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Abstract

In the last two years, there has been a
surge of word embedding algorithms and
research on them. However, evaluation has
mostly been carried out on a narrow set of
tasks, mainly word similarity/relatedness
and word relation similarity and on a single
language, namely English.

We propose an approach to evaluate embed-
dings on a variety of languages that also
yields insights into the structure of the em-
bedding space by investigating how well
word embeddings cluster along different
syntactic features.

We show that all embedding approaches
behave similarly in this task, with
dependency-based embeddings performing
best. This effect is even more pronounced
when generating low dimensional embed-
dings.

1 Introduction

Word embeddings map words into a vector space,
allowing to reason about words in this space. They
have been shown to be beneficial for several tasks
such as machine translation (Botha and Blunsom,
2014), parsing (Lei et al., 2014), and named en-
tity recognition (Passos et al., 2014). Recently,
word embedding techniques have been studied for
their mathematical properties (Levy and Goldberg,
2014b; Stratos et al., 2015), yielding a better un-
derstanding of the underlying optimization criteria.
However, word embeddings have mostly been stud-
ied and evaluated on a single language (English).
Therefore, validation on languages other than En-
glish is lacking and the question whether word
embeddings work the same way across languages
has not been empirically evaluated. Evaluations of
complex systems – such as parsers – employing
word embeddings generally give only little insight

into the type of contribution to the result and the
structure of word embeddings.

We aim to fill these gaps by evaluating several
word embedding algorithms on a set of different
languages using tasks that enable additional insight
into the learned structures using easily obtainable
data. At the same time, we provide baseline results
for using word embeddings in several syntax-based
classification tasks.

We focus on syntax-related measures because
data is available for several languages and we ex-
pect a correlation with usefulness of word embed-
dings for syntax-related tasks such as named entity
recognition, parsing, and morphological analysis.

2 Related Work

Previous approaches to word embedding evaluation
have either used relatively basic word finding and
classification tasks (as this paper also proposes)
or application-oriented end-to-end evaluations as
part of a larger system. Word finding tasks are of
the form “given a pair of words (x, y), find a y′

for a given x′”, e.g. given (Rome, Italy), find a
word for Oslo. These tasks have been introduced
by Mikolov et al. (2013a). The downside of this
kind of task is that the data is not readily available
and has to be constructed for each language. This
type of evaluation primarily describes the similar-
ity between vector differences and not similarity
between vectors. In addition, Levy et al. (2015)
showed for this task that word embedding-based
classifiers actually mostly learn whether a word is
a general hypernym and not, as would be expected,
the relation between two words.

Another approach to evaluate embeddings, used
by Pennington et al. (2014) amongst others, is to
rank a fixed set of words relative to a reference
word. The results are then compared to human
judgments, e.g. from the WS353 corpus (Finkel-
stein et al., 2002). This approach has a limited
coverage and additional data is expensive to obtain.



Botha and Blunsom (2014) propose to factorize
word vectors into morpheme vectors to better cap-
ture similarities between morphologically related
words and evaluate their word representations us-
ing log-bilinear language models based on their
word vectors.1 They measure model perplexity re-
duction relative to n-gram language models and
include their model into a machine translation sys-
tem, gaining between 0 (English→ German) and
1.2 (English→ Russian) BLEU points.

Lei et al. (2014) introduce a syntactic depen-
dency parser using (amongst others) a low-rank
tensor component for scoring dependency edges.
This scoring can employ word embeddings. Doing
so yields an improvement of 0.2 to 0.5 percentage
points. If no Part-of-Speech (PoS) tags are avail-
able, this difference rises to up to four percentage
points. Köhn et al. (2014) show that this gain from
using word embeddings is even more pronounced
in complete absence of morphological information
(including PoS tags), reporting a difference of five
to seven percentage points,depending on the lan-
guage, using the same parser. With these findings,
it can be assumed that word embeddings encode
some kind of morphological information. Neither,
however, investigated what kind of information the
word embeddings actually contain.

3 The Embedding Algorithms

To assess the differences between embedding algo-
rithms, we will evaluate six different approaches.
The continuous bag-of-words (cbow) approach de-
scribed by Mikolov et al. (2013a) is learned by
predicting the word vector based on the context
vectors. The skip-gram approach (skip) from the
same authors is doing the reverse: it predicts the
context word vectors based on the embedding of
the current word. We use the version of cbow and
skip as described in (Mikolov et al., 2013b) which
use negative sampling, i.e. they train by distinguish-
ing the correct word in its context against words
not occurring in that context.

Levy and Goldberg (2014a) alter the skipgram
approach by not using the neighboring words wrt.
the sentence’s word sequence but wrt. the depen-
dency tree of the sentence. Therefore, the context
of w is defined as all words that are either the head
or dependents of w. We will call this approach
dep.

1Their approach has not been evaluated in this paper as the
corresponding code is not available as of now.

GloVe, introduced by Pennington et al. (2014),
optimizes the ratio of co-occurrence probabilities
instead of the co-occurrence probabilities them-
selves, getting rid of the negative sampling used
for the approaches previously mentioned.

Stratos et al. (2015) describe a method to de-
rive word embeddings using canonical correlation
analysis. We will call this approach cca.

brown clusters (Brown et al., 1992) are con-
structed by clustering words hierarchically into a
binary search tree in a way that maximizes mutual
information for a language model. To construct an
embedding for a cluster c, we use the following
procedure: For each edge on the path from the root
to c, add either 1 or −1, depending on the direc-
tion of descent. Because not every path has the
same depth, we pad missing dimensions with 0.
This way, we obtain an embedding interpretation
of the clusters. Note that, in contrast to clustering
embeddings, no information is lost.

4 Our Evaluation by Classification Tasks

We classify words separately according to several
tasks with an L2-regularized linear classifier. All
classification tasks are based on the word embed-
ding of a single word alone, without any other infor-
mation about the word or its context; in particular,
the word’s lexicalization is not used as a feature.
By using the continuous features directly instead
of clustering them (as e.g. done by Bansal et al.
(2014)), we ensure that no information is lost dur-
ing preprocessing.

All tasks can be carried out on dependency tree-
banks with morphological annotation. From each
word in the treebank, we extract a data point (word
embedding, class) for training/testing, where class
is of one of the following, depending on the task:

pos The Part-of-Speech of the word
headpos The PoS of the word’s head
label The label of the word’s dependency edge
gender* The gender of the word
case* The case of the word
number* The number of the word
tense* The tense of the word

Tasks marked with an asterisk are only carried out
on words with a corresponding feature. Some of
these features are absent in some languages, e.g.
Basque is mostly genderless and the corpus of En-
glish we used is not annotated with morphological
information. These combinations of language and
feature have been omitted.



We use a one-versus-all linear classifier for two
reasons: First, the feature dimensionality is rela-
tively high. Second, and more importantly, training
a linear classifier yields insights into the structure
of the vector space because the classifier also serves
as a tool to obtain a supervised clustering of the
vector space.

Let C be set set of classes. A one-versus-all
linear classifier learns a linear function fc ∈ Rn →
R for each class c ∈ C. The classifier assigns to
a vector X the best matching class based on these
functions:

class(X) = argmax
c∈C

fc(X)

Due to the linearity of the functions fc, the vector
space is partitioned into convex polytopes, which
each represent exactly one class (see Appendix A).
Therefore, the classification accuracies can also
be interpreted as supervised clustering accuracies.
This means that if the classifier yields a high ac-
curacy, the members of each class are clustered
in a single convex region of the vector space. We
think that this is a fairly strong statement about the
structure of the vector space.

To better gauge how well the embeddings are ac-
tually clustered, we use a majority baseline which
classifies all elements as the one class that occurred
most often during training. This is the accuracy a
classifier would yield without any information and
therefore the information gain obtainable by us-
ing word embeddings as features is the difference
between the achieved accuracy and the baseline
accuracy.

In addition to the lower bound described above,
we also provide an approximate upper bound for
the accuracy. Because no context information is
used during classification, the word vector corre-
sponding to a word will always be classified the
same, even though the correct classification might
depend on the context, e. g. the word put can be-
long to different tense classes depending on the
context. Therefore, an upper bound for the classifi-
cation task is to assign each word the most probable
class for that word (computed on the training set).
Assuming that no sparsity issues exist, embedding-
based classification can yield at most accuracies as
high as this approach. Note that because in reality
data sparsity unfortunately does exist, this is only
an approximation of the upper bound. We call this
approximation up-approx and compute it omitting
words not seen during training.

5 Experimental Setup

Evaluation was carried out on Basque, English,
French, German, Hungarian, Polish, and Swedish
datasets. For English, automatically labeled data
was obtained by tagging and parsing a subset of
the English Wikipedia dump provided by Al-Rfou
et al. (2013) using TurboTagger and TurboParser
(Martins et al., 2013). The Penn Treebank (Marcus
et al., 1994), converted using the LTH converter
(Johansson and Nugues, 2007), was used as the
corresponding manually annotated resource.

For all other languages, datasets including both
automatically and manually annotated data pro-
vided as part of the Shared Task on parsing mor-
phologically rich languages (Seddah et al., 2014)
were used.2

For all languages, we trained embeddings on the
automatically labeled data using the approaches
described in Section 3, with different window sizes
(5 and 11, where applicable) and dimensions (10,
100, 200). The rare word limit was set to five words
occurrences. brown was only trained with 1024
clusters equaling about 10 dimensions, as the num-
ber of clusters can not be increased to generate
higher-dimensional embeddings. dep was not eval-
uated on French because the French automatically
labeled dataset lacks dependency information.

6 Results

Figure 1 a) shows the accuracies for the evaluated
word embeddings on all tasks for the different lan-
guages. The results were obtained using the best-
performing hyperparameters (200 dimensions for
all, window size = 5 for cca, cbow and skip, win-
dow size = 11 for GloVe, compare Table 1).

All embeddings capture the PoS well. To a lesser
degree, the dependency label and head PoS can also
be recovered. The better-performing embeddings
achieve results near the approximate upper bound
for all tasks.

The embeddings also mostly cluster well with re-
spect to tense, number, gender, and case, with tense
showing the best correlations. For some of these
tasks, the baseline is however fairly high because
the number of classes is lower.

2Basque: (Aduriz et al., 2003; Aldezabal et al., 2008),
French: (Abeillé et al., 2003; Candito et al., 2010), German:
(Brants et al., 2002; Seeker and Kuhn, 2012), Hungarian:
(Csendes et al., 2005; Vincze et al., 2010), Polish: (Woliński
et al., 2011; Świdziński and Woliński, 2010; Wróblewska,
2012), Swedish: (Nivre et al., 2006)
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Figure 1: Results with window = 5 (for cbow, cca & skip) / 11 (for GloVe) for Basque, English, French,
German, Hungarian, Polish, Swedish. Note: brown is only present in b).

w d cca skip cbow dep GloVe

5 200 80.41 80.69 80.42 82.35 70.05
100 −1.38 −1.16 −3.31 −0.39 −2.24

10 −18.06 −22.92 −16.18 −8.38 −16.12
11 200 −1.31 −0.04 −0.05 n/a +0.57

100 −3.56 −1.16 −1.17 n/a −1.73
10 −23.51 −22.94 −16.34 n/a −15.64

Table 1: Mean accuracy across tasks for
dimension=200 and window=5, and change in
mean accuracy when deviating, measured in per-
centage points. dep has no window parameter.

cbow, cca and skip perform nearly identical,
while dep performs slightly better. Interestingly,
GloVe performs consistently worse than all other
embeddings, contrary to the findings published in
Pennington et al. (2014), but in line with Stratos et
al. (2015). dep performs best on nearly all tasks,
which may indicate that dependency-based context
is not only beneficial for preserving dependency-
related information, but also for morphology.

This finding is even more pronounced in the
evaluation using only ten dimensions (Figure 1 b)):
While dep can capture the different aspects tested

for nearly as well as with 200 dimensions, the other
embeddings suffer larger degradations, especially
for PoS and label prediction. cbow seems to be
able to cope better with low dimensionality than
skip, although they perform nearly identical on the
high dimensionality tasks. brown behaves similar
to the other approaches despite being quite different
algorithmically and only producing low-granular
data (with values for each dimension being either
1, 0, or −1). Note that results near the baseline
signify that the embeddings yield only minimal
benefit since the baseline does not use any features
at all.

Table 1 gives an overview of the average change
in accuracy when changing hyperparameters. Us-
ing 200 dimensions instead of 100 is beneficial for
all word embeddings. The difference is however
not nearly as pronounced as between ten and 100
dimensions. skip and cbow yield slightly better
results with a window of five, whereas for GloVe
a larger window is advantageous. dep achieves
both the highest average score and has the lowest
degradation when lowering the dimensionality.

Bansal et al. (2014) evaluate word embeddings



wrt. how they cluster along PoS tags. They first
divide the embeddings into 1000 clusters using k-
means and then associate each cluster with a PoS
tag. They report a clustering accuracy of 81.1%
for w = 11 and 85.8% for w = 5 using skip. Our
results, however, show an accuracy of 94.4% and
94.4%, respectively, i.e. no such difference. That
means that the PoS are still mostly linearly sepa-
rable with larger window sizes. The differences
observed by them could result from information
getting lost during clustering.

7 Conclusions

Word embeddings are able to capture a range of
syntactic and morphological information. They
align especially well with the word’s part of speech.
With a high dimensionality, most embeddings per-
form similarly, with GloVe performing on average
ten percentage points worse. With a low dimen-
sionality, the differences become more pronounced
and dep is the clear choice for applications where
using high-dimensional vectors is not feasible and
a correlation to the features tested in this paper is
wanted.

We have shown that the different word embed-
ding algorithms behave similar over a variety of
languages and perform well relative to the task’s
upper bounds.

The evaluation approach proposed yields in-
sights into the usefulness of embeddings for syntax-
related tasks, works on a wide variety of languages
and avoids inaccuracies introduced when employ-
ing unsupervised clustering for evaluation. We
hope that this evaluation approach will be useful
for evaluating future embedding techniques.

The software to replicate the experiments for this
paper is available on
http://arne.chark.eu/emnlp2015.

A Proof: Convexity of regions

To show that a one-versus-all classifier generates
exactly one convex polytope for each class, we
have to show that for any two points belonging to a
class, each point between them belongs to the same
class.

Let c ∈ C be a class and rc ⊆ Rn be the re-
gion(s) of c in the vector space3 , i. e. where the
following holds true:

fc > fo ∀o ∈ C \ c
3the vector space is assumed to have one dimension for the

bias.

Let x, y ∈ rc be two points classified into c. Then
the following statement needs to be true:

z ∈ rc, z := (1− λ)x+ λy ∀λ ∈ [0, 1]

Assume that z /∈ rc. Then, by definition, fo(z) >
fc(z) for some o ∈ C \ c. We can substitute z with
its definition:

fo((1− λ)x+ λy) > fc((1− λ)x+ λy)

And therefore due to the linearity of fo and fc:

(1− λ)fo(x) + λfo(y) > (1− λ)fc(x) + λfc(y)

But this cannot be, as by definition, fo(x) < fc(x)
and fo(y) < fc(y). Therefore, there is only one
region for c and that region is convex. �
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