
Experiences Developing a Virtual Shared

Memory System Using High-Level Object
Paradigms

J. Cordsen, J. Nolte, and W. Schröder-Preikschat

1 GMD FIRST
Rudower Chaussee 5, D-12489 Berlin, Germany

{jc,jon}@first.gmd.de
2 University of Magdeburg, Universitätsplatz 2

D-39106 Magdeburg, Germany
wosch@cs.uni-magdeburg.de

Abstract. Shared-memory programming is still a common and popular
way of utilizing parallel machines for high-performance computing. Vir-
tual shared memory (VSM) systems promote a gentle migration path al-
lowing the execution of shared-memory programs on distributed-memory
machines. Such kind of systems are both complex and extremely sensi-
tive to performance issues. Therefore many VSM systems still handle
distribution aspects manually by means of low-level message-passing op-
erations to gain maximum performance. In contrast, in the Peace op-
erating system family almost all distribution aspects have been covered
conveniently and yet efficiently by so-called dual objects. In this paper
the VSM subsystem, called Vote, of Peace is presented as a case study
for complex systems services that claim for high-level but lightweight
object models with an efficient implementation.

1 Introduction

Shared-memory programming is still a common and popular way of utilizing
parallel machines for high-performance computing. This programming style is
based on a well-known methodology and supported by high-quality program-
ming environments (e.g. compilers and debuggers) and matured libraries. It will
be still dominant in the near future due to the lack of other accepted and pioneer-
ing approaches to parallel programming. Consequently, during the last decade
large efforts were spent applying the shared-memory paradigm to distributed-
memory parallel machines. This led to the development of various (hardware-
and/or software-supported) virtual shared memory (VSM) systems. Examples
are IVY[15], Midway[2], Munin[4], or DASH[13].

By means of architectural transparency, VSM systems promote a gentle mi-
gration path allowing the execution of shared-memory programs on distributed-
memory machines. The particular motivation behind Vote was to support a
symbiosis of architectural transparency and efficiency.

E. Jul (Ed.): ECOOP’98, LNCS 1445, pp. 285–306, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

286 J. Cordsen et al.

As an extension to the Peace parallel operating system[22], Vote bene-
fits from the advantages offered by problem-oriented kernels being tailored to
particular application demands. Following the pattern of Peace, the design
and implementation of Vote was strongly influenced by the program family
concept[21]. Rather than providing a single consistency protocol which manages
the replicated VSM data for all kinds of shared-memory programs, users are
offered problem-oriented solutions by a family of consistency protocols[7].

Both, Vote and Peace exhibit a lightweight system structure, resulting in
a high-performance software backplane for parallel computing. The lightweight
structure is not only a result of having applied the family concept in the system
software design process. It is also the result of the exploitation of an optimized
high-level object paradigm in the implementation process. This object paradigm
is found by dual objects supporting object-oriented (system) programming in a
distributed environment[20].

This paper describes the dual-object-based implementation of the Vote sys-
tem and gives a performance analysis of both the Vote system as well as the
dual object implementation. It is organized as follows: Section 2 briefly discusses
the design principles and basic architecture of Peace. Section 3 introduces the
notion of dual objects and describes language-level support as well as implemen-
tation; Section 4 presents a brief insight into the Vote system describing its
building blocks and their interactions; Section 5 makes a performance analysis;
Section 6 concludes the paper.

2 PEACE

Peace is a framework for (distributed) parallel applications dedicated to run
on distributed memory (massively) parallel architectures. Although specifically
designed to support high performance parallel computing, this framework is also
suitable for constructing (microkernel-based) distributed operating systems with
real-time capabilities as well as object-oriented parallel computing platforms for
workstation networks.

2.1 Design Principles

Parallel operating systems must exhibit a lightweight or even featherweight sys-
tem structure that is adaptable to the individual needs of both an application
program and the hardware architecture. The approach followed by Peace is
to understand a parallel operating system as a program family[21] and to use
object orientation[24] as the fundamental implementation discipline. The former
concept (program families) helps prevent the design of a monolithic system or-
ganization, while object orientation enables the efficient implementation of a
highly modular system structure.

The program family concept distinguishes between a minimal subset of sys-
tem functions and minimal system extensions. It does not dictate any particular
implementation technique. The minimal subset of system functions defines a

Experiences Developing a Virtual Shared Memory System 287

platform of fundamental abstractions serving to implement minimal system ex-
tensions. These extensions, then, are made on the basis of an incremental system
design[10], with each new level being a new minimal basis (i.e., abstract machine)
for additional higher-level system extensions. A true application-oriented system
evolves, since extensions are only made on demand, namely, when needed to im-
plement a specific system feature that supports a specific application. Design
decisions are postponed as long as possible. In this process, system construc-
tion takes place bottom-up but is controlled in a top-down (application-driven)
fashion.

In its last consequence, applications become the final system extensions. The
traditional boundary between application and operating system disappears. The
operating system extends into the application, and vice versa. Inheritance is
the appropriate technique to either introduce new system extensions or replace
existing system extensions by alternate implementations. Either case, the system
extensions are customized with respect to specific user demands and will be
present at runtime only in coexistence with the corresponding application. Thus,
applications are not forced to pay for (operating system) resources that will never
be used.

2.2 Functional Decomposition

The global architecture assumes that a member of the Peace parallel operating
system family is constructed from three major building blocks. These build-
ing blocks are the nucleus, the kernel, and Pose, the Parallel Operating System
Extension (Fig. 1). In addition to the system components, the application is con-
sidered as the fourth integral part of this architecture. The application largely
determines the complexity of a family member and the distribution of the build-
ing.

application

nucleus kernel

S {ystem}

O {perating}

E {xtension}

P {arallel}

PEACE

Fig. 1. Building blocks

288 J. Cordsen et al.

The nucleus implements system-wide interprocess communication and pro-
vides a runtime executive for the processing of threads. It is part of the kernel
domain, with the kernel being a multi-threaded system component that encap-
sulates minimal nucleus extensions. These extensions implement device abstrac-
tions, dynamic creation and destruction of process objects, the association of
process objects with naming domains and address spaces, and the propagation
of exceptional events (traps, interrupts). Application-oriented services such as
naming, process and memory management, file handling, I/O, and load balanc-
ing are performed by Pose.

Kernel and Pose services are built by dual objects. As will be discussed later,
the dual objects are managed by so called clerks. Since a clerk is implemented as
an active object, the two building blocks kernel and Pose are made from active
objects managing dual objects. In contrast, the nucleus is an ensemble of passive
objects that schedule active objects.

An active object is implemented by a lightweight process. A number of these
objects may share the same address space, thus constituting a team of lightweight
processes, i.e., a heavyweight process. Each service that is provided by both Pose
and the kernel is implemented by such a team and represents a Peace entity.
Entities are system extensions. They are loaded on demand and (in most cases)
can be arbitrarily distributed.

The dividing line between user and supervisor mode as shown in Figure 1 is
a logical boundary only. It depends on the actual representation of the interac-
tions specified by the functional hierarchy[10] (and of the hardware architecture)
whether this boundary is physically present.

Vote is an autonomous Pose component. It serves as a minimal kernel
extension, in particular the address space management subsystem. The Peace
family members implementing only virtual shared memory will consist of a single
Pose component, i.e. Vote, a scaled-down kernel encapsulating both the MMU
driver and threads management, and the nucleus.

2.3 Functional Hierarchy

The functional hierarchy (Fig. 2) defined between Pose, the kernel, and the
nucleus makes possible a very high degree of decentralization. From the design
point of view, neither the kernel nor Pose need to be present on every node, only
the nucleus. In a specific configuration, the majority of the nodes of a massively
parallel machine are equipped with the nucleus only. Some nodes are supported
by the kernel, and a few nodes are allocated to Pose. All nodes can be used for
application processing, but they are not all obliged to be shared between user
tasks and system tasks. The functional hierarchy of the three building blocks
expresses the logical design of Peace, but not necessarily the physical represen-
tation.

Nucleus services are made available to the application via Nearby Object
Invocation (NOI). The logical design assumes a separation of the nucleus from
the application (and Pose), which calls for the use of traps to invoke the nucleus
and for address space isolation. This is the place where cross domain calls may

Experiences Developing a Virtual Shared Memory System 289

LOI

NOI

ROI

ROI

{L,R}OI

NOI

POSE

kernel

nucleus

application

Fig. 2. Invocation scheme

happen. The nucleus is “nearby” the using entity. It shares with the entity the
same node, but not necessarily the same address space segment. In addition to
that, there are nucleus configurations which totally sacrifice the trap interface,
defining a single address space that lodges possibly all four building blocks.

The kernel resides with the nucleus in the same address space. Together
they constitute the kernel entity. The kernel therefore performs Local Object
Invocation (LOI) to request nucleus services. Kernel services are made available
via Remote Object Invocation (ROI)[14]. The ROI scheme always implies context
switching, but not necessarily address space switching. A separate thread of
control is used to execute the requested method (i.e., service). In contrast to
that, NOI (logically) implies the activation/deactivation of the nucleus address
space via local system call traps. The implementation of ROI takes advantage
of the network-wide message passing services provided by the nucleus and, thus,
is based on NOI.

Services of Pose are requested via LOI and ROI. The former scheme is used
to interact with the Pose runtime system library whereas the latter is used to
interact with the Pose active objects. In certain situations the Pose library
directly transforms the issued LOI into one or more ROI requests to the kernel.
The Pose service then is not provided by an active object, but entirely on a
library basis (i.e., passive object).

Although the functional hierarchy assumes NOI for the interaction between
application (Pose) and nucleus, the LOI scheme is used for those members of
the Peace family that place their focus on performance. The entrance to the
nucleus is represented as an abstract data type with two implementations. The
first implementation sacrifices vertical and horizontal isolation. Thus, there is
neither a separation between the user and supervisor modes of operation (verti-

290 J. Cordsen et al.

cal isolation) nor a separation between competing tasks (horizontal isolation). In
this case, NOI actually means LOI. Horizontal isolation means that user/system
entities have a private address space, that is, operate in a private protection
domain. The second implementation assumes complete (i.e., vertical and hori-
zontal) isolation and requires a trap-based activation of the nucleus. NOI then
becomes a cross-domain call. The variants basically distinguish between single-
tasking (no isolation) and multitasking (isolation) modes of operation. They
implement different members of the kernel family.

3 Dual Objects

Family based systems can be implemented conveniently by means of object ori-
ented programming paradigms. Operating system services are implemented as
classes then and users can extend and specialize these system classes by means of
inheritance mechanisms. Thus both Peace and Vote are entirely implemented
in C++. In Vote inheritance is used to introduce specialized members of the
family of consistency protocols and customize the building blocks to various user
demands.

In theory this scenario is sound and straight forward but in practice the con-
ceptual advantages of object orientation are extremely hard to exploit without
suitable object models and language-level support for object-oriented implemen-
tation techniques in distributed contexts. In order to implement VSM seman-
tics, instances of the Vote classes are to be allocated to different nodes of a
distributed-memory parallel computer. As a consequence, these instances need
to be accessed network-wide.

When users extend and specialize e.g. Peace or Vote classes by means of
inheritance mechanisms, class hierarchies need to be extended across address
spaces as well as network boundaries and objects can be fragmented across ad-
dress spaces. This in turn can lead to serious performance penalties caused by
frequent remote invocations, when application classes closely interact with their
system-level base classes. On the other hand it is obvious that client classes
cannot have full access to system-level state information to avoid forgery and
ease resource sharing amongst many clients. Implementing system services as
fragmented objects[17] would have supported independence as well as encapsu-
lation of object fragments allocated in different address spaces. Nevertheless we
considered that model already too complex for those very lightweight system
structures we were aiming at, because the fragmented object model partially re-
lied on group communication mechanisms and did not support inheritance-based
fragmentation.

Having such problems in mind we designed a general object model for system
programming. This model transposes the classical coarse grained user/supervisor
memory model of monolithic systems to very small objects of language-level
granularity. So-called dual objects[20] implement system services and encapsulate
both user-level and system-level state information in a single object context.
Clients are allowed to control the user-level part of a dual object directly and

Experiences Developing a Virtual Shared Memory System 291

efficiently within their address spaces, whereas system servers have transparent
access to both parts during service invocations. Thus much closer interactions
between user and system classes are possible as in conventional object models
and the model remains simple enough to be implemented efficiently.

3.1 Language-level Support

Dual objects are described by annotated C++ classes1 that specify user-level
and system-level class members. To retain a strong backward compatibility to
original C++, all public and protected members are considered to be user-
level, whereas all private members belong to the system-level. Thus the weak
language-level protection of private class members in C++ is enforced by strong
encapsulation of private data in the (remote) address-space of the server.

Fig. 3 shows a much simplified example of the dual Adviser class that con-
trols consistency protocols in theVote system. Dual classes are identified using a
/*!dual!*/ annotation following the closing bracket of the class declaration. The
private member slots belong to the system-level whereas all protected mem-
bers are user-level data members. Thus the methods indicateWS(), setMode(),
setProt() and setCap() can be executed directly within the client’s address
space as indicated by the /*!local!*/ annotation whereas methods like hand-
le() are executed remotely under the control of the server using remote object
invocation techniques (ROI)[14]. During invocations the user-level members are
made available for the server. Thus the handle()method has transparent access
to the actual cap, mode, protocol, high and low members.

Methods and parameters are annotated in an IDL-like style to specify pa-
rameter functionality and remote invocation semantics. Parameters to remote
methods are passed by value by default. Pointers have to be annotated to spec-
ify e.g. input (in) or output (out) parameters2.

Generic bulk data is not automatically handled through language-level pa-
rameter passing but by explicit remote fetch() and store() operations pro-
vided by the Peace nucleus. These two primitives provide fast end-to-end data
transfers between (remote) address spaces. An address-space capability (Ticket)
is required to apply these methods. Thus in the Adviser example, handle() uses
the user-level cap member to perform bulk data transfers between the client’s
and the server’s address spaces.

Dual classes can be composed by (even remote) inheritance mechanisms and
thus important C++ features like multiple inheritance are retained. These classes
are fed to a dual object generator (Dog) to transform them into functionally
1 Basing on annotated C++ was more a pragmatic than a conceptual decision. At the
time starting the Peace development, it was fairly hard to convince users to better
employ C++ rather than Fortran for parallel programming. It would have been even
harder, if not impossible, to come up with some sort of interface definition language
different from C++ and Fortran. Thus, annotating C++ was seen to be the best
possible compromise at that point in time.

2 For a complete description of annotations see[19,20].

292 J. Cordsen et al.

class Adviser : ... {
private: // system-level

Actor** actors;
Actor* my_actor;
int num_actors;

protected: // user-level
Ticket cap;
AccMode mode;
VSMProt protocol;
Addr low;
Addr high;

public:
// local methods
void indicateWS (int high, int low) /*!local!*/
{

this->high = high;
this->low = low;

}

void setMode (AccMode mode) /*!local!*/
{

this->mode = mode;
}

void setProt (VSMProt prot) /*!local!*/
{

this->protocol = prot;
}

void setCap (Ticket cap) /*!local!*/
{

this->cap = cap;
}

// remote methods
int handle (int page, Addr addr, AccFault type);
...

}/*!dual!*/;

Fig. 3. The Dual Adviser class

enriched C++ classes capable of dealing with the distribution aspects of dual
objects. Client and server representations of a dual object are generated. The
same holds for the stub methods used for remote invocation. An additional
preprocessor version of the Dog integrates the dual object model into standard
C++ to ease the implementation of distributed and parallel system services (as
well as C++ applications).

3.2 Resource Sharing

A client (or a server) can grant access to its resources by creating clones of its
dual object instances and transferring these clones to other processes. Whenever
a dual object is cloned, only the user-level part is copied, whereas the system-
level part is (transitively) shared amongst all clones. Thus in the Adviser exam-
ple (fig. 3) the private system-level members are shared amongst all instances
transitively cloned from the same origin. In contrast all protected user-level
members are independent copies that will be manipulated or initialized inde-
pendently from each other (fig. 4). The user-level part of a dual object then

Experiences Developing a Virtual Shared Memory System 293

cap: 119054

cap: 354789

my_actor:
actors:

system-level state
shared

num_actors:

cap: 234857

.

.
..........

individual

.

user-level state

client 2

client 3

mode: READ

............
.

..........

4c00
5c04

..........

64

WRITE

READclient 1

.

Fig. 4. Resource Sharing with Dual Objects

becomes a client-specific context that is implicitly provided to servers during
service invocations. Thus the cap, mode, protocol, high and low members (fig.
4) will always refer to the user-level part of the client actually calling a specific
Adviser instance.

As a result servers are not enforced to maintain client-specific data them-
selves. Robustness of services is therefore enhanced and system-level data can
be shared conveniently and economically amongst many clients. In fact, these
resource sharing facilities are comparable to delegation based models[16,25] with
the major difference that the sharing facilities of dual objects are statically de-
fined through classes whereas common delegation schemes allow dynamic shar-
ing.

3.3 Runtime Model and Implementation Issues

Dual objects have two representations at runtime, one for clients and one for
servers. We call instances of the client’s representations likenesses and instances
of the server’s representation prototypes. A likeness reflects the public interface
of a dual class and consists of public and protected members only, whereas the
prototype consists of all members. Furthermore, the likeness holds a (remote)
reference to its prototype. Thus a likeness is both an object that can be manip-
ulated locally as well as a proxy[23] for a remote prototype.

Prototypes are passive C++ objects that are kept in so-called domains[18].
Domains are a concept for local object spaces that are managed by active server
objects we call clerks. These clerks are able to instantiate new prototypes upon
request and control access to all objects within their domains. Many domains
may share an address space or may have separate address spaces either on the
same machine or somewhere in a network to constitute a global distributed object

294 J. Cordsen et al.

Domain A

Domain B

Domain C
Domain D

node B

node A

address space B

address space A

clerk

prototypes

Fig. 5. Domains

space (fig. 5). Furthermore, a domain may either be sequential or concurrent.
Sequential domains are monitors and allow exactly one object in the domain to
be manipulated at a time. Concurrent domains manage a dynamic thread pool
and implement read/write monitors on single object instances.

When a dual object is created, an instantiation request is sent to the clerk of
the domain selected to host the new prototype. Domains are selected either by
name contacting a name service or by a unique identifier denoting the communi-
cation address of the clerk controlling the domain. The clerk in turn creates the
prototype and executes its constructor. After initialization all user-level parts
of the prototype are extracted and sent back to the requesting client. Here a
likeness is initialized with the user-level data and the remote reference to the
newly created prototype. In fact, any time a client declares a new likeness in-
stance which is not a clone of an existing likeness, the instantiation procedure
described above is transparently executed.

Methods that access user-level data only are executed locally on the likeness
leaving the prototype untouched. All methods that are executed on the likeness
that involve system-level data will in fact be remote object invocations on a
remote prototype. Since the user-level part may have been changed by previous
local calls, it is transmitted along with the arguments of the call (fig.6). The
receiving clerk then will update the prototype by means of the actual user-level
data before the method is executed3. When the method returns the user-level
part is extracted and sent back to the client along with the results of the method.
The likeness in turn is updated with the actual data. This protocol causes some
additional overhead for those methods which access both user-level and system-

3 This is necessary because we use standard C++ compilers as back-end. Otherwise
user-level members could be referenced differently from system-level members.

Experiences Developing a Virtual Shared Memory System 295

ROI

likeness

domain Bprototype

domain A

Fig. 6. Remote Invocation

level data simultaneously. Since that overhead is comparable to implicit parame-
ter passing it can be neglected if the transfer costs of user-level state information
is small compared to the execution time of the method (fig. 3). Other methods
are either not affected or even executed locally at the client site if no system-level
data is accessed at all.

4 The Vote System

A shared-memory program running on top of Vote is executed in a multi-
ple reader/single writer (MRSW) sequential consistency model[12] to ensure
architectural transparency. At any time, the program may change the consis-
tency maintenance, keeping on execution by virtue of a different memory consis-
tency model. Vote supports a number of performance enhancement techniques.
These techniques help avoiding sequences of read/write memory access faults,
pre-paging and releasing address ranges, and to provide support for one-sided
communication in order to propagate data to each process in a specified set
of destinations. A fine-grained multiple writer model allows (within a page)
modifying accesses with a subsequent restoration scheme[7] in order to unify a
sequential consistent result. Furthermore, Vote also supports message-passing
communication functions which operate in coexistence to the demand paging of
sequential consistency.

A detailed description of the Vote system, its performance enhancement
techniques, and studies about efficiency and scalability of parallel VSM applica-
tions can be found in[8]. This paper concentrates on the Vote core only to show
how dual objects have been exploited to construct an efficient VSM system.

296 J. Cordsen et al.

4.1 Functional Units

Vote is distinguishing three functional units responsible for handling consis-
tency maintenance and raising memory access faults. These three functional
units are called catcher, actor, and adviser (Fig. 7). For the sake of clarity, the
terms requesting site, knowing site, and owning site will be used in the following.
The requesting site is the process causing the memory access fault. The knowing
site is the process implementing the consistency maintenance, whereas the own-
ing site is the process actually owning the requested memory page. In specific
situations, the knowing site may also play the role of the owning site.

upcall

adviser

actor

actor

catcher

actor

VOTE

kernel

owning site

requesting site

knowing site

get_copy

invalidation
m

m
u_program

m
ing

put_copy

ca
ch

e
m

is
s

cache hit

handle

Fig. 7. Vote building blocks

An application process using the global address space of Vote will be asso-
ciated with an exception handler (catcher). In case of a memory access fault, the
catcher is invoked (via an upcall) by the Peace kernel. The catcher determines
the consistency maintenance instance relevant for handling the access fault. For
this purpose, a pre-determined (user-directed) mapping from memory pages to
consistency maintenance objects is used. Upon this information, the catcher calls
the adviser at the knowing site.

The adviser object implements the consistency maintenance for the requested
memory page. This instance maintains directory information about the distri-
bution of the memory pages it has taken responsibility for. Each adviser is sup-
plemented by a set of so called actor objects. When a VSM variable is declared
to be maintained by a specific adviser, an associated actor will be created in the
address space of the declaring application process. Thus, using several adviser
objects in order to maintain different memory pages will result in the same num-
ber of actor instances associated to each of the application processes. The adviser
itself creates an actor for the purpose of caching VSM pages and to optimize
access fault handling.

Experiences Developing a Virtual Shared Memory System 297

The purpose of an actor is to provide to its adviser an interface controlling
the memory management and the movement of VSM memory pages. The func-
tional encapsulation of, on the one hand, consistency maintenance by the adviser
and, on the other hand, memory management and data transfer by the actor
enables Vote to make use of idle processors or dedicated system processors.
State-of-the-art consistency maintenance operates with a dynamic distributed
ownership-based protocol. Due to the ownership approach, this scheme is re-
stricted to operate only on processors running application tasks. Because of this
disadvantage, Vote rejects the dynamic distributed consistency maintenance
and uses the highly optimized fixed distributed scheme instead.

4.2 Interactions of the Functional Units

If an application causes a memory access fault, kernel-based trap handling saves
the current context and activates the catcher being in charge of raising the
memory access fault. The catcher allocates a memory region, determines the
responsible knowledge site and calls handle() (Fig.3) with the requested page
number, address of the allocated memory region, and information about the
access fault type (i.e. protection or access violation) as arguments. When an
adviser receives the request to handle a memory access fault, the access fault
type, the directory information, and client specific information determines the
further processing.

The most simple case of consistency maintenance is a protection violation,
that is the requesting site already owns a copy of the memory page with a read-
only access permission. Then the adviser sends invalidation messages to the set
of owning sites, updates the directory information and replies to the requesting
site in order to upgrade its memory access permission.

If the access fault was an access violation, the knowing site checks if the
requested memory page has been cached. In case of a cache hit, the page is
transfered directly to the knowing site using put copy(). 4 If the access violation
was due to a write access, the knowing site invalidates the set of copy holders
before the directory information is updated. In contrast, a read access violation
requires only adding the requesting site to the set of copy holders. Afterwards,
the requesting site is sent a reply for local MMU programming.

The final two cases handle access violations if a cache miss for the requested
page was detected at the knowing site. In this situation the adviser calls the
actor of the requesting site with the information where to get a copy of the
memory page. Then, data is copied from the owning site to the requesting site
using get copy(). At the requesting site, the desired access permission is defined.
If the page has read-only access permission, a copy of the page is sent to the
knowing site as well (using put copy()). As described above, caching these pages
at the knowing site results in a prompt handling of future read access faults with
respect to the same pages. Finally, control returns to the adviser. If a write access
4 The description is simplified for reasons of clarity. To ensure sequential consistency,

Vote uses a distributed locking protocol.

298 J. Cordsen et al.

violation is to be handled, invalidations are sent to the set of owning sites. The
directory information is updated and the requesting site is sent a reply.

5 Exploiting Dual Objects

The entireVote software architecture is implemented using the high-level object
paradigm of dual objects. The three function units catcher, actor and adviser
are implemented as dual classes. Hence, the interactions taking place between
the instances of these classes (i.e. the dual objects) are to be carried out on a
ROI-basis mostly.

class Catcher : public Guardian {
private:

Adviser* adviser;
...

public:
Catcher (/*!in!*/Adviser* adviser);
void exception(LogAdr loc, LogAdr pc, MemFault cause)
{

...
adviser->handle(loc.Index() ...); // remote call
...

}
}/*!dual!*/;

Fig. 8. The Catcher class

Fig. 8 shows the definition of the dual Catcher class that reacts on page-
faults and propagates these to an appropriate Adviser instance for VSM pro-
tocol handling. The Catcher class is derived from a dual Guardian class. This
class gives access to low-level memory management of the Peace kernel and
propagates traps (even across the network) to higher-level abstractions. Method
exception() redefines a virtual Guardian method and implements application-
specific fault handling. For performance reasons we place Catcher instances in
a local domain sharing the local address space of the process, whose traps need
to be caught. Nevertheless, in principal these faults could also be handled at any
place in the network transparently to the nucleus detecting the fault because
dual objects provide location transparency.

Upon an access fault, the exception() method of a Catcher instance will
be called by the nucleus and executed in the domain where the Catcher actually
resides. The exception() method then performs local VSM processing such as
memory allocation before it contacts the Adviser instance responsible for the
memory region in question. This call is carried out on a ROI-basis invoking the
handle() method of the dual Adviser object (fig. 3). The catcher is unaware
of the actual location of its adviser and the Adviser instance can be located
anywhere in the network.

Experiences Developing a Virtual Shared Memory System 299

The same holds for instances of the dual class Actor that implements meth-
ods like put copy() and get copy() for remote page transfers as well as methods
for remote MMU handling (fig.9).

class Actor : ... {
private:

VSMInfo* info;
public:

...
// remote methods for page transfer
int put_copy (int page, /*!in!*/VSMPage* data);
int get_copy (int page, /*!out!*/VSMPage* data);
...
// remote methods for address space handling transfer
int invalidate (int page);
...

}/*!dual!*/;

Fig. 9. The Actor class

The complete dual Actor class sketched here very briefly implements in fact
more than 35 different methods for remote page and MMU handling, that op-
timize several access cases and allow remote control of address space manage-
ment. Although these remote methods could have been implemented manually
by means of low-level message passing operations, these numbers indicate that
language-level ROI support can improve software productivity significantly. This
is especially true during prototyping phases when interfaces quite often change
and experimentation consumes a lot of the total development time. We estimate
that a manual implementation would have consumed at least several hours up
to a few days of additional error prone work that was performed reliably by an
automatic tool in a fraction of a second.

The dual Actor class basically uses the ROI capabilities provided by dual
classes. The dual Adviser class (fig. 3) intensively applies the extended resource
sharing model provided by dual objects. The private system-level part contains
references to a set of Actor instances (data members actors and num actors).
Data member my actor points to the local actor. This variable is used to optimize
the handling of read access faults in case of a cache hit for the requested VSM
page. The user-level data members (protocol, low, high, and mode) are used
to customize the consistency maintenance with respect to the specific memory
access characteristics of an application. Each process belonging to the parallel
application gets a clone of the dual Adviser instance controlling a VSM segment
shared by these processes. Recall that in the case of dual objects only user-level
parts are cloned, whereas the system-level part is implicitly shared amongst all
clones (refer to section 3.2). Therefore it is possible to individually specify the
current working set of an application process defining the members low and high
to minimize page-faults and false sharing, when several processes operate on the
same page but on disjoint locations within the page. Furthermore, the mode and

300 J. Cordsen et al.

protocol members provide information about the required memory consistency
models and expected page-access patterns. Thus each process belonging to the
parallel application can customize its individual access patterns and consistency
requirements through efficient local operations, that only manipulate user-level
state. Upon a memory access fault, the catcher invokes the adviser thereby au-
tomatically providing the customized user-level state information of the faulting
process.

Without the dual object model we either would have to perform costly re-
mote invocations to optimize page access or store this information locally in a
different kind of object and pass this information explicitly as additional param-
eters upon any access fault. The first case would be extremely inefficient and
virtually discards its intended optimization effect completely. The second case
would require clumsy workarounds and unclear interfaces since the user-level
data would to be passed as extra arguments to the methods of the Adviser
class. The dual object model keeps all related data in a uniform context and
effectively hides distribution aspects.

6 Performance Analysis

The Vote performance was measured on a multi-node Manna system. Every
dual-processorManna node consists of two 50-MIPS RISC processors (i860XP)
sharing the memory and the I/O units attaching peripherals to the node; they
also share the bidirectional communication link. This link connects the node with
a byte-wide 16× 16 crossbar switch, providing a throughput of 2× 47.68 MB/s.
The effective memory access rate is 381.47 MB/s.

6.1 Dual Objects

The high-level dual object model eases the design and implementation of the
Vote system. Reusability, extensibility, and efficient use of system resources are
enhanced to a high extent. Table 1 shows the basic timings for elementary com-
munication costs as well as remote object invocation times. The Peace nucleus
provides synchronous and asynchronous packet-based mechanisms (64 bytes) for
inter process communication (IPC) as well as primitives for end-to-end bulk data
transfer (fetch(), store()). The ROI mechanisms are built upon these mech-
anisms. When the argument size (including the user-level part of a dual object)
exceeds an IPC-packet, bulk data transfer primitives are automatically applied
to transmit bigger messages.

The typical ROI overhead is in the vicinity of 8µsec and drops to less than
5µsec in case of local communication that implies a better cache utilization5.
Notably we cannot measure significant differences with varying parameter sizes
up to the size of a packet. The Dog generates statically typed message formats
5 The generated code as well as the code in the ROI runtime system is the same in
both the local and the remote case.

Experiences Developing a Virtual Shared Memory System 301

Operation Time (µsec)

Inter Process Communication (IPC) 157

Async. IPC 18

bulk data transfer (fetch) 122

bulk data transfer (store) 28

ROI with argument size not exceeding
an IPC packet

165-168

async. ROI ca. 26

ROI with implicit bulk data transfer 308

remote object creation 266

Table 1. Performance of basic operations

for most methods and thus marshaling costs for simple data types and aggregate
types are extremely low. Only array data types and aggregate data types that
contain arrays require significant improvement (see also table 2).

Table 2 shows the overheads of memory allocation and copying when execut-
ing get copy() (refer to Fig. 7). The benchmarks were run using dual objects
of different utilization, with variable sized data sets, and exploiting different
compilers (Metaware, Portland). 6

Metaware compiler Portland compiler
Size

Copy granularity Basic Copy granularity Basic
(KB)

char int double memcpy costs char int double memcpy costs

4 1793 807 607 463 369 1545 691 552 478 376

8 3325 1350 946 658 483 2834 1107 816 667 489

16 6477 2503 1743 1071 701 5539 2084 1504 1100 701

32 13572 4995 3610 1936 1151 10999 4061 2922 1978 1166

64 26969 9807 7115 3691 2058 21848 7986 5702 3724 2065

Table 2. Overhead of memory allocation and copy efforts (µs)

The execution of get copy() requires calling the owning site and transferring
a page containing the requested data. Since get copy() is a method applied to a
dual Actor object, the call is carried out on a ROI-basis. In this particular case,
(1) a remote rendezvous between client and server takes place and (2) a data
6 The Metaware compiler is a product of MetaWare Inc, version Rel 2.1e. The Portland
compiler is a product of The Portland Group, Inc., version Rel 3.1-1. The Metaware
compiler is strong achieving a better MIPS rate, whereas the Portland compiler
results in better FLOPS rates. Consequently, an operating system is best supported
by the Metware compiler while “number crunching” applications are best supported
by the Portland compiler.

302 J. Cordsen et al.

transfer is initiated to get the requested page in place. These two steps make up
the basic communication costs of remote memory-to-memory paging in Vote.
Depending on the compiler in use, Table 2 lists the sum of both times.

As indicated in Table 2, Vote cannot make full use of the parameter passing
mechanisms of the dual object model to come close to the basic communication
costs. Rather, Vote allocates and transfers the data itself. The effects of im-
plicit parameter passing are shown in the columns char, int, and double. In
these cases, following the typical use pattern of a C++ VSM programmer, the
requested memory page is a typed array of the plain data types char, int, and
double, respectively. Many of these pages may constitute some sort of matrix
used by the (numerical) application program.

Invoking get copy(), the ROI stubs linearize the typed page into a typed
message before communication becomes effective. Similar holds for the receiving
site, where a typed page is rebuilt from the received typed message. For each
page, this causes a local memory-to-memory copy overhead in addition to the
basic (page) data transfer. As shown, the copy overhead varies depending on the
actual plain data types of the page. This is because copying is performed in a
(high-level language) loop created by the Dog and containing assignments to
either of char, int, or double instances.

Table 2 shows that the copying overhead dominates the total execution time
of the data transfer and is not acceptable for performance critical services. Even
the use of a highly optimized memory-to-memory copying routine (memcpy())
considerably defects the overall performance. Compared to the basic communi-
cation costs, in the best case the Vote consistency maintenance would increase
by 25.5% (using the Metaware compiler and a memcpy() of 4KB pages) and in
the worst case the runtime would grow as much as 1210.5% (using the Metaware
compiler and performing a char copy loop to transfer 64KB pages). Here are
the limits of straightforward language-level support for parameter passing. Al-
though the Dog is perfectly able to pass objects with multi dimensional arrays
as parameters, this feature could not be used for performance reasons. Thus
pages needed to be treated like bulk data and needed to be handled manually
by means of fetch() and store() methods that do not require internal copies.
On the other hand, most remote synchronization and consistency protocol han-
dling could be performed flawlessly and transparently using dual objects and the
language-level support provided by the Dog. Therefore the most complex parts
of the Vote system could be designed and implemented with a minimum of
development overhead. After this work was completed, the manual optimization
of the page transfers was straightforward and easy to accomplish by means of
the Peace data transfer primitives.

In Vote, access violation has been especially optimized with respect to a
read access fault on a page cached by the adviser. The optimization took ad-
vantage from specific data-transfer features provided by the Peace nucleus, in
particular the asynchronous write of an arbitrarily sized data segment into re-
mote memory[22].

Experiences Developing a Virtual Shared Memory System 303

VOTE (6.0%)
MMU (5.1%)

TRAP (8.6%)

HVDT (28.0%)

IPC (49.0%)

ROI (3.3%)

Fig. 10. Percentages of system functions during consistency maintenance

The breakdown into the basic activities of trap handling, packet communi-
cation (IPC), dual object overhead (ROI), data transfer (HVDT), MMU pro-
gramming, and maintenance activities in Vote shows that communication is
the dominating issue (Fig. 10). About 80% of the time spent by Vote for ac-
cess fault handling is devoted to communication, that is ROI, IPC, and HVDT.
Therefore, a high-performance communication facility is of great importance for
Vote. Dual objects make the handling of theVote classes much easier and, used
in an appropriate way, add an negligible overhead to the basic message-passing
mechanisms.

6.2 Related Works

Considering the implementation ofVote and the resulting performance, the dual
object paradigm proved to be the right decision for the design and development
of the VSM subsystem of Peace. Making a cost/profit analysis, the additional
overhead of dual objects is very low and can be neglected when running real-
world applications. As outlined by Table 3, the end-user performance of Vote
compared to other VSM systems applying very low-level message passing layers
for implementation appears to be very good.

System Platform CPU Network Time (ms)

Mether SunOS4.0 25 MHz MC68020 1.2 MB/s 70-100
Munin V 25 MHz MC68020 1.2 MB/s 13-31
Myoan OSF/1 + NX 50 MHz i860XP 200 MB/s 4.068
Vote Peace + dual objects 50 MHz i860XP 47.68 MB/s 0.667

Table 3. Comparison of read-fault handling in different VSM systems

304 J. Cordsen et al.

Mether and Munin both run on rather old hardware. Nevertheless, a compar-
ison of Myoan[3] and Vote is fair because of the same CPU foundation in both
systems. Myoan runs on the Intel Paragon machine with a network throughput
which is more than four times better than the throughput of the Manna com-
munication network. Yet the performance of Vote is more than six times better
than handling a read access fault in Myoan, although communication and data
transfer are responsible for about 80% of the total costs.

One of the main advantages of Vote compared to Myoan is the special-
ized operating-system kernel, which appeared in the just discussed case to be
“only” a communication and thread library rather than a microkernel with ad-
ditional user-level and problem-oriented communication support. In order to
partly overcome the performance problems, Myoan is even using the low-level
NX communication library for inter-node communications bypassing the un-
derlying microkernel. This reduces the communication time (for 8 bytes) from
1909 µs, when exploiting the IPC functions of the OSF microkernel, to about
329 µs.

In Vote we hadn’t to go down to such low levels mainly because dual ob-
jects both provide a suitable high-level system programming paradigm and a
very efficient implementation at the same time. Thus implementation issues are
significantly improved and the lightweight system structure of Peace is not
compromised by complex middleware layers.

Other high-level approaches from the distributed systems area such as COR-
BA[9] tend to “eat up” the performance of lower layers for the sake of convenient
heterogeneous computing and interoperability issues. In the high performance
systems area more recent parallel C++ versions such as CC++[5], ICC++[6],
Mentat[1] and MPC++[11] seem to be promising. Nevertheless, system program-
ming still needs significantly more control over runtime issues than languages
designed for application level programming usually provide. MPC++ and EU-
ROPA C++[26] provide powerful meta-level programming facilities that could
have beneficial impact on system programming in the near future.

7 Conclusion

Family based operating system services such as the Vote VSM system are hard
to implement without suitable high-level paradigms and language-level support.
Design and implementation of Vote, as well as Peace, was strongly influenced
by the concept of dual objects. This object model transposes the classical coarse
grained user/supervisor memory model of monolithic systems to very small ob-
jects of language-level granularity. Therefore dual objects encapsulate both user-
level and system-level state information in a single object context to encourage
much closer interactions between user and system classes as in conventional ob-
ject models. Servers are not enforced to maintain client-specific data themselves.
Robustness of services is therefore enhanced and system-level data can be shared
conveniently and economically amongst many clients.

Experiences Developing a Virtual Shared Memory System 305

By providing a highly abstract and yet efficient object-oriented programming
environment, the (system) programmer is relieved from dealing with the pecu-
liarities of distributed-memory parallel machines. The Vote performance figures
show that high-level object paradigms do not impose a general bottleneck for
both complex and performance critical operating system services.

References

1. A.Grimshaw. Easy-to-use parallel processing with Mentat. IEEE Computer, 26(5),
May 1993. 304

2. B. N. Bershad and J. M. Zekauskas. Midway: Shared Memory Parallel Program-
ming with Entry Consistency for Distributed Memory Multiprocessors. Technical
Report CMU-CS-91-170, Carnegie-Mellon University, 1991. 285

3. G. Cabillic, T. Priol, and I. Puaut. Myoan: An Implementation of the Koan Shared
Virtual Memory on the Intel Paragon. Technical Report 812, Irisa, Rennes, 1994.
304

4. J. B. Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Release
Consistency. PhD thesis, Rice University, 1993. 285

5. K. M. Chandy and C. Kesselman. CC++: A Declarative Concurrent Object-
Oriented Programming Notation. In Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993. 304

6. A. Chien, U.S. Reddy, J.Plevyak, and J. Dolby. ICC++ – A C++ Dialect for High
Performance Parallel Computing. In Proceedings of the 2nd JSSST International
Symposium on Object Technologies for Advanced Software, ISOTAS’96, Kanazawa,
Japan, March 1996. Springer. 304

7. J. Cordsen. Basing Virtually Shared Memory on a Family of Consistency Models.
In Proceedings of the IPPS Workshop on Support for Large-Scale Shared Memory
Architectures, pages 58–72, Cancun, Mexico, April 26th, 1994. 286, 295

8. J. Cordsen, Th. Garnatz, A. Gerischer, M. D. Gubitoso, U. Haack, M. Sander, and
Schröder-Preikschat. Vote for peace — Implementation and Performance of a
Parallel Operating System. IEEE Concurrency, 5(2):16–27, 1997. 295

9. Object Management Group Document. The Common Object Request Broker:
Architecture and Specification 2.0. Technical report, OMG. 304

10. A. N. Habermann, L. Flon, and L. Cooprider. Modularization and Hierarchy in a
Family of Operating Systems. Communications of the ACM, 19(5):266–272, 1976.
287, 288

11. Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, Jörg Nolte,
Hiroshi Tezuka, Hiroki Konaka, Munenori Maeda, and Kazuto Kubota. Design
and Implementation of Metalevel Architecture in C++ – MPC++ Approach –. In
Reflection ’96, 1996. 304

12. L. Lamport. How to make a Multiprocessor Computer that Correctly Executes
Multiprocessor Programs. IEEE Transactions on Computers, C–28(9):241–248,
September 1979. 295

13. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy.
The DASH Prototype: Implementation and Performance. In Proceedings of the 19th
Annual International Symposium on Computer Architecture, pages 92–103, Gold
Coast, Australia, May 19–21, 1992. 285

14. Henry M. Levy and Ewan D. Tempero. Modules, Objects, and Distributed Pro-
gramming: Issues in RPC and Remote Object Invocation. Software—Practice and
Experience, 21(1):77–90, January 1991. 289, 291

306 J. Cordsen et al.

15. K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University, 1986. 285

16. H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object–Oriented Systems. In Special Issue of SIGPLAN notices, volume 21, pages
214–223. ACM, November 1986. 293

17. Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro.
Structuring Distributed Applications as Fragmented Objects. Rapport de recherche
1404, Institut National de la Recherche en Informatique et Automatique, Rocquen-
court (France), January 1991. 290

18. O. M. Nierstrasz. Active Objects in Hybrid. In Special Issue of SIGPLAN notices,
volume 22, pages 243–253. ACM, December 1987. 293

19. J. Nolte. Language Level Support for Remote Object Invocation. Arbeitspapiere
der GMD 654, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin,
Germany, June 1992. 291

20. J. Nolte and W. Schröder-Preikschat. An Object-Oriented Computing Surface for
Distributed Memory Architectures. In Proceedings of the Twenty-Sixth Annual
Hawaii International Conference on System Sciences, volume 2, pages 134–143,
Maui, Hawaii, January 5–8, 1993. IEEE Computer Society Press. 286, 290, 291

21. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering, SE-5(2), 1979. 286

22. W. Schröder-Preikschat. The Logical Design of Parallel Operating Systems. Pren-
tice Hall International, 1994. ISBN 0-13-183369-3. 286, 302

23. M. Shapiro. Structure and Encapsulation in Distributed Systems: the Proxy Prin-
ciple. In Proceedings of the 6th International Conference on Distributed Computing
Systems, pages 198–204, Cambridge, MA, 1986. 293

24. P. Wegner. Classification in Object-Oriented Systems. SIGPLAN Notices,
21(10):173–182, 1986. 286

25. Peter Wegner. Dimensions of Object–Based Language Design. Special issue of
SIGPLAN Notices, 22(12):88–97, October 1987. 293

26. The Europa WG. EUROPA Parallel C++ Specification. Technical report,
http://www.dcs.kcl.ac.uk/EUROPA, 1997. 304

	Experiences Developing a Virtual Shared Memory System Using High-Level Object Paradigms
	Introduction
	PEACE
	Design Principles
	Functional Decomposition
	Functional Hierarchy

	Dual Objects
	Language-level Support
	Resource Sharing
	Runtime Model and Implementation Issues

	The Vote System
	Functional Units
	Interactions of the Functional Units

	Exploiting Dual Objects
	Performance Analysis
	Dual Objects
	Related Works

	Conclusion

