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Abstract. We recently introduced Service Clouds, a distributed infrastructure
designed to facilitate rapid prototyping and deployment of autonomic communi-
cation services. In this paper, we propose a model that extends Service Clouds
to the wireless edge of the Internet. This model, called Mobile Service Clouds,
enables dynamic instantiation, composition, configuration, and reconfiguration
of services on an overlay network to support self-management in mobile comput-
ing. We have implemented a prototype of this model and applied it to the problem
of dynamically instantiating and migrating proxy services for mobile hosts. We
conducted a case study involving data streaming across a combination of Planet-
Lab nodes, local proxies, and wireless hosts. Results are presented demonstrating
the effectiveness of the prototype in establishing new proxies and migrating their
functionality in response to node failures.

Keywords: autonomic networking, distributed service composition, self-managing
system, overlay network, mobile computing, quality of service.

1 Introduction

As the cyber-infrastructure becomes increasingly complex, need for autonomic [1] com-
munication services is also increasing. Autonomic communication services can be used
to support fault tolerance, enhance security, and improve quality of service in the pres-
ence of network dynamics. An integral part of such systems is the ability to dynami-
cally instantiate and reconfigure services, transparently to end applications, in response
to changes in the network environment. A popular approach to supporting transparent
reconfiguration of software services is adaptive middleware [2]. However, supporting
autonomic communication services often requires adaptation not only at the communi-
cation end points, but also at intermediate nodes “within” the network. One approach
to this problem is the deployment of a service infrastructure within an overlay net-
work [3], in which end hosts form a virtual network atop the physical network. The
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presence of hosts along the paths between communication end points enables interme-
diate processing of data streams, without modifying the underlying routing protocols
or router software. This paper investigates the integration of adaptive middleware and
overlay networks to support autonomic communication services on behalf of mobile
hosts.

We recently introduced Service Clouds [4], an overlay-based infrastructure intended
to support rapid prototyping and deployment of autonomic communication services. In
this approach, the nodes in an overlay network provide a “blank computational canvas”
on which services can be instantiated on demand, and later reconfigured in response to
changing conditions. When a new service is needed, the infrastructure finds a suitable
host, instantiates the service, and maintains it only as long as it is needed. We imple-
mented a prototype of Service Clouds and experimented it atop the PlanetLab Internet
testbed [5]. We conducted two case studies in which we used the Service Clouds pro-
totype to develop new autonomic communication services. The first was a TCP-Relay
service, in which a node is selected and configured dynamically to serve as a relay
for a data stream. Experiments demonstrate that our implementation, which is not opti-
mized, can in many cases produce significantly better performance than using a direct IP
connection. The second case study involved MCON, a service for constructing robust
connections for multimedia streaming. When a new connection is being established,
MCON exploits physical network topology information in order to dynamically find
and establish a high-quality secondary path, which is used as shadow connection to the
primary path. Details can be found in [4].

In this paper, we propose Mobile Service Clouds, an extension of this model that
supports autonomic communication at the wireless edge of the Internet, that is, those
nodes that are one, at most a few, wireless hops away from the wired infrastructure. Mo-
bile computing environments exhibit operating conditions that differ greatly from their
wired counterparts. In particular, applications must tolerate the highly dynamic chan-
nel conditions that arise as users move about an environment. Moreover, the computing
devices being used by different end users may vary in terms of display characteristics,
processor speed, memory size, and battery lifetimes. Given their synchronous and in-
teractive nature, real-time applications such as video conferencing are particularly sen-
sitive to these differences. The Mobile Service Clouds model supports dynamic compo-
sition and reconfiguration of a service path at the wireless edge. We have implemented
a prototype of this model and applied it to the problem of dynamically instantiating and
migrating proxy services for mobile hosts. We conducted a case study involving data
streaming across a combination of PlanetLab nodes, local proxies, and wireless hosts.
Results are presented demonstrating the effectiveness of the prototype in establishing
new proxies and migrating their functionality in response to node failures.

The remainder of this paper is organized as follows. Section 2 provides background
on Service Clouds and discusses related work. Section 3 introduces Mobile Service
Clouds model. Section 4 describes the architecture and implementation of Mobile Ser-
vice Clouds. Section 5 presents a case study and experimental results. Finally, Section
6 summarizes the paper and discusses future directions.



2 Background and Related Work

Figure 2 shows a conceptual view of Service Clouds. A service cloud can be viewed as
a collection of hosts whose resources are available to enhance communication services
(e.g., in terms of fault tolerance, quality of service, or security) transparently with re-
spect to the communication end points. To do so requires autonomic behavior, in which
individual nodes in the cloud use adaptive middleware and cross-layer collaboration to
support reconfiguration. An overlay network connecting these nodes serves as a vehi-
cle to support cross-platform cooperation. The nodes in the overlay network provide
the computing resources with which services can be instantiated as needed, and later
reconfigured in response to changing conditions. The Service Clouds infrastructure is
designed to be extensible: a suite of low-level services for local and remote interactions
can be used to construct higher-level autonomic services.
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Fig. 1. Conceptual view of the Service Clouds infrastructure.

The Service Clouds infrastructure incorporates results from three areas of research
in distributed systems. First, adaptive middleware and programming frameworks [2,
6–8] enable dynamic reconfiguration of software in response to changing conditions.
Research in this area has been extensive [2] and has provided a better understanding of
several key concepts relevant to autonomic computing, including reflection, separation
of concerns, component-based design, and transparent interception of communication
streams. Second, cross-layer cooperation mechanisms [9,10] enable coordinated adap-
tation of the system as a whole, and in ways not possible within a single layer. The Ser-
vice Clouds architecture supports cross-layer cooperation and incorporates low-level
network status information in the establishment and configuration of high-level com-
munication services. Third, overlay networks [3] provide an adaptable and responsive
chassis on which to implement communication services for many distributed applica-
tions [11–14].

Recently, several groups of researchers have investigated several ways to use over-
lay networks to support dynamic composition and configuration of communication and
streaming services (e.g., SpiderNet [15], CANS [16], GridKit [17], DSMI [18], and
iOverlay [19] ). Service Clouds complements to these research works by providing a



“toolkit” with which to develop and test new services that require dynamic instanti-
ation, composition, and reconfiguration. Service Clouds provides an extensive set of
components that can be used to compose complex communication services. Moreover,
the developer can introduce new or customized components by simply plugging them
into the Service Clouds infrastructure.

Our initial work on Service Clouds [4] focused on services in the wired network.
At the wireless edge, services are often deployed on proxy nodes, which operate on
behalf of mobile hosts. Extensive research has been conducted in the design of proxy
services to support data transcoding, handle frequent disconnections, and enhance the
quality of wireless connections through techniques such as forward error correction
(FEC) [20–22]. Rather than addressing operation of specific proxy services, in this work
we concentrate on the dynamic instantiation and reconfiguration of proxy services in
response to changing conditions.

3 Extending Service Clouds to the Wireless Edge

Figure 2 depicts an extension of the Service Clouds concept to support mobile com-
puting. In this model, mobile service clouds comprise collections of overlay hosts that
implement services close to the wireless edge, while deep service clouds perform ser-
vices using an Internet overlay network (such as the PlanetLab wired hosts used in our
earlier study). In a manner reminiscent of Domain Name Service, this federation of
clouds cooperate to meet the needs of client applications. Typically, a mobile service
cloud will comprise nodes on single intranet, for example, a collection of nodes on a
university campus or used by an Internet Service Provider (ISP) to enhance quality of
service at wireless hotspots. A mobile user may interact with different mobile service
clouds as he/she moves about the wireless edge, with services instantiated and recon-
figured dynamically to meet changing needs.

Figure 2 shows an example in which a mobile user is receiving a live or interactive
video stream on his mobile device. Service elements are instantiated at different loca-
tions along an overlay path according to application requirements and current condi-
tions. For example, if the user is connected via a relatively low bandwidth wireless link,
a video transcoder may be established close to the video source, to reduce the bit rate on
the video stream and avoid wasted bandwidth consumption along the wired segment of
the path. On the other hand, a proxy service that uses FEC and limited retransmissions
to mitigate wireless packet losses, may be established on a mobile service cloud node
at the wireless edge. The operation of proxy service depends on the type of data stream
to be transmitted across the wireless channel. Over the past few years, our group has
investigated proxy services for reliable multicasting [23], audio streaming [24, 25] and
video streaming [24, 26, 27].

As the user moves within an area serviced by a single mobile service cloud, or
among different service clouds, the proxy can be migrated so as to move along with
the user. We refer to such an instantiation as a transient proxy [27]. There are several
reasons to keep the proxy close (in terms of network latency) to the mobile user. First
is the quality of service of the data stream delivery. For example, EPR [26] is a for-
ward error correction method for video streaming in which the proxy encodes video
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Fig. 2. Example scenario involving Mobile Service Clouds.

frames using a block-erasure code, producing a set of parity packets. The proxy sends
a subset of the parity packets “pro-actively” with the stream. Additional parity packets
are sent in response to feedback from the mobile device, to handle temporary spikes
in loss rate. However, the effectiveness of these additional parity packets depends on
the round-trip delay between the mobile device and the proxy: if the delay is too long,
the parity packets arrive too late for real-time video playback. The Second reason for
the proxy to be close to the mobile host is resource consumption. For example, a proxy
that implements forward error correction increases the bandwidth consumption of the
data stream. When the mobile device connects to a different Internet access provider, if
the proxy is not relocated, then the additional traffic may traverse several network links
across Internet service providers. While the effect of a single data stream may be small,
the combined traffic pattern generated by a large number of mobile users may have
noticeable effect on performance. Third is the policy of the service provider. While an
ISP may be willing to use its computational resources to meet the needs of users con-
nected through its own access points, this may not apply to mobile hosts using access
points belonging to another provider. In the same way that the mobile device changes
its access point but remains connected, the proxy services on the connection may need
to move in order for the new connection to be comparable to the old one.

Mobile Service Clouds provides an infrastructure to support the deployment and
migration of proxy services for mobile clients. In the experiments described in Sec-
tion 5, we address another reason to migrate a proxy service, namely, fault tolerance. If
a proxy suddenly crashes or becomes disconnected, another node in the service cloud
should assume its duties with minimal disruption to the communication stream(s). Next,
we describe the architecture and implementation of our proof-of-concept prototype.



4 Architecture and Implementation

The Service Clouds infrastructure is intended primarily to facilitate rapid prototyping
and deployment of autonomic communication services. Overlay nodes provide pro-
cessing and communication resources on which transient services can be created as
needed to assist distributed applications. Figure 3 shows a high-level view of the Ser-
vice Clouds software organization and its relationship to Schmidt’s model of middle-
ware layers [28]. Most of the Service Clouds infrastructure can be considered as host-
infrastructure middleware, it provides a layer of abstraction on top of heterogeneous
platforms. The Application-Middleware eXchange (AMX) provides a high-level inter-
face for that purpose, and encapsulates the required logic to drive various overlay ser-
vices. The Kernel Middleware eXchange (KMX) layer provides services through its
interface to facilitate collaboration between middleware and the operating system. Dis-
tributed composite services are created by plugging in new algorithms and integrating
them with lower-level control and data services, which in turn depend on lower-level
overlay services.

Fig. 3. Relationship of Service Clouds to other system layers [4].

Figure 4 provides a more detailed view of the Service Clouds architecture, showing
those components introduced or used in this study (unshaded boxes), as well as those
used in our TCP-Relay and MCON studies (shaded boxes). The architecture comprises
four main groups of services, situated between the AMX and KMX layers. At the low-
est layer, Basic Overlay Services provide generic facilities for establishing an overlay
topology, exchanging status information and distributing control packets among over-
lay hosts. Control Services include both event processors and DCS-specific services.
An event processor handles specific control events and messages. For example, such a
service might receive certain types of inquiry packets and extract information useful to
multiple higher-level services. Data Services are used to process data streams as they
traverse a node; they include monitors, which carry out measurements on data streams,
and actuators, which modify data streams. At the highest layer, Distributed Composite
Services include overlay engines, which codify complex distributed algorithms, and Co-



ordination and Service Composition, which provides “glue” between overlay engines
and lower-level services.

Data PacketsManagement Commands

Basic Overlay Services
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Fig. 4. Instantiation of the general Service Clouds model.

For the prototype implementation of Mobile Service Clouds, we introduced new
components but also reused several others. First, the Service Path Computation overlay
engine manages the interaction between a mobile host and a service cloud federation.
Tasks include selection of a node in a deep service cloud, called the primary proxy,
which coordinates composition and maintenance of the service path between two end
nodes. The Service Path Computation also finds a suitable node in a mobile service
cloud on which to deploy the transient proxy services (FEC in our study). We also re-
quired lower-level services to use in identifying potential proxies. The RTT Meter com-
ponent uses “ping” to measure round-trip time (RTT) to an arbitrary node, and the Path
RTT component measures end-to-end RTT between two nodes, whose communication
is required to pass through an intermediate node.

The Service Gateway component implements a simple protocol to accept and re-
ply to service requests. Upon receiving a request, it invokes the overlay engine to find
a suitable primary proxy. The Service Composer component implements mechanisms
for composing a service path. It uses the Relay Manager to instantiate and configure a
UDP relay on the primary proxy and the transient proxy. The UDP relay on the tran-
sient proxy enables the infrastructure to intercept the stream and augment it with FEC
encoding. Accordingly, as soon as the FEC proxy service is instantiated, the Service
Monitor component on the transient proxy begins sending heartbeat beacons through a



TCP channel toward the service monitor on the primary proxy. The Recomposer com-
ponent on the primary proxy tracks activity of the service monitors. Upon detecting a
failure, it starts a self-healing operation that recomposes the service path and restores
communication.

The prototype also has a main program that deploys the infrastructure primitives.
It reads configuration files containing the IP addresses of overlay nodes and the over-
lay topology, instantiates a basic set of (composite) components, and configures the
components according to the default or specified parameter values. Examples of these
parameters include the interval between probes for monitoring purposes, service port
numbers, and an assortment of debugging options. The prototype software package
also includes a collection of scripts to configure nodes, update code at nodes, launch
the infrastructure, run test scenarios, and collect results. To deploy management com-
mands that control test execution on several nodes, we have used Java Message Service
(JMS). Example management commands include those for gathering operation statis-
tics on each node, changing framework parameters at run time, and shutting down the
distributed infrastructure.

We emphasize that the purpose of this prototype is merely to identify different as-
pects of the problem and conduct a requirements analysis. Therefore, we implemented
only a small set of features. Building a number of such prototype systems will help
reveal the salient issues for designing a more complete Service Clouds framework.

5 Case Study

We conducted a case study in which we assessed the ability of MSC (Mobile Service
Clouds) to establish transient proxies for mobile devices, monitor the service path, and
support dynamic reconfiguration (with minimal interruption) when the proxy node fails.

Basic Operation. In this scenario a mobile node on a wireless link wants to receive a
multimedia stream (e.g., in an interactive video conference or in a live video broadcast).
In this case, the MSC infrastructure needs to fulfill the following requirements. First, the
quality of the received stream must remain acceptable as the wireless link experiences
packet loss. Second, the video stream must be transcoded to satisfy resource restrictions
such as wireless bandwidth and processing power at the mobile device. Third, stream
delivery should not be interrupted as conditions on the service path change (e.g., when
user movement causes a wireless network domain change, or when a proxy or other
service node fails).

Figure 5 shows the configuration used in the experiments, with 4 PlanetLab nodes
in a deep service cloud and two workstations on our department intranet in a mobile
service cloud. These systems are all Unix/Linux-based machines. We have used a Plan-
etLab node to run a UDP streaming program and a Windows XP laptop to receive the
stream over a wireless link. The middleware software on the mobile client connects
to a Service Gateway node (N1) and requests the desired service. Gateway nodes are
the entry point to the Service Clouds: they accept requests for connection to the Service
Clouds and designate a service coordinator based on the requested service. In this work,
we assume that gateway nodes are known in advance, as with local DNS servers. In fu-
ture implementations, we plan to integrate other methods, such as directory services,



into the infrastructure to enable automatic discovery of gateway nodes. Upon receiving
the request, the gateway begins a process to find a node to act as the primary proxy (N4),
and when completed, informs the mobile client of the selection. The primary proxy re-
ceives details of the desired service, sets up a service path, and coordinates monitoring
and automatic reconfiguration of the service path during the communication.
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Fig. 5. The experimental testbed and example scenario.

A gateway might consider several factors in deciding on a primary proxy for a re-
quested service: security policies of the client and service cloud components, round-trip
time between the the node and the communication endpoints, and computational load
at the node. In this example, N4 is chosen such that the path round-trip time between
the two endpoints is minimal.

Next, the MSC infrastructure instantiates FEC functionality at the transient proxy
(W1) in a mobile service cloud, and dynamically re-instantiates the service on another
node when the W1 fails. “Failure” can be defined in different ways: high computational
load; high RTT to the client due to change in access point used by client; software
failure of the service, or hardware failure. To study and test a basic self-repair in Service
Clouds, we simply inject a failure by terminating the service process on W1.

In the example depicted in Figure 5, the Service Clouds client middleware, residing
on the laptop, sends a service request to the gateway node N1, which chooses N4 as the
primary proxy and informs the client. Next, the client software sends a primary proxy
service request to N4, which constructs a service path comprising a UDP relay on itself
and a UDP relay augmented with an FEC encoder on W1. As soon as W1 starts the
service, it begins sending heartbeat beacons over a TCP connection to N4 that indicate



the service node is active. N4 runs a monitoring thread that listens for beacons from W1
(sent every 5msec in our experiment). If it detects a failure, it reconfigures the overlay
service path to use another node in the mobile service cloud.

Experimental Results. To test dynamic reconfiguration of a service path, the pro-
gram running on W1 is terminated. We have evaluated two different strategies to realize
self-healing within the framework at the time of failure detection: (1) on demand backup
where another node, W2, is configured dynamically as soon as failure is detected; (2)
ready backup where W2 is configured as a backup at the same time of W1 configura-
tion, so the system only needs to configure the relay on N4 to forward the stream to W2
instead of W1.

We have measured percentage of packets received at the wireless node. Figure 6
plots the average of 12 runs for 50 millisecond epochs, indicating the situation when W1
fails and system recovers automatically. As the plot shows, the system can completely
recover from the failure at W1 in less than 0.4 seconds. The “on demand backup” is
slightly slower, since system has to instantiate and configure the proxy service. In the
ready backup case, the service is instantiated at the time of service composition, yield-
ing faster response.
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In future work, we will consider additional failure detection and recovery strategies.
For example, adding a limited capability to the client middleware to participate in failure
detection may enable the client to trigger the reconfiguration faster, since the mobile
node is closer (in terms of round-trip time) to the wireless edge.

6 Conclusions and Future Work

In this paper, we addressed the issue of dynamic services at the wireless edge of the
Internet. We introduced Mobile Service Clouds, an infrastructure for rapid prototyping
and deployment of such services. We described a proof-of-concept implementation of
Mobile Service Clouds which we used to support proxy instantiation and fault tolerance
on a testbed comprising PlanetLab nodes and hosts on a university intranet. Preliminary



results demonstrate the usefulness of the model and the effectiveness of the prototype.
Our ongoing investigations address dynamic insertion and reconfiguration of transcod-
ing filters along a stream path, dynamic migration of proxy services to enhance quality-
of-service, and integration of Mobile Service Clouds and data streaming protocols for
sensor networks.

Further Information. Related publications on the RAPIDware project, as well as a
download of the Service Clouds prototype, can be found at the following website:
http://www.cse.msu.edu/rapidware.
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