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Reality Art involves the design of artificial worlds that 
w experiences to spectators. An important aspect for the 
ment of VR Art installations is the principled definition of 
ur for the environment as a whole, which would facilitate 
ents with alternative laws of physics, time, and causality. 

cribe the first results of an ongoing project dedicated to the 
ment of software tools for the use of Intelligent Virtual 
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RODUCTION 
Reality Art [16] [8] offers the perspective of creating 

ive worlds that depart from our everyday experience of the 
l worlds. In other words, virtuality need not be modelled 
lity: this vision was actually part of the original ideas that 

ed Virtual Reality, e.g. Leary’s psychedelic metaphor of 
Reality [14]. On the other hand, Virtual Reality Art has 
 contact with these original ideas, and VR artists have 
ented in their works with fundamental aspects, such as 

nd the laws of physics [5] or time (Toshio Iwai). To a large 
VR Art is concerned with the implementation of 

alternative realities: worlds in which to experiment with time and 
space, in which laws of physics or even fundamental phenomena 
like causality can be tailored to the requirements of an artistic 
experience.  
But more interestingly, in recent years, the work of several artists 
has explicitly addressed Physics as a source of inspiration, in 
particular where it could depart from our everyday physical 
experience. For instance, the collective exhibition “The Amplitude 
of Chance” in Nagasaki was entirely devoted to briefs exploring 
causality [21].  One sophisticated and even more explicit example 
is constituted by the animation series “The Quarxs™”1, which 
features a set of invisible creatures which violate the laws of 
physics and provide an explanation for the unaccounted 
phenomena of our everyday world. These “insect-like” creatures 
are named after the physical laws they twist: for instance the 
Reverso Chronocycli causes time to flow backwards and the Spiro 
Thermophage(figure 1) lives in water pipes interfering with heat 
transfer processes.  

 
 

Figure 1. The Spiro Thermophage from the Quarxs tm . © 
Maurice Benayoun and Z-A Productions. 

This opens the possibility to support the development of 
alternative reality installations using Intelligent Virtual 
Environments [2], which incorporate novel, programmable, high-
level behaviour layers in a VR system. In this paper, we describe 
the development of such a system: after a brief introduction to the 
baseline technology used, we present two specific and 
complementary techniques to redefine virtual world behaviour: 
qualitative physics and causal simulation.  
1.1. System Overview and Architecture 
In order to maximise user experience as well as making an 
installation visible to a wider audience, Virtual Reality Art is often 
presented using immersive displays such as CAVEs™. Our target 
systems are large-scale virtual reality installations, based on the 

                                                 
1 The Quarxs™ have been ideated by Maurice Benayoun, one of 
leading Virtual Reality artists (see e.g., [8]). 



SAS Cube™, which is a 4-wall, PC-based, CAVE™-like, 
immersive visualisation system. The use of a CAVE-like system 
should facilitate interaction with virtual world objects, which is an 
essential aspect of the alternative reality experience. 

However, redefining physical processes in a consistent fashion is 
a challenging task, which should be supported by appropriate 
formalisms. In particular it would be extremely difficult to 
produce consistent sets of low-level equations defining the new 
behaviour of objects. Some high-level description of the physical 
processes and their consequences is required instead. Two factors 
contribute a solution to this problem: the first one is the 
discretisation of physical processes into events which supports the 
implementation of physics in most games engines including UT 
(and is also developed within more traditional VR systems [12]) 
and the second is the existence of computing formalisms for high-
level, qualitative descriptions of physical processes that have been 
developed in Artificial Intelligence [6] 

 

Another aspect consists in modifying the laws of causality [20], 
which relate the occurrence of macroscopic events in the world, 
and play a fundamental role in our perception of reality. While 
previous work has addressed the replay events in a virtual 
environment [10], redefining causality requires more sophisticated 
processing of the co-occurring events in order to form a new 
causal chain and, in addition, needs to be compatible with real-
time user interaction.  

Figure 2. The SAS Cube™ 2.1. Event-based Architectures for Behaviour 
Description We use a game engine, Unreal Tournament 2003™ (UT), as a 

visualisation engine and as a development environment. Game 
engines are now increasingly used for visualisation in scientific 
research due to their rendering performance and their ability to 
communicate with external software modules [15], which in the 
present case is essential to the development of a simulation layer 
that will override basic physics mechanism to implement 
alternative reality. Another interesting aspect is the growing use of 
game engines for 3D Digital Arts. In addition, the engine we are 
using, UT, has previously been ported to CAVE™ systems [12] 
and we are currently porting it to the SAS Cube™, using the 
original approach described in the CAVE-UT implementation.  

Most interactive systems are based on the notion of event for their 
implementation. Highly interactive systems, such as VR systems 
[13] and game engines in particular intensively exploit this notion 
for their implementation. On the other hand the notion of event is 
also the basis for the high-level description of physical behaviour, 
as events discretise the continuous motion of objects (in terms of 
positions, trajectories, contacts with other objects) into meaningful 
high-level actions.  
This section describes the event management mechanisms, which 
support the redefinition of alternative behaviours for the virtual 
environment. As these mechanisms underlie the implementation 
of both alternative causality and alternative physics, we will 
describe them first. After introducing the native mechanisms 
provided by the UT game engine, we will show how these can be 
used to define complex events corresponding to object behaviour 
as well as a control strategy to override the basic mechanisms 
supporting the world physical behaviour. This will then open the 
possibility of extensive redefinitions of the virtual world 
behaviour, supporting alternative views on physics and causality. 

The rationale for using a game engine is not just its graphic 
rendering abilities or the built-in mechanisms for user interaction 
with world objects. The UT 2003 engine incorporates a 
sophisticated physics engine (the Karma™ system from 
Mathengine™) together with a sophisticated API and 
programming features supporting the modification of baseline 
physics. As it is through the redefinition of physical behaviour 
that alternative reality can be implemented, this feature provides 
an essential path to the implementation of new behavioural layers 
overriding basic mechanisms.   The Unreal engine extensively relies on event generation to 

support many of its interaction aspects and, most importantly, the 
mechanism for event generation is accessible to redefine specific 
behaviours for the environment. Formally, an Event can be 
characterised as an encapsulated message, which is generated by 
an Event Source and sent to one or more Event Consumers, these 
being both objects of the environment. The transmission of an 
Event to an Event Consumer triggers some specific action in 
response to that event. It should be noted that the actions triggered 
by Event Consumers can further be detected by other Event 
Sources, and this accounts for the possibility of Event propagation 
as a kind of “forward chaining”, propagating the consequences of 
an action. 

2. THE ELEMENTS OF ALTERNATIVE 
REALITY 
As the examples from the Quarxs™ illustrated, the systematic 
modification of physical laws, by defining new rules of behaviour 
for physical objects, is a principled way of creating alternative 
universes. Of course, to implement alternative reality as we have 
defined it, the newly defined physical laws should take place in 
real-time in an interactive environment, rather than an offline 
animation. The essence of Alternative Reality, like virtual reality 
is its user-centred nature and its interactivity. The alternative 
nature of physical phenomena is only perceived because the user 
is part of them and constitutes an experience insofar as he can be 
at the origin of some of the unusual transformations. The main 
technical innovation of this research is to establish principles for 
redefining the virtual environment physical behaviour.  

The Unreal Engine implements two different kinds of event 
sources: the basic events, which are primitive low-level events 
defined within the game engine and the programmed events. The 
latter are events whose definition is scripted (i.e. can be 
programmed by the system developer) and are originally used to 



customise the interactions between objects, by defining which 
objects will trigger (or react to) specific events. The basic events 
can be classified into six major categories, of which two are 
mostly used in our implementation to redefine environment 
behaviour: the interaction events and the time notification events. 
Interaction events are generated by the native mechanisms that 
control low-level graphical events such as collision detection. The 
interaction event category is further refined into several sub-
categories, the most important being: physics and world 
interaction event, player input event, and trigger event, which is 
the basic event class supporting the definition of high-level 
events. 
On the other hand, time notification events are related to the 
engine internal time management system and can be used to 
define the control cycle of any new event-based layer, for instance 
to programme the sampling rate of event management, which 
determines the temporal course of alternative reality phenomena. 
From another perspective, basic events can also be classified as 
discrete or continuous events. Discrete events notify instantaneous 
actions, such as “bumping”, while continuous events signal the 
beginning and ending of durative actions, for instance 
touch/untouch, attach/unattach (these are used for instance for 
carrying or manipulating physical objects). 
The redefinition of event mechanism comprises three main 
aspects: i) the attachment of events to specific classes of objects, 
ii) the overriding of native event generation mechanisms and iii) 
the definition of ad hoc complex events from basic system events. 
Relating events to objects is implemented using the native UT 
mutator system, which in UT supports the redefinition of object 
behaviours. This confers a new behaviour to the environment 
objects, which is the ability to enter into an Event Interception 
(EI) state. Once an object is set into the EI state, every event fired 
for this object will not trigger any corresponding action (via the 
procedure described above) i.e. the message coming from the 
event source is intercepted at the event consumer level. But it will 
use a procedure to signal the event call and arguments to an Event 
Controller module. This is a basic, though generic, mechanism by 
which events can be “frozen”, i.e. detected and recorded but with 
their associated actions temporarily inhibited.  
The Unreal Engine relies on a fixed set of basic events. However, 
for most applications it is necessary to define high-level events, 
whose semantics is dictated by the application. Such complex 
events are often called context event. The rationale for the use of 
context events is that they capture the semantics of an application 
scenario, which facilitates the formalisation of alternative rules for 
causality that operate on properties or parameters of the context 
events. Because they are aggregates of basic events, context 
events can be recognised by parsing a stream of lower-level 
events using a template for the (high-level) event to be recognised. 
This is a standard approach in event recognition, which has been 
used previously in computer vision and VR alike [1] [4] 
3. IMPLEMENTING ALTERNATIVE 
REALITY 
We have developed an example scenario to support the 
development of our platform as well as the required experiments. 
This environment was inspired from some of the Quarxs™ 
episodes, which tend to take place in everyday settings such as 
kitchens and bathrooms. Actually these areas concentrate many 
potential physical processes, such as the fall of objects, flows of 
liquids, heat transmission, surface contacts, formation of bubbles 

and foam, etc. They are also familiar places where the affordances 
for interaction tend to be obvious, and in which unexpected 
behaviour becomes immediately salient, precisely because of their 
familiar nature. This is why we have developed several test 
scenarios in such environments. 
3.1. Alternative Laws of Causality 
Causality is an important mode of apprehension of reality, 
whenever interaction and dynamic processes are involved [20] 
[17,18][19]. This mode equally applies to interactive 
environments such as virtual environments. Users will attribute 
causal relationships to events that follow their interactions with 
the virtual world’s objects, which they will consider as 
consequences of their actions, or to events showing some form of 
correlation, the most frequent being co-occurrence (i.e. temporal, 
and to some extent spatial, correlation).  Manipulating the 
perception of causality thus offers a great potential to leverage 
new forms of experience. Consider a normal VR scene: it 
comprises several background physical processes, such as water 
flows and particles getting in contact with objects; the scene may 
contain autonomous agents, which interact between them or with 
objects, and finally the user. An ordinary scene is thus hosting 
many forms of interaction, on small and large scales. All the 
corresponding event occurrences can be re-arranged and, given 
the correct emphasis, this will contribute to the definition of a 
totally different world. 
In an environment in which all interactions are mediated through 
events representations, it is thus possible to modify the user’s 
perception of his/her environment by modifying the dynamics of 
event management by the system. At the heart of causality 
reprogramming is the notion of event interception. This 
interception “freezes” the activation of the events post-conditions 
whenever an event is generated. The basis for alternative causality 
is that frozen events in the stack can be subject to several formal 
transformations, which will produce the desired effects once the 
event is re-activated.  
The alternative causality system is based on a set of procedures 
operating on the events continuously generated by the system, as 
described in the previous section. These procedures operate a 
certain frequency, which determines the “sampling rate” of 
alternative causality, i.e. the time scale over which events are 
intercepted, transformed and re-activated to produce the desired 
causal effects. The Figure below reproduces the Event Control 
software architecture. 
 
A procedure called Event Interception Process continuously 
intercepts and freezes the in-coming event produced by world 
objects (set in an Event Interception state) as they occur in the 
virtual environment, as a result of user interaction or other 
background phenomena. 
The frozen basic events intercepted during a given time 
(corresponding to the sampling rate) are stored into a 
corresponding data structure. This structure of basic events is in 
turn parsed to extract higher-level events (context events) 
corresponding to the application semantics, which are the events 
onto which the causal simulation module will operate. For 
instance, from a set of basic events describing the movement of a 
stone and its contact with a glass surface, Context Events such as 
throwing(stone, glass) can be generated. 
The  set of Context Events obtained in this way is time stamped 
and sent to the causal simulation module, acting as a server, 



through a TCP/IP socket. The causal engine uses explicit 
knowledge to carry out transformations on the events it receives.  

 
Figure 3. Event Control Software Architecture. 

This knowledge encodes the new definition of causality that 
should be implemented: for instance, swapping the object of a 
given action to displace the cause-effect relationship from one 
object to another. One example of this triggers the effect of an 
intercepted action on an object other than the one on which the 
action was originally executed, but of a compatible nature: for 
instance when throwing a stone at the glass of a mirror, a glass 
other than the one that has been hit is broken instead. Depending 
on the explicit knowledge redefining causality (which can be 
expressed in a declarative fashion for each application) various 
transformations are carried: swapping objects action’s, re-ordering 
events (including reversing the flow of time on some small-size 
causal chains), changing the spatial occurrence of events in the 
environment, etc.  
As a result of these transformations, a new ordered set of Context 
Events is generated and sent back to the Event Controller module 
in the game engine’s environment. The Event Controller is 
“listening” for incoming event data frames from the Causal 
Engine. 
From a formal perspective, the process by which a new sequence 
of events is produced from the original set of Context Events 
bears similarities with some AI planning techniques, in particular 
search-based planning [9] [3]. The context events can be 
associated to STRIPS-like representation. A representation that 
contains the objects, pre-conditions and post-conditions which 
define the context event. These representations can be re-ordered 
to produce the final sequence of events, this re-ordering being 
formally equivalent to the generation of a plan. Re-ordering is an 
important aspect of alternative causality, as from the user’s 
perspective causality is essentially derived from co-occurrence. 

However, as previously described, many different transformations 
can take place, such as swapping of semantically compatible 
parameters between two events. Various mechanisms can be used 
to govern these transformations, such as the definition of macro-
operators operating on the STRIPS representation, for a more 
expressive formalisation of alternative laws of causality.  

 
Figure 4. Example of Unreal Script Interception Event Code 

The final step consists in re-activating the transformed intercepted 
events within the environment: this comprises two different 
aspects. First the target objects of these events (the event 
consumers in UT’s terminology) should be set to an event 
execution (rather than event interception) state. Second, the 
consequence (post-condition) part of the high-level event 
operating on that object should be executed in terms of basic 
events corresponding to it. For instance the consequences of a 
“breaking” event will consist in the destruction of the glass, the 
replay of a breaking-glass animation and the generation of a set of 
glass fragments in the world (which in turn will generate more 
events to be processed during the next cycle). Once the actions 
associated to these basic events have been executed, the objects 
are put back into Event Interception mode and a new cycle of 
event sampling is resumed. 

3.1.1 An Example: The Mirror Causality 
The example we use to illustrate alternative causality we call 
mirror causality. This consists of propagating the effect of 
throwing a projectile at mirror on to the objects being reflected by 
the mirror. The consequence being that, following the missile 
impact, the mirror will not break but the object whose reflection in 
the mirror is hit will behave as if it were struck by the projectile. 
In our 3D environment, the Event controller controls each 
graphics object instance. Then we have defined a list of Context 
event associated with this environment. Context events 
correspond to high-level Events each expressed with Pre-
conditions and Post-condition, which can be illustrated through 
the following declarative form: 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
This is the Context Event defined called Break_Glass_Object, 
describes the behaviour of a “breakable” object when hit by a 
missile. A Context Event can be instantiated when its pre-
conditions are satisfied. CE preconditions are conjunctions of 
static and dynamic predicates: static predicates correspond to 
object properties (such as the fact that an object is breakable), 
while dynamic predicates check the occurrence of a Basic Event 
involving objects that can be arguments of that Context Event. In 
most cases the BEs appearing in the pre-condition list have been 

frozen by the event interception system. Triggering the CE post-
conditions will re-activate relevant BEs (see example above). 

Context Event: Break_glass_object (?target, ?missile) 
 
  Pre-conditions:  

 Frozen_Event (BE_Bump(?target, ?missile)) 
                 Breakable(?target) 
                 Moving_object(?missile) 
 
  Post-conditions: 

Active_Event ((BE_Bump(?target, ?missile)) 
Active_Event (explode (? target)) 

 
The sequence of events transformations underlying alternative 
causality can thus be described as follows: i) objects that are in 
event interception mode freeze BEs affecting them at regular 
intervals ii) each time a new set of BEs have been produced, the 
system identifies CE corresponding to them by, testing the CEs' 
pre-conditions iii) this set of CEs sampled over that time unit is 
passed to the causal engine, which operates various transformation 
on the population of CEs (re-ordering, parameter swapping 
between CEs, parameter modification). These modifications affect 
the CEs' post-conditions in terms of modification of parameters, 
addition of new BEs to the post-condition list or deletion of BEs 
(in the latter case, the BE deleted will have to be explicitly 
"neutralised"). In our "causal mirror" example, the ?target 
parameters for the Active_Event(explode ?target) post-conditions  
are modified. iv) after having been transformed by the causal 
engine, the modified CEs are activated by triggering their post-
conditions. The figure 5: Event Control for Causal Mirror, 
illustrates the pipeline of the Causal Control System with the 
causal Example.                                                         

 
Figure 5. Event Control for Causal Mirror 



3.2 Defining Alternative Laws of Physics 
As we have previously introduced, the redefinition of alternative 
physical behaviour for objects is based on an AI technique called 
qualitative physics [11] [6,7]. The principle behind qualitative 
physics is to make discrete the variation of physical properties and 
to model all physical transformations through processes that 
encapsulate the relation between physical variables, through the 
notion of influence equations (see details of process described 
below). 

 

The qualitative physics engine is implemented in an external C++ 
program that communicates with the UT 3D environment, when 
events occur. The implementation of the qualitative physics 
system relies on the same event-processing layer as the causal 
simulation module, which provides a unified approach for all 
alternative behaviours.  
The virtual world objects that are manipulated by Qualitative 
Processes (QP) are, in fact, derived of a special class of objects 
that owns an event interception system.  Qualitative Processes 
also operate through an event-based approach. For instance, 
certain QP events will launch specific animations, while other QP 
events will potentially update physical variables of the object 
(such as temperature, amount of matter contained, state, etc.).       
The infrastructure of the Process Controller is comparable to the 
Causal Event Controller. Except for the Context Event Modeller 
which converts the event list coming from the QP Engine into a 
QP event list, instead of a list of Basic Events.  The QP Event 
Modeller role is to dispatch those QP events to the targeted virtual 
world object instances.  
In order for the qualitative physics engine (QP engine) to produce 
the events, for physical processes within the virtual environment, 
the engine needs to receive data about the list of available 

processes and the data for the objects in the world. The qualitative 
physics engine then uses this data to generate a list of potential 
processes that can occur in the world.  The generation of the list of 
potential qualitative processes within the external C++ module is 
performed by analysis of the individual objects in the world. As 
processes are defined in part by the individual objects they apply 
to only the processes that have their individuals present can occur.  
Below is an example of the fluid flow process that we implement 
to show the alternative behaviour of a glass, which can hold an 
infinite amount. This alternative behaviour leads to the glass 
becoming too heavy for the user to move. The description of the 
fluid flow process which describes the filling of the Glass is: 
 
Process:  Fluid-flow (?source?sub ?dst ?path) 
Individuals: ?source a contained liquid 
  ?destination a contained liquid 
   ?sub a substance 
   ?path a fluid-path 
Preconditions:Connects(?path,?source,?dst) 
   Aligned(?path) 
Quantity Conditions 
A[Pressure(C-S(?sub, liquid, ? source))] > A[Pressure(?dst)] 
Relations Quantity(flow-rate) 
  Flow-rate=Pressure(C-S(?sub,liquid,source)) -
Pressure(?dst) 
Influences:I+(Amount-of-in(?sub, liquid, ?Source), A[flow-rate]) 
    I-(Amount-of-in(?sub, liquid, ?dst), A[flow-rate]) 
 
In our example we have defined three Objects for the qualitative 
physics simulation. The details for these objects are then sent to 
the Qualitative Physics engine which creates instances of the 
Processes fluid flow process. The fluid flow process is instantiated 
Figure 6.  Process Generation and user interaction  



as the three objects to which it applies to exist i.e. the Tap (a 
contained liquid source), the Glass (a contained liquid 
destination.) and a fluid path (shown as a column of water). This 
then generates for the list of potential processes two fluid flow 
processes these processes represent water flowing processes from 
the tap to the glass and from the glass to the tap. 
 Next we detail the simulation loop for the qualitative physics 
engine is given for the example of the water flowing into the 
glass. 
The definition of a process determines the conditions under which 
it can become active. The conditions that the user can directly 
affect are known as preconditions for instance aligning a 
glass/container under a tap is a precondition for water flow to 
occur. (as shown in Figure 6. Process Generation and user 
interaction). Context Events are included within the system by 
adding the fluid flow Mutator to the Event controllers list of 
Active Context Events. Note: The pouring Context Event is 
defined by a Flow-Path Object instance in the world (i.e.: Tap 
Water flow) and a destination Container object instance (i.e. 
Glass). It is the alignment precondition for the fluid flow process 
that the context event pouring fulfils. The pouring context event is 
generated and sent to the QP engine when the user moves a 
container into a flow path. 
 The conditions that apply to the quantities within the objects, 
whose values and changes are governed by the qualitative process 
theory, are known as quantity conditions. An example of quantity 
conditions for the water flow process is that the pressure of the 
individuals needs to be different for the process to occur.  To 
determine which processes are active we have to test the 
preconditions and the quantity conditions if these are both active 
we place these objects into the active process stack. In our 
example, we had two potential processes which both had passed 
the quantity conditions. Now for the process to occur the 
precondition and quantity conditions for the processes need to be 
tested. For both processes the preconditions are that there must be 
an aligned path between the two contained liquid individuals. If 
the user then moves the glass under the flow we have the context 
event aligned path which is sent form the environment to the QP 
engine. This event aligns the flow and allows both processes to 
pass the preconditions. The next stage is the quantity conditions 
for the processes since we are comparing the pressure for the two 
objects only one process will pass this stage, the process from tap 
to glass. The process will then become active and begin altering 
the quantities as described by the influence equations.  
In the case of water flow the amount of water in glass will 
increase. 
The next stage involves calculating the relations between the 
individuals for the process and then determining changes in the 
quantity via resolving influence equations. 
 When determining changes in the quantity via resolving influence 
equations the first stage is to resolve the direct influences of the 
processes. In our example the directly influenced values are the 
amount of water in the glass and the amount of water in tap. Then 
the process applies the relations for the changes in these 
quantities, this is to alter the indirectly influenced quantities. In 
our case we are changing amount of water in the glass but by our 
alternate laws the glass can hold an infinite amount so the water 
will not over flow but the glass will get heavier so the user will be 
unable to move the glass. Eventually a limit point for the 
glass/container mass will be reached and this will generate an 
event that will be sent from the qualitative physics engine to the 
UT 3D virtual environment. This event informs the virtual 

environment that the mass has passed a certain value. For 
alternative laws the virtual environment could respond in many 
ways to this event such as breaking the glass or starting different 
processes any of which would affect the user experience.  

4. CONCLUSIONS 
Modifying the laws of physics in Virtual Reality to create 
alternative behaviours on a principled basis is certainly a 
challenge in terms of conception, implementation and authoring. 
This research should support the creation of VR artistic 
installations which support recent ideas in the field for which no 
software tools are yet available. Using symbolic representations 
should also facilitate the translation of the artistic ideas in terms of 
computer implementation. We have shown that state-of-the art AI 
techniques such as qualitative physics can be adapted to virtual 
environments, taking advantage of the discretisation of physics 
events in game engines. In a similar fashion, the explicit 
description of new rules for causality is probably one of the 
highest levels of description that can be envisioned to describe 
behaviours. Current work is dedicated to building libraries of 
qualitative physics processes so as to scale up the platform beyond 
its current prototype status, as well as integrating the interaction 
mechanisms that would be required for immersive installations. 
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