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Abstract. For software transactional memory (STM) to be usable in
large applications such as databases, it needs to be robust, i.e., live, effi-
cient, tolerant of crashed and non-terminating transactions, and practi-
cal. In this paper, we study the question of whether one can implement
a robust software transactional memory in an asynchronous system. To
that end, we introduce a system model – the multicore system model
(MSM) – which captures the properties provided by mainstream multi-
core systems. We show how to implement a robust software transactional
memory (RobuSTM) in MSM. Our experimental evaluation indicates
that RobuSTM compares well against existing blocking and nonblocking
software transactional memories in terms of performance while providing
a much higher degree of robustness.

1 Introduction

Software transactional memory (STM) is a promising approach to help program-
mers parallelize their applications: it has the potential to simplify the program-
ming of concurrent applications, when compared to using fine-grained locks. Our
general goal is to investigate the use of STM in large software systems like ap-
plication servers, databases, or operating systems. Such systems are developed
and maintained by hundreds of programmers, and all that code lives in the same
address space of the system’s process. Ensuring the robustness of such applica-
tions requires the use of techniques that guarantee the recovery from situations
in which individual threads crash or behave improperly (e.g., loop infinitely)
while executing critical sections. For example, commercial databases guarantee
such robustness using custom mechanisms for lock-based critical sections [12].

A system that uses transactions to perform certain tasks typically relies on
their completion. Thus, a robust STM must guarantee that all well-behaved
transactions will terminate within a finite number of steps. A transaction is
well-behaved if it is neither crashed nor non-terminating. Both crashed and non-
terminating transactions can interfere with the internal synchronization mech-
anism of the underlying STM implementation, possibly preventing other trans-
actions from making progress if not handled correctly. A crashed transaction
will stop executing prematurely, i.e., it executes a finite number of steps and
stops before committing (e.g., due to failure of the associated thread). A non-
terminating transaction executes an infinite number of steps without attempting
to commit.



Note that a robust STM provides guarantees that are very similar to a wait-
free STM, which guarantees to commit all concurrent transactions in a bound
number of steps. Yet, the definition of the wait-free property requires the use of
an asynchronous model of computation, but it has been shown recently [10] that
one cannot implement a wait-free STM in an such a system model. However, cur-
rent multicore systems provide stronger guarantees than those postulated in the
asynchronous system model. Therefore, we try to answer the question whether
one can implement a robust STM in today’s multicore computer architectures.

In this paper, we introduce a new multicore system model (MSM). It is asyn-
chronous in the sense that it does not guarantee any bounds on the absolute or
relative speed of threads but additionally reflects the properties of mainstream
multicore systems. We show that one can implement a robust STM (RobuSTM)
in MSM that guarantees progress for individual threads. Our RobuSTM imple-
mentation exhibits performance comparable to state-of-the-art lock-based STMs
on various types of benchmarks. Therefore, we not only show that one can im-
plement robust STMs but also that one can implement them efficiently.

The paper is organized as follows: We first introduce MSM in Section 2.
Section 3 presents the algorithm of RobuSTM. We evaluate our approach in
Section 4 and discuss related work in Section 5. We conclude in Section 6.

2 System Model

Our multicore system model (MSM) satisfies the following nine properties. (1) A
process consists of a non-empty set of threads that share an address space. (2) All
non-crashed threads execute their program code with a non-zero speed. Neither
the absolute nor the relative speed of threads is bounded. (3) Threads can fail by
crashing. A crash can be caused by a programming bug or by a hardware issue.
In the case of a hardware issue, we assume that the process crashes. In case of
a software bug, only a subset of the threads of a process might crash. (4) We
assume that STM is correctly implemented, i.e., crashes of threads are caused by
application bugs and not by the STM itself. The motivation is that a STM has
typically a much smaller code size that is reused amongst multiple applications.
(5) A process can detect the crash of one of its threads. (6) Threads can synchro-
nize using CAS and atomic-or operations (see below). (7) The state of a process
is finite. (8) A thread can clone the address space of the process. (9) Each thread
has a performance counter that counts the number of instructions it executed.

Software Transactional Memory. In our model, we assume that transac-
tions are executed concurrently by threads. Within transactions, all accesses to
shared state must be redirected to the STM and neither non-transactional ac-
cesses to global data nor external IO operations are permitted. If a thread failed
to commit the transaction, it is retried (see Section 3). We further assume that
transactions are non-deterministic and allow transactions to execute different
code paths or access different memory locations during the retry.

Detection mechanisms. Modern operating systems permit the detection
of thread crash failures. A thread can crash for various reasons like an uncaught



exception. To detect the crash of a thread that is mapped to an operating system
process, one can read the list of all processes that currently exist and check
their status or search for missing threads [1]. The MSM assumes the existence
of a thread crash detector that detects within a finite number of steps when a
thread has crashed (i.e., the thread stopped executing steps) and will not wrongly
suspect a correct thread to have crashed. For simplicity, in our implementation
we assume that a signal handler is executed whenever a thread crashes.

Progress mechanisms. Like many concurrent algorithms, the MSM as-
sumes the existence of a compare-and-swap (CAS) operation: bool CAS(addr,

expect, new). CAS atomically replaces the content of address addr with value
new if the current value is expect. It returns true iff it stored new at addr. A
CAS is often used in loops in which a thread retries until its CAS succeeds (see
Figure 1). Note that sometimes such a loop might contain a contention manager
to resolve a conflict with another thread but in the meantime a third thread
might have successfully changed addr. In other words, a contention manager
might not be able to ensure progress of an individual thread since this thread
might have continuous contention with two or more other threads.

repeat
expect = *addr; . Read current value
new = function(expect); . Get new value

until CAS(addr, expect, new)

Fig. 1. While CAS is wait-free, there is no
guarantee that the CAS will ever succeed,
i.e., that the loop ever terminates.

repeat
if has priority() then . Privileged priority

atomic-or(addr, F); . Set fail bit
expect = *addr; . Expect bit in CAS

else . All other threads
expect = *addr & ∼F; . No fail bit

end if
until CAS(addr, expect, new)

Fig. 2. Using an atomic-or, we can make
sure the CAS of the privileged priority
thread always succeeds.

The problem is that there is no guarantee that a thread will ever be success-
ful in performing a CAS. To address this issue, the MSM assumes an atomic-or
operation. Note that the x86 architecture supports such an operation: a program-
mer can just add a LOCK prefix to a logical or operation. It is guaranteed, that a
processor will execute the atomic-or operation in a finite number of steps. Also
note that such an operation does not exist on, for example, Sparc processors.

We use the atomic-or to ensure that each correct transaction will eventually
commit. RobuSTM will select at most one thread with a privileged priority
level in the sense that this thread should win all conflicts. To ensure that all
CAS operations performed by a privileged thread succeed, it uses the atomic-or
to make sure that all competing CASes fail. To do so, we reserve a bit (F) in each
word that is used with a CAS (see Figure 2). If a privileged thread performs an
atomic-or just before another thread tries to perform a CAS, the latter will fail
because its expected value assumes the F bit to be cleared.

Our goal is not only to implement wait-free transactions in the face of crash
failures, but also in the face of non-terminating transactions. We assume however
that the STM code itself is well-behaved and only application code can crash
or loop infinitely often. For tolerating non-terminating transactions, we assume
two more mechanisms that can be found in current systems. First, the MSM as-



sumes that we can clone a thread, i.e., the operating system copies the address
space of a process (using copy-on-write) and the cloned thread executes in a new
address space fully isolated from all threads of the original process. Second, the
MSM assumes the existence of a performance counter that (1) counts the cycles
executed by a thread, and (2) permits other threads to read this performance
counter. The intuition of the performance counter is as follows. The privileged
thread can keep its privilege for a certain number of cycles (measured by the
performance counter), after which it is not permitted anymore to steal the locks
of other threads. If we can prove that the thread is well-behaved and would have
simply needed more time to terminate, we increase the time quantum given to
the privileged thread. Since the state space of threads is finite (but potentially
very large), there exists a finite threshold S such that each transaction will either
try to commit in at most S steps, or it will never try to commit. The problem
is how to determine an upper bound on this threshold for non-deterministic
transactions (see Section 3). Our system ensures that non-terminating transac-
tions are eventually isolated to ensure the other threads can make progress while
ensuring that long running but correct transactions will eventually commit.

3 Design and implementation

Our STM algorithm runs in different modes. In this section, we first present
the basic algorithm optimized for the good case with well-behaved transactions
(Mode 1). When conflicts are detected and fairness is at stake, we switch to
Mode 2 by prioritizing transactions. If the system detects a lack of progress, we
switch to Mode 3 for dealing with crashed and non-terminating transactions.
The mode is set for each transaction individually.

3.1 Why a Lock-based Design?

Our robust STM algorithm uses a lock-based design. The reason for basing our
work on a blocking approach instead of an obstruction-free one is driven by
performance considerations. Non-blocking implementations suffer from costly
indirections necessary for meeting their obstruction-free progress guarantee [5,
4, 16]. Although many techniques known from blocking implementations were
applied to avoid indirection under normal operation with little contention, in-
direction is still necessary when it comes to conflicts with transactions that are
not well-behaved (see Section 5). Our own experiments (see Section 4) still show
a superior performance of lock-based designs.

Several reasons can explain the good performance of blocking STMs. They
have a simpler fast path and more streamlined implementations of the read/write
operations with no extra indirection. In addition, the combination of invisible
reads and time-based validation [17] provides significant performance benefits.
In this paper, we use a C++ version of the publicly-available TinySTM [6] as
the basis for our robust STM algorithm. TinySTM is an efficient lock-based
implementation of the lazy snapshot algorithm (LSA) [17].



3.2 Optimizing for the Good Case

For completeness, we briefly recall here the basic algorithm used by TinySTM.
Like several other word-based STM designs, TinySTM relies upon a shared
array of locks to protect memory from concurrent accesses (see Figure 3). Each
lock covers a portion of the address space. In our implementation, it uses a per-
stripe mapping where addresses are mapped to locks based on a hash function.

Lock array

Owner

Timestamp

Transaction

Start timestamp
Write-set

...

Memory

...

...

Address read

Address written

...

1

0

Lock bit

Read-set

Address read

Fig. 3. Data structures for the lock-based design of TinySTM.

Each lock is the size of an address on the target architecture. Its least sig-
nificant bit is used to indicate whether the lock has been acquired by some
transaction. If it is free, the STM stores in the remaining bits a version number
that corresponds to the commit timestamp of the transaction that last wrote to
one of the memory locations covered by the lock. If the lock is taken, the STM
stores in the remaining bits a pointer to an entry in the write-set of the owner
transaction. Note that addresses point to structures that are word-aligned and
their least significant bits are always zero on 64-bit architectures; hence one of
these bits can safely be used as lock bit.

When writing to a memory location, a transaction first identifies the lock
entry that covers the memory address and atomically reads its value. If the lock
bit is set, the transaction checks if it owns the lock using the address stored in the
remaining bits of the entry. In that case, it simply writes the new value into the
transaction-private write set and returns. Otherwise, there is a conflict and the
default contention management policy is to immediately abort the transaction
(we will show how one can change this behavior to provide fairness shortly).

If the lock bit is not set, the transaction tries to acquire the lock using a
CAS operation. Failure indicates that another transaction has acquired the lock
in the meantime and the whole procedure is restarted. If the CAS succeeds, the
transaction becomes the owner of the lock. This basic design thus implements
visible writes with objects being acquired when they are first encountered.

When reading a memory location, a transaction must verify that the lock is
neither owned nor updated concurrently. To that end, the transaction reads the
lock, then the memory location, and finally the lock again (obviously, appropriate
memory barriers are used to ensure correct ordering of accesses). If the lock is
not owned and its value (i.e., version number) did not change between both
reads, then the value read is consistent. If the lock is owned by the transaction
itself, the transaction returns the value from its write set. Once a value has been



read, LSA checks if it can be used to construct a consistent snapshot. If that is
not the case and the snapshot cannot be extended, the transaction aborts.

Upon commit, an update transaction that has a valid snapshot acquires a
unique commit timestamp from the shared clock, writes its changes to memory,
and releases the locks (by storing its commit timestamp as version number and
clearing the lock bit). Upon abort, it simply releases any lock it has previously
acquired. Refer to [17] for more details about the LSA algorithm.

3.3 Progress and Fairness

An important observation is that the basic TinySTM algorithm does not provide
liveness guarantees even when considering only well-behaved transactions. In
particular, a set of transactions can repeatedly abort each other, thus creating
livelocks. Furthermore, there is no fairness between transactions: a long-running
transaction might be taken over and aborted many times by shorter update
transactions, in particular if the former performs numerous invisible reads

To address these problems, we introduce two mechanisms that make up
Mode 2. The first one consists of introducing “visible reads” after a transac-
tion has aborted a given number of times because of failed validation (i.e., due
to invisible reads). To that end, in addition to the WR bit used for writers, we use
an additional RD bit in the lock metadata to indicate that a transaction is read-
ing the associated data (see Figure 4). Using a different bit for visible readers
allows more concurrency because an invisible reader is still allowed to read data
that is locked in read mode. Other conflicts with visible readers are handled as
for writers, i.e., only one transaction is allowed to proceed. The use of visible
reads makes all conflicts detectable at the time data is accessed: a well-behaved
transaction that wins all conflicts is guaranteed not to abort.
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Fig. 5. States during the lifetime of a
transaction.

This mechanism alone is not sufficient to guarantee neither progress nor
fairness. Depending on the contention management strategy, transactions can
repeatedly abort each other, or a transaction might always lose to others and
never commit. To address the fairness problem, we need to be able to prioritize
transactions and choose which one to abort upon conflict. That way, we can
ensure that the transaction with the highest priority level wins all its conflicts.



A transaction that cannot commit in Mode 1, first switches to visible reads. If
it still fails to commit after a given number of retries with visible reads enabled,
it tries to enter a privileged priority level that accepts only one thread at a time.
Entry into this priority level is guarded using Lamport’s bakery algorithm [13]
that provides fairness by granting permission in the order in which transactions
try to acquire the bakery lock. Because the number of steps that transactions
are allowed to execute with priority is limited (see Section 3.6), each acquire
attempt will finish in a finite number of steps. The privileged thread can steal
a lock from its current owner by atomic-or ing the PR bit to 1 before acquiring
it. The bit indicates that a transaction is about to steal the lock (see Figure 4).
As explained in Section 2, this will ensure that any other thread attempting to
CAS the lock metadata will fail (because it expects the PR bit to be cleared),
while the privileged thread will succeed.

3.4 Safe Lock Stealing

Due to the lock-based nature of our base STM, being able to safely steal locks
from transactions is necessary to build a robust STM. Our system model eases
this because it requires that STM code is well-behaved and only application code
can crash or loop infinitely often.

To understand how lock stealing works, consider Figure 5 that shows the
different states a transactions can take. The normal path of a transaction is
through states IDLE, ACTIVE (when transaction has started), VALIDATE (upon
validation when entering commit phase), and COMMIT (after successful validation
when releasing locks). A transaction can abort itself upon conflict (from ACTIVE

state), or when validation fails (from VALIDATE state).
An active transaction can also be forcefully aborted (or killed) by another

transaction in privileged priority (dashed arrow in the figure). This happens
when the privileged transaction tx wants to acquire a lock that is already owned,
i.e., with the RD or WR bit set. In that case, tx first reserves this lock for the
privileged transaction by atomic-or ing the PR bit to 1. This wait-free operation
also ensures that other non-privileged transactions will notice the presence of tx
and will not be able to acquire the lock or clear the PR bit anymore (see Figure 2).
In RobuSTM, all lock acquire and release operations must be performed using
CAS, which will fail for non-privileged transactions if the PR bit is set.

After reserving the lock, tx can continue with actually stealing the lock. It
loads the value of the lock again and determines whether there was an owner
transaction. If so and if the owner is in the IDLE state, it can just acquire the
lock. If the owner is in the VALIDATE or COMMIT states, tx waits for the owner
to either abort (e.g., because validation failed) or finish committing. We do
not abort validating transactions because they might be close to successfully
committing. Because we assume that STM code is well-behaved and because
read sets are finite, commit attempts execute in a finite number of steps. Note
that a successfully committed transaction releases only the locks whose PR bit
is not set. This process works as long as there is at most one transaction in the
privileged priority level that can steal locks.



If the owner transaction is in ACTIVE state, tx attempts to abort the owner
by using CAS to change the state to ABORT. After that or if the owner is already
in state ABORT, tx acquires the lock using CAS but while doing so expects the
value that the lock had after the atomic-or. The PR bit is only used during lock
stealing and is not set after tx acquired the lock. Transactions check whether
they have been aborted within each STM operation (e.g., loads). Note that a
transaction’s state is versioned to avoid ABA issues on lock owners, i.e., tx can
distinguish if the transaction that previously owned the lock aborted and retried
while performing the lock stealing.

3.5 Dealing with Crashed Transactions

Using a traditional lock-based STM could lead to infinite delays in case a thread
that has acquired some locks crashes. Because RobuSTM supports lock stealing,
the crash of a transaction that is not in privileged priority level and that is not
in the COMMIT state does not prevent other transactions from safe lock stealing
introduced in Section 3.4.

RobuSTM makes use of the crash detector included in the MSM to deal
with crashed transactions. In practice, events that cause a thread to crash (e.g.,
a segmentation fault or an illegal instruction) are detected by the operating sys-
tem and a thread can request to be notified about such events by registering
a signal handler. If a signal is received by a thread that indicates a crash, the
thread will abort itself if it is in the ACTIVE state to speed up future acquisi-
tions by other threads. If the thread is in the COMMIT state and already started
writing its modifications to memory, it will finish comitting. The intention there
is to always keep the shared state consistent and to reduce the contention on
locks. Transactions in privileged priority level that encountered a thread crash
additional release their priority.

3.6 Dealing with Non-Terminating Transactions

The main problem that we face when designing a robust STM is how to deal with
non-terminating transactions as the locks they hold can prevent other transac-
tions from making progress. Two different kinds of non-terminating transactions
have to be distinguished: (1) transactions that are in ACTIVE state but stopped
executing STM operations, and (2) transactions that still perform STM oper-
ations (e.g., in an infinite loop). Both correspond to non-crashed threads and
never reach the VALIDATE state.

Let us first consider how RobuSTM handles threads that stopped executing
STM operations (e.g., the thread is stuck in an endless loop). In the simplest
case, the thread did not acquire any locks and thus does not prevent other
threads from making progress and can be tolerated by the system. If the non-
terminating transaction already acquired locks, it may run into a conflict with
another thread. Eventually, the conflicting thread will reach the privileged pri-
ority level and again run into a conflict with the non-terminating transaction.
It will then force the non-terminating transaction to abort and steals the lock.



Since the status of a thread is only checked during STM operations, the non-
terminating transaction will not discover the update and will remain in the ABORT
state. Other transactions that encounter a conflict with a transaction in ABORT

state can simply steal the lock.
A non-terminating transaction that still performs STM operations will dis-

cover the update of its state to ABORT. It will roll back and retry its execution.
If, during the retry, it becomes again a non-terminating transaction that owns
locks, it will be killed and retried again. It can therefore enter the privileged pri-
ority level and still behave as a non-terminating transaction, hence preventing
all other transactions from making progress because it wins all conflicts. Since
we assume that the state of a computer is finite, for each well-behaved and priv-
ileged transaction tx there exists a maximum number of steps, maxSteps, such
that tx will execute at most maxSteps before trying to commit. maxSteps is
not known a priori and hence, we cannot reasonably bound the number of steps
that a privileged transaction is permitted to execute without risking to prevent
some well-behaved transactions from committing.

MSM permits us to deal with non-terminating transactions running at the
privileged priority level as follows. The privileged thread th receives a budget of
at most a finite number of steps but at least quantum steps, where quantum is a
dynamically updated value. Initially, quantum is set to some arbitrary value that
we assume to be smaller than maxSteps. The privileged thread th is forced to the
ABORT state after quantum steps (determined with the help of the performance
counters) and is removed from the privileged priority level.

If the formerly privileged transaction th notices that it has been aborted
and exceeded its quantum, it clones its thread. The clone consists of a separate
address space that is copied on write from the parent and a single thread that
runs in isolation. Transactional meta data of all threads in the parent is copied
with the address space. The clone then continues to execute the transaction
in a checker run using the meta data to resolve conflicts. There are two cases
to consider. (1) If th is well-behaved, it will terminate after running for, say,
childSteps. At this point, the child will return success and the parent thread
will increase quantum by setting it to a value of at least childSteps. Then, the
parent thread will re-execute th at privileged priority with at least quantum
steps. If the new quantum was not sufficient , e.g., because of non-determinism,
it will be increased iteratively. (2) If th is not well-behaved, it will not terminate
the checker run. In this case, the parent thread will wait forever for the child
thread to terminate. Because the parent thread has aborted, it will not prevent
any of the well-behaved threads from making progress.

4 Evaluation

In this section, we evaluate the performance of RobuSTM. We are specifically
interested in showing that (1) it provides high throughput in good cases with
little contention, (2) it provides fairness by guaranteeing progress of individual
transactions, and (3) it tolerates crashed and non-terminating transactions.



We compare RobuSTM against four state-of-the-art STM implementations:
TinySTM [6]; TinyETL, a C++ implementation of the encounter-time lock-
ing variant of TinySTM; TL2 [4], an STM implementation that uses commit-
time locking; and NB STM [15], which combines efficient features of lock-based
STM implementations with a non-blocking design, as our algorithm does. The
NB STM implementation that we use is a port of the original SPARC imple-
mentation to the x86 architecture.

For our evaluation, we use well-known micro-benchmarks and applications of
the STAMP [2] benchmark suite. The intset micro-benchmarks perform queries
and updates on integer sets implemented as red-black tree and linked list. We
use the bank micro-benchmark to evaluate fairness: some threads perform money
transfers (i.e., one withdrawal followed by a deposit) concurrently with long read-
only transactions that compute the aggregated balance of all accounts. From the
STAMP benchmark suite [2] we chose Vacation, KMeans and Genome. Vacation
emulates a travel reservation system, reading and writing different tables that
are implemented as red-black trees. KMeans clusters a set of points in parallel.
Genome performs gene sequencing using hash sets and string search.

Our tests have been carried out on a dual-socket server with two Intel quad-
cores (Intel XEON Clovertown, executing 64-bit Linux 2.6). We compiled all
micro-benchmarks using the Dresden TM Compiler [3], which parses and trans-
forms C/C++ transaction statements and redirects memory accesses to an STM.

4.1 Throughput for Well-Behaved Transactions

We first evaluate transaction throughput for lock-based and nonblocking STM
implementations. There are no crashes or non-terminating transactions present.

 0
 400
 800

 1200
 1600

 2  4  6  8

5% read-all

C
om

m
its

/s
 (×

 1
03 )

TinyETL
RobuSTM
TinySTM

TL2
NB STM

 0
 100
 200
 300
 400
 500
 600

 2  4  6  8

20% read-all

   .001
   .01

   .1
 1

 10
 100

 1000

 2  4  6  8

100% read-all 1 thread

Number of threads
 1  1 1

Fig. 6. Comparison lock-based vs. nonblocking STM (bank benchmark, 4096 accounts).

Figure 6 shows the bank benchmark with low load under different STM
runtimes. The left and middle plots show throughput for both transfer and
aggregate-balance transactions. The lock-based STMs perform significantly faster
than NB STM because the chosen nonblocking STM still requires an indirection
step in case of contention. These results show why we would like RobuSTM to
perform as well as blocking STMs. RobuSTM has more runtime overhead than
TinyETL and TinySTM but is on par with TL2. Figure 7 shows performance
results for additional micro-benchmarks and STAMP applications. Results for
NB STM are only presented for the red-black tree because it requires manual
instrumentation and it is not supported by the STAMP distribution. These re-
sults are in line with the bank benchmark results, showing that TinySTM and
TinyETL perform best, followed by RobuSTM, then TL2 and finally NB STM.
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Fig. 7. Comparison of the performance of RobuSTM with micro-benchmarks (4096
initial elements) and STAMP applications (all with high contention).

The right plot of Figure 6 shows that the fairness that RobuSTM helps
avoid starvation of the long aggregate-balance transactions with visible reads.
In this plot, we only show the throughput of a single thread that is performing
aggregate-balance (read-all) transactions. The guarantee for individual threads
to make progress under MSM provides fairness for transactions that otherwise
would not have a good chance to commit. Other STMs with invisible reads that
simply abort upon conflict do not perform well because the read-only transaction
will be continuously aborted.

4.2 Tolerating Crashes and Non-Terminating Transactions

We now evaluate transaction throughput in the presence of crashes or non-
terminating transactions. Ill-behaved transactions are simulated by injecting
faults at the end of a transaction that performed write operations (i.e., it holds
locks). We inject thread crashes by raising a signal and simulate non-terminating
transactions by entering an infinite loop. The infinite loop either performs no
operations on shared memory or continuously executes STM operations (e.g.,
transactional loads).

Orthogonal to the robustness that RobuSTM offers for synchronization,
applications must be tolerant against faults of its threads. During the setup
of our experiments we discovered two major problems with the thread-based
benchmarks. (1) Barriers must be tolerant to faulty threads that never reach the
barrier because of a crash or non-terminating code. (2) The workload cannot
be pre-partitioned to the initial number of threads. Instead, it must be assigned
dynamically, e.g., in each loop iteration. Therefore, we chose only a selection of
STAMP applications that could be easily adapted. Using RobuSTM, an adapted
application with initially N threads can tolerate up to N −1 faults because even
ill-behaved transactions prevent the thread from processing its work. Increasing
the number of tolerated faults would require a change in the programming model,
e.g., based on a thread pool, and is not in the scope of this paper.

Figure 8 shows the performance of RobuSTM compared to TinyETL, the
most efficient STM in the previous measurements. In each plot of the figure,
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Fig. 8. Comparison of the performance for the benchmarks from Figure 7 with injected
crashes and non-terminating transactions executing an infinite loop with or without
STM operations.
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Fig. 9. Throughput for the red-black tree over time intervals under the presence of
non-terminating transactions executing an infinite loop without (left) and with (right)
STM operations. Vertical lines mark events of the fault-injected thread.

we show the performance when some threads are faulty in the baseline 8-thread
run. TinyETL is a run where faulty threads are simply not started in the
runs, and thus shows the baseline. “Well-behaved” is similar (only well-behaved
transactions), but uses RobuSTM. The other three lines show the performance
in the presence of transactions that are not well-behaved. Faults were injected
as early as possible, except for Genome, where they were injected in the last
phase and can only be compared to the 8-thread runs. The results show that
RobuSTM can ensure progress for an increasing number of injected faults. In
fact, it can even compete with the throughput of the “well-behaved” case for the
considered benchmarks.

To illustrate how RobuSTM behaves when non-terminating transactions are
present, Figure 9 shows the number of commits and aborts over periods of time
for the red-black tree benchmark. In the left graph, the benchmark is executed
with two threads and one transaction enters an infinite loop that does not call
STM operations. The remaining thread runs into a conflict and aborts repeat-
edly until it enters the privileged priority level. It then is allowed to kill the
non-terminating transaction in order to steal its locks. Afterwards, the through-
put picks up to the level of a single threaded execution. The right graph shows a
scenario taken from Figure 8 with eight threads and one transaction that enters
an infinite loop with STM operations. All remaining seven threads abort af-



ter running into a conflict and eventually reach privileged priority. Because the
non-terminating transaction detects that it has been aborted during its STM
operations, it retries. Thus, it must be aborted multiple times until it gains priv-
ileged priority. While the non-terminating transaction executes privileged, other
threads wait and check the quantum of the non-terminating transaction. After
the transaction detects that it was aborted because its quantum expired, it will
clone its thread to enter the checker run. The period between gaining privileged
priority and entering the checker run is much longer than the allowed quantum
because it includes the costly clone of the process. After the initialization of the
checker is finished, all locks are released in the parent process and the other
threads can continue.

The results show that despite several crashed or non-terminating threads,
RobuSTM is able to maintain a good level of commit throughput, effectively
shielding other threads from failed transactions. We tested injecting faults in
other STM implementations to justify our design decisions. Lock-based designs
that acquire locks at commit-time (e.g., TL2) seem promising towards toler-
ating crashes and non-terminating transactions. Problems arise when fairness
is at stake because memory accesses cannot be easily made visible. For im-
plementations with encounter-time locking that simply abort on conflict (e.g.,
TinyETL), transactions that are not well-behaved and own locks lead to dead-
locks. To overcome deadlocks, lock stealing and external abort of transactions
must be supported. This will allow to tolerate crashes but not non-terminating
transactions as they might continuously retry. We found that none of further ex-
isting approaches for contention management (see Section 5) met our robustness
requirements.

5 Related Work

Non-blocking concurrent algorithms (e.g., lock-free or wait-free) ensure progress
of some or all remaining threads even if one thread stops making progress. While
many early STMs where non-blocking, most of the recent implementations use
blocking algorithms because of their simpler design and better performance. Re-
cent work on non-blocking STM [16, 21] has shown that its performance can be
substantially increased by applying techniques known from blocking STM im-
plementations. This includes (1) timestamp-based conflict detection and (2) a
reduced number of indirections while operating on transactional data by access-
ing memory in place in the common case. Depending on the algorithm, costly
indirection is still required either during commit [16] or when stealing ownership
records on conflict [21]. For the later, deflating the indirection is only possible
after the original owner transaction moved to the abort state, but this might
never happen for transactions that are not well-behaved.

Contention management was originally introduced to increase the through-
put and avoiding possible livelocks (e.g., Polite, Karma, Polka [19, 18]). An in-
teresting observation is to back off the losing transaction after a conflict to avoid
encountering the same conflict immediately upon retry. Contention managers



that aim to provide fairness between short and long-running transactions usu-
ally rely on prioritization. The priority can be derived from the time when a
transaction started or the amount of work it has done so far [18, 9]. This helps
long-running transactions reach their commit point but can delay short transac-
tions extensively in case of high contention. Furthermore, crashed transactions
will gain a high priority if it is based on the start time. An alternative is to
derive the priority from the number of times the transaction has already been
retried [19] and favor transactions with problems reaching their commit point.

In combination with priorities, simple mechanisms such as recency times-
tamps or liveness flags were introduced to determine the amount of time that
contending transactions should back off. The goal is to increase the likelihood
that a transaction that has already modified a memory location can commit (e.g.,
Timestamp, Published Timestamp [19, 18]). These mechanisms are also used by
transactions to show that they are not crashed. However, this approach does
not work for non-terminating transactions because they may well update the
timestamp or flag forever. The length of potential contention intervals can be
reduced if locks are not acquired before commit time [20]. This would allow us
to tolerate non-terminating transactions because they never try to commit [10],
but by detecting conflicts lazily one cannot ensure that a transaction will even-
tually manage to commit (it can be repeatedly forced to abort by concurrent
transactions that commit updates to shared memory).

Contention managers can also try to ensure progress of individual transac-
tions. In the initial proposal of the Greedy contention manager [9], which guar-
antees that every well-behaved transaction commits within a bounded amount
of time, thread failures could prevent global progress (i.e., the property that at
least some thread makes progress). This issue was solved by giving each trans-
action a bounded period of time during which it could not be aborted by other
transactions [8]. If a correct transaction exceeds this time limit and is aborted,
it can retry with a longer delay. This approach works for crash failures but not
for non-terminating transactions because the delay can grow arbitrarily large if
the transaction is retried infinitely often.

Fich et al. [7] proposed an algorithm that converts any obstruction-free algo-
rithm [11] into a practically wait-free one. The idea is that, in a semi-synchronous
system, it is impossible to determine if a thread has crashed by observing its ex-
ecuted steps, as a step can take a bounded but unknown amount of time to
complete. Thus, it is not possible to know a priori how long to wait for a possi-
bly crashed transaction. Instead, one has to wait for increasingly longer periods.
To decide if a thread had indeed crashed after expiration of the waiting period,
they observe the instruction counter of the thread used to track progress. This
approach cannot be applied straightforwardly to STMs because transactions can
contain loops or perform operations with variable durations, e.g., allocate mem-
ory, so we cannot automatically and efficiently determine the abstract linear
instruction counter of a running transaction.

Guerraoui and Kapalka were the first to take non-terminating transactions
explicitly into account [10]. Their result is that the strongest progress guarantee



that can be ensured in asynchronous systems is global progress, which is analo-
gous to lock freedom. Since thread crashes and non-terminating transactions are
not detected but tolerated, one cannot give to a single transaction an exclusive
execution right because the thread might gain the right and never release it. We
show in this paper that relying on a different but yet practical system model
(see Section 2) allows us to build robust STMs that avoid these limitations and
work on current multicore systems.

6 Conclusion

Robustness of transactional memory has often been ignored in previous research
as the main focus was on providing performance. Yet, robustness to software bugs
and application failures is an important property if one wants to use transactional
memory in large mission-critical or safety-critical systems.

In this paper, we have introduced the multicore system model (MSM) that
is practical in the sense that it reflects the properties of today’s multicore com-
puters. We have shown that (1) it is possible to build a robust STM with per-
formance comparable to that of non-robust state-of-the-art STMs, and (2) we
can implement such an STM under MSM.

Our experimental evaluation indicates that robustness only has a small ad-
ditional overhead in the good case (i.e., no or few ill-behaved transactions), and
performance remains good even when there are crashed and non-terminating
threads. We expect to further improve efficiency by tuning the configuration pa-
rameters at runtime. For RobuSTM, these are especially the number of retries
(1) after which transactions switch to using visible reads and (2) after which
they attempt to run as a privileged transaction. Previous work has shown this
to be very beneficial in the case of other STM configuration parameters [6]. We
also expect that pairing this work with operating-system scheduling [14] could
enable interesting optimizations.
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