
The JX Operating System

Michael Golm, Meik Felser, Christian Wawersich, Jürgen Kleinöder
University of Erlangen-Nürnberg

Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany

{golm, felser, wawersich, kleinoeder}@informatik.uni-erlangen.de

Abstract
This paperdescribesthe architecture and performance

of theJX operating system.JX is bothan operating system
completelywritten in Java and a runtimesystemfor Java
applications.

Our workdemonstratesthat it is possibleto build a com-
plete operating systemin Java, achieve a good perfor-
mance, andstill benefitfromthemodernsoftware-technol-
ogy of this object-oriented,type-safelanguage. We explain
howanoperatingsystemcanbestructuredthat is nolonger
build on MMU protection but on type safety.

JX is basedon a smallmicrokernelwhich is responsible
for systeminitialization, CPU context switching, and low-
level protection-domainmanagement.The Java code is
organizedin components,which are loadedinto domains,
verified, and translatedto native code. Domainscan be
completely isolated from each other.

TheJX architecture allowsa widerange of systemcon-
figurations, from fast and monolithic to very flexible, but
slower configurations.

We compare theperformanceof JX with Linux by using
two non-trivial operating systemcomponents:a file system
and an NFS server. Furthermore we discussthe perfor-
manceimpactof several alternativesystemconfigurations.
In a monolithic configuration JX achievesbetweenabout
40%and100%Linuxperformancein thefile systembench-
mark and about 80% in the NFS benchmark.

1 Intr oduction

The world of software production has dramatically
changedduring the last decadesfrom pureassemblerpro-
grammingto proceduralprogrammingto object-oriented
programming.Eachstepraisedthelevel of abstractionand
increasedprogrammerproductivity. Operatingsystems,on
theotherhand,remainedlargelyunaffectedby thisprocess.
Althoughtherehave beenattemptsto build object-oriented
or object-basedoperatingsystems(Spring [27], Choices
[10], Clouds[17]) andmany operatingsystemsinternally
useobject-orientedconcepts,suchasvnodes[31], thereis a
growing divergencebetweenapplicationprogrammingand
operatingsystemprogramming.To closethis semanticgap

betweentheapplicationsandtheOSinterfacea largemar-
ket of middlewaresystemshasemergedover thelastyears.
While thesesystemshide the ancientnatureof operating
systems,they introducemany layersof indirectionwith sev-
eral performance problems.

While previousobject-orientedoperatingsystemsdem-
onstratedthatit is possibleandbeneficialto useobject-ori-
entation,they also madeit apparentthat it is a problem
when implementationtechnology(object orientation)and
protectionmechanism(addressspaces)mismatch.There
are usually fine-grained “language objects” and large-
grained“protectedobjects”.A well-known projectthattried
to solvethismismatchby providing object-basedprotection
in hardwarewasthe Intel iAPX/432 processor[37]. While
thisprojectis usuallycitedasafailureof object-basedhard-
wareprotection,ananalysis[14] showedthatwith aslightly
morematurehardwareandcompilertechnologytheiAPX/
432 would have achieved a good performance.

We believe thatanoperatingsystembasedon a dynam-
ically compiled,object-orientedintermediatecode,suchas
the Java bytecode,can outperform traditional systems,
becauseof themany compileroptimizations(i) thatareonly
possibleat a late time (e.g., inlining virtual calls) and(ii)
that canbe appliedonly when the systemenvironmentis
exactly known (e.g., cache optimizations [12]).

UsingJava asthe foundationof anoperatingsystemis
attractive,becauseof its widespreaduseandfeatures,such
asinterfaces,encapsulationof state,andautomaticmemory
management,that raisethe level of abstractionandhelp to
build more robust software in less time.

To thebestof ourknowledgeJX is thefirst Javaoperat-
ing system that hasall of the following properties:
• Theamountof C andassemblercodeis minimal to sim-

plify the system and make it more robust.
• Operatingsystemcodeandapplicationcodeis separated

in protectiondomainswith strongisolationbetweenthe
domains.

• Thecodeis structuredinto components,whichcanbecol-
locatedin asingleprotectiondomainor dislocatedin sep-
aratedomainswithouttouchingthecomponentcode.This

reusabilityacrossconfigurationsenablesto adaptthe
systemfor its intendeduse,whichmaybe,for example,
an embedded system, desktop workstation, or server.

• Performanceis in the50%rangeof monolithicUNIX
performancefor computational-intensive OS opera-
tions.The differencebecomeseven smallerwhenI/O
from a real device is involved.

BesidesdescribingtheJX system,thecontributionof
this paperconsistsof the first performancecomparison
betweenaJavaOSandatraditionalUNIX OSusingreal
OSoperations.Weanalyzetwocosts:(i) thecostof using
atype-safelanguage,likeJava,asanOSimplementation
language and (ii) the cost of extensibility.

The paperis structuredasfollows: In Section2 we
describethearchitectureof theJX systemandillustrate
thecostof severalfeaturesusingmicrobenchmarks.Sec-
tion 3 describestwo applicationscenariosandtheir per-
formance:a file systemand an NFS server. Section4
describestuning andconfigurationoptionsto refinethe
systemandmeasurestheir effect on theperformanceof
thefile system.Section5 concludesandgivesdirections
for future research.

2 JX System Architecture

The majority of the JX systemis written in Java. A
smallmicrokernel,written in C andassembler, contains
thefunctionalitythatcannotbeprovidedattheJavalevel
(systeminitialization afterbootup,saving andrestoring
CPU state, low-level protection-domainmanagement,
and monitoring).

Figure1 shows the overall structureof JX. The Java
codeis organizedin components(Sec.2.4) which are
loadedinto domains(Sec.2.1), verified (Sec.2.6), and
translatedto nativecode(Sec.2.6).Domainsencapsulate
objectsandthreads.Communicationbetweendomainsis
handled by using portals (Sec. 2.2).

The microkernel runs without any protection and
thereforemustbetrusted.Furthermore,a few Java com-
ponentsmustalsobetrusted:thecodeverifier, thecode
translator, and some hardware-dependentcomponents
(Sec.2.7).Theseelementsaretheminimal trustedcom-
puting base [19] of our architecture.

2.1 Domains

The unit of protectionandresourcemanagementis
calleda domain. All domains,exceptDomainZero,con-
tain 100% Java code.

DomainZero containsall the native codeof the JX
microkernel.It is theonly domainthatcannot betermi-
nated.Thereare two ways how domainsinteractwith
DomainZero.First, explicitly by invoking servicesthat
areprovidedby DomainZero.Oneof theseservicesis a
simple name service, which can be used by other
domainsto export their servicesby name.Secondly,
implicitly by requestingsupportfrom the Java runtime
system;for example, to allocatean object or checka
downcast.

Every domainhasits own heapwith its own garbage
collector (GC). The collectors run independentlyand
they canusedifferentGCalgorithms.Currently, domains
can choosefrom two GC implementations:an exact,
copying, non-generational GC or a compacting GC.

Every domainhasits own threads.A threaddoesnot
migratebetweendomainsduring inter-domaincommu-
nication. Memory for the thread control blocks and
stacks is allocated from the domain’s memory area.

Domainsare allowed to sharecode - classesand
interfaces- with otherdomains.But eachdomainhasits
own setof staticfields,which, for example,allows each
domain to have its own System.out stream.

2.2 Portals

Portalsarethe fundamentalinter-domaincommuni-
cationmechanism.Theportalmechanismworkssimilar
toJava’sRMI [43], makingit easyfor aJavaprogrammer
to useit. A portal canbe thoughtof asa proxy for an
object that residesin anotherdomain and is accessed
using remote procedure call (RPC).

An entity thatmaybeaccessedfrom anotherdomain
is calledservice. A serviceconsistsof a normalobject,
which must implementa portal interface,an associated
servicethread, andaninitial portal.A serviceis accessed
via aportal, which is aremote(proxy) reference.Portals
arecapabilities[18] thatcanbecopiedbetweendomains.
The serviceholds a referencecounter, which is incre-
mentedeachtime,theportalis duplicated.A domainthat
wantsto offer aserviceto otherdomainscanregisterthe
service’s portal at a name server.

Domain A

Heap

Java-Stacks

Components

Thread Control Blocks

Classes

Objects

Portals

Threads

Domain B

DomainZero (Microkernel)

Stacks
Thread Control Blocks

ThreadsC Code
Assembler

Figure 1: Structure of the JX system

When a thread invokes a method at a portal, the
threadis blockedandexecutionis continuedin theser-
vice thread.All parametersaredeepcopiedto thetarget
domain.If aparameteris itself aportal,aduplicateof the
portal is created in the target domain.

Copying parametersposesseveralproblems.It leads
to duplicationof data,which is especiallyproblematic
whena largetransitive closureis copied.To avoid thata
domain is flooded with parameterobjects,a per-call
quotafor parameterdatais usedin JX. Anotherproblem
is that the object identity is lost during copying.
Althoughparametercopying canbeavoidedin a single
addressspacesystem,andevenfor RPCbetweenaddress
spacesby usingsharedcommunicationbuffers [7], we
believe that theadvantagesof copying outweighits dis-
advantages.The essentialadvantageof copying is a
nearlycompleteisolationof thetwo communicatingpro-
tectiondomains.Theonly time wheretwo domainscan
interferewith eachotheris duringportalinvocation.This
makesit easyto controlthesecurityof thesystemandto
restrictinformationflow. Anotheradvantageof thecopy-
ing semanticsis, that it canbeextendedto a distributed
system without much effort.

In practice,copying posedno severe performance
problems,becauseonly small dataobjectsare usedas
parameters.Objectswith a large transitive closure in
mostcasesareserverobjectsandareaccessedusingpor-
tals.Usingthemasdataobjectsoftenis not intendedby
the programmer.

As an optimization the systemcheckswhetherthe
target domainof a portal call is identical to the current
domainand executesthe call as a function invocation
without thread switch and parameter copy.

When a portal is passedas a parameterin a portal
call, it is passedby-reference.As a convenienceto the
programmerthesystemalsoallowsanobjectthatimple-
mentsaportalinterfaceto bepassedlikeaportal.First it
is checked,whetherthisobjectalreadyis associatedwith
a service.In this case,theexisting portal is passed.Oth-
erwise,a serviceis launchedby creatingtheappropriate
datastructuresand startinga new servicethread.This
mechanismallows theprogrammerto completelyignore
theissueof whetherthecall is crossingadomainborder
or not. When the call remainsinside the domain the
objectis passedasa normalobjectreference.Whenthe
call leavesthe domain,the objectautomaticallyis pro-
moted to a service and a portal to this service is passed.

Whena portal is passedto the domainin which its
serviceresides,areferenceto theserviceobjectis passed
instead of the portal.

Whentwo domainswantto communicatevia portals
they mustsharesometypes.Theseareat leasttheportal
interface and the parametertypes. When a domain

obtainsa portal, it is checkedwhetherthecorrectinter-
face is present.

Eachtimeanew portalto aserviceis createdarefer-
encecounterin theservicecontrolblock is incremented.
It is decrementedwhenaportalis collectedasgarbageor
when the portal’s domain terminates.When the count
reacheszerotheserviceis deactivatedandall associated
resources, such as the service thread, are released.

Table 1 shows the cost of a portal invocation and
comparesit with othersystems.This tablecontainsvery
different systemswith very different IPC mechanisms
andsemantics.TheJ-KernelIPC, for example,doesnot
even include a thread switch.

Fast portals.Several portals which are exported by
DomainZeroare fast portals. A fast portal invocation
looks like a normalportal invocationbut is executedin
thecallercontext (thecaller thread)by usinga function
call - or evenby inlining thecode(seealsoSec.4.2.2).
This is generallyfasterthana normalportalcall, andin
somecasesit is even necessary. For example,Domain-
Zeroprovidesaportalwith which thecurrentthreadcan
yield theprocessor. It wouldmakenosenseto implement
this methodusing the normalportal invocationmecha-
nism.

2.3 Memory objects

An operatingsystemneedsan abstractionto repre-
sentlargeamountsof memory. Javaprovidesbytearrays
for thispurpose.However, arrayshaveseveralshortcom-
ings,thatmake themnearlyunsuitablefor our purposes.
They arenot accessedusingmethodsandthusthesetof
allowedoperationsis fixed.It is, for example,not possi-
ble to restrictaccessto a memoryregion to a read-only
interface.Furthermore,arraysdo not allow revocation
andsubrangecreation- two operationsthatareessential
to pass large memory chunks without copying.

To overcome these shortcomingswe developed
anotherabstractionto representmemoryranges:memory
objects. Memory objects are accessedlike normal
objectsvia methodinvocations.But suchinvocationsare
treatedspeciallyby the translator:they arereplacedby
the machineinstructionsfor the memoryaccess.This
makes memory access as fast as array access.

System IPC
(cycles)

L4Ka (PIII, 450MHz) [32] 818

Fiasco/L4 (PIII 450 MHz) [42] 2610

J-Kernel (LRMI on MS-VM, PPro 200MHz) [28] 440

Alta/KaffeOS (PII 300 MHz) [5] 27270

JX (PIII 500MHz) 650

Table 1: IPC latency (round-trip, no parameters)

Memoryobjectscanbepassedbetweendomainslike
portals.The memorythat is representedby a memory
objectis notcopiedwhenthememoryobjectis passedto
anotherdomain.This way, memoryobjectsimplement
shared memory.

Accessto a memoryrangecanbe revoked.For this
purposeall memoryportalsthatrepresentthesamerange
of memorycontaina referenceto the samecentraldata
structurein DomainZero.Amongotherinformationthis
data structure contains a valid flag. The revocation
methodinvalidatestheoriginal memoryobjectby clear-
ing the valid flag andreturnsa new onethat represents
thesamerangeof memory. Memoryis notcopiedduring
revocationbut all memoryportalsthatpreviously repre-
sented this memory become invalid.

Whena memoryobjectis passedto anotherdomain,
a referencecounter, which is maintainedfor everymem-
ory range, is incremented.When a memory object -
which, in fact,is a portalor proxy for therealmemory-
is garbagecollected, the referencecounter is decre-
mented.This happensalsofor all memoryobjectsof a
domain that is terminated.To correct the reference
countsthe heapmust be scannedfor memoryobjects
before it is released.

ReadOnlyMemory. ReadOnlyMemory is equivalent to
Memory but it lacks all the methodsthat modify the
memory. A ReadOnlyMemory object can not be con-
verted to aMemory object.

DeviceMemory. DeviceMemory is differentfrom Mem-
ory in thatit is notbackedby mainmemory:It is usually
usedto accesstheregistersof adeviceor to accessmem-
ory thatis locatedonadeviceandmappedinto theCPU’s
addressspace.The translatorknows aboutthis special
useand doesnot reorderaccessesto a DeviceMemory.
WhenaDeviceMemory is garbagecollectedthememory
is not released.

2.4 Components

All Java codethat is loadedinto a domainis orga-
nizedin components.A componentcontainstheclasses,
interfaces, and additional information; for example,
aboutdependenciesfrom othercomponentsor aboutthe
requiredschedulingenvironment (preemptive, nonpre-
emptive).

Reusability. An overall objective of object orientation
andobject-orientedoperatingsystemsis codereuse.JX
hasall thereusabilitybenefitsthatcomewith objectori-
entation.But thereis anadditionalproblemin anoperat-
ing system:the protectionboundary. To call a module
acrossaprotectionboundaryin mostoperatingsystemis
differentfrom callingamoduleinsidetheown protection
domain.Becausethisdifferenceis abig hindranceonthe

wayto reusability, thisproblemhasalreadybeeninvesti-
gated in the microkernel context [22].

Ourgoalwasareuseof componentsin differentcon-
figurations without code modifications.Although the
portal mechanismwasdesignedwith this goal the pro-
grammermustkeepseveralpointsin mindwhenusinga
portal. Depending on whether the called service is
locatedinsidethedomainor in anotherdomainthereare
a few differencesin behavior. Inside a domainnormal
objectsarepassedby reference.Whena domainborder
is crossed,parametersarepassedby copy. To write code
thatworksin bothsettingstheprogrammermustnot rely
oneitherof thesesemantics.For example,aprogrammer
relies on the referencesemanticswhen modifying the
parameterobjectto returninformationto thecaller;and
theprogrammerreliesonthecopy semanticswhenmod-
ifying the parameterobjectassumingthis modification
does not affect the caller.

In practice,theseproblemscanbe relieved to a cer-
tainextentby theautomaticpromotionof portal-capable
objectsto servicesasdescribedin Section2.2.By declar-
ing all objectsthatareentrypointsinto a componentas
portals a referencesemanticsis guaranteedfor these
objects.

Dependencies.Componentsmaydependon othercom-
ponents.We saythat componentB hasan implementa-
tion dependenceon componentA, if themethodimple-
mentationsof B useclassesor interfacesfrom A. Com-
ponentB hasan interfacedependenceon componentA
if the methodsignaturesof B useclassesor interfaces
from A or if aclass/interfaceof B is asubclass/subinter-
faceof a class/interfaceof A, or if a classof B imple-
mentsan interfacefrom A, or if a non-privatefield of a
class of B has as its type a class/interface from A.

Componentdependenciesmust be non-cyclic. This
requirementmakes it more difficult to split existing
applicationsinto components(Although they can be
usedasonecomponent!).A cyclic dependency between
componentsusuallyis asignof baddesignandshouldbe
removedanyway. Whena cyclic dependency is present,
it mustbebrokenby changingtheimplementationof one
componentto useaninterfacefrom anunrelatedcompo-
nentwhile theotherclassimplementsthis interface.The
componentsthenboth dependon the unrelatedcompo-
nentbut notoneachother. Thedependency checkis per-
formed by the verifier and translator.

We usedSun’s JRE1.3.1_02for Linux to obtainthe
transitiveclosureof thedepends-onrelationstartingwith
java.lang.Object. The implementationdependency con-
sistsof 625classes;theinterfacedependency consistsof
25 classes.This means,that eachcomponentthat uses
the Object class(i.e., every component)dependson at
least25 classesfrom the JDK. We think, that even 25

classesarea too broadfoundationfor OS components
and define a compatibility relation that allows to
exchange the components.

Compatibility . Thewholesystemis build outof compo-
nents.It is necessaryto be able to improve andextend
one componentwithout changingall componentsthat
dependon this component.Only a componentB that is
compatibleto componentA canbesubstitutedfor A. A
componentB is binarycompatibleto acomponentA, if
• for eachclass/interfaceCA of A thereis a correspond-

ing class/interface CB in component B
• class/interface CB is binary compatibleto classCA

accordingto thedefinitiongivenin the“JavaLanguage
Specification” [26] Chapter 13.

When a binary compatible componentis also a
semanticsupersetof the original component,it can be
substitutedfor theoriginal componentwithout affecting
the functionality of the system.

JDK. TheJDK is implementedasa normalcomponent.
Different implementationsand versionscan be used.
Someclassesof theJDK mustaccessinformationthatis
only availablein theruntimesystem.TheclassClass is
anexample.This informationis obtainedby usingapor-
tal to DomainZero.In otherwords,wherea traditional
JDK implementationwoulduseanativemethod,JX uses
a normalmethodthat invokesa serviceof DomainZero
via a portal. All of our currentcomponentsusea JDK
implementationthatis a subsetof a full JDK and,there-
fore, can also be used in a domain that loads a full JDK.

Interface invocation.Non-cyclic dependenciesandthe
compilation of whole componentsopensup a way to
compile very efficient interface invocations.Usually,
interfaceinvocationsareaproblembecauseit is notpos-
sible to usea fixedindex into a methodtableto find the
interfacemethod.Whendifferentclassesimplementthe
interface,themethodcanbeatdifferentpositionsin their
methodtables.There exists somework to reducethe
overheadin a systemthat doesnot imposeour restric-
tions[1]. In ourtranslatorweuseanapproachthatis sim-
ilar to selectorcoloring [20]. It makesinterfaceinvoca-
tionsasfastasmethodinvocationsat thecostof (consid-
erably) larger method tables.

Thesizeof thex86machinecodein thecompleteJX
systemis 1,010,752bytes,which was translatedfrom
230,421bytesof bytecode.Themethodtablesconsume
630,388bytes.Thesenumbersshow that it would be
worthwhile to use a compressiontechnique for the
methodtablesor acompletelydifferentinterfaceinvoca-
tion mechanism.Oneshouldkeepin mind, that a tech-
nique as describedin [1] has an average-caseperfor-
mancenearto avirtual invocation,but it maybedifficult

to analyzethe worst-casebehavior of the resultingsys-
tem, because of the use of a caching data structure.

2.5 Memory management

Protectionis basedon the use of a type-safelan-
guage.Thusan MMU is not necessary. The whole sys-
tem, including all applications,runs in one physical
addressspace.This makesthesystemideally suitedfor
smalldevicesthatlackanMMU. But it alsoleadsto sev-
eral problems.In a traditional systemfragmentationis
notanissuefor theuser-level memoryallocator, because
allocated,but unusedmemory, is pagedto disk. In JX
unusedmemoryis wastedmain memory. So we facea
similar problemaskernelmemoryallocatorsin UNIX,
where kernel memory usually also is not pagedand
thereforelimited. In UNIX a kernelmemoryallocatoris
usedfor vnodes,procstructures,andothersmallobjects.
In contrastto this the JX kernel doesnot createmany
small objects.It allocatesmemoryfor a domain’s heap
andthesmallobjectslive in theheap.Theheapis man-
agedby agarbagecollector. In otherwords,theJX mem-
ory managementhastwo levels, a global management,
which mustcopewith largeobjectsandavoid fragmen-
tation, and a domain-localgarbage-collectedmemory.
Theglobalmemoryis managedusingabitmapallocator
[46]. This allocatorwaseasyto implement,it automati-
cally joins freeareas,andit hasavery low memoryfoot-
print: Using 1024-byte blocks and managing about
128MBytes or 116977 blocks, the overheadis only
14622bytesor 15 blocks or 0.01 percent.However, it
shouldnotbetoocomplicatedto useadifferentallocator.

To give up the MMU meansthat several of their
responsibilities (besides protection) must be imple-
mentedin software.Oneexampleis the stackoverflow
detection,anotheronethe null pointerdetection.Stack
overflow detectionis implementedin JX by insertinga
stacksizecheckat thebeginningof eachmethod.This is
feasible,becausethe requiredsize of a stackframe is
known beforethemethodis executed.Thesizecheckhas
areserve, in casetheJavamethodmusttrapto a runtime
function in DomainZero,such as checkcast. The null
pointercheckcurrentlyis implementedusingthedebug
systemof thePentiumprocessor. It canbeprogrammed
to raiseanexceptionwhendataor codeataddresszerois
accessed.Onarchitecturesthatdonotprovidesuchafea-
ture, the compiler insertsa null-pointercheckbeforea
reference is used.

A domain has two memory areas:an area where
objectsmaybemovedandanareawherethey arefixed.
In thefuture,a singleareamaysuffice,but thenall data
structuresthat areusedby a domainmustbe movable.
Currently, the fixed areacontainsthe code and class
information,the threadcontrolblocksandstacks.Mov-

ing theseobjectsrequiresanextensionof thesystem:all
pointersto theseobjectsmustbe known to the GC and
updated;for example,whenmoving a stack,the frame
pointers must be adjusted.

2.6 Verif ier and Translator

The verifier is an importantpart of JX. All codeis
verified before it is translatedto native codeand exe-
cuted.The verifier first performsa standardbytecode
verification [48]. It then verifies an upperlimit for the
executiontimesof the interrupthandlersandthesched-
uler methods (Sec. 2.8) [2].

Thetranslatoris responsiblefor translatingbytecode
to machinecode,which in our current systemis x86
code. Machine code can either be allocated in the
domain’s fixedmemoryor in DomainZero’s fixedmem-
ory. Installingit in DomainZeroallows to sharethecode
between domains.

2.7 Device Drivers

An investigationof theLinux kernelhasshown that
most bugs are found in device drivers [13]. Because
device drivers will profit most from being written in a
type-safelanguage,all JX device driversarewritten in
Java.They useDeviceMemory to accesstheregistersof a
device andthememorythat is availableon a device; for
example,a framebuffer. Onsomearchitecturesthereare
specialinstructionsto accessthe I/O bus; for example,
the in andout processorinstructionsof the x86. These
instructionsare available via a fast portal of Domain-
Zero. As other fast portals, theseinvocationscan be
inlined by the translator.

DMA. Mostdriversfor high-throughputdeviceswill use
busmasterDMA to transferdata.Thesedrivers, or at
leastthepart thataccessestheDMA hardware,mustbe
trusted.

Interrupts. Usinga portalof DomainZero,device driv-
erscanregisteranobjectthatcontainsa handleInterrupt
method. An interrupt is handledby invoking the han-
dleInterrupt methodof the previously installedinterrupt
handlerobject.The methodis executedin a dedicated
threadwhile interruptson the interruptedCPU aredis-
abled.Thiswouldbecalledafirst-level interrupthandler
in aconventionaloperatingsystem.To guaranteethatthe
handlercan not block the systemforever, the verifier
checksall classesthat implementthe InterruptHandler
interface.It guaranteesthat the handleInterrupt method
doesnot exceeda certaintime limit. To avoid undecid-
ableproblems,only a simplecodestructureis allowed
(linear code, loops with constantbound and no write
accessto the loop variableinsidethe loop). A handleIn-
terrupt methodusuallyacknowledgestheinterruptat the

device andunblocksa threadthat handlesthe interrupt
asynchronously.

We do not allow device driversto disableinterrupts
outside the interrupt handler. Drivers usually disable
interruptsasa cheapway to avoid raceconditionswith
theinterrupthandler. Codethatrunswith interruptsdis-
abledin a UNIX kernel is not allowed to block, asthis
would result in a deadlock.Using locks also is not an
option, becausethe interrupt handler - running with
interrupts disabled - should not block. We use the
abstractionof anAtomicVariable to solvetheseproblems.
An AtomicVariable containsavalue,thatcanbechanged
andaccessedusingset andget methods.Furthermore,it
providesa methodto atomicallycompareits valuewith
a parameterandblock if the valuesareequal.Another
methodatomicallysetsthevalueandunblocksa thread.
To guaranteeatomicity the implementationof Atomic-
Variable currentlydisablesinterruptson a uniprocessor
andusesspinlockson a multiprocessor. Using Atomic-
Variablesweimplemented,for example,aproducer/con-
sumer list for the network protocol stack.

2.8 Scheduling

Thereis acommonexperiencethattheschedulerhas
alargeimpactonthesystem’sperformance.Ontheother
hand, no single scheduler is perfect for all applications.

Insteadof providing a configurationinterfaceto the
schedulerwefollow ourmethodologyof allowing auser
to completelyreplaceanimplementation,in thiscasethe
scheduler. Eachdomainmayalsoprovide its own sched-
uler, optimized for its particular requirements.

Theschedulercanbeusedin severalconfigurations:
• First, thereis a schedulerthat is build into thekernel.

This scheduleris only usedfor performanceanalysis,
becauseit is writtenin C andcannotbereplacedatrun
time.

• Thekernelcanbecompiledwithout thebuilt-in sched-
uler. Thenall schedulingdecisionsleadto the invoca-
tion of a schedulerimplementationwhich is written in
Java.In thisconfigurationthereis one(Java)scheduler
that schedules all threads of all domains.

• The most commonconfiguration,however, is a two-
level scheduling.Theglobalschedulerdoesnotsched-
ule threads, as in the previous configuration, but
domains.Insteadof activatinganapplicationthread,it
activates the scheduler thread of a domain. This
domain-localscheduleris responsiblefor selectingthe
next applicationthreadto run. The global scheduler
knows all domain-localschedulersanda domain-local
schedulerhasa portal to the global scheduler. On a
multiprocessorthereis oneglobal schedulerper pro-

cessorandthedomainspossesareferenceto theglobal
schedulersof theprocessorsonwhichthey areallowed
to run.

Theglobalschedulermustbetrustedby all domains.
The global schedulerdoesnot needto trust a domain-
localscheduler. Thismeans,thattheglobalschedulercan
not assume,that an invocation of the local scheduler
returns after a certain time.

To preventonedomainmonopolizingtheprocessor,
thecomputationcanbe interruptedby a timer interrupt.
The timer interruptleadsto the invocationof theglobal
scheduler. This schedulerfirst informs the schedulerof
the interrupted domain about the pre-emption. It
switchesto thedomainschedulerthreadandinvokesthe
scheduler’s methodpreempted(). During the execution
of this method the interrupts are disabled.An upper
boundfor theexecutiontimeof thismethodhasbeenver-
ified duringtheverificationphase.Whenthemethodpre-
empted() returns,thesystemswitchesbackto thethread
of the global scheduler. The global scheduler then
decides,whichdomainto runnext activatesthedomain-
local schedulerusing the methodactivated(). For each
CPUthatcanbeusedby adomainthelocalschedulerof
thedomainhasaCPU portal.It activatesthenext runna-
ble threadby calling the methodswitchTo() at the CPU
portal. The switchTo() methodcan only be called by a
threadthatrunson theCPUwhich is representedby the
CPU portal.Theglobalschedulerdoesnot needto wait
for themethodactivated() to finish.Thus,anuppertime
bound for method activated() is not necessary. This
methodmakestheschedulingdecisionandit canbearbi-
trarily complex.

If a localschedulerneedssmallertime-slicesthanthe
globalscheduler, thelocalschedulermustbeinterrupted
without being pre-empted.For this purpose,the local
schedulerhas a method interrupted() which is called
before the time-slice is fully consumed.This method
operates similar to the methodactivated().

Becauseour scheduleris implementedoutsidethe
microkernelandthereareoperationsof themicrokernel
thataffect scheduling,for example,threadhandoff dur-
ing a portal invocation,we facea similar situationasa
user-level threadimplementationon a UNIX-lik e sys-
tem. A well-known solution are scheduleractivations
[3], which notify the user-level scheduleraboutevents
insidethekernel,suchasI/O operations.JX usesasimi-
lar approach,although there are very few scheduling
related operations inside the kernel. Scheduling is
affected when a portal method is invoked. First, the
schedulerof the calling domain is informed, that one
threadperformsa portal call. The schedulercan now
delaytheportalcall, if thereis any otherrunnablethread
in this domain.But it canaswell handoff theprocessor
to thetargetdomain.Theschedulerof theservicedomain

is notifiedof theincomingportalcall andcaneitheracti-
vatetheservicethreador letanotherthreadof thedomain
run. Not being forced to schedulethe service thread
immediatelyis essentialfor theimplementationof anon-
preemptive domain-local scheduler.

Thisextracommunicationis not for free.Thetimeof
a portal call increasesfrom 650 cycles(seeTable1) to
920-960cyclesif eitherthecalling domainor thecalled
domainis informed.If bothinvolveddomainschedulers
are informed about the portal call the required time
increases to 1180 cycles.

2.9 Locking and condition variables

Kernel-level locking. Therearevery few datastructures
that must be protectedby locks inside DomainZero.
Someof themareaccessedby only onedomainandcan
be locked by a domain-specificlock. Others,for exam-
ple, thedomainmanagementdatastructures,needaglo-
bal lock. Becausetheaccessto thisdatais veryshort,an
implementationthat disablesinterruptson a uniproces-
sor and uses spinlocks on a multiprocessor is sufficient.

Domain-level locking. Domains are responsible for
synchronizingaccessto objectsby their own threads.
Becausethereare no objectssharedbetweendomains
thereis noneedfor inter-domainlockingof objects.Java
providestwo facilitiesfor threadsynchronization:mutex
locks andconditionvariables.Whentranslatinga com-
ponentto native code,an accessto sucha constructis
redirectedto auser-suppliedsynchronizationclass.How
this classis implementedcanbe decidedby the user. It
canprovidenolockingatall or it canimplementmutexes
and condition variables by communicatingwith the
(domain-local)scheduler. Every objectcanbeusedasa
monitor(mutex lock),but veryfew actuallyare.To avoid
allocatinga monitordatastructurefor every object,tra-
ditional JVMs either use a hashtableto go from the
object referenceto the monitor or use an additional
pointerin theobjectheader. Thehashtablevariantis slow
and is rarely used in today’s JVMs. The additional
pointerrequiresthat the object layout mustbe changed
andtheobjectheaderbeaccessibleto thelockingsystem.
Becausethe usercan provide an own implementation,
thesetwo implementations,or a completelyapplication-
specific one, can be used.

Inter -domain locking. Memory objects allow sharing
of databetweendomains.JX providesno specialinter-
domainlockingmechanisms.Whentwodomainswantto
synchronize,they canusea portalcall. We did not need
sucha featureyet,becausethecodethatpassesmemory
betweendomainsdoesit by explicitly revokingaccessto
the memory.

3 Application Scenarios:Comparing JX to
a Traditional Operating System

JX containsafile systemcom-
ponentthat is a port of theLinux
ext2 file systemto Java [45]. Fig-
ure 2 shows the configuration,
where file system and buffer
cacheare cleanly separatedinto
different components.The gray
areasdenoteprotectiondomains
andthewhite boxescomponents.
The file systemusesthe Buffer-
Cache interface to accessdisk
blocks.To readandwrite blocks
to a disk the buffer cacheimple-
mentationusesa referenceto a
device that implements the
BlockIO interface.Thefile system
and buffer cachecomponentsdo
not use locking. They require a
non-preemptive scheduler to be installed in the domain.

To evaluate the performanceof JX we used two
benchmarks:the IOZonebenchmark[44] to assessfile
systemperformanceandahomebrewedratebenchmark
to assesstheperformanceof thenetwork stackandNFS
server. Theratebenchmarksendsgetattr requeststo the
NFSserver asfastaspossibleandmeasurestheachiev-
ablerequestrate.As JX is apureJavasystem,wecannot
usetheoriginal IOZoneprogram,which is written in C.
Thus we ported IOZone to Java. The JX resultswere
obtainedusing our Java versionand the Linux results
were obtained using the original IOZone.

Thehardwareconsistsof thefollowing components:
• Thesystem-under-test:PIII 500MHzwith 256MBytes

RAM anda100MBit/s 3C905BEthernetcardrunning
Suse Linux 7.3 with kernel 2.4.0 or JX.

• Theclient for theNFSbenchmark:aPIII 1GHzwith a
100MBit/s 3C905BEthernetcardrunningSuseLinux
7.3.

• A 100MBit/s hub that connects the two systems.
Figure 3 shows the resultsof running the IOZone

reread benchmark on Linux.
Our Java port of the IOZone contains the write,

rewrite, read,andrereadpartsof theoriginalbenchmark.
In thefollowing discussionweonly usetherereadpartof
thebenchmark.The readbenchmarkmeasuresthe time
to readafile by readingfixed-lengthrecords.Thereread
benchmarkmeasuresthe time for a secondreadpass.
When the file is smallerthan the buffer cacheall data
comesfrom the cache.Oncea disk accessis involved,
disk andPCI busdatatransfertimesdominatetheresult
andno conclusionsabouttheperformanceof JX canbe
drawn. To avoid theseeffects we only use the reread
benchmarkwith a maximum file size of 512 KBytes,
which meansthat thefile completelyfits into thebuffer
cache.The JX numbersare the mean of 50 runs of
IOZone.The standarddeviation was lessthan3%. For
time measurementson JX we usedthe Pentiumtimes-
tamp counterwhich has a resolutionof 2 ns on our
system.

Figure 2 shows the configurationof the JX system
whentheIOZonebenchmarkisexecuted.Figure4shows
theresultsof thebenchmark.Figure5 comparesJX per-
formanceto theLinux performance.Most combinations
of file sizeandrecordsizegive a performancebetween
20%and50%of theLinux performance.Linux is espe-
cially goodatreadingafile usingasmallrecordsize.The
performanceof thisJX configurationis ratherinsensitive
to therecordsize.Wewill explainhow we improvedthe
performance of JX in the next section.

Another benchmarkis the rate benchmark,which
measuresthe achievable NFS requestrate by sending
getattr requeststo the NFS server. Figure 6 shows the
domainstructureof theNFSserver: all componentsare
placedin onedomain,which is a typical configuration

JavaFS

iozone

Cache

IDE

BufferCache

BlockIO

BlockIO

FileSystem

FileSystem

Figure 2: IOZone
configuration

Figure 3: Linux IOZone performance Figure 4: JX IOZone: multi-domain configuration

0

80

160

240

320

400

480

560

filesize in KBytes

th
ro

ug
hp

ut
 in

 M
B

yt
es

/s
ec

4 8 16 32 64 128 256 512
0

80

160

240

320

400

480

560

filesize in KBytes

th
ro

ug
hp

ut
 in

 M
B

yt
es

/s
ec

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

4
8
16
32
64
128
256
512

record size in KBytes

for adedicatedNFSserver. Figure8 showstheresultsof
running the rate benchmarkwith a Linux NFS server
(both kernel and user-level NFS) and with a JX NFS
server. Therearedropsin theJX requestratethatoccur
veryperiodically. To seewhatis goingon in theJX NFS
server, we collectedthreadswitch informationandcre-
ateda threadactivity diagram.Figure7 shows this dia-
gram.We seeaninitialization phasewhich is completed
six secondsafterstartup.Shortlyafterstartupa periodic
thread(ID 2.12)starts,which is the interrupthandlerof
the real-timeclock. But the importantactivity startsat
about 17 seconds.The CPU is switched between
“IRQThread11”,“Etherpacket-Queue”,“NFSProc”,and
“Idle” thread.This is theactivity during theratebench-
mark.Packetsarereceived andput into a queueby the
first-level interrupt handler of the network interface
“IRQThread11” (ID 2.14). This unblocks the “Ether-
packet-Queue”(ID 2.19), which processesthe packet

and finally puts it into a UDP packet queue. This
unblocksthe “NFSProc” (ID 2.27) thread,which pro-
cessestheNFSpacketandaccessesthefile system.This
is donein thesamethread,becausetheNFScomponent
andthe file systemarecollocated.Thena reply is sent
andall threadsblock, which wakesup the“Idle” thread
(ID 0.1). The sharpdropsin the requestrateof the JX
NFSserver in Figure8 correspondto theGC thread(ID
2.1) that runsfor about100 millisecondswithout being
interrupted.It runsthatlongbecauseneitherthegarbage
collector nor the NFS server are optimized.Especially
the RPClayer createsmany objectsduring RPCpacket
processing.TheGCisnotinterrupted,becauseit disables
interruptsasasafetyprecautionin thecurrentimplemen-
tation.The pausescould be avoidedby usingan incre-
mentalGC [6], which allows theGC threadto run con-
currently with threads that modify the heap.

Figure 5: JX vs. Linux: multi-domain configuration

0

10

20

30

40

50

60

70

80

90

100

filesize in KBytes

ac
hi

ev
ed

 th
ro

ug
hp

ut
 in

 p
er

ce
nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

Figure 7: Thread activity during the rate benchmark

Idle 0.1
DomainZero:InitialThread 0.3

SVC-jx/zero/BootFS 0.4
SVC-jx/zero/ComponentManager 0.5

SVC-jx/zero/DebugSupport 0.6
SVC-jx/zero/DomainManager 0.7

SVC-jx/zero/DebugSupport 0.8
SVC-jx/zero/Naming 0.9

Init-main 1.2
GC 2.1

NFS-main 2.2
jx/devices/pci/PCIGod 2.3

timerpc/StartTimer 2.4
jx/net/StartNetDevice 2.5

jx/net/protocols/StartNetworkProtocols 2.6
test/fs/IDEDomain 2.7

FSDomain-Main 2.8
test/nfs/NFSDomain 2.9

SVC-jx/devices/pci/PCIAccess 2.10
TimerManager 2.11

IRQThread8 2.12
SVC-jx/timer/TimerManager 2.13

IRQThread11 2.14
IDE-2nd-IRQ ide0 2.15
IDE-2nd-IRQ ide1 2.16

IRQThread14 2.17
SVC-jx/devices/net/NetworkDevice 2.18

Etherpacket-Queue 2.19
SVC-jx/net/NetInit 2.20

RPC-Receiver 2.21
SVC-bioide/Partition 2.23

SVC-jx/fs/FS 2.24
SVC-jx/fs/FileSystem 2.25

MountProc 2.26
NFSProc 2.27
RPCBind 2.28

0 2 4 6 8 10 12 14 16 18 20 22
Time in Seconds

JavaFS

Cache

IDE

BlockIO

BlockIO

FileSystem

FileSystem

NFS RPC

UDP

IP

Ether

3C905

UDPSender

IPSender

EtherSender

NetworkDevice

Figure 6: JXNFSconfiguration

BufferCache

Figure 8: JX NFS performance (rate benchmark)

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

re
qu

es
t/s

ec
on

d

Time in seconds

JX

Linux (kernel NFS)

Linux (user NFS)

4 Optimizations

JX provides a wide rangeof flexible configuration
options.Dependingon the intendeduseof the system
severalfeaturescanbedisabledto enhanceperformance.

Figures9 through14show theresultsof runningthe
Java IOZonebenchmarkon JX with variousconfigura-
tion options.Theseresultsarediscussedin furtherdetail
below. The legendfor the figuresindicatesthe specific
configurationoptionsusedin eachcase.Thedefaultcon-
figurationusedin Figure3 wasMNNSCR,whichmeans
that the configurationoptionsusedweremulti-domain,
no inlining, no inlined memory access,safety checks
enabled,memory revocationcheckby disabling inter-
rupts,andaJavaround-robinscheduler. At theendof this
sectionwewill selectthefastestconfigurationandrepeat
the comparison to Linux.

Themodificationsdescribedin this sectionsarepure
configurations. Not a single line of code is modified.

4.1 Domain structure

How the systemis structuredinto domainsdeter-
minescommunicationoverheadsandthusaffectsperfor-
mance.For maximal performance,componentsshould
beplacedin thesamedomain.This removesportalcom-
municationoverhead.Figure9 shows the improvement
of placingall componentsinto asingledomain.Theper-
formanceimprovementis especiallyvisible whenusing
small record sizes, becausethen many invocations
betweentheIOZonecomponentandthefile systemcom-
ponenttake place.The larger improvementin the 4KB
file size/ 4KB recordsizecanbe explainedby the fact
thattheoverheadof aportalcall is relativelyconstantand
the4KB testis very fast,becauseit completelyoperates
in theL1 cache.Sotheportalcall time makesup a con-
siderablepartof thecompletetime.Thecontraryis true
for largefile sizes:theabsolutethroughputis lower due
to processorcachemissesandthesavedtime of thepor-
tal call is only a small fraction of the completetime.
Within onefile sizetheeffectalsobecomessmallerwith
increasingrecord sizes.This can be explained by the
decreasing number of performed portal calls.

4.2 Translator configuration

The translatorperformsseveral optimizations.This
sectioninvestigatesthe performanceimpactof eachof
these optimizations. The optimizations are inlining,
inlining of fastportals,andeliminationof safetychecks.

4.2.1 Inlining

Oneof themostimportantoptimizationsin anobject-
orientedsystemis inlining. Wecurrentlyinline only non-
virtual methods(final, static, or private). We plan to

inline alsovirtual methodsthat arenot overridden,but
this would requirea recompilationwhen,at a latertime,
a class that overrides the method is loaded into the
domain. Figure 10 shows the effect of inlining.

4.2.2 Inlining of fast portals

A fastportal interface(seeSec.2.2) thatis known to
the translatorcan also be inlined. To be able to inline
thesemethodsthat are written in C or assemblerthe
translatormustknow their semantics.Sincewe did not
wantto wire thesesemanticstoodeepinto thetranslator,
wedevelopedapluginarchitecture.A translatorpluginis
responsiblefor translatingtheinvocationsof themethods
of a specificfastportal interface.It caneithergenerate
specialcodeor fall backto theinvocationof theDomain-
Zero method.

We did expecta considerableperformanceimprove-
ment but as canbe seenin Figure 11 the differenceis
very small.We assume,that theseareinstructioncache
effects: when a memory accessis inlined the code is
largerthanthecodethat is generatedfor a functioncall.
This is dueto rangechecksandrevocationchecksthat
must be emitted in front of each memory access.

4.2.3 Safety checks

Safetychecks,suchasstacksizecheckandbounds
checksfor arraysandmemoryobjectscanbeomittedon
aper-domainbasis.Translatingadomainwithoutchecks
is equivalent to the traditional OS approachof hoping
that the kernelcontainsno bugs.The systemis now as
unsafeasa kernelthat is written in C. Figure12 shows
thatswitchingoff safetycheckscangive a performance
improvement of about 10 percent.

4.3 Memory r evocation

Portalsandmemoryobjectsaretheonly objectsthat
can be sharedbetweendomains.They are capabilities
andan importantfunctionalityof capabilitiesis revoca-
tion.Portalrevocationis implementedby checkingaflag
beforetheportalmethodis invoked.This is aninexpen-
sive operationcomparedto thewholeportal invocation.
Revocationof memoryobjectsis morecritical because
theoperationsof memoryobjects- readingandwriting
the memory- arevery fastand frequentlyusedopera-
tions.The situationis even moreinvolved,becausethe
checkof therevocationflagandthememoryaccesshave
to beperformedasanatomicoperation.JX canbecon-
figuredto usedifferent implementationsof this revoca-
tion check:
• NoCheck: No checkat all, which meansrevocationis

not supported.

Figure 9: Domain structure:SNNSCR vs.MNNSCR Figure 10: Inlining: SINSCR vs. SNNSCR

Figure 11: Memory access inlining:SIFSNR vs. SINSNR Figure 12: Safety checks: SIFNCR vs. SIFSCR

Figure 13c:ATOMIC revocation: SINSAR vs. SIFSCR

Figure 14a:Simple Java Scheduler: MIFSNI vs.MIFSNR

Figure 14b: Kernel scheduler: MIFSNC vs. MIFSNI

Figure 13a:No revocation: SIFSNR vs. SIFSCR

Figure 13b: SPIN revocation: SIFSSR vs. SIFSCR

0

5
10

15

20

25

30

35
40

45

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512 0

5
10

15

20

25

filesize in KBytes
im

pr
ov

em
en

t i
n

pe
rc

en
t

4 8 16 32 64 128 256 512

0

5
10

15

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

-10

-5

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

-20

-15
-10

-5

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

0

5

filesize in KBytesim
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

-10

-5
0

5

filesize in KBytesim
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

-5

0
5

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

0

5
10

15

20

filesize in KBytes

im
pr

ov
em

en
t i

n
pe

rc
en

t

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

Legend for all figur es on this page:
Encoding of the measured configuration:
1. domain structure: S (single domain), M (multi domain)
2. inlining: I (inlining), N (no inlining)
3. memory access: F (inlined memory access), N (no inlined memory access)
4. safety checks: S (safety checks enabled), N (safety checks disabled)
5. memory revocation:N (no memory revocation), C (disable interrupts), S (spinlock), A (atomic code)
6. scheduling: C (microkernel scheduler), R (Java RR scheduler), I (Java RR invisible portals)

• CLI : Savestheinterrupt-enableflaganddisablesinter-
ruptsbeforethememoryaccessandrestorestheinter-
rupt-enable flag afterwards.

• SPIN: In additionto disablinginterruptsa spinlockis
usedto maketheoperationatomiconamultiprocessor.

• ATOMIC : The JX kernel containsa mechanismto
avoid lockingatall onauniprocessor. Theatomiccode
is placedin a dedicatedmemoryarea.Whenthe low-
level partof the interruptsystemdetectsthatan inter-
ruptoccurredinsidethis rangetheinterruptedthreadis
advancedto theendof theatomicprocedure.Thistech-
niqueis fast in the commoncasebut incursthe over-
headof an additional rangecheckof the instruction
pointer in the interrupt handler. It increasesinterrupt
latency whenthe interruptoccurredinsidethe atomic
procedure,becausethe proceduremust first be fin-
ished.But themostseveredownsideof this technique
is, thatit inhibits inlining of memoryaccesses.Similar
techniques are described in [9], [36], [35], [41].

Figure13ashowsthechangein performancewhenno
revocationchecksare performed.This configurationis
slightly slower than a configurationthat usedthe CLI
methodfor revocationcheck.Wecanonlyexplainthisby
code cache effects.

Usingspinlocksaddsanadditionaloverhead(Figure
13b).Despitesomeimprovementsin a formerversionof
JX usingatomiccodecouldnot improvetheIOZoneper-
formance of the measured system (Figure 13c).

4.4 Cost of the open scheduling framework

Schedulingin JX can be accomplishedwith user-
definedschedulers(seeSec.2.8). The communication
betweentheglobalschedulerandthedomainschedulers
is basedon interfaces.Each domain schedulermust
implementa certaininterfaceif it wantsto be informed
aboutspecialevents.If a schedulerdoesnot needall the
provided information, it doesnot implementthe corre-
spondinginterface.This reducesthe numberof events
that must be delivered during a portal call from the
microkernel to the Java scheduler.

In theconfigurationspresentedup to now we useda
simpleround-robinscheduler(RR) in eachdomain.The
domainscheduleris informedabouteveryevent,regard-
less whetherbeing interestedin it or not. Figure 14a
showsthebenefitof usingaschedulerwhichimplements
only the interfacesneededfor the round-robinstrategy
(RR invisibleportals)andis not informedwhena thread
switch occurred due to a portal call.

As alreadymentioned,thereis a schedulerbuilt into
themicrokernel.Thisscheduleris implementedin C and
cannot beexchangedat run time.Thereforethis typeof
schedulingis mainlyusedduringdevelopmentor perfor-
manceanalysis.The advantageof this scheduleris that

thereareno callsto theJava level necessary. Figure14b
showsthatthereis norelevantperformancedifferencein
IOZoneperformancebetweenthecoreschedulerandthe
Java scheduler with invisible portals.

4.5 Summary: Fastest safe configuration

After we explainedall theoptimizationswe cannow
again comparethe performanceof JX with the Linux
performance.The most importantoptimizationsarethe
useof a singledomain,inlining, andtheuseof thecore
scheduleror theJavaschedulerwith invisibleportals.We
configuredthe JX systemto make revocation checks
usingCLI, useasingledomain,usethekernelscheduler,
enabledinlining, anddisabledinlining of memorymeth-
ods.With this configurationwe achieveda performance
betweenabout 40% and 100% of Linux performance
(Figure 15). By disablingsafetycheckswe were even
able to achieve between 50% and 120% of Linux
performance.

5 Related work

Thereareseveralareasof relatedwork. Thefirst two
areasareconcernedwith generalprincipalsof structur-
ing an operatingsystem:extensibility and reusability
acrosssystemconfigurations.The other areasare lan-
guage-basedoperatingsystemsandespeciallyJavaoper-
ating systems.

Extensibility. With respectto extensibility JX is similar
to L4 [33], Pebble[25], andtheExokernel[24] in thatit
triesto reducethefixed,staticpartof thekernel.It is dif-
ferent from systemslike SPIN [8] and VINO [40],
becausethesesystemsonly allow agradualmodification
of the systemservice,using spindles(SPIN) or grafts
(VINO). JX allows its completereplacement.This is
necessaryin somecasesandin mostcaseswill giveabet-
ter performance,becausemoresuitablealgorithmscan

Figure 15:JX vs. Linux: Fastest configuration (SINSCC)

0

10

20

30

40

50

60

70

80

90

100

filesize in KBytes

ac
hi

ev
ed

 th
ro

ug
hp

ut
 in

 p
er

ce
nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

be usedinside the service.A systemservicewith an
extensioninterfacewill only work aslong astheexten-
sionsfit into a certainpatternthatwasenvisionedby the
designerof the interface.A moreradicalchangeof the
service is not possible.

An important differencebetweenJX and previous
extensiblesystemsis, that in JX the translatoris partof
the operatingsystem.This allows several optimizations
as described in the paper.

Modularity and pr otection.Orthogonality between
modularityandprotectionwasbroughtforwardby Lipto
[22]. TheOSF[15] attackedthespecificproblemof col-
locatingtheOSF/1UNIX server, which wasrun on top
of the Mach microkernel, with the microkernel. They
wereableto achieveaperformanceonly 8%slower than
a monolithic UNIX. The special caseof code reuse
betweenthe kernel and userenvironmentwas investi-
gatedin the Rialto system[21]. Rialto usestwo inter-
faces,averyefficientonefor collocatedcomponents(for
examplethembuf [34] interface)andanotheronewhen
aprotectionboundarymustbecrossed(thenormalread/
write interface).We think that this hindersreusability
and complicatesthe implementationof components,
especiallyas there exist techniquesto build “unified”
interfacesin MMU-basedsystems[23], and,usingour
memory objects, also in language-based systems.

There is a considerableamountof work in single
addressspaceoperatingsystems,suchasOpal [11] and
Mungi [29]. Mostof thesesystemsusehardwareprotec-
tion, dependon themechanismsthatareprovidedby the
hardware, and must structurethe systemaccordingly,
which makes their problems much different from ours.

Language-based OS.Usingasafelanguageasaprotec-
tion mechanismis an old idea.A famousearly system
wasthePilot [38], which useda languageandbytecode
instructionsetcalledMesa[30], an instructionsetfor a
stackmachine.Pilot was not designedas a multi-user
operatingsystem.More recentoperatingsystemsthat
usesafelanguagesareSPIN [8], which usesModula3,
and Oberon[47], which usesthe Oberonlanguage,a
descendant of Modula2.

Java OS.The first Java operatingsystemwas JavaOS
from Sun [39]. We do not know any publishedperfor-
mancedata for JavaOS,but becauseit usedan inter-
preter, weassumethatit wasratherslow. Furthermore,it
did only provideasingleprotectiondomain.Thismakes
sense,becauseJavaOSwas plannedto be a thin-client
OS.However, besidesJX,JavaOSis theonly systemthat
triedto implementthecompleteOSfunctionalityin Java.
JKernel[28], the MVM [16], andKaffeOS[4] aresys-
temsthat allow isolatedapplicationsto run in a single
JVM. Thesesystemsareno operatingsystems,but con-

tain several interestingideas.JKernelis a pureJava pro-
gramandusesthenamespacesthatarecreatedby using
differentclassloaders,asa meansof isolation.JKernel
concentrateson theseveralaspectshow to implementa
capabilitymechanismin pureJava. It relieson theJVM
andOSfor resourcemanagement.TheMVM isanexten-
sion of Sun’s HotSpotJVM that allows running many
Java applicationsin oneJVM andgive the applications
the illusion of having a JVM of their own. It allows to
sharebytecodeandJIT-compiledcodebetweenapplica-
tions,thusreducingstartuptime.Therearenomeansfor
resourcecontrolandnofastcommunicationmechanisms
for applicationsinsideoneMVM. KaffeOSis anexten-
sionof theKaffe JVM. KaffeOSusesa processabstrac-
tion thatis similar to UNIX, with kernel-modecodeand
user-modecode,whereasJX is more structuredlike a
multi-server microkernel system. Communication
betweenprocessesin KaffeOS is doneusing a shared
heap.Ourgoalwasto avoid sharingbetweendomainsas
muchaspossibleandwe, therefore,useRPCfor inter-
domaincommunication.Furthermore,KaffeOSis based
on theKaffe JVM, which limits theoverall performance
and the amountof performanceoptimizationsthat are
possible in a custom-build translator like ours.

These three systemsdo not have the robustness
advantagesof a 100%Java OS, becausethey rely on a
traditionalOSwhich is written in a low-level language,
usually C.

6 Conclusion and future work

WedescribedtheJX operatingsystemandits perfor-
mance.While beingableto reachaperformanceof about
50% to 100%of Linux in a file systembenchmarkin a
monolithic configuration,the systemcan be usedin a
more flexible configurationwith a slight performance
degradation.

To deliver our promiseof outperformingtraditional,
UNIX-based operating systems,we have to further
improvethetranslator. Theregisterallocationis still very
simple,which is especiallyunsatisfactoryonaprocessor
with few registers, like the x86.

We plan to refinethememoryobjects.Severaladdi-
tional memory semanticsare possible.Examplesare
copy-on-writememory, a memoryobjectthatrepresents
non-continuouschunks of memory as one memory
object,or a memoryobject that doesnot allow revoca-
tion. All thesesemanticscanbe implementedvery effi-
cientlyusingcompilerplugins.Thecurrentimplementa-
tion doesnotuseanMMU becauseit doesnotneedone.
MMU supportcanbeaddedto thesystemto expandthe
addressspaceor implementa copy-on-write memory.
How thiscomplicatesthearchitectureandits implemen-
tation remains to bee seen.

7 Acknowledgements

We wish to thanktheanonymousreviewersandour
shepherdJasonNiehfor themany commentsthathelped
to improve the paper. FranzHauck and Frank Bellosa
readanearlierversionof thepaperandsuggestedmany
improvements.

8 References

[1] B.Alpern,A.Cocchi,S.J.Fink,D.P.Grove,andD.Lieber.EfficientImplemen-
tationofJavaInterfaces:invokeinterfaceConsideredHarmless.InOOPSLA01',
Oct. 2001.

[2] M. Alt. EinBytecode-VerifierzurVerifikationvonBetriebssystemkomponenten.
Diplomarbeit,availableasDA-I4-2001-10,Univ.of.Erlangen,Dept.ofComp.
Science, Lehrstuhl 4, July 2001.

[3] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. In
ACM Trans. on Computer Systems, 10(1), pp. 53-79, Feb. 1992.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
Resource Management, and Sharing in Java. InProc. of 4th Symposium on
Operating Systems Design & Implementation, Oct. 2000.

[5] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Techniques for
theDesignofJavaOperatingSystems.In2000USENIXAnnualTechnicalCon-
ference, June 2000.

[6] H. G. Baker. List processing in real time on a serial computer. InCommunica-
tions of the ACM, 21(4), pp. 280-294, Apr. 1978.

[7] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight
remoteprocedurecall. In OperatingSystemsReview,23(5),pp.102-113,Dec.
1989.

[8] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C.
Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN
operating system. InProc. of the 15th Symposium on Operating System Princi-
ples, pp. 267-284, Dec. 1995.

[9] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast Mutual Exclusion for Unipro-
cessors. InFifth International Conference on Architectural Support for Pro-
grammingLanguagesandOperatingSystems(ASPLOS-V),pp.223-233,Sep.
1992.

[10] R.Campbell,N. Islam,D.Raila,andP.Madany.DesigningandImplementing
Choices:AnObject-OrientedSysteminC++. InCommunicationsoftheACM,
36(9), pp. 117-126, Sep. 1993.

[11] J.S.Chase,H.M. Levy,M. J.Feeley,andE.D.Lazowska.SharingandProtec-
tioninaSingleAddressSpaceOperatingSystem.InACMTrans.onComputer
Systems, 12(4), pp. 271-307, Nov. 1994.

[12] T. M. Chilimbi.Cache-Conscious Data Structures - Design and Implementa-
tion. Ph.D. thesis, University of Wisconsin-Madison, 1999.

[13] A. Chou,J.-F.Yang,B.Chelf,S.Hallem,andD.Engler.AnEmpiricalStudyof
Operating System Errors. InSymposium on Operating System Principles 01',
2001.

[14] R. P. Colwell, E. F. Gehringer, and E. D. Jensen. Performance effects of archi-
tecturalcomplexity in theintel432.InACMTrans.onComputerSystems,6(3),
pp. 296-339, Aug. 1988.

[15] M.Condict,D.Bolinger,E.McManus,D.Mitchell,andS.Lewontin.Microker-
nel modularity with integrated kernel performance. Technical Report, OSF
Research Institute, Cambridge, MA, Apr. 1994.

[16] G. Czajkowski and L. Daynes. Multitasking without Compromise: A Virtual
Machine Evolution. InProc. of the OOPSLA, pp. 125-138, Oct. 2001.

[17] P. Dasgupta, R. J. LeBlanc, M. Ahamad, and U. Ramachandran. The Clouds
distributedoperatingsystem.In IEEEComputer,24(11),pp.34-44,Nov.1991.

[18] J. B. Dennis and E. C. Van Horn. Programming Semantics for Multipro-
grammed Computations. InCommunications of the ACM, 9(3), pp. 143-155,
Mar. 1966.

[19] Department of Defense.Trusted computer system evaluation criteria (Orange
Book). DOD 5200.28-STD, Dec. 1985.

[20] R.Dixon,T.McKee,P.Schweizer,andM.Vaughan.A FastMethodDispatcher
for CompiledLanguageswith Multiple Inheritance.In Proc.oftheConference
on Object-Oriented Programming Systems, Languages, and Applications, pp.
211-214, 1989.

[21] R.DravesandS.Cutshall.UnifyingtheUserandKernelEnvironments.Techni-
cal Report MSR-TR-97-10, Microsoft Research, Mar. 1997.

[22] P.Druschel,L.L.Peterson,andN.C.Hutchinson.Beyondmicro-kerneldesign:
DecouplingmodularityandprotectioninLipto.InProc.ofTwelfthInternational
Conference on Distributed Computing Systems, pp. 512-520, 1992.

[23] P. Druschel and L. Peterson. Fbufs: A highbandwidth cross-domain transfer
facility.In14thACMSymp.onOperatingSystemPrinciples,pp.189-202,1993.

[24] D. Engler, F. Kaashoek, and J. OToole.Exokernel:AnOperatingSystemArchi-
tectureforApplication-LevelResourceManagement.In'Proc. of the 15th Sympo-
sium on Operating System Principles, pp. 251-266, Dec. 1995.

[25] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz. The Pebble
Component-BasedOperatingSystem.InUSENIX1999AnnualTechnicalCon-
ference, pp. 267-282, June 1999.

[26] J.Gosling,B.Joy,andG.Steele.TheJavaLanguageSpecification.Aug.1996.
[27] G.HamiltonandP.Kougioris.TheSpringNucleus:aMicro-kernelforobjects.

In Proc. of Usenix Summer Conference, pp. 147-159, June 1994.
[28] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. v. Eicken. Imple-

menting Multiple Protection Domains in Java. InProc. of the USENIX Annual
Technical Conference, pp. 259-270, June 1998.

[29] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The Mungi
single-address-space operating system. InSoftware: Practice and Experience,
28(9), pp. 901-928, Aug. 1998.

[30] R.K.JohnssonandJ.D.Wick.AnoverviewoftheMesaprocessorarchitecture.
In ACM Sigplan Notices, 7(4), pp. 20-29, Apr. 1982.

[31] S.R.Kleiman.Vnodes:AnArchitectureforMultipleFileSystemTypesinSun
Unix. InUSENIX Association: Summer Conference Proceedings, 1986.

[32] L4Ka Hazelnut evaluation, http://l4ka.org/projects/hazelnut/eval.asp.
[33] J. Liedtke. Towards Real u-Kernels. InCACM, 39(9), 1996.
[34] M. K. McKusick,K. Bostic,andM. J.Karels.TheDesignandImplementation

of the 4.4BSD Operating System. Addison-Wesley, May 1996.
[35] M. Michael and M. Scott. Nonblocking Algorithms and Preemption-Safe

LockingonMultiprogrammedSharedMemoryMultiprocessors.InJournalof
Parallel and Distributed Computing, 54(2), pp. 162-182, 1998.

[36] D. Mosberger, P. Druschel, and L. L. Peterson. Implementing Atomic
Sequences on Uniprocessors Using Rollforward. InSoftware---Practice and
Experience, 26(1), pp. 1-23, Jan. 1996.

[37] E.I. Organick.AProgrammersViewoftheIntel432System'.McGraw-Hill, 1983.
[38] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R.

McJones,H.G.Murray,andS.C.Purcell.Pilot:An operatingsystemfor aper-
sonalcomputer. InCommunicationsoftheACM,23(2),pp.81-92,ACMPress,
New York, NY, USA, Feb. 1980.

[39] T. Saulpaugh and C. Mirho.Inside the JavaOS Operating System. Addison
Wesley Longman, 1999.

[40] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions. In2nd Symposium on Operating Sys-
tems Design and Implementation, 1996.

[41] O. Shivers, James W. Clark, and Roland McGrath. Atomic heap transactions
and fine-grain interrupts. InACM Sigplan International Conference on Func-
tional Programming (ICFP99)', Sep. 1999.

[42] Status page of the Fiasco project at the Technical University of Dresden, http://
os.inf.tu-dresden.de/fiasco/status.html.

[43] Sun Microsystems.Java Remote Method Invocation Specification. 1997.
[44] Webpage of the IOZone filesystem benchmark, http://www.iozone.org/.
[45] A. Weissel.Ein offenes Dateisystem mit Festplattensteuerung fuer metaXaOS.

Studienarbeit, available as SA-I4-2000-02, Univ. of. Erlangen, Dept. of Comp.
Science, Lehrstuhl 4, Feb. 2000.

[46] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allo-
cation: A survey and critical review. In. InProc. of International Workshop on
Memory Management, Sep. 1995.

[47] N.WirthandJ.Gutknecht.ProjectOberon:TheDesignofanOperatingSystem
and Compiler. Addison-Wesley, 1992.

[48] F.Yellin.LowlevelsecurityinJava.InProc.ofthe4thWorldWideWebConfer-
ence, pp. 369-379, OReilly,1995.'

