodically mining the reposi-
tories that are used by the development team), we can uncover new activities
that were before invisible. We expect that this new information will foster
new research that looks into the benefits and potential drawbacks of using D-
VCSs. In particular, we have demonstrated that Linux is a rich ecosystem that
spawns beyond what is observable in Linus Torvalds’ repository, a view that
we consolidated into an hourglass model. We also expect that other researchers
will be able for the first time to look into these phenomena, in order to help us
understand the keys towards successful development and integration of source
code changes in large-scale open source projects like the Linux kernel.

References

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug
or an enhancement?: a text-based approach to classify change requests. In:
Proc. of the 2008 Conf. of the Center for Advanced Studies on Collaborative
research: meeting of minds (CASCON), pp 23:304–23:318

Barr ET, Bird C, Rigby PC, Hindle A, German DM, Devanbu P (2012) Cohe-
sive and isolated development with branches. In: Proc. of the 15th intl. conf.
on Fundamental Approaches to Software Engineering (FASE), pp 316–331



44 Daniel M German et al.

Baysal O, Holmes R, Godfrey MW (2012) Mining usage data and develop-
ment artifacts. In: Proc. of the 9th IEEE working conf. on Mining Software
Repositories (MSR), pp 98–107

Bird C, Zimmermann T (2012) Assessing the value of branches with what-if
analysis. In: Proc. of the ACM SIGSOFT 20th intl. symp. on the Founda-
tions of Software Engineering (FSE), pp 45:1–45:11

Bird C, Gourley A, Devanbu PT, Gertz M, Swaminathan A (2006) Mining
email social networks. In: MSR, pp 137–143

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu
P (2009a) Fair and balanced?: bias in bug-fix datasets. In: Proc. of the
the 7th joint meeting of the European Software Engineering Conf. and the
ACM SIGSOFT symposium on the Foundations of Software Engineering
(ESEC/FSE), pp 121–130

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009b)
The promises and perils of mining git. In: MSR ’09: Proc. of the 6th Int.
Working Conf. on Mining Software Repositories, pp 1–10

Black Duck Inc (2013) Tools: Compare Repositories. http://www.ohloh.net/
repositories/compare

Brun Y, Holmes R, Ernst MD, Notkin D (2011) Proactive detection of collab-
oration conflicts. In: Proc. of Foundations of Software Engineering (FSE),
pp 168–178

Chacon S (2009) Pro Git. Apress
Chapman D (2011) A Guide To The Kernel Develop-

ment Process. http://www.linuxfoundation.org/content/

1-guide-kernel-development-process

Corbet J (2005) The kernel and BitKeeper part ways. http://lwn.net/

Articles/130746/

Corbet J (2008a) How to participate in the linux community. http://ldn.
linuxfoundation.org/book/how-participate-linux-community

Corbet J (2008b) Linux-Next and Patch Management Process. http://lwn.
net/Articles/269120/

Corbet J, Kroah-Hartman G, McPherson A (2013) Linux kernel develop-
ment: How fast it is going, who is doing it, what they are doing, and
who is sponsoring it. http://www.linuxfoundation.org/publications/
linux-foundation/who-writes-linux-2013

Dhaliwal T, Khomh F, Zou Y, Hassan AE (2012) Recovering commit depen-
dencies for selective code integration in software product lines. In: ICSM,
pp 202–211

Foundation E (2012) Eclipse community survey. http://www.eclipse.org/
org/press-release/20120608_eclipsesurvey2012.php

Gousios G, Pinzger M, Deursen Av (2014) An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pp 345–355

Hassan AE (2008) Automated classification of change messages in open source
projects. In: SAC, pp 837–841



Title Suppressed Due to Excessive Length 45

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassifica-
tion impacts bug prediction. In: 35th International Conference on Software
Engineering, ICSE ’13, pp 392–401

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast?:
case study on the linux kernel. In: MSR, pp 101–110

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D
(2014) The promises and perils of mining github. In: Proceedings of the
11th Working Conference on Mining Software Repositories, MSR 2014, pp
92–101

Kawrykow D, Robillard MP (2011) Non-essential changes in version histories.
In: ICSE ’11: Proceedings of the 33th International Conference On Software
Engineering, pp 351–360

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction.
In: Proc. of the 33rd Intl. Conf. on Software Engineering (ICSE), pp 481–490

Kroah-Hartman G (2010) Android and the linux kernel community. http:

//www.kroah.com/log/linux/android-kernel-problems.html

Lee T, Nam J, Han D, Kim S, In HP (2011) Micro interaction metrics for
defect prediction. In: Proc. of the 19th ACM SIGSOFT symp. and the 13th
European Conf. on Foundations of Software Engineering (ESEC/FSE), pp
311–321

Mockus A, Votta LG (2000) Identifying reasons for software changes using
historic databases. In: ICSM, pp 120–130

Nguyen T, Adams B, Hassan AE (2010) A case study of bias in bug-fix
datasets. In: Proc. of the 17th Working Conf. on Reverse Engineering
(WCRE), pp 259–268

Parnin C, Rugaber S (2011) Resumption strategies for interrupted program-
ming tasks. Software Quality Control 19(1):5–34

Rigby PC, German DM, Storey MA (2008) Open source software peer review
practices: a case study of the apache server. In: ICSE ’08: Proc. of the 30th
Int. Conf. on Soft. Eng., pp 541–550

Robbes R, Lanza M (2007) Characterizing and understanding development
sessions. In: Proc. of the 15th IEEE Intl. Conf. on Program Comprehension
(ICPC), pp 155–166

Shihab E, Bird C, Zimmermann T (2012) The effect of branching strategies
on software quality. In: Proc. of the Intl. Symp. on Empirical Software En-
gineering and Measurement (ESEM), pp 301–310

Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: Proc.
of the 2012 Intl. Conf. on Software Engineering (ICSE), pp 386–396

Weissgerber P, Neu D, Diehl S (2008) Small patches get in! In: Proc. of the
intl. working conf. on Mining Software Repositories (MSR), pp 67–76

Zhang F, Khomh F, Zou Y, Hassan AE (2012) An empirical study of the effect
of file editing patterns on software quality. In: Proc. of the 19th Working
Conf. on Reverse Engineering (WCRE), pp 456–465

Zou L, Godfrey MW (2006) An industrial case study of program artifacts
viewed during maintenance tasks. In: Proc. of the 13th Working Conf. on
Reverse Engineering (WCRE), pp 71–82


