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Partitioned Global Address Space Languages

Why PGAS Languages today?
need for shared data outstrips node-level memory

access data with shared-memory abstractions within and across nodes

Example PGAS Languages - Related efforts:
Unified Parallel C (C) - X10 (IBM)
http://upc.wikinet.org - http://x10-lang.org
Titanium (Java) - Chapel (Cray)
http://titanium.cs.berkeley.edu - http://chapel.cray.com
Coarray Fortran  (Fortran) + Fortress (Oracle)

http://caf.rice.edu - http://projectfortress.java.net
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MPI-interoperability

Hard to adopt new programming models in existing applications incrementally
Interoperable problems in new programming models (examples later)
Error-prone
Duplicate runtime resources
Benefits of interoperable programming models
Leverage high-level libraries that are built with MPI

Hybrid programming models combine the strength of different models



Using multiple runtimes is error-prone

PO P1

PROGRAM MAY DEADLOCK

USE MPI

CALL MPI_ INIT(IERR)

CALL MPI_ COMM RANK(MPI_ COMM WORLD, MY RANK, IERR)
A(:)
CALL MPI BARRIER(MPI_ COMM WORLD, IERR)

IF (MYRANK .EQ. 0) A(:)[1]

CALL MPI FINALIZE (IERR)

END PROGRAM
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Mapped Memory Size (M

Using multiple runtimes duplicates resources

200
= mls_gﬁltf”'y Memory usage is measured right
Duplicate Runtimes after initialization
150 154
133 Ua - Memory usage per process
increases as the number of
processes increases
- At larger scale, excessive
memory use of duplicate
runtimes will hurt scalability

16 64 256

Number of processes



How do we solve the problem?

Build PGAS runtime systems with MPI

Previously MPI was considered insufficient for this goal
MPI-2 RMA is portable but too strict
MPI-3 Remote Memory Access (RMA)

Separate model Unified model

MPI_Put




Build PGAS runtimes with MPI

- Does it provide full interoperability?

-+ Does it degrade performance?



Coarray Fortran (CAF)

What is Coarray Fortran?

added to the Fortran 2008 Standard

a PGAS Language, SPMD Model
What is a coarray?

extends array syntax with codimensions, e.g. REAL :: X(10,10)[*]
How to access a coarray?

Reference with [] mean data on specified image, e.g. X(1,:) = X(1,:)[p]

May be allocatable, structure components, dummy or actual arguments



Coarray Fortran 2.0 (CAF 2.0)

“A rich extension to Coarray Fortran developed at Rice University”

Teams (like MPlI communicator) and collectives
Asynchronous operations

asynchronous copy, asynchronous collectives, and function shipping
Synchronization constructs

events, cofence, and finish

More details on CAF 2.0: http://caf.rice.edu and http://chaoran.me
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Coarray and MPI-3 RMA

“standard CAF features”

Initialization

MPI_WIN_ALLOCATE, then MPI_WIN_LOCK_ALL
Remote Read & Write

MPI_RPUT & MPI_RGET
Synchronization

MPI_WIN_SYNC & MPI_WIN_FLUSH (_ALL)

Blue routine names are MPI-3 additions
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Active Messages

“High performance low-level asynchronous remote procedure calls”

Many CAF 2.0 features are built on top of AM
Build AM on top of MPI’s send and receive routines
hurt performance - cannot overlap communication with AM handlers

hurt interoperability - could cause deadlock

spawn

wait

MPI_Reduce

11
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CAF 2.0 Asynchronous Operations

- copy_async(dest, src, dest_ev, src_ev, pred_ev)
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CAF 2.0 Asynchronous Operations

copy_async(dest, src, dest_ev, src_ev, pred_ev)

copy_async

dest_ev
I

Map copy_async to MPI_RPUT (or MPI_RGET)
when dest_ev should be notified? MPI_WIN_FLUSH is not useful
Map copy_async to Active Message

MPI| does not have AM support
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Evaluation

2 machines
Cluster (InfiniBand) and Cray XC30
3 benchmarks and 1 mini-app
RandomAccess, FFT, HPL, and CGPOP
2 implementations

CAF-MPI and CAF-GASNet

Nodes Cores/Node Memory/Node

Interconnect

MPI Version

Cluster (Fusion) 320 2x4 32GB

Cray XC30 (Edison) 5,200 2x12 64GB

InfiniBand QDR

Cray Aries

MVAPICH2-1.9

CRAY MPI-6.0.2
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“Measures worst case system throughput”
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Performance Analysis of RandomAccess
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The time spent in communication _ 600
are about the same g

§ 400
event_notify is slower in CAF-MPI Py
because of MPI_ WIN FLUSH ALL & o
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Time breakdown of RandomAccess

B event_notify
event wait

I coarray_write
B Computation
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Performance Analysis of FFT

Time breakdown of FFT

1 Computation
B All-to-all

- The CAF 2.0 version of FFT solely 2
uses ALLtoALL for communication

—
oo

—
N

- CAF-MPI performs better because
of fast all-to-all implementation

Time (seconds)

CAF-GASNet CAF-MPI
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High Performance Linpack

“computation intensive”
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CGPOP

“A CAF+MPI hybrid application”

The conjugate gradient solver from LANL Parallel Ocean Program 2.0
performance bottleneck of the full POP 2.0 application

Performs linear algebra computation interspersed with two comm. steps:
GlobalSum: a 3-word vector sum (MPI_Reduce)

UpdateHalo: boundary exchange between neighboring subdomains (CAF)

Andrew | Stone, John M. Dennis, Michelle Mills Strout, “Evaluating Coarray Fortran with the CGPOP Miniapp"
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CGPOP

CGPOP on Edison (Cray XC30) CGPOP on Fusion (InfiniBand)
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Conclusions

use MPI to build PGAS runtimes, good or bad?

The benefits of building runtime systems on top of MPI
Interoperability with numerous MPI based libraries (Standard CAF)
Deliver performance comparable to runtimes built with GASNet
MP/I’s rich interface is time-saving

What current MPI RMA lacks
MPI_WIN_RFLUSH - overlap synchronization with computation

Active Messages - full interoperability
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