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Abstract—Grouping problems are a class of combinatorial
optimization problems in which the task is to search for the best
partition of a set of objects into a collection of mutually disjoint
subsets while satisfying a given set of constraints. Typical exam-
ples include data clustering, graph coloring and exam timetabling
problems. Selection hyper-heuristics based on iterative search
frameworks are high level general problem solving methodologies
which operate on a set of low level heuristics to improve an
initially generated solution via heuristic selection and move
acceptance. In this paper, we describe a selection hyper-heuristic
framework based on an efficient representation referred to as
linear linkage encoding for multi-objective grouping problems.
This framework provides the implementation of a fixed set of
low level heuristics that can work on all grouping problems
where a trade-off between a given objective and number of
groups is sought. The empirical results on graph coloring problem
indicates that the proposed grouping hyper-heuristic framework
can indeed provide high quality solutions.

I. INTRODUCTION

Grouping problems comprise a set of very well known
combinatorial optimisation problems, such as data clustering,
timetabling, and graph colouring [1]. Grouping problems re-
quire the common task of partitioning a set of objects U into a
collection of mutually disjoint subsets ui of U such that each
object is in exactly one subset (Equation 1).⋃

ui = U ∀i

ui

⋂
uj = ∅ ∀i, ∀j where i 6= j

ui 6= ∅ ∀i

(1)

Such grouping (partitioning) problem arises in many real
world and industrial problems such as packing and timetabling,
most of which are known to be NP-hard [1]. Using an exact
algorithm to solve a grouping problem might not be attainable
in such cases, requiring alternative solution methods such as
heuristics. Most of the grouping problems have been tackled
individually; and many problem specific solution method-
ologies for a given problem are available in the literature.
However, the vast majority of these methodologies are not
reusable, since they have been specifically tailored to fit
particular problem domains.

Different grouping problems have different constraints and
so they introduce different objectives. Consequently, not all
groupings are feasible for all grouping problems. For instance,
in graph colouring problem [2], assuming that each color

represnts a group, no two connected nodes are allowed to
be in the same group. Mostly, the overall fitness f of a
grouping problem solution Ug = {u1, ..., ui, ..., uk} can be
measured using an evaluation function which adds up the
partial contribution from each group as in Equation 2.

f(Ug) =

k∑
i=1

f(ui) (2)

An important common feature of the grouping problems
as defined is that they require the number of groups k to
be minimized as well as the combined fitness of the groups
f(Ug). Consequently, grouping problems are considered to be
multi-objective optimisation problems [3]; or more precisely,
bi-objective optimisation problems. In the graph colouring
problem, the minimum number of colours causing the least
conflicts is searched. These objectives are conflicting objec-
tives; i.e optimising one of them will cause the other to
deteriorate. Solving a grouping search problem will, hopefully,
yield a set of optimal solutions at the end of the search process.
Each one of these solutions is better than the others in terms
of one of the objectives, and worse in terms of the other. This
set of optimal solutions is known as the pareto-optimal front.
Traditionally, the pareto-optimal front is approximated by a
set of what is called non-dominated solutions. A solution U1

dominates another solution U2 if

• U1 is no worse than U2 in any of the objectives, and
• U1 is better than U2 in at least one objective.

Hyper-heuristics are methodologies that select or generate
heuristics during the search process for solving computation-
ally hard problems [4], [5]. Hyper-heuristics are designed to
solve as many optimization problems as possible, by exploring
search spaces of heuristics rather than problem solutions.
In order to facilitate the development of hyper-heuristics, a
software benchmark framework known as HyFlex has recently
been developed to support the design of cross-domain heuristic
search methods [6]. It provides a common interface to the
algorithmic components for six selected hard combinatorial
problems. Researchers only need to provide the high-level
strategy that will manage and configure the provided algorith-
mic components. HyFlex has been used to support The First
Cross-Domain Heuristic Search Challenge (CHeSC 2011) [7],



which thenceforth became a benchmarking tool for selection
hyper-heuristics across different problem domains.

Typically, different sets of low level heuristics are provided
to the hyper-heuristics with different problem domains. How-
ever, we are aiming to achieve a further level of generality in
this study, by designing a selection hyperheuristic framework
with a fixed set of low level heuristics that is designed to work
on an efficient representation, referred to as Linear Linkage
Encoding (LLE), in order to allow the same set of low level
heuristics to be used with all grouping problems. Our aim is
not to beat the state of the art techniques which are designed
and tuned for a particular problem domain or even a particular
instance in a given domain. Our aim is to provide a single
selection hyper-heuristic framework for all grouping problems.
We tested our framework on instances from the graph coloring
problem domain, in this study.

II. BACKGROUND

A. Selection Hyper-Heuristics

A selection hyper-heuristic explores a search space of
heuristics by choosing a heuristic from a set of problem
specific heuristics in order to transform the problem at each
decision point. [5] identified the importance of two successive
processes that a selection hyper-heuristic employs:

1) Heuristic selection: a low level heuristic is selected from
the low level heuristics set and applied to the current
solution, and

2) Move acceptance: a decision is made about whether to
accept the resulting solution.

The heuristic selection step is carried out using a variety of
learning and non-learning approaches. Simple random (SR)
chooses a random low level heuristic at each step, while
random permutation (RP) applies the low level heuristics in a
specific order that is randomly determined at the beginning of
the search [8], [9], [10]. Some hyperheuristics apply learning
approaches that use some online feedback from the search
process, such as the reinforcement learning (RL) [11] which
assigns a score to each low level heuristic, and then rewards
the low level heuristics which improve the current solution
and punishes those which do not, by means of increasing and
decreasing their scores or probabilities of being selected in
the future. At each decision point, the low level heuristic with
the highest score is selected. Other hyperheuristics use more
sophisticated selection approaches, including meta-heuristics
such as GAs, tabu search and great deluge. Also, various
methods are used to perform the move acceptance step.
Some of these methods are fairly simple such as the (IEQ)
method which accepts improving or equal moves [12], [13].
Advanced methods, such as great deluge (GD) and simulated
annealing (SA), accept all the improving moves and use
some probability-based criteria to decide whether to accept
the worsening ones. A selection hyperheuristic is created by
combining any of the heuristic selection methods with any of
the move acceptance methods.

B. Hyper-heuristics for Multi-objective Optimization Prob-
lems

Hyperheuristics for multi-objective optimization problems
(HHMO) is a new area of research in Evolutionary Computa-
tion and Operational Research [4], [5]. There are a few studies
on multi-objective hyper-heuristics in the literature. A multi-
objective hyper-heuristic based on tabu search was proposed in
[9]. The key feature of this study is the use of tabu search as a
high-level search strategy to choose a suitable heuristic at each
iteration for solving space allocation and timetabling problems.
Another approach proposed in [14] comprises of two phases.
The first phase aims to produce an efficient Pareto front (this
may be of low quality based on the density), while the second
phase aims to deal with a given problem in a flexible way to
drive a subset of the population to the desired Pareto front.
This approach was evaluated on the multi-objective traveling
salesman problems using eleven low level heuristics.

A comparison to other multi-objective approaches from
the literature reveals that the proposed approach generates
good quality solutions, however, future work is still needed to
improve the methodology. An online learning Markov chain
based selection hyper-heuristic was described in [15]. The
Markov chains guide the selection of low level heuristics and
online reinforcement learning is used to adapt the transition
weights between heuristics. This approach was applied over
some benchmark instances, and compared to a (1+1) Evolu-
tion Strategy meta-heuristic, a random hyper-heuristic and a
multi-objective hyper-heuristic [9]. The comparison shows the
efficacy of the proposed approach in terms of Pareto converge
and learning ability to select good heuristics combinations.
[16] investigated hyper-heuristics and their hybridization with
multi-objective evolutionary algorithms. A choice function-all
moves hyper-heuristic was proposed in this study. The choice
function acts as a high level search strategy. Three multi-
objective evolutionary algorithms act as low level heuristics.
The experimental results over a set of benchmark problem in-
stances show that this approach can benefit from the strengths
of the low level heuristics and avoid their weaknesses. In
the majority of cases, the choice function-all moves hyper-
heuristic outperforms the other multi-objective evolutionary
algorithms when used in isolation. Moreover, the choice func-
tion hyper-heuristic has the capability to intelligently adapt to
calling combinations of low-level heuristics. In this study, we
keep the same heuristic selection method along with the low
level heuristics while investigate the performance of the same
framework when great deluge is used as a move acceptance
criterion.

C. Grouping Representation

In this study, we used a powerfull grouping representation
referred to as linear linkage encoding (LLE) [17], which is a
restricted form of the more general linkage encoding scheme.
Each gene in the LLE representation represents one object,
and stores an integer value (index) which represents a link
between that object and another object belonging to the same
group. Starting from an object in a given group, the links are



used to reach to all of the other objects within that group. The
membership of a given object can be identified using either
the starting or the ending node of the cluster.

LLE representation can be implemented using a constant
length array for a given grouping problem instance. Formally,
an LLE solution should satisfy the following two conditions
[17]:

1) The integer value stored in each gene is greater than or
equal to its index but less than or equal to the number
of the objects.

2) Other than the index of an ending node, no two genes
can have the same value.

D. Graph Coloring Problem

The task in the graph coloring problem is to assign a color to
each vertex of an undirected graph such that no two connected
vertices have the same color. The objective is to minimise
the number of colors used, where each vertex is assigned to
exactly one color. The minimum number of colors that can
be used to solve a graph coloring problem is known as the
chromatic number [18]. Given a graph G = (V,E) with vertex
set V and edge set E, and given an integer k, a k-coloring of
G is a function c : V → 1, ..., k. The value of c(x) of a vertex
is called the color of x. The vertices with color r(1 ≤ r ≤ k)
define a color class, denoted Vr. If two connected vertices x
and y have the same color r, x and y are conflicting vertices,
and the edge Ex, y is called a conflicting edge. If there are no
conflicting edges, then the color classes are all independent
sets and the k-coloring is valid. The graph coloring problem
is to determine the minimum integer k (the chromatic number
of G − x(G)) such that there exists a legal k-coloring of G
[19]. There are many studies on graph coloring. Recursive
largest fit is a well-known greedy heuristic introduced by
[20]. [21] proposed a coding as an ordering of vertices which
could be used in a genetic algorithm. [22] presented the
first tabu search implementation which outperforms another
local search method, simulated annealing on random dense
graph instances. [23] presented three simulated annealing
implementations based on three neighboring approaches. [19]
proposed a variable neighborhood search algorithm for graph
coloring problem.

III. A GROUPING SELECTION HYPER-HEURISTIC
FRAMEWORK

A. Framework Pareto Sets

For each instance, a range of expected number of groups
kmin − kmax is selected around the known best value of k.
Then, throughout the search, a current pareto front maintains
a number of solutions specified by the set size (m) for each
value of k in the selected range. The initial pareto front is built
by randomly creating a set of m solutions for each value of k
in the range. Firstly, m random solutions are created for k =
kmin and the fitness values for these solutions are calculated
and maintained in an ascending order. Then, m solutions are
created for the next values of k ≤ kmax, one by one. At each
point, if the fitness of the created solution is worse than the

best fitness for the previous value of k, then this solution is
discarded and a new solution is created instead of it. This is
necessary to maintain the definition of the pareto front for
the initial solutions; i.e. all the solutions in a given set at
a particular k are better than the best solution in the set at
the previous value of k. When the initialization step is over,
the best solution at each k in the range is maintained in the
best pareto front. The solutions in the current pareto front are
then iteratively improved using a selection hyperheuristic that
perturbs the one of the current solutions generating a new one
using a chosen low level heuristic and then decides whether to
accept or reject the new solution. The accpted solution replaces
the worst solution in the corresponding set in the current pareto
front.

B. Low Level Heuristics

We designed one crossover and five mutation heuristics as
part of the framework.

• Merge and Merge tournament heuristics select 2 groups to
be merged. These heuristics reduce the number of groups
in the selected solution.

• Divide and Divide tournament heuristics select 2 groups
to be divided, and consequently, increase the number of
groups in the selected solution.

• Swap heurisitc exchanges 2 items between 2 randomly
selected groups in the selected solution, and does not
affect the number of groups in the solution.

The crossover operator works in the following manner:
• It selects a random group from the first parent and

transfers it to the offspring. Then, it selects a group from
the other parent and transfers it.

• The items that have already been transferred to the
offspring are deleted from the group before it is copied
into the offspring.

• If all the items in a specific group have already been
transferred, then the whole group is discarded.

• This process continues until all the items are transferred
to the offspring.

• At that point, if the number of the groups have exceeded
kmax, then a random number of merge operations are
performed until the number of groups in the resulting
solution is in the range of kmin− kmax.

C. Delta Evaluation

The fitness evaluation of new solutions was found to be
a very time consuming part of the hyperheuristic framework.
Since the time is used as the stopping critertia for the ex-
periments, we had to find a way to work around the fitness
evaluation problem. Typically, this evaluation is carried out
using the whole solution; i.e. calculating the fitness of every
single group in the solution. Alternatively, the delta evaluation
requires the computation of partial fitness contributions of the
groups that are modified by a given low level heuristic, before
and after that modification. For instance, if swap heuristic is
applied and u1 and u2 are the groups that swap nodes ni and



nj , the overall fitness f of the resulting solution is calculated
using equation 3 below:

f(Unew) = f(Uold)−(f(u1)+f(u2))+(f(u
′

1)+f(u
′

2)) (3)

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We tested our grouping hyper-heuristic framework using
randomly selected instances from the DIMACS challenge suite
[24]. The characteristics of the selected instances are presented
in Table I. The framework is designed to work with any
combination of selection and acceptance methods. In this
study, we implemented a hyper-heuristic that is composed of
Simple Random (SR) as a selection method, and Improving
or Equal (IEQ) as an acceptance method. The experiments
were carried out on a 3.6GHz Intel Core i7-3820 Windows 7
machines with 16GB memory. Each hyper-heuristic was run
31 times with each dataset; and each run was terminated after
600 seconds.

TABLE I
THE CHARACTERISTICS OF THE PROBLEM INSTANCES FROM THE

DIMACS BENCHMARK SUITE. |V | IS THE NUMBER OF VERTICES, |E| IS
THE NUMBER OF EDGES, % IS THE EDGE DENSITY AND χ(G) IS THE

CHROMATIC NUMBER.

Instance |V | |E| % χ(G)

zeroin.1.col 211 4100 0.19 49
zeroin.2.col 211 3541 0.16 30
zeroin.3.col 206 3540 0.17 30
flat300 20 300 21375 0.48 20
flat300 26 300 21633 0.48 26
flat300 28 300 21695 0.48 28
le450 15a 450 8168 0.08 15
le450 15b 450 8169 0.08 15
le450 15c 450 16680 0.17 15
le450 15d 450 16750 0.17 15
le450 25a 450 8260 0.08 25
le450 25b 450 8263 0.08 25
le450 25c 450 16680 0.17 25
le450 25d 450 16750 0.17 25

B. Results

As shown in Table II, the best solutions obtained by
our framework, denoted as HH-LLE, are found to be supe-
rior to solutions obtained in previous studies. Greedy Parti-
tion Crossover Lowest Index (GPX-LI) and Greedy Partition
Crossover Cardinality Based (GPX-CB) are graph coloring
algorithms presented in [25]. (LLE-e) which is a modified ver-
sion of the LLE representation referred to as Linear Linkage
Encoding With Ending Node Links (LLE-e) is presented in
[26] along side a classical Linear Linkage Encoding (LLE),
and both of these are tested using genetic operators. The
fields marked “ – ” in the table means that the solution
for that problem instance with that specific method is not
reported. From the table, it is clear that the grouping hyper-
heuristic framework we proposed in this study succeeded
to find the expected best quality solutions in all problem
instances. The best results obtained are competitive with the

previous studies, and outperform the old studies in some of
the problem instances. We also compared our framework to a
similar framework that uses only one point for each value of k
in the current pareto front and only mutation operators as low
level heuristics [27]. We found that our proposed framework
pushes the initial pareto front much further towards the zero
than the previous framework. Yet, the same best-of-runs results
are obtained. Figure 1 shows a comparison between the initial
and the final pareto fronts obtained by SRAN-IEQ for the
zeroin.i.3.col data set. Figure 2 shows a comparison between
the ratios of calls, acceptance and acceptance for best made to
each low level heuristic by SRAN-IEQ hyper-heuristic on the
same data set. More details of the multi-objective framework
hyper-heuristic approach as well as more results on some other
grouping problem domains will be provided at the conference.

TABLE II
GRAPH COLORING BEST COLORINGS COMPARISON

Instance HH-LLE GPX-LI GPX-CB LLE-e LLE

zeroin.1.col 49 49 49 – –
zeroin.2.col 30 31 31 – –
zeroin.3.col 30 30 31 – –
flat300 20 20 27 32 20 33
flat300 26 26 34 34 – –
flat300 28 28 34 34 – –
le450 15a 15 16 16 – –
le450 15b 15 16 16 17 17
le450 15c 15 23 23 – –
le450 15d 15 23 23 – –
le450 25a 25 25 25 – –
le450 25b 25 25 25 – –
le450 25c 25 28 28 29 29
le450 25d 25 28 28 – –

Wins/Draws 9/5 0/4 0/3 0/1 0/0s

(a) (b)

Swap

Divide

DivideTournament

Merge

MergeTournament

GroupCrossover

Fig. 2. The ratios of low level heuristics (a) selection (total of 3,544,363
decisions) and (b) acceptance (total of 762,047 decisions) by SRAN-IEQ on
zeroin.i.3.col data set

V. CONCLUSION

In this study, we presented a general and effective Pareto-
set-based grouping selection hyperheuristic framework that is
provided with a fixed set of low level heuristics for solving
any given grouping problem as described based on an efficient
representation scheme; namely linear linkage encoding.

The proposed framework was tested using instances from
the DIMACS challenge suite. When the experimental results
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Fig. 1. Comparison between an initial and a final pareto fronts obtained by the SRAN-IEQ hyper-heuristic on zeroin.i.3.col data set.

are compared to the previously proposed approaches, they are
found to be very competitive and promising. The framework
succeeded to find the expected best solutions for the bench-
mark problem instances. In some cases, the framework outper-
form some of the problem-specific approaches. The MGIHH
is found to be slightly better than the SRAN hyperheuristics.
This is consistent with the previous findings ([28], [29], [30]).
Learning during the heuristic selection process definitely helps,
but move acceptance plays a major role in the performance of
hyperheuristics.

In the future, a better approach to select the kmin − kmax

range can be researched. Also, more low-level heuristics can
be tested along with new hyperheuristic methodologies.
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